JP6974250B2 - Copper alloy material and terminals for terminals of aluminum wire harness - Google Patents

Copper alloy material and terminals for terminals of aluminum wire harness Download PDF

Info

Publication number
JP6974250B2
JP6974250B2 JP2018090223A JP2018090223A JP6974250B2 JP 6974250 B2 JP6974250 B2 JP 6974250B2 JP 2018090223 A JP2018090223 A JP 2018090223A JP 2018090223 A JP2018090223 A JP 2018090223A JP 6974250 B2 JP6974250 B2 JP 6974250B2
Authority
JP
Japan
Prior art keywords
aluminum
copper alloy
alloy material
terminals
aluminum wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018090223A
Other languages
Japanese (ja)
Other versions
JP2019196514A (en
Inventor
幸矢 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018090223A priority Critical patent/JP6974250B2/en
Publication of JP2019196514A publication Critical patent/JP2019196514A/en
Application granted granted Critical
Publication of JP6974250B2 publication Critical patent/JP6974250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、アルミニウムへの耐接触腐食性に優れ、アルミニウムワイヤーハーネス(電線としてアルミニウム線を用いたワイヤーハーネス)の端子用として好適に用いられる銅合金材に関する。 The present invention relates to a copper alloy material which is excellent in contact corrosion resistance to aluminum and is suitably used for terminals of an aluminum wire harness (a wire harness using an aluminum wire as an electric wire).

自動車用のコネクタは、エンジン直上に設置されたECU(Electrical Control Unit)などの接続に使用される高性能端子と、車内全体に張り巡らされるワイヤーハーネスの相互接続に使用される汎用端子に分類できる。高性能端子にはCu−Ni−Si合金、Cu−Ni−Sn−P合金、Cu−Mg合金などが使用される。これに対して汎用端子には、7/3黄銅(C2600)や6/4黄銅(C2800)が大量に使用されている。 Connectors for automobiles can be classified into high-performance terminals used for connecting ECUs (Electrical Control Units) installed directly above the engine and general-purpose terminals used for interconnecting wire harnesses stretched throughout the vehicle. .. Cu-Ni-Si alloys, Cu-Ni-Sn-P alloys, Cu-Mg alloys and the like are used for high-performance terminals. On the other hand, 7/3 brass (C2600) and 6/4 brass (C2800) are used in large quantities for general-purpose terminals.

一般に、ワイヤーハーネスには銅線が用いられているが、自動車の軽量化に対する要求が強いことから、ワイヤーハーネスの軽量化が検討され、銅線より軽量なアルミニウム線(純アルミニウム線又はアルミニウム合金線)を用いたワイヤーハーネス(アルミニウムワイヤーハーネス)の開発が進められている。このアルミニウムワイヤーハーネスでは、アルミニウム線と銅合金端子が接触する。このとき、Snめっきされた銅合金端子のプレス切断面(基材が露出)とアルミニウム線が接触し、銅合金端子(基材)とアルミニウム線の間で異種金属接触腐食が生じることが懸念されている。 Generally, copper wire is used for the wire harness, but since there is a strong demand for weight reduction of automobiles, weight reduction of the wire harness is considered, and aluminum wire (pure aluminum wire or aluminum alloy wire) which is lighter than copper wire is considered. ) Is being developed as a wire harness (aluminum wire harness). In this aluminum wire harness, the aluminum wire and the copper alloy terminal come into contact with each other. At this time, there is a concern that the press cut surface (exposed base material) of the Sn-plated copper alloy terminal and the aluminum wire may come into contact with each other, causing contact corrosion of dissimilar metals between the copper alloy terminal (base material) and the aluminum wire. ing.

特許文献1,2には、銅合金端子の表面に電極電位がアルミニウムに近い被覆層を形成し、これによりアルミニウム線の接触腐食を防止する技術が開示されている。しかし、この場合もSnめっきの場合と同様に、端子を製造する工程において行われるプレス打ち抜きにより、切断面に基材が露出し、基材とアルミニウム線が接触し、これによりアルミニウム線に接触腐食が発生する可能性がある。 Patent Documents 1 and 2 disclose a technique for forming a coating layer having an electrode potential close to that of aluminum on the surface of a copper alloy terminal to prevent contact corrosion of aluminum wire. However, in this case as well, as in the case of Sn plating, the base material is exposed on the cut surface by the press punching performed in the process of manufacturing the terminal, and the base material and the aluminum wire come into contact with each other, which causes contact corrosion to the aluminum wire. May occur.

一方、アルミニウムの異種金属接触腐食の防止のため、プレス打ち抜き後、後めっきによるプレス切断面の被覆又は防水樹脂によるシーリングを行い、基材が露出した部分をなくして、端子の基材とアルミニウム線との接触を防止する方法も考えられる。しかし、この方法は製造コストが掛かるほか、めっきの未着や樹脂シーリングの欠陥があれば、そこからアルミニウム線の接触腐食が進行する。自動車1台あたり、ワイヤーハーネスの端子は1000〜3000個も使用されており、上記方法では、アルミニウム線の接触腐食を防止する上で十分な信頼性が確保できるとはいえない。 On the other hand, in order to prevent contact corrosion of dissimilar metals of aluminum, after press punching, the press cut surface is covered by post-plating or sealed with waterproof resin to eliminate the exposed part of the base material, and the base material of the terminal and the aluminum wire are removed. A method of preventing contact with is also conceivable. However, this method is costly to manufacture, and if there is a non-plating or a defect in the resin sealing, contact corrosion of the aluminum wire progresses from there. As many as 1000 to 3000 wire harness terminals are used per automobile, and it cannot be said that sufficient reliability can be ensured by the above method in order to prevent contact corrosion of aluminum wires.

特開2013−20862号公報Japanese Unexamined Patent Publication No. 2013-20862 特開2017−203214号公報Japanese Unexamined Patent Publication No. 2017-2021414

アルミニウムワイヤーハーネスの銅合金端子は、表面の全部又は一部がめっきや防水樹脂等の被覆層に覆われていない場合でも、銅−アルミニウム異種金属接触によるアルミニウムワイヤーの接触腐食が抑制できることが好ましい。
このような異種金属接触によるアルミニウムワイヤーの腐食を抑制するには、端子用銅合金に銅よりも電極電位がアルミニウムに近い合金元素を多量に添加する方法がまず考えられる。しかし、ほとんどの実用銅合金の電極電位は、溶媒元素である銅のフェルミ準位を反映するのでこの方法は効果が弱い。また、高濃度の合金化は導電率の低下を招く。
It is preferable that the copper alloy terminal of the aluminum wire harness can suppress contact corrosion of the aluminum wire due to copper-aluminum dissimilar metal contact even when the entire or part of the surface is not covered with a coating layer such as plating or waterproof resin.
In order to suppress the corrosion of the aluminum wire due to such contact with dissimilar metals, a method of adding a large amount of alloying elements having an electrode potential closer to that of aluminum than copper to the copper alloy for terminals can be considered first. However, since the electrode potential of most practical copper alloys reflects the Fermi level of copper, which is a solvent element, this method is less effective. In addition, high-concentration alloying causes a decrease in conductivity.

ワイヤーハーネスの性能評価試験では、ワイヤーハーネス全体に過電流を規定の時間だけ通電し、発火・発煙する箇所がないか試験を行うが、銅合金端子の導電率が従来使われている黄銅よりも低いと、そこに発熱が集中してしまう。このため、銅合金端子の導電率が黄銅より低い場合、ワイヤーハーネス全体の設計を見直す必要が出てくる。
従って、本発明の目的は、黄銅と比べて同等以上の導電率を有し、黄銅よりもアルミニウムワイヤーの異種金属接触腐食を軽減できる端子用銅合金材を提供することを目的とする。
In the performance evaluation test of the wire harness, an overcurrent is applied to the entire wire harness for a specified time, and a test is performed to see if there is a place where it ignites or smokes. If it is low, heat generation will be concentrated there. Therefore, if the conductivity of the copper alloy terminal is lower than that of brass, it becomes necessary to review the design of the entire wire harness.
Therefore, an object of the present invention is to provide a copper alloy material for terminals, which has a conductivity equal to or higher than that of brass and can reduce galvanic corrosion of aluminum wires more than brass.

本発明に係る銅合金材は、アルミニウムワイヤーハーネスの端子として使用されるもので、Al:0.4〜2.2質量%、Ni:0.4〜4.0質量%を含み、残部Cu及び不可避不純物からなり、導電率が23%IACS以上であることを特徴とし、アルミニウムへの耐接触腐食性に優れる(アルミニウムに接触腐食が発生するのを抑制できる)。
この銅合金材は、板材、条材、線材、棒材のいずれかの形態を有する。本発明において、アルミニウムとは、純アルミニウム及びアルミニウム合金を意味する。
The copper alloy material according to the present invention is used as a terminal of an aluminum wire harness, contains Al: 0.4 to 2.2% by mass, Ni: 0.4 to 4.0% by mass, and the balance Cu and It is composed of unavoidable impurities, is characterized by having a conductivity of 23% IACS or more, and has excellent contact corrosion resistance to aluminum (it can suppress contact corrosion of aluminum).
This copper alloy material has any form of a plate material, a strip material, a wire material, and a bar material. In the present invention, aluminum means pure aluminum and an aluminum alloy.

本発明に係る銅合金材は、黄銅よりもアルミニウムへの耐接触腐食性に優れ、この銅合金材をアルミニウムワイヤーハーネスにおいてアルミニウム線の圧着端子として用いた場合、アルミニウムワイヤーの接触腐食が従来の黄銅端子に比べて軽減される。これにより、アルミニウムワイヤーハーネス全体の信頼性を向上させることができる。そして、本発明に係る銅合金材は、黄銅と比べて同等以上の導電率を有するから、この銅合金材をアルミニウム線の端子として用いた場合、従来のワイヤーハーネスを設計変更なしでそのまま使用できる。また、本発明に係る銅合金材は、応力緩和率が黄銅に比べて小さく、アルミニウム線の圧着端子として用いた場合、高温雰囲気及び通電発熱により端子が加熱されたとき、アルミニウム線との間で接合強度の低下が生じにくい。 The copper alloy material according to the present invention has better contact corrosion resistance to aluminum than brass, and when this copper alloy material is used as a crimp terminal for an aluminum wire in an aluminum wire harness, the contact corrosion of the aluminum wire is conventional copper. It is reduced compared to the terminal. This makes it possible to improve the reliability of the entire aluminum wire harness. Since the copper alloy material according to the present invention has a conductivity equal to or higher than that of brass, when this copper alloy material is used as a terminal for an aluminum wire, the conventional wire harness can be used as it is without any design change. .. Further, the copper alloy material according to the present invention has a smaller stress relaxation rate than brass, and when used as a crimp terminal for an aluminum wire, when the terminal is heated by a high temperature atmosphere and energization heat generation, it is connected to the aluminum wire. The bond strength is unlikely to decrease.

実施例の電極間電圧の測定における電気回路図である。It is an electric circuit diagram in the measurement of the voltage between electrodes of an Example.

続いて、本発明に係る銅合金材について、詳細に説明する。
[銅合金材の組成]
本発明に係る銅合金材は、Al:0.4〜2.2質量%、Ni:0.4〜4.0質量%を含み、残部が基本的にCu及び不可避不純物からなり、アルミニウムワイヤーハーネスの端子用である。以下、上記各元素の作用について説明する。
Subsequently, the copper alloy material according to the present invention will be described in detail.
[Composition of copper alloy material]
The copper alloy material according to the present invention contains Al: 0.4 to 2.2% by mass and Ni: 0.4 to 4.0% by mass, and the balance is basically composed of Cu and unavoidable impurities, and is an aluminum wire harness. It is for the terminal of. Hereinafter, the action of each of the above elements will be described.

(Al)
Cu−Al二元系合金の平衡状態図では、Alの希薄な領域ではCuとAlは完全に固溶し合っているが、銅合金中のAlは、りん脱酸銅中のPと同じく、転位などの線欠陥あるいは積層欠陥などの面欠陥に著しく偏析している。つまり、銅合金中ではAl濃度の濃淡が存在する。そして、その濃淡部自体が電解質溶液中では局部電池となり、Alとの接触電位差を緩和する。これにより、ワイヤーハーネス中のアルミニウムワイヤーの接触腐食が軽減される。また、Alは銅合金の加工硬化能を向上させ、銅合金の強化に寄与し、さらに固溶元素として作用するため銅合金の応力緩和率の低下にも寄与する。しかし、Al含有量が0.4質量%未満の場合は、その効果が不足する。一方、Alは銅合金の導電率を著しく低下させ、含有量が2.2質量%を超えると、Niの共添下において導電率が23%IACSを下回る。
従って、Al含有量は0.4〜2.2質量%の範囲内とする。Al含有量の下限値は、アルミニウムワイヤーの接触腐食を軽減し、応力緩和率を低下させるとの観点から好ましくは0.5質量%、上限値は、導電率の低下を抑えるとの観点から好ましくは1.8質量%である。
(Al)
In the equilibrium phase diagram of the Cu—Al binary alloy, Cu and Al are completely solid-solved in the dilute region of Al, but Al in the copper alloy is the same as P in phosphor deoxidized copper. It is significantly segregated into line defects such as dislocations or surface defects such as stacking defects. That is, there are shades of Al concentration in the copper alloy. Then, the shading portion itself becomes a local battery in the electrolyte solution, and the contact potential difference with Al is alleviated. This reduces contact corrosion of the aluminum wire in the wire harness. In addition, Al improves the work hardening ability of the copper alloy, contributes to the strengthening of the copper alloy, and further contributes to the reduction of the stress relaxation rate of the copper alloy because it acts as a solid dissolving element. However, when the Al content is less than 0.4% by mass, the effect is insufficient. On the other hand, Al significantly lowers the conductivity of the copper alloy, and when the content exceeds 2.2% by mass, the conductivity is lower than 23% IACS under the co-addition of Ni.
Therefore, the Al content is in the range of 0.4 to 2.2% by mass. The lower limit of the Al content is preferably 0.5% by mass from the viewpoint of reducing contact corrosion of the aluminum wire and reducing the stress relaxation rate, and the upper limit is preferably from the viewpoint of suppressing the decrease in conductivity. Is 1.8% by mass.

(Ni)
銅合金中のAlは転位に強く固着するが、その相互作用は温度上昇とともに消失する。この現象は回復過程(硬さや弾性率が時間の経過とともに低減していく)として観察される。この現象は80℃以上で顕著となり、それに伴い応力緩和も生じやすい。また、この現象によりAlの局所化(偏析)が緩和されるので、アルミニウムワイヤーの接触腐食を軽減する効果も低下する。このような現象を防止するには、転位に固着したAlが拡散により離脱するのを抑制する元素が必要である。この作用を持った元素がNiである。また、Niは固溶元素として作用するため、銅合金の応力緩和率の低下にも寄与する。しかし、Ni含有量が0.4質量%未満では、Alの離脱を抑制する作用が不足する。一方、4.0質量%を超えるとAlの共添下において導電率が23%IACSを下回る。
従って、Ni含有量は0.4〜4.0質量%の範囲内とする。Ni含有量の下限値は、アルミニウムワイヤーの接触腐食を軽減し、応力緩和率を低下させるとの観点から好ましくは0.5質量%、上限値は、導電率の低下を抑えるとの観点から好ましくは3.5質量%、より好ましくは2.8質量%である。
(Ni)
Al in the copper alloy adheres strongly to dislocations, but the interaction disappears with increasing temperature. This phenomenon is observed as a recovery process (hardness and elastic modulus decrease with the passage of time). This phenomenon becomes remarkable at 80 ° C. or higher, and stress relaxation is likely to occur accordingly. Further, since the localization (segregation) of Al is alleviated by this phenomenon, the effect of reducing the contact corrosion of the aluminum wire is also reduced. In order to prevent such a phenomenon, an element that suppresses Al adhering to dislocations from being separated by diffusion is required. The element having this action is Ni. Further, since Ni acts as a solid solution element, it also contributes to a decrease in the stress relaxation rate of the copper alloy. However, if the Ni content is less than 0.4% by mass, the action of suppressing the withdrawal of Al is insufficient. On the other hand, when it exceeds 4.0% by mass, the conductivity is lower than 23% IACS under the co-addition of Al.
Therefore, the Ni content is in the range of 0.4 to 4.0% by mass. The lower limit of the Ni content is preferably 0.5% by mass from the viewpoint of reducing contact corrosion of the aluminum wire and reducing the stress relaxation rate, and the upper limit is preferably from the viewpoint of suppressing the decrease in conductivity. Is 3.5% by mass, more preferably 2.8% by mass.

[銅合金材の特性]
(導電率)
自動車用に使われる黄銅はC2600(Cu−30質量%Zn)やC2800(Cu−40質量%Zn)が多く、その導電率の実績は26〜28%IACS程度である。一方、非特許文献「若い技術者のための機械・金属材料 第2版(丸善株式会社、平成14年3月10日発行)」、p.311によれば、Zn含有量30〜40質量%のCu−Zn合金の導電率の最小値は23%IACSである。そこで、本発明では、黄銅製端子の導電率を前提として構築されたアルミニウムワイヤーハーネスに、全体の設計変更なしで適用できる銅合金端子を提供するとの観点から、導電率の下限を23%IACSと設定した。本発明に係る銅合金材において、各合金元素又は不可避不純物は、銅合金材の導電率が23%IACS未満に低下しない範囲で含有される。
[Characteristics of copper alloy material]
(conductivity)
Most of the brass used for automobiles is C2600 (Cu-30% by mass Zn) and C2800 (Cu-40% by mass Zn), and the actual conductivity thereof is about 26 to 28% IACS. On the other hand, the non-patent document "Mechanical / Metallic Materials for Young Engineers 2nd Edition (Maruzen Co., Ltd., published on March 10, 2002)", p. According to 311 the minimum conductivity of a Cu—Zn alloy with a Zn content of 30-40% by mass is 23% IACS. Therefore, in the present invention, the lower limit of the conductivity is set to 23% IACS from the viewpoint of providing a copper alloy terminal that can be applied to an aluminum wire harness constructed on the premise of the conductivity of a copper terminal without changing the overall design. I set it. In the copper alloy material according to the present invention, each alloy element or unavoidable impurity is contained within a range in which the conductivity of the copper alloy material does not decrease to less than 23% IACS.

(耐接触腐食性)
銅合金材が先に説明した組成を有するとき、前記銅合金材はアルミニウムへの耐接触腐食性が黄銅よりも優れる(アルミニウムの接触腐食が抑制される)。後述する実施例において、アルミニウムへの耐接触腐食性は、(1)アルミニウムと前記銅合金材を室温に保持した塩水内で接触させた場合の、前記アルミニウムの接触腐食量(重量減少率)、及び(2)アルミニウムと前記銅合金材を室温に保持した塩水中に非接触で浸漬し、通電させたときに測定される通電電圧、の2つで評価される。ここで室温とは、気温が20℃から40℃に保たれた状態で、各測定に使用する機材及び材料がこの温度と平衡している状態であることを意味する。
(Resistant to contact corrosion)
When the copper alloy material has the composition described above, the copper alloy material has better contact corrosion resistance to aluminum than brass (contact corrosion of aluminum is suppressed). In the examples described later, the contact corrosion resistance to aluminum is (1) the amount of contact corrosion (weight reduction rate) of the aluminum when the aluminum and the copper alloy material are brought into contact with each other in salt water maintained at room temperature. And (2) the energization voltage measured when aluminum and the copper alloy material are immersed in salt water kept at room temperature in a non-contact manner and energized is evaluated. Here, the room temperature means that the equipment and materials used for each measurement are in equilibrium with this temperature while the air temperature is maintained at 20 ° C to 40 ° C.

(応力緩和率)
銅合金材が先に説明した組成を有するとき、前記銅合金材の応力緩和率は黄銅に比べて小さい。銅合金材の応力緩和率が小さいと、アルミニウム線の圧着端子として使用時に、高温雰囲気及び通電発熱により端子が加熱されたときでも、アルミニウム線との間で接合強度の低下が生じにくい。
(Stress relaxation rate)
When the copper alloy material has the composition described above, the stress relaxation rate of the copper alloy material is smaller than that of brass. When the stress relaxation rate of the copper alloy material is small, when the terminal is used as a crimp terminal for an aluminum wire, the bonding strength with the aluminum wire is unlikely to decrease even when the terminal is heated by a high temperature atmosphere and heat generation.

[銅合金材の被覆層]
本発明に係る銅合金材はベア材のままで用い得るが、前記銅合金材を基材(母材)として、必要に応じて、表面被覆層を形成することができる。その表面被覆層自体は端子用銅合金材等において周知のものでよく、例えば次のようなものが好適である。
銅合金材表面に形成されたSn又はSn合金層。
銅合金材表面に形成されたCu−Sn合金層とSn又はSn合金層。この表面被覆層は、例えば銅合金材表面にCuめっきとSn又はSn合金めっきをこの順にした後、リフロー処理を行って形成される。Cu−Sn合金層はCuめっきのCuとSn又はSn合金めっきのSnにより形成される。
銅合金材表面に形成されたNi層とSn又はSn合金層。
銅合金材表面に形成されたNi層とCu−Sn合金層とSn又はSn合金層。この表面被覆層は、例えば銅合金材表面にNiめっき、Cuめっき、Sn又はSn合金めっきをこの順にした後、リフロー処理を行って形成される。
銅合金材表面に形成されたNi層とCu層とCu−Sn合金層とSn又はSn合金層。Cu−Sn合金層は、例えば銅合金材表面にNiめっき、Cuめっき、Sn又はSn合金めっきをした後、リフロー処理を行うことにより形成できる。Cu−Sn合金層の形成に使われなかったCuめっきが銅層として残存する。
[Copper alloy coating layer]
The copper alloy material according to the present invention can be used as a bare material as it is, but a surface coating layer can be formed as needed by using the copper alloy material as a base material (base material). The surface coating layer itself may be a well-known one in copper alloy materials for terminals and the like, and for example, the following ones are suitable.
Sn or Sn alloy layer formed on the surface of a copper alloy material.
A Cu—Sn alloy layer and a Sn or Sn alloy layer formed on the surface of a copper alloy material. This surface coating layer is formed by, for example, performing Cu plating and Sn or Sn alloy plating on the surface of a copper alloy material in this order, and then performing a reflow treatment. The Cu—Sn alloy layer is formed by Cu of Cu plating and Sn or Sn of Sn alloy plating.
A Ni layer and a Sn or Sn alloy layer formed on the surface of a copper alloy material.
A Ni layer, a Cu—Sn alloy layer, and a Sn or Sn alloy layer formed on the surface of a copper alloy material. This surface coating layer is formed, for example, by subjecting the surface of a copper alloy material to Ni plating, Cu plating, Sn or Sn alloy plating in this order, and then performing a reflow treatment.
A Ni layer, a Cu layer, a Cu—Sn alloy layer, and a Sn or Sn alloy layer formed on the surface of a copper alloy material. The Cu—Sn alloy layer can be formed, for example, by plating the surface of a copper alloy material with Ni plating, Cu plating, Sn or Sn alloy plating, and then performing a reflow treatment. The Cu plating that was not used to form the Cu—Sn alloy layer remains as a copper layer.

[銅合金材の製造方法]
本発明に係る銅合金材は、例えば、鋳塊を均質化熱処理し、続いて熱間圧延した後、冷間圧延と焼鈍を繰り返して製造することができる。冷間圧延の開始以後、最終板厚まで冷間圧延される間、焼鈍(軟化焼鈍)は1回行うだけでよいが、パススケジュール等の関係から、2回以上の焼鈍を行うこともできる。最終冷間圧延後の焼鈍は低温焼鈍とする。各加熱工程の好ましい条件を例示すると、次のとおりである。
均質化熱処理は、雰囲気温度800〜950℃、保持時間30分〜2時間の範囲から選択する。均質化熱処理後、そのまま熱間圧延を行う。最終冷間圧延前の焼鈍の条件は、バッチ焼鈍であれば、雰囲気温度350〜400℃、保持時間1〜3時間の範囲から選択し、連続焼鈍であれば、実体温度500〜700℃、保持時間10〜60秒の範囲から選択する。冷間圧延の間に2回以上の焼鈍を行う場合、上工程で行われる焼鈍の条件は、バッチ焼鈍であれば上記と同じ範囲から選択し、連続焼鈍であれば実体温度650〜700℃、保持時間10〜60秒の範囲から選択する。
[Manufacturing method of copper alloy material]
The copper alloy material according to the present invention can be produced, for example, by homogenizing and heat-treating an ingot, then hot rolling, and then repeating cold rolling and annealing. After the start of cold rolling, while cold rolling to the final plate thickness, annealing (softening annealing) may be performed only once, but due to the path schedule and the like, annealing may be performed twice or more. The annealing after the final cold rolling is low temperature annealing. Examples of preferable conditions for each heating step are as follows.
The homogenization heat treatment is selected from the range of an atmospheric temperature of 800 to 950 ° C. and a holding time of 30 minutes to 2 hours. After the homogenization heat treatment, hot rolling is performed as it is. The annealing conditions before the final cold rolling are selected from the range of an atmospheric temperature of 350 to 400 ° C. and a holding time of 1 to 3 hours for batch annealing, and a physical temperature of 500 to 700 ° C. for continuous annealing. Choose from a range of hours 10-60 seconds. When annealing two or more times during cold rolling, the annealing conditions performed in the upper step should be selected from the same range as above for batch annealing, and the body temperature should be 650-700 ° C for continuous annealing. Choose from a holding time range of 10-60 seconds.

銅合金(No.1〜18)をクリプトル炉において大気中で木炭被覆下で溶解し、表1〜3に示す組成を有する厚さ45mm、幅180mm、長さ45mmの鋳塊を得た。続いて、表1〜3に示す条件で均質化処理後、その温度で熱間圧延を開始し、15mm厚の熱延板を得た。
この熱延板に対し、表1〜3の熱延後の工程の欄に示す工程及び条件で冷間圧延及び焼鈍を行い、いずれも最終冷間圧延で板厚0.25mmに仕上げ、最後に低温焼鈍を行った。この低温焼鈍は加熱保持した硝石炉に20秒間材料を浸漬して水中冷却する方法で行った。なお、表1〜3の熱延以降の工程の欄において、tは板厚(単位:mm)である。
得られた板厚0.25mmの冷延材を供試材として、室温下(約25℃)で、下記要領で機械的性質(0.2%耐力、伸び)、導電率、応力緩和率、耐接触腐食性(アルミニウム腐食減少率、通電電圧)を測定した。アルミニウム腐食減少率の測定試験には、Ni下地めっき及びSnめっきした供試材を用い、その他の測定試験には、表面被覆していない供試材(ベア材)を用いた。
Copper alloys (Nos. 1 to 18) were melted in a crypto furnace in the air under charcoal coating to obtain ingots having the compositions shown in Tables 1 to 3 and having a thickness of 45 mm, a width of 180 mm and a length of 45 mm. Subsequently, after homogenization treatment under the conditions shown in Tables 1 to 3, hot rolling was started at that temperature to obtain a hot rolled plate having a thickness of 15 mm.
The hot-rolled plate was cold-rolled and annealed under the steps and conditions shown in the columns of the hot-rolled process in Tables 1 to 3, and both were finally cold-rolled to a plate thickness of 0.25 mm, and finally. Low temperature annealing was performed. This low-temperature annealing was carried out by immersing the material in a niter furnace that had been heated and held for 20 seconds and cooling it in water. In the columns of the steps after hot spreading in Tables 1 to 3, t is the plate thickness (unit: mm).
Using the obtained cold-rolled material with a plate thickness of 0.25 mm as a test material, at room temperature (about 25 ° C), mechanical properties (0.2% proof stress, elongation), conductivity, stress relaxation rate, as described below. Contact corrosion resistance (aluminum corrosion reduction rate, energization voltage) was measured. Ni base-plated and Sn-plated test materials were used for the measurement test of the aluminum corrosion reduction rate, and the test material (bare material) without surface coating was used for the other measurement tests.

Figure 0006974250
Figure 0006974250

Figure 0006974250
Figure 0006974250

Figure 0006974250
Figure 0006974250

(機械的性質の測定)
各供試材から、長手方向が圧延方向となるように、JIS5号引張り試験片を機械加工にて作製し、JIS−Z2241に準拠して引張り試験を実施して、0.2%耐力及び伸び(破断伸び)を測定した。耐力は永久伸び0.2%に相当する引張り強さである。
(導電率の測定)
導電率は、JIS−H0505に規定されている非鉄金属材料導電率測定法に準拠し、ダブルブリッジを用いた四端子法で測定した。
(Measurement of mechanical properties)
From each test material, a JIS No. 5 tensile test piece was machined so that the longitudinal direction was the rolling direction, and a tensile test was conducted in accordance with JIS-Z2241 to obtain 0.2% proof stress and elongation. (Breaking elongation) was measured. The proof stress is a tensile strength corresponding to a permanent elongation of 0.2%.
(Measurement of conductivity)
The conductivity was measured by a four-terminal method using a double bridge in accordance with the non-ferrous metal material conductivity measuring method specified in JIS-H0505.

(応力緩和率の測定)
応力緩和率は、片持ち梁方式によって測定した。各供試材から、長手方向が圧延方向に直角方向となる試験片(幅10mm、長さ60mm)を切り出した。試験片の一端を剛体試験台に固定し、固定端から一定距離(スパン長さ)の位置で試験片に10mmの初期たわみ変位dを与え、固定端に0.2%耐力の80%に相当する表面応力を負荷した。スパン長さは、日本伸銅協会技術標準(JCBA−T309:2004)に規定されている「銅及び銅合金薄板条の曲げによる応力緩和試験方法」により算出した。試験片を剛体試験台に取り付けた状態で、150℃に保持されたオーブン中に装入し、1000時間保持した後に取り出し、初期たわみ変位d(10mm)を取り去ったときの永久たわみ変位δを測定し、応力緩和率SRRT=(δ/d)×100を計算した。
(Measurement of stress relaxation rate)
The stress relaxation rate was measured by the cantilever method. A test piece (width 10 mm, length 60 mm) having a longitudinal direction perpendicular to the rolling direction was cut out from each test material. One end of the test piece is fixed to a rigid body test table, the test piece is given an initial deflection displacement d of 10 mm at a position at a certain distance (span length) from the fixed end, and the fixed end is equivalent to 80% of 0.2% proof stress. Surface stress was applied. The span length was calculated by the "stress relaxation test method by bending copper and copper alloy thin strips" specified in the technical standard of the Japan Copper and Brass Association (JCBA-T309: 2004). With the test piece attached to the rigid body test stand, it was placed in an oven held at 150 ° C., held for 1000 hours, then taken out, and the permanent deflection displacement δ was measured when the initial deflection displacement d (10 mm) was removed. Then, the stress relaxation rate SRRT = (δ / d) × 100 was calculated.

(耐接触腐食性の測定)
(1)アルミニウム腐食減少率の測定
アルミニウム腐食減少率とは、銅合金材からなる試験片とアルミニウムとを室温に保持した塩水内で接触させた場合の、前記アルミニウムの接触腐食量(重量減少)の割合(%)を意味する。
各供試材の全面に0.1μm厚のNi下地めっき及び1μm厚の電気光沢Snめっきを行った後、270℃でリフロー処理し、次いで実操業のプレス加工を想定して四辺をシャー切断し、正方形(辺の長さ1cm)の試験片を作成した。この試験片の端面(シャー切断した面)には基材(銅合金)が露出している。アルミニウム減少率の測定には、各供試材から採取した前記試験片と、板厚0.5mmで矩形(2cm×1.5cm)のアルミニウム板(純アルミニウム板:市販のJISA1050P)を用いた。前記試験片及びアルミニウム板を無水エタノールで溶剤脱脂したのち、試験片をアルミニウム板の平面中心に載せ、面圧1.5kg/cmの樹脂製クリップで挟み込んだ。試験片は、切断バリがアルミニウム板の方を向かないように、アルミニウム板の上に載せた。また、アルミニウム板は試験前に重量を測定しておいた。クリップで挟んだ試験片とアルミニウム板を、4%NaCl水溶液中に24時間浸漬した後取り出した。アルミニウム板から腐食生成物や塩分などをナイロンブラシで流水中にて除去し、アルミニウム板を乾燥させ重量を測定した。試験前のアルミニウム板の重量w0と試験後のアルミニウム板の重量wから、試験後のアルミニウム板の重量の減少率(100×(w0−w)/w0)を計算した。
(Measurement of contact corrosion resistance)
(1) Measurement of aluminum corrosion reduction rate The aluminum corrosion reduction rate is the amount of contact corrosion (weight reduction) of aluminum when a test piece made of a copper alloy material and aluminum are brought into contact with each other in salt water maintained at room temperature. Means the percentage of.
After performing 0.1 μm thick Ni base plating and 1 μm thick electric gloss Sn plating on the entire surface of each test material, reflow treatment is performed at 270 ° C., and then shear cutting is performed on all four sides assuming press working in actual operation. , A square (side length 1 cm) test piece was prepared. The base material (copper alloy) is exposed on the end surface (shear-cut surface) of this test piece. For the measurement of the aluminum reduction rate, the test piece collected from each test material and a rectangular (2 cm × 1.5 cm) aluminum plate (pure aluminum plate: commercially available JIS A1050P) having a plate thickness of 0.5 mm were used. After degreasing the test piece and the aluminum plate with absolute ethanol, the test piece was placed on the center of the plane of the aluminum plate and sandwiched between resin clips having a surface pressure of 1.5 kg / cm 2. The test piece was placed on the aluminum plate so that the cutting burr did not face the aluminum plate. In addition, the weight of the aluminum plate was measured before the test. The test piece sandwiched between the clips and the aluminum plate were immersed in a 4% NaCl aqueous solution for 24 hours and then taken out. Corrosion products and salts were removed from the aluminum plate with a nylon brush under running water, and the aluminum plate was dried and weighed. From the weight w0 of the aluminum plate before the test and the weight w of the aluminum plate after the test, the reduction rate (100 × (w0-w) / w0) of the weight of the aluminum plate after the test was calculated.

(2)通電電圧の測定
この試験は、銅合金材とアルミニウムが直接は接触していないが塩水を介して電気的に接触した場合に、前記アルミニウムに腐食減肉が生じることを想定した試験である。通電電圧の測定には、各供試材から採取した矩形(5cm×2cm)の試験片と、板厚0.5mmで矩形(5cm×2cm)のアルミニウム板(純アルミニウム板:市販のJISA1050P)を用いた。通電電圧の測定のための電気回路を図1に示す。
アルミニウム板1は、直径1cmの円孔2aが開いたテフロン(登録商標)シート2で包んだ。自動車バッテリを想定した14V定電圧電源3の+極にアルミニウム板1と負荷を想定した0.25Wの白熱電球4を並列に接続し、−極をアースに接続する。アルミニウム板1は電源3の+極以外には接続しない。電球4に接続する他方の電線(電源3の+極に接続しない方の電線)はアースに接続する。中央部に高さ2mm、幅2mmのリブ5aを持つナイロン板5に、テフロンシート2に包んだアルミニウム板1と試験片6を、リブ5aに沿わせて固定する。このとき、アルミニウム板1と試験片6は圧延面が同じ方向を向き、リブ5aとアルミニウム板1の間及びリブ5aと試験片6の間は、できるだけ隙間が無いように固定する。0.25Wの白熱電球7の一方の電線を試験片6に取り付け、他方の電線をアースに接続し、電球7に並列に電圧計8を接続する。
(2) Measurement of energization voltage This test is a test assuming that the aluminum is corroded and thinned when the copper alloy material and aluminum are not in direct contact but are electrically contacted via salt water. be. To measure the energizing voltage, use a rectangular (5 cm x 2 cm) test piece collected from each test material and a rectangular (5 cm x 2 cm) aluminum plate (pure aluminum plate: commercially available JIS A1050P) with a plate thickness of 0.5 mm. Using. An electric circuit for measuring the energizing voltage is shown in FIG.
The aluminum plate 1 was wrapped with a Teflon (registered trademark) sheet 2 having a circular hole 2a having a diameter of 1 cm. An aluminum plate 1 and a 0.25 W incandescent light bulb 4 assuming a load are connected in parallel to the + pole of a 14 V constant voltage power supply 3 assuming an automobile battery, and the minus pole is connected to the ground. The aluminum plate 1 is not connected to anything other than the positive pole of the power supply 3. The other wire connected to the light bulb 4 (the wire not connected to the positive pole of the power supply 3) is connected to the ground. The aluminum plate 1 and the test piece 6 wrapped in the Teflon sheet 2 are fixed to the nylon plate 5 having the ribs 5a having a height of 2 mm and a width of 2 mm in the central portion along the ribs 5a. At this time, the aluminum plate 1 and the test piece 6 are fixed so that the rolled surfaces face the same direction and there is as little gap as possible between the rib 5a and the aluminum plate 1 and between the rib 5a and the test piece 6. One electric wire of the 0.25 W incandescent light bulb 7 is attached to the test piece 6, the other electric wire is connected to the ground, and the voltmeter 8 is connected in parallel with the light bulb 7.

電圧計8で測定される電圧をモニタして、塩水浸漬後の通電開始後150秒経過時点の電圧を測定した。アルミニウム板1と試験片6を固定したナイロン板5を、150ppmNaCl水溶液9を入れた槽10に浸漬して通電すると、アルミニウム板1と試験片6は直接接続していないので、大部分の電流は電源3につないだ電球4で消費される。アルミニウム板1が腐食し、試験片6に水素が発生すると、NaCl水溶液を介して電気的に接触しているアルミニウム板1と試験片6の間に電流が流れやすくなり、試験片6側に接続された電球7の両端の電圧が増加する。アルミニウム板1をテフロン(登録商標)シート2で覆ったのは、腐食を促進するためで、アルミニウム板1の露出面積が試験片6側にくらべて小さくなればなるほど腐食が進行しやすくなる。 The voltage measured by the voltmeter 8 was monitored, and the voltage at 150 seconds after the start of energization after immersion in salt water was measured. When the nylon plate 5 to which the aluminum plate 1 and the test piece 6 are fixed is immersed in the tank 10 containing the 150 ppm NaCl aqueous solution 9 and energized, the aluminum plate 1 and the test piece 6 are not directly connected, so that most of the current is generated. It is consumed by the light bulb 4 connected to the power supply 3. When the aluminum plate 1 is corroded and hydrogen is generated in the test piece 6, an electric current easily flows between the aluminum plate 1 and the test piece 6 which are electrically in contact with each other via the NaCl aqueous solution, and is connected to the test piece 6 side. The voltage across the light bulb 7 is increased. The reason why the aluminum plate 1 is covered with the Teflon (registered trademark) sheet 2 is to promote corrosion. The smaller the exposed area of the aluminum plate 1 is compared to the test piece 6, the more easily the corrosion progresses.

表1〜3に示すように、従来材のNo.17(C2600)は、アルミニウム腐食減少率が0.009質量%、通電電圧が0.021Vであり、同じく従来材のNo.18(C2800)は、アルミニウム腐食減少率が0.008質量%、通電電圧が0.020Vであった。
発明例No.1〜11は、AlとNiの含有量が規定の範囲内であり、導電率が23%IACS以上であり、アルミニウムに対する耐接触腐食性が従来材である黄銅(No.17,18)より優れる。より具体的にいえば、No.1〜11は、アルミニウム腐食減少率が0.008質量%以下、電極間電圧が0.019V以下で、No.17と比べると、アルミニウム腐食減少率と通電電圧が共に低い。また、No.1〜9,11は、No.18と比べると、アルミニウム腐食減少率と通電電圧が共に低く、No.10は、No.18と比べると、アルミニウム腐食減少率は同等であるが、通電電圧が低い。
As shown in Tables 1 to 3, the conventional materials No. 17 (C2600) has an aluminum corrosion reduction rate of 0.009% by mass and an energization voltage of 0.021V. In 18 (C2800), the aluminum corrosion reduction rate was 0.008% by mass, and the energization voltage was 0.020V.
Invention Example No. In Nos. 1 to 11, the contents of Al and Ni are within the specified range, the conductivity is 23% IACS or more, and the contact corrosion resistance to aluminum is superior to that of the conventional material brass (No. 17 and 18). .. More specifically, No. Nos. 1 to 11 have an aluminum corrosion reduction rate of 0.008% by mass or less, an electrode-to-electrode voltage of 0.019 V or less, and No. Compared with 17, both the aluminum corrosion reduction rate and the energizing voltage are lower. In addition, No. Nos. 1 to 9 and 11 are No. Compared with 18, both the aluminum corrosion reduction rate and the energizing voltage are lower, and No. No. 10 is No. Compared with 18, the aluminum corrosion reduction rate is the same, but the energizing voltage is low.

一方、比較例No.12はAl含有量が過剰なため、導電率が22%IACSと低くなった。
比較例No.13はNi含有量が不足しているため、黄銅(No.17,18)を越える耐接触腐食性が得られなかった。また、応力緩和率が黄銅より大きい。
比較例No.14はAl含有量が不足しているため、黄銅(No.17,18)を越える耐接触腐食性が得られなかった。また、応力緩和率が黄銅より大きい。
比較例No.15はNi含有量が過剰なため、導電率が21%IACSと低くなった。
比較例No.16はNi含有量が不足しているため、Alの拡散を抑制できずAlの偏析が小さくなり、黄銅(No.17,18)を越える耐接触腐食性が得られず、また、応力緩和率が黄銅より大きくなった。
On the other hand, Comparative Example No. Since the Al content of No. 12 was excessive, the conductivity was as low as 22% IACS.
Comparative Example No. Since the Ni content of No. 13 was insufficient, the contact corrosion resistance exceeding that of brass (Nos. 17 and 18) could not be obtained. Moreover, the stress relaxation rate is larger than that of brass.
Comparative Example No. Since the Al content of No. 14 was insufficient, the contact corrosion resistance exceeding that of brass (Nos. 17 and 18) could not be obtained. Moreover, the stress relaxation rate is larger than that of brass.
Comparative Example No. Since the Ni content of No. 15 was excessive, the conductivity was as low as 21% IACS.
Comparative Example No. In No. 16, since the Ni content is insufficient, the diffusion of Al cannot be suppressed, the segregation of Al becomes small, the contact corrosion resistance exceeding that of brass (Nos. 17 and 18) cannot be obtained, and the stress relaxation rate is reduced. Is larger than brass.

1 アルミニウム板
3 電源
6 試験片
8 電圧計
1 Aluminum plate 3 Power supply 6 Test piece 8 Voltmeter

Claims (2)

Al:0.4〜2.2質量%、Ni:0.4〜4.0質量%を含み、残部Cu及び不可避不純物からなり、導電率が23%IACS以上であることを特徴とするアルミニウムワイヤーハーネスの端子用銅合金材。 An aluminum wire containing Al: 0.4 to 2.2% by mass and Ni: 0.4 to 4.0% by mass, composed of the balance Cu and unavoidable impurities, and having a conductivity of 23% IACS or more. Copper alloy material for harness terminals. Al:0.4〜2.2質量%、Ni:0.4〜4.0質量%を含み、残部Cu及び不可避不純物からなり、導電率が23%IACS以上である銅合金材からなることを特徴とするアルミニウムワイヤーハーネス用銅合金端子。 It is made of a copper alloy material containing Al: 0.4 to 2.2% by mass, Ni: 0.4 to 4.0% by mass, the balance Cu and unavoidable impurities, and the conductivity is 23% IACS or more. Features copper alloy terminals for aluminum wire harnesses.
JP2018090223A 2018-05-08 2018-05-08 Copper alloy material and terminals for terminals of aluminum wire harness Active JP6974250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018090223A JP6974250B2 (en) 2018-05-08 2018-05-08 Copper alloy material and terminals for terminals of aluminum wire harness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018090223A JP6974250B2 (en) 2018-05-08 2018-05-08 Copper alloy material and terminals for terminals of aluminum wire harness

Publications (2)

Publication Number Publication Date
JP2019196514A JP2019196514A (en) 2019-11-14
JP6974250B2 true JP6974250B2 (en) 2021-12-01

Family

ID=68537484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018090223A Active JP6974250B2 (en) 2018-05-08 2018-05-08 Copper alloy material and terminals for terminals of aluminum wire harness

Country Status (1)

Country Link
JP (1) JP6974250B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266541A (en) * 1985-05-21 1986-11-26 Mitsubishi Electric Corp Copper alloy
JP3410125B2 (en) * 1992-10-19 2003-05-26 同和鉱業株式会社 Manufacturing method of high strength copper base alloy
JP2013020862A (en) * 2011-07-13 2013-01-31 Sumitomo Electric Ind Ltd Crimp terminal for aluminum wire and manufacturing method therefor
JP2014164965A (en) * 2013-02-24 2014-09-08 Furukawa Electric Co Ltd:The Method of manufacturing terminal, terminal material for use in manufacturing method, terminal manufactured by manufacturing method, terminal connection structure of wire and manufacturing method therefor, and copper or copper alloy plate material for terminal
JP7126359B2 (en) * 2018-02-28 2022-08-26 株式会社神戸製鋼所 Copper alloy materials and terminals with excellent contact corrosion resistance to aluminum

Also Published As

Publication number Publication date
JP2019196514A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
US5322575A (en) Process for production of copper base alloys and terminals using the same
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
JP5950499B2 (en) Copper alloy for electrical and electronic parts and copper alloy material with Sn plating
JP3557116B2 (en) Power supply conductor made of Al alloy mounted on automobile
JP4397245B2 (en) Tin-plated copper alloy material for electric and electronic parts and method for producing the same
JP7126359B2 (en) Copper alloy materials and terminals with excellent contact corrosion resistance to aluminum
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP2001032029A (en) Copper alloy excellent in stress relaxation resistance, and its manufacture
JP6927844B2 (en) Copper alloy plate material and its manufacturing method
JP2516622B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPH06228684A (en) Connector for electric and electronic appliance made of cu alloy
JPWO2013065583A1 (en) Aluminum alloy plate for terminals, terminal fittings, and terminal connection structure for electric wires
JP6974250B2 (en) Copper alloy material and terminals for terminals of aluminum wire harness
WO2013065803A1 (en) Aluminum matrix terminal fitting and electric wire terminal connection structure
JP3807475B2 (en) Copper alloy plate for terminal and connector and manufacturing method thereof
JP2001262297A (en) Copper-base alloy bar for terminal, and its manufacturing method
JP4845747B2 (en) Copper alloy material with plating for fuse and manufacturing method thereof
JP3772975B2 (en) Copper alloy for wiring connection
US5387293A (en) Copper base alloys and terminals using the same
JP2004339559A (en) Aluminum alloy sheet for calking, and its production method
JP4495251B1 (en) Copper alloy containing phosphorus and iron and power distribution member using the copper alloy
JPH04231432A (en) Electrifying material
JPH0123542B2 (en)
JP2001131657A (en) Copper alloy for electrical and electronic parts
JPH04231433A (en) Electrifying material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211104

R150 Certificate of patent or registration of utility model

Ref document number: 6974250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211021