JPH02247324A - Immersed pipe for degasification refining - Google Patents

Immersed pipe for degasification refining

Info

Publication number
JPH02247324A
JPH02247324A JP6855089A JP6855089A JPH02247324A JP H02247324 A JPH02247324 A JP H02247324A JP 6855089 A JP6855089 A JP 6855089A JP 6855089 A JP6855089 A JP 6855089A JP H02247324 A JPH02247324 A JP H02247324A
Authority
JP
Japan
Prior art keywords
molten steel
descending
partition
molten metal
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6855089A
Other languages
Japanese (ja)
Inventor
Shigeru Inoue
茂 井上
Tsutomu Usui
碓井 務
Shinobu Miyahara
忍 宮原
Yoshikatsu Furuno
好克 古野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP6855089A priority Critical patent/JPH02247324A/en
Publication of JPH02247324A publication Critical patent/JPH02247324A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the amt. of molten steel to be circulated and to agitate the molten steel in a ladle to accelerate the degasification rate by integrating the ascending part and descending part for molten steel through a partition and reducing the cross-sectional area of the molten steel discharge port of the descending part. CONSTITUTION:The immersed pipe 20 for degasification refining is formed by the ascending part 30, the descending part 32 integrated with the ascending part and the partition 26. A gas is blown into the ascending part 30 by a gas blowing means 21, and molten steel 3 is sucked up into a degasification bath main body 11. The sucked up molten steel 3 is returned through the descending part 32. The partition 26 is formed so that the cross-sectional area of the molten steel discharge port of the descending part 32 is made smaller than that of the molten steel passage of the descending part 32 at the same level with the gas blowing position.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、RH脱ガス槽及び溶鋼鍋の間にて溶鋼を循
環させつつ脱ガス処理するための脱ガス精錬用浸漬管に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a degassing refining immersion tube for degassing while circulating molten steel between an RH degassing tank and a molten steel ladle.

【従来の技術] 近時、炭素含釘量を極微量に調整した極低炭素鋼の需要
が高まり、これを迅速かつ安定に溶製する技術が要望さ
れている。このような背景から、溶鋼を効率よく脱炭す
る技術として、RH脱ガス精錬が注目されている。
[Prior Art] Recently, there has been an increase in demand for ultra-low carbon steel with an extremely small amount of carbon content, and there is a need for a technology for quickly and stably melting this steel. Against this background, RH degassing refining is attracting attention as a technology for efficiently decarburizing molten steel.

このため、従来からRH脱ガス精錬の脱炭速度を向上さ
せるために、処理溶鋼の環流量を増大化することが検討
されている。
For this reason, in order to improve the decarburization rate in RH degassing refining, increasing the recirculation flow rate of treated molten steel has been studied.

従来のRH脱ガス槽は、その下部に着脱可能の1対の管
を有しており、これら1対の管を溶鋼に浸漬して減圧状
態の槽本体内に溶鋼を吸い上げ、一方の浸漬管に不活性
ガスを吹込むことにより脱ガス槽及び溶鋼鍋の間にて溶
鋼を循環させつつ脱ガス処理するようになっている。従
って、処理溶鋼の環流量の増大化を図るためには、ガス
吹込み量を増やすか、又は浸漬管の溶鋼通流断面積を大
きくする必要がある。しかし、ガス吹込み量の増加は技
術的に限界がある。結局、従来の溶鋼環流量の増大化技
術の方向として、浸漬管の溶鋼通流断面積を拡大化する
ことが種々検討されている。
A conventional RH degassing tank has a pair of removable pipes at the bottom of the tank, and the pair of pipes are immersed in molten steel to suck up the molten steel into the tank main body under reduced pressure. The molten steel is degassed while being circulated between the degassing tank and the molten steel ladle by blowing inert gas into the molten steel. Therefore, in order to increase the recirculation flow rate of treated molten steel, it is necessary to increase the amount of gas blown or to increase the molten steel flow cross-sectional area of the immersion pipe. However, there is a technical limit to increasing the amount of gas blown. As a result, various studies have been made to expand the molten steel flow cross-sectional area of the immersion pipe as a direction for conventional techniques for increasing the molten steel circulation flow rate.

〔発明が解決しようとする課題] しかしながら、従来のRH脱ガス槽においては、浸漬管
(上昇管及び下降管)と脱ガス槽本体とがそれぞれフラ
ンジ接続されており、上昇管及び下降管のフランジ継手
が相互に干渉しあい、脱ガス槽本体の径を一定とした場
合に、浸漬管の溶鋼通流断面積を拡大化するには限界が
あった。
[Problems to be Solved by the Invention] However, in the conventional RH degassing tank, the immersion pipes (rising pipe and downcomer pipe) and the degassing tank body are each connected by flanges, and the flanges of the rising pipe and the downcomer pipe If the joints interfere with each other and the diameter of the degassing tank body is constant, there is a limit to increasing the molten steel flow cross-sectional area of the immersion pipe.

このような溶鋼環流量の増大化技術として、特開昭59
−85815号公報に記載された発明がある。これによ
れば、1対の浸漬管の断面形状をそれぞれ楕円とし、楕
円短軸が脱ガス槽中心に向くような配置として浸漬管相
互の干渉を回避し、溶鋼通流断面積を拡大化している。
As a technique for increasing the flow rate of molten steel, JP-A-59
There is an invention described in JP-A-85815. According to this, the cross-sectional shape of a pair of immersion tubes is each an ellipse, and the short axis of the ellipse is oriented toward the center of the degassing tank to avoid interference between the immersion tubes and to expand the molten steel flow cross-sectional area. There is.

しかしながら、上記の浸漬管は、真円のものに比べてそ
の強度及び耐久性に劣り、短寿命である。
However, the above-mentioned immersion tube is inferior in strength and durability and has a short lifespan compared to a perfectly round one.

また、上記浸漬管は特殊形状であるため、製造コスト及
び保守コストが高く、その製造が一般に困難である。
Further, since the above-mentioned dip tube has a special shape, manufacturing cost and maintenance cost are high, and manufacturing thereof is generally difficult.

ところで、脱ガス反応は、脱ガス槽内における溶鋼の攪
拌状態のみでなく、鍋内における溶鋼の攪拌状態にも影
響を受ける。これは、下降管吐出流の攪拌力が弱いと、
鍋内溶鋼が均一に混合されるまでに長時間を要するため
である。従って、脱ガス反応の促進を図るには、下降管
から鍋内に吐出される溶鋼の流速を増大させて、鍋内溶
鋼の攪拌を向上させ、均一混合時間の短縮を図る必要が
ある。
Incidentally, the degassing reaction is affected not only by the stirring state of the molten steel in the degassing tank but also by the stirring state of the molten steel in the pot. This is because the agitation force of the downcomer discharge flow is weak.
This is because it takes a long time for the molten steel in the pot to be mixed uniformly. Therefore, in order to promote the degassing reaction, it is necessary to increase the flow rate of the molten steel discharged into the ladle from the downcomer pipe, improve the stirring of the molten steel in the ladle, and shorten the uniform mixing time.

この発明は、かかる事情に鑑みてなされたものであって
、溶鋼環流量の増大化を図ることができると共に、鍋内
溶鋼の均一混合時間を短縮することができる脱ガス精錬
用浸漬管を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a degassing refining immersion tube that can increase the flow rate of molten steel circulating and shorten the time for uniformly mixing molten steel in a ladle. The purpose is to

[課題を解決するための手段] この発明に係る脱ガス精錬用浸漬管は、ガス吹込み手段
によりガスを吹込み、脱ガス槽本体に溶湯を吸い上げる
上昇部と、前記上昇部と一体に形成され、脱ガス槽本体
に吸い上げた溶湯を吐出する下降部と、前記上昇部及び
下降部を仕切る仕切りと、を有し、前記下降部の溶湯吐
出口の溶湯通流断面積のほうが、前記上昇部のガス吹込
み位置と同レベルにおける前記下降部の溶湯通流断面積
より小さくなるように、前記仕切りが形成されているこ
とを特徴とする。
[Means for Solving the Problems] The degassing refining immersion pipe according to the present invention includes a rising part for blowing gas by a gas blowing means and sucking up molten metal into the degassing tank body, and integrally formed with the rising part. and a descending part for discharging the molten metal sucked into the degassing tank main body, and a partition separating the rising part and the descending part, and the molten metal flow cross-sectional area of the molten metal discharge port of the descending part is larger than that of the rising part. The partition is characterized in that the partition is formed so as to be smaller than the molten metal flow cross-sectional area of the descending part at the same level as the gas injection position of the part.

[作 用1 この発明に係る脱ガス精錬用浸漬管においては、上昇部
と下降部とを一体に形成し、両者の間に仕切りを設けで
あるので、上昇部及び下降部が仕切りを介して隣接する
こととなり、両者を大径化することが可能となる。この
ため、上昇部及び下降部における溶湯通流のための有効
断面積が拡大し、溶湯の環流量が増大化する。
[Function 1] In the degassing refining immersion pipe according to the present invention, the rising part and the descending part are integrally formed, and a partition is provided between them, so that the rising part and the descending part can be connected to each other through the partition. Since they are adjacent to each other, it is possible to increase the diameter of both. Therefore, the effective cross-sectional area for the flow of the molten metal in the ascending section and the descending section is expanded, and the amount of molten metal recirculated is increased.

また、下降部の溶湯吐出口の溶湯通流断面積のほうが、
上昇部のガス吹込み位置と同レベルにおける下降部の溶
湯通流断面積より小さくなるように、仕切りが形成され
ているので、環流量がほとんど低下することなく、下降
部の吐出口からの溶湯吐出流速が増大化する。この結果
、吐出溶湯流により鍋内の溶湯が強攪拌され、鍋内溶湯
の均一混合時間が短くなり、脱ガス反応が促進されると
共に、溶湯の攪拌力が増大するので脱酸反°応も促進(
介在物除去)される。
In addition, the molten metal flow cross-sectional area of the molten metal discharge port in the descending section is
Since the partition is formed so that the molten metal flow cross-sectional area of the descending section is smaller than the molten metal flow cross-sectional area of the descending section at the same level as the gas injection position of the ascending section, the molten metal flows from the discharge port of the descending section with almost no reduction in the recirculation amount. The discharge flow rate increases. As a result, the molten metal in the pot is strongly stirred by the discharged molten metal flow, the time for uniform mixing of the molten metal in the pot is shortened, the degassing reaction is promoted, and the stirring power of the molten metal is increased, so the deoxidation reaction is also carried out. Promotion (
inclusions removed).

[実施例] 以下、添付の図面を参照してこの発明の実施例について
具体的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.

第2図に示すように、脱ガス槽10が取鍋2の上方に位
置し、脱ガス槽下部の浸漬管20が取鍋内溶鋼3に浸漬
されている。取鍋2は、台車に搭載され、図示しないリ
フティング装置により台車ごと昇降されるようになって
いる。なお、取鍋内溶鋼3は溶融スラグ4により覆われ
ている。脱ガス槽10は、建屋に固定されており、その
上部に排気口12を有する。この排気口12は、排ガス
装置(図示せず)に連通され、脱ガスI!10内部のガ
スが排気されるようになっている。なお、脱ガス槽の本
体11は、上部本体11aと下部本体11bとからなり
、両者がフランジ継手13により着脱可能に接続されて
いる。また、脱ガス槽本体11及び浸漬管20上部が鉄
皮15で覆われている。
As shown in FIG. 2, the degassing tank 10 is located above the ladle 2, and the immersion pipe 20 at the bottom of the degassing tank is immersed in the molten steel 3 in the ladle. The ladle 2 is mounted on a truck, and is raised and lowered together with the truck by a lifting device (not shown). Note that the molten steel 3 in the ladle is covered with molten slag 4. The degassing tank 10 is fixed to a building and has an exhaust port 12 at the top. This exhaust port 12 is communicated with an exhaust gas device (not shown) to degas I! The gas inside 10 is exhausted. The main body 11 of the degassing tank consists of an upper main body 11a and a lower main body 11b, both of which are detachably connected by a flange joint 13. Further, the upper part of the degassing tank main body 11 and the immersion pipe 20 is covered with an iron skin 15.

第1図は、この発明の第1の実施例に係る脱ガス精錬用
浸漬管を有する脱ガス槽下部を拡大した縦断面図である
。浸漬管20は、外周部22と、内部を上昇部30と下
降部32とに仕切る仕切り26とを有する。上昇部30
の溶鋼通流路にガス吹込み管21が連通し、不活性ガス
が吹込まれるようになっている。仕切り26は、その下
部に断面山型の絞り部29を有し、この絞り部29によ
り下降部32の溶鋼吐出口が狭められている。
FIG. 1 is an enlarged vertical sectional view of the lower part of a degassing tank having a degassing refining immersion pipe according to a first embodiment of the present invention. The dip tube 20 has an outer peripheral portion 22 and a partition 26 that partitions the interior into an ascending section 30 and a descending section 32. Rising part 30
A gas blowing pipe 21 is connected to the molten steel flow path, and an inert gas is blown thereinto. The partition 26 has a constricted portion 29 having a chevron-shaped cross section at its lower portion, and the molten steel discharge port of the descending portion 32 is narrowed by this constricted portion 29 .

第3図は、浸漬管20の横断面図である。浸漬管20の
外周部22では、円筒状の芯材24の内側に耐火レンガ
28が張付けられ、芯材24の外側にキャスタブル23
が所定の厚さに設けられている。また、仕切り26では
、芯材27の両面に耐火レンガ28が張付けられている
。この場合に、芯材24,27に厚さ数ミリ乃至10数
ミリの鉄板を、耐火レンガ25.28に耐スポーリング
性に優れたクロムマグネシア質レンガを、キャスタブル
23に高アルミナ質キャスタブルを用いることが好まし
い。下記に浸漬管20の各部のサイズの一例を示す。
FIG. 3 is a cross-sectional view of the dip tube 20. In the outer peripheral part 22 of the dip tube 20, a fireproof brick 28 is pasted inside a cylindrical core material 24, and a castable brick 23 is pasted on the outside of the core material 24.
is provided to a predetermined thickness. Further, in the partition 26, firebricks 28 are pasted on both sides of the core material 27. In this case, iron plates with a thickness of several millimeters to 10-odd millimeters are used for the core materials 24 and 27, chromium-magnesia bricks with excellent spalling resistance are used for the refractory bricks 25 and 28, and high alumina castables are used for the castables 23. It is preferable. An example of the size of each part of the immersion tube 20 is shown below.

仕切り26の上部厚さT;  50es上昇部30のガ
ス吹込み位置における 溶鋼通流路の半径R;  95cs 下降部32の溶鋼吐出口における 溶鋼通流路の幅W    、  50c膳なお、仕切り
26の厚さTは、溶鋼通流断面積の減少を抑える一方で
、連続使用における耐溶損性を考慮し、30〜80cm
の範囲とすることが望ましい。
Thickness of the upper part of the partition 26 T; 50es Radius R of the molten steel passage at the gas injection position of the rising part 30; 95 cs Width W of the molten steel passage at the molten steel discharge port of the descending part 32; The thickness T is set at 30 to 80 cm in order to suppress the decrease in the molten steel flow cross-sectional area while considering corrosion resistance during continuous use.
It is desirable that the range be within the range of .

また、幅Wは、上昇部30のガス吹込み位置における溶
鋼通流断面積を100%とした場合に、これに対して下
降部32の溶鋼吐出口における溶鋼通流断面積が30〜
70%の範囲になるように絞り込むことが好ましく、5
0%程度に絞り込むことが最も好ましい。
Moreover, the width W is defined as 100% of the molten steel flow cross-sectional area at the gas injection position of the rising part 30, whereas the molten steel flow cross-sectional area at the molten steel discharge port of the descending part 32 is 30% to 100%.
It is preferable to narrow down the range to 70%, and
It is most preferable to narrow it down to about 0%.

次に、上記脱ガス槽を用いて極低炭素鋼を溶製する場合
について説明する。
Next, a case will be described in which ultra-low carbon steel is melted using the above-mentioned degassing tank.

炭素濃度[C]が約300 ppmの転炉溶鋼を取鍋2
に受鋼し、これを脱ガス処理設備に搬送する。
Converter molten steel ladle 2 with carbon concentration [C] of approximately 300 ppm
The steel is then transported to a degassing facility.

溶鋼3の量は約250トンである。取鍋2をリフトし、
取鍋自溶鋼3に浸漬管20を浸漬し、脱ガス槽10の内
部を所定の圧力まで減圧する。これにより、溶鋼3が脱
ガス槽10内に吸い上げられる。次いで、ガス吹込み管
21を介して上昇部30の溶鋼通流路に所定流量のアル
ゴンガス、例えば、毎分400.ONj?の流量のアル
ゴンガスを吹込む。これにより溶鋼3の見掛けの比重が
低下し、溶鋼3がガス気泡と共に上昇部30の通流路内
を上昇する。上昇部30上方の湯面が盛上がり、スプラ
ッシュが発生し、溶鋼中[C]が[01と反応してCO
ガスまたはCO2ガスとなり、これが排気される。この
ようにして溶鋼3の脱炭が促進される。
The amount of molten steel 3 is approximately 250 tons. Lift ladle 2,
The immersion pipe 20 is immersed in the ladle self-melting steel 3, and the inside of the degassing tank 10 is depressurized to a predetermined pressure. As a result, the molten steel 3 is sucked up into the degassing tank 10. Next, a predetermined flow rate of argon gas, for example, 400 ml per minute, is supplied to the molten steel flow path of the rising section 30 through the gas blowing pipe 21. ONj? Blow in argon gas at a flow rate of . As a result, the apparent specific gravity of the molten steel 3 decreases, and the molten steel 3 rises in the flow path of the rising section 30 together with gas bubbles. The molten metal surface above the rising part 30 rises, splash occurs, and [C] in the molten steel reacts with [01] to produce CO.
gas or CO2 gas, which is exhausted. In this way, decarburization of the molten steel 3 is promoted.

次に、第4図乃至第6図を参照して、実施例の効果につ
いて説明する。
Next, the effects of the embodiment will be explained with reference to FIGS. 4 to 6.

第4図は、横軸にアルゴンガス吹込み量をとり、縦軸に
溶鋼環流量をとって、両者の関係について本発明と従来
とを比較した結果を示すグラフ図である。図中、曲線A
は本発明の結果を、曲線Bは従来の結果をそれぞれ示す
。図から明らかなように、アルゴンガス吹込み量を同一
量とした場合に、本発明のほうが従来より溶鋼環流量が
大幅に増加する。
FIG. 4 is a graph showing the results of comparing the present invention and the conventional method with respect to the relationship between the two, with the horizontal axis representing the argon gas injection amount and the vertical axis representing the molten steel circulation flow rate. In the figure, curve A
curve B shows the results of the present invention, and curve B shows the conventional results. As is clear from the figure, when the amount of argon gas blown is the same, the molten steel circulation flow rate is significantly increased in the present invention compared to the conventional method.

第6図は、横軸に仕切り下端の張出し長さしをとり、縦
軸に溶鋼環流口をとって、半径Rを95cmとした場合
における両者の関係について調査した結果を示すグラフ
図である。図から明らかなように、張出し長さしが50
IllI以下の範囲では溶鋼環流口はほぼ一定であるが
、長さしが50mmを超えると徐々に低下し、長さしが
70m馬を超えると環流量が急激に低下する。
FIG. 6 is a graph showing the results of an investigation into the relationship between the two when the horizontal axis is the overhanging length of the lower end of the partition, the vertical axis is the molten steel circulation opening, and the radius R is 95 cm. As is clear from the figure, the overhang length is 50
The molten steel reflux flow rate is almost constant in the range below IllI, but when the length exceeds 50 mm, it gradually decreases, and when the length exceeds 70 m, the molten steel reflux flow rate decreases rapidly.

第7図は、横軸に仕切り下端の張出し長さしをとり、縦
軸に鍋内溶鋼の均一混合時間をとって、半径Rを95c
mとした場合における両者の関係について調査した結果
を示すグラフ図である。図から明らかなように、張出し
長さしが50mm程度のときの均一混合時間が約30秒
となり、最も短くなる。上記環流量と均一混合時間の関
係より溶鋼通流断面積は上述のように50%とすること
が最適である。
In Figure 7, the horizontal axis represents the length of the overhang at the bottom of the partition, the vertical axis represents the uniform mixing time of the molten steel in the pot, and the radius R is 95 cm.
It is a graph figure which shows the result of investigating the relationship between both when m is set. As is clear from the figure, when the overhang length is about 50 mm, the uniform mixing time is about 30 seconds, which is the shortest. From the relationship between the above-mentioned reflux flow rate and uniform mixing time, it is optimal to set the molten steel flow cross-sectional area to 50% as described above.

第5図は、横軸に脱ガス処理時間をとり、縦軸に溶鋼の
炭素含有m [C]をとって、両者の関係について調査
した結果を示すグラフ図である。図中、曲線Cは溶鋼環
流量を毎分150トンとした従来の結果を、曲線りは溶
鋼環流量を毎分300トンとした本発明の実施例の結果
をそれぞれ示す。
FIG. 5 is a graph showing the results of an investigation into the relationship between the degassing time on the horizontal axis and the carbon content m [C] of molten steel on the vertical axis. In the figure, curve C shows the conventional results when the molten steel circulation flow rate was 150 tons per minute, and the curved line shows the results of the embodiment of the present invention where the molten steel circulation flow rate was 300 tons per minute.

図から明らかなように、溶鋼環流量を毎分300トンと
すると、[C]を10ppm以下まで低減することがで
き、溶鋼を極低炭素鋼の領域に迅速に脱炭することがで
きた。
As is clear from the figure, when the molten steel circulation flow rate was 300 tons per minute, [C] could be reduced to 10 ppm or less, and the molten steel could be rapidly decarburized to the region of ultra-low carbon steel.

次に、第8図及び第9図を参照しながら、この発明の第
2の実施例について説明する。なお、この第2の実施例
が上記第1の実施例と互いに共通する部分の説明を省略
する。
Next, a second embodiment of the present invention will be described with reference to FIGS. 8 and 9. It should be noted that explanations of parts that this second embodiment has in common with the first embodiment described above will be omitted.

第8図に示すように、浸漬管50の仕切り56は、その
−E部がガス吹込み管21の側に偏り、その下部に絞り
部59としての傾斜面を有している。
As shown in FIG. 8, the -E portion of the partition 56 of the immersion tube 50 is biased toward the gas blowing tube 21 side, and has an inclined surface as a constriction portion 59 at its lower portion.

絞り部59は、ガス吹込み管21の反対側に向かって傾
斜し、下降部62の溶鋼吐出口が上昇部60の溶鋼吸い
上げ口より狭くなるように形成されている。この場合に
、下降部62の吐出口の溶鋼通流断面積が、上昇部60
のガス吹込み位置の溶鋼通流断面積を100%とした場
合に、これに対して約50%になるように形成すること
が好ましい。
The throttle part 59 is inclined toward the opposite side of the gas blowing pipe 21 and is formed so that the molten steel discharge port of the descending part 62 is narrower than the molten steel suction port of the rising part 60. In this case, the molten steel flow cross-sectional area of the discharge port of the descending section 62 is
When the molten steel flow cross-sectional area at the gas injection position is taken as 100%, it is preferably formed so that the cross-sectional area is about 50% of this.

上記第2の実施例によれば、仕切りの絞り形状を簡単な
構造とすることができ、耐火物コストも低減することが
できた。
According to the second embodiment, the aperture shape of the partition can be made into a simple structure, and the refractory cost can also be reduced.

[発明の効果1 この発明によれば、浸漬管の溶鋼通流断面積が拡大化し
、従来よりも溶鋼環流量を大幅に増大化することができ
る。例えば、従来型の1対の浸漬管では最大2550c
mまでの溶鋼通流断面積しかとれなかったが、本願発明
の浸漬管では上昇部及び下降部の溶鋼通流断面積を合計
すると約14169cmにも達し、従来の5.6倍もの
溶鋼通流断面積が確保される。また、この発明によれば
、仕切りにより下降部の溶湯吐出口が絞られているので
、溶湯の吐出流速が増大して鍋内溶湯が強攪拌される。
[Effect of the Invention 1] According to the present invention, the molten steel flow cross-sectional area of the immersion pipe is expanded, and the molten steel circulation flow rate can be significantly increased compared to the conventional method. For example, a pair of conventional dip tubes can handle up to 2550c.
However, in the immersion tube of the present invention, the molten steel flow cross-sectional area of the ascending section and descending section reaches approximately 14,169 cm, which is 5.6 times that of the conventional method. Cross-sectional area is secured. Further, according to the present invention, since the molten metal discharge port of the descending portion is narrowed by the partition, the molten metal discharge flow rate increases and the molten metal in the pot is strongly stirred.

このため、鍋内溶湯の均一混合時間を大幅に短縮するこ
とができる。この結果、脱ガス精練の脱炭速度が飛躍的
に大きくなり、炭素含有量が数ppm乃至数10pp■
レベルの極低炭素鋼を迅速かつ安定に製造することがで
きる。
Therefore, the time for uniformly mixing the molten metal in the pot can be significantly shortened. As a result, the decarburization speed of degassing scouring increases dramatically, and the carbon content decreases from several ppm to several tens of ppm.
It is possible to quickly and stably manufacture high-quality ultra-low carbon steel.

また、この発明による鍋内溶湯の強攪拌により脱酸(介
在物除去)速度も向上し、全体の処理時間を大幅に短縮
することが可能となった。
In addition, the strong stirring of the molten metal in the pot according to the present invention also improves the deoxidation (inclusion removal) speed, making it possible to significantly shorten the overall processing time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例に係る脱ガス精錬用浸
漬管を有する脱ガス槽下部を拡大した縦断面図、第2図
は脱ガス槽の模式図、第3図は第1の実施例の浸漬管の
横断面図、第4図乃至第7図はそれぞれこの発明の詳細
な説明するためのグラフ図、第8図はこの発明の第2の
実施例に係る脱ガス精錬用浸漬管を有する脱ガス槽下部
を拡大した縦断面図、第9図は第2の実施例の浸漬管の
横断面図である。 10.40;脱ガス槽、20.50.浸漬管、21;ガ
ス吹込み管、22;外周部、26;。 56;仕切り、29,59.絞り部、30゜60;上昇
部、32,62;下降部 出願人代理人 弁理士 鈴江武彦 第 図 第 図 第 図 fft711J下fll/)張出し長3 L(mm)第 図 イ土を乃り下槽の乞−りし長σL(mm)第 図 ヱルゴン〃ス <iみ、!(N影4小)第 図 第 図 第 図 らn 第 図
FIG. 1 is an enlarged longitudinal sectional view of the lower part of a degassing tank having a degassing refining immersion pipe according to a first embodiment of the present invention, FIG. 2 is a schematic diagram of the degassing tank, and FIG. FIGS. 4 to 7 are graphs for explaining the details of this invention, and FIG. 8 is a cross-sectional view of a submerged tube according to a second embodiment of this invention. FIG. 9 is an enlarged vertical cross-sectional view of the lower part of the degassing tank having the dip tube, and FIG. 9 is a cross-sectional view of the dip tube of the second embodiment. 10.40; Degassing tank, 20.50. Immersion tube, 21; Gas blowing tube, 22; Outer periphery, 26;. 56; Partition, 29, 59. Aperture part, 30゜60; Ascending part, 32,62; Descending part Applicant's representative Patent attorney Takehiko Suzue Tank length σL (mm) (N shadow 4 small) Fig. Fig. Fig. et al. n Fig.

Claims (1)

【特許請求の範囲】[Claims] ガス吹込み手段によりガスを吹込み、脱ガス槽本体に溶
湯を吸い上げる上昇部と、前記上昇部と一体に形成され
、脱ガス槽本体に吸い上げた溶湯を吐出する下降部と、
前記上昇部及び下降部を仕切る仕切りと、を有し、前記
下降部の溶湯吐出口の溶湯通流断面積のほうが、前記上
昇部のガス吹込み位置と同レベルにおける前記下降部の
溶湯通流断面積より小さくなるように、前記仕切りが形
成されていることを特徴とする脱ガス精錬用浸漬管。
a rising part that blows gas with a gas blowing means and sucks up the molten metal into the degassing tank main body; a descending part that is formed integrally with the rising part and discharges the molten metal sucked up into the degassing tank main body;
a partition separating the ascending section and the descending section, the molten metal flow cross section of the molten metal discharge port of the descending section being at the same level as the gas blowing position of the descending section; A immersion pipe for degassing refining, characterized in that the partition is formed so as to be smaller than the cross-sectional area.
JP6855089A 1989-03-20 1989-03-20 Immersed pipe for degasification refining Pending JPH02247324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6855089A JPH02247324A (en) 1989-03-20 1989-03-20 Immersed pipe for degasification refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6855089A JPH02247324A (en) 1989-03-20 1989-03-20 Immersed pipe for degasification refining

Publications (1)

Publication Number Publication Date
JPH02247324A true JPH02247324A (en) 1990-10-03

Family

ID=13376981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6855089A Pending JPH02247324A (en) 1989-03-20 1989-03-20 Immersed pipe for degasification refining

Country Status (1)

Country Link
JP (1) JPH02247324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019073782A (en) * 2017-10-18 2019-05-16 新日鐵住金株式会社 Rh-type vacuum degassing processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019073782A (en) * 2017-10-18 2019-05-16 新日鐵住金株式会社 Rh-type vacuum degassing processing device

Similar Documents

Publication Publication Date Title
JP6838419B2 (en) Melting method of high nitrogen and low oxygen steel
JP5365241B2 (en) Molten steel refining equipment
CN111518992B (en) Tank type single-nozzle refining furnace and vacuum refining method
JPH02247324A (en) Immersed pipe for degasification refining
JPH02247318A (en) Immersed pipe for degasification refining
JPH02247323A (en) Immersed pipe for degasification refining
JPH02247322A (en) Immersed pipe for degasification refining
JPH02247319A (en) Immersed pipe for degasification refining
JP3124416B2 (en) Vacuum refining method of molten steel by gas injection
JPH02247329A (en) Immersed pipe for degasification refining
JPH02247326A (en) Method for degasification refining and immersed pipe therefor
JPH02247325A (en) Degasification bath
JP4062213B2 (en) Method for adjusting the composition of molten steel in an RH degasser
JPH02200721A (en) Immersion pipe for refining by degassing
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
JPH0488113A (en) Method for refining molten steel
JP3282530B2 (en) Method for producing high cleanliness low Si steel
JP3252726B2 (en) Vacuum refining method for molten steel
JPH02247321A (en) Method for degasification refining and immersed pipe therefor
JPH08120324A (en) Apparatus and method for vacuum-refining molten steel
JPH0741834A (en) Method for vacuum-refining molten steel having high circulating flow characteristic
JPH11217622A (en) Method for refining molten steel in rh vacuum degassing apparatus
JP3070416B2 (en) Vacuum degassing method for molten steel
JPH02247316A (en) Degassing vessel
JPH0696738B2 (en) Vacuum degassing apparatus for ultra-low carbon steel production and operating method