JP6973109B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP6973109B2
JP6973109B2 JP2018009020A JP2018009020A JP6973109B2 JP 6973109 B2 JP6973109 B2 JP 6973109B2 JP 2018009020 A JP2018009020 A JP 2018009020A JP 2018009020 A JP2018009020 A JP 2018009020A JP 6973109 B2 JP6973109 B2 JP 6973109B2
Authority
JP
Japan
Prior art keywords
mold
semiconductor element
elastic sheet
layers
locations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018009020A
Other languages
Japanese (ja)
Other versions
JP2019129204A (en
Inventor
直是 ▲高▼橋
幸久 片山
諒 横澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018009020A priority Critical patent/JP6973109B2/en
Publication of JP2019129204A publication Critical patent/JP2019129204A/en
Application granted granted Critical
Publication of JP6973109B2 publication Critical patent/JP6973109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、例えば基材上に、半導体素子及びヒートスプレッタ(以下適宜「H/S」と称する)を接合し、樹脂でモールドすることで、半導体装置を製造する方法の技術分野に関する。 The present invention relates to, for example, a technical field of a method for manufacturing a semiconductor device by bonding a semiconductor element and a heat spreader (hereinafter, appropriately referred to as "H / S") onto a base material and molding the semiconductor device with a resin.

この種の方法として、特許文献1記載のものがある。この方法では、基材上に、半導体素子をはんだ付けし、その上にH/Sをはんだ付けする。ここにH/Sは、半導体素子の(特にパワーデバイスとしての)動作時に発生する熱を拡散し放熱効率を高める目的で半導体素子及び放熱板間となる位置に、金属製のものが設けられる。その後、基材における半導体素子及びH/Sの接合された部位を樹脂でモールドすることによってモールド体を形成する。更に、該モールド体からH/Sの主面が露出するように該モールド体を切削する。この切削は、モールド材料が該主面を覆っていたのでは放熱効率を低下させてしまうので、該主面が露出するまで実行される。その後、このように露出した主面に対して放熱板を固定する。 As a method of this kind, there is one described in Patent Document 1. In this method, a semiconductor element is soldered onto a base material, and H / S is soldered onto the semiconductor element. Here, the H / S is provided with a metal one at a position between the semiconductor element and the heat sink for the purpose of diffusing the heat generated during the operation of the semiconductor element (particularly as a power device) and improving the heat dissipation efficiency. Then, a molded body is formed by molding the bonded portion of the semiconductor element and the H / S on the base material with a resin. Further, the mold body is cut so that the main surface of the H / S is exposed from the mold body. This cutting is performed until the main surface is exposed because the heat dissipation efficiency is lowered if the mold material covers the main surface. After that, the heat sink is fixed to the exposed main surface in this way.

特開2016−039206号公報Japanese Unexamined Patent Publication No. 2016-039206

しかしながら、この方法によれば、モールド体に対して放熱板を固定する前に、半導体素子及びH/Sをはんだで接合するので、H/Sの主面は、仮にそのままでは、複数の素子間で平坦にならない。これは、H/Sには、はんだ付けの熱が冷却される際の熱収縮が生じ、素子間に段差或いは寸法公差が生じてしまうからである。特にはんだの熱収縮を含んだまま樹脂成型するので、この段差或いは寸法公差は無視し得ない程大きなものとなる。このため、係る段差或いは寸法公差を低減するように、モールド体を切削する工程では、先ずH/Sの主面が露出するまでモールド体を切削し、更に露出したH/Sの主面までも適宜切削することにより、複数のH/Sの主面間における平坦化を図ってから、該主面に放熱板を固定するようにしている。このように、モールド体を切削したりH/Sの主面を適宜削除したりで、更に切削後の洗浄や切削用刃具の定期交換を行ったりなど、全体として工程数が相応に多くなる或いは高コストになるという技術的課題がある。 However, according to this method, the semiconductor element and the H / S are joined by soldering before fixing the heat sink to the molded body. Therefore, if the main surface of the H / S is left as it is, it is between a plurality of elements. Does not flatten. This is because the H / S undergoes thermal shrinkage when the soldering heat is cooled, resulting in a step or a dimensional tolerance between the elements. In particular, since the resin is molded while including the heat shrinkage of the solder, this step or dimensional tolerance becomes so large that it cannot be ignored. Therefore, in the process of cutting the mold body so as to reduce the step or the dimensional tolerance, the mold body is first cut until the main surface of the H / S is exposed, and then even the exposed main surface of the H / S is exposed. By cutting appropriately, flattening is achieved between the main surfaces of the plurality of H / Ss, and then the heat radiation plate is fixed to the main surfaces. In this way, by cutting the molded body or deleting the main surface of the H / S as appropriate, cleaning after cutting and periodic replacement of cutting tools are performed, and the number of processes increases accordingly. There is a technical problem of high cost.

本発明は、上記問題点に鑑みなされたものであり、比較的容易にして工程数の増加を抑制可能な半導体装置の製造方法を提供することを課題とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a semiconductor device, which can suppress an increase in the number of steps relatively easily.

本発明の一態様に係る半導体装置の製造方法は上記課題を解決するために、平板状の基材の少なくとも一方の表面上における複数の個所で夫々、前記基材及び半導体素子の間並びに前記半導体素子及びヒートスプレッタの間をはんだで接合する工程と、前記接合されたヒートスプレッタの前記接合された半導体素子と反対側に向く外表面の高さを前記複数の個所で夫々計測する工程と、前記計測された高さの前記複数の個所相互間におけるばらつきを相補するように層厚が設定されると共に放熱板として機能する弾性シートを、前記基材、前記半導体素子及び前記ヒートスプレッタが積層されてなる積層構造並びに前記弾性シートを包含する金型の内部空間で、前記複数の個所夫々における前記外表面に対向配置させ前記金型の押圧面で前記外表面上に押圧することで、前記押圧面及び前記弾性シートの層間並びに前記弾性シート及び前記外表面の層間を夫々シールする工程と、前記層間が夫々シールされている状態で、前記金型内にモールド樹脂を注入し硬化させることで、前記積層構造に対するモールドを施す工程とを備える。 In order to solve the above-mentioned problems, the method for manufacturing a semiconductor device according to one aspect of the present invention has a plurality of locations on at least one surface of a flat plate-shaped base material, between the base material and the semiconductor element, and the semiconductor. The step of joining the element and the heat spreader with solder, and the step of measuring the height of the outer surface of the joined heat spreader facing the opposite side of the joined semiconductor element at each of the plurality of points, and the above-mentioned measurement. A laminated structure in which the base material, the semiconductor element, and the heat spreader are laminated on an elastic sheet whose layer thickness is set so as to complement the variation in height between the plurality of locations and which functions as a heat dissipation plate. Further, in the internal space of the mold including the elastic sheet, the pressing surface and the elasticity are formed by arranging them facing the outer surface at each of the plurality of locations and pressing the pressing surface of the mold onto the outer surface. A step of sealing the layers of the sheet and the layers of the elastic sheet and the outer surface, respectively, and a state in which the layers are sealed, by injecting a mold resin into the mold and curing the laminated structure. It is provided with a process of applying a mold.

実施形態においてリードフレームに半導体素子及びH/Sをはんだで接合する工程を示す図式的断面図である。FIG. 5 is a schematic cross-sectional view showing a process of joining a semiconductor element and H / S to a lead frame with solder in an embodiment. 実施形態において弾性シート(即ち放熱シート)を金型にセッティングする工程を示す図式的断面図である。It is a schematic cross-sectional view which shows the process of setting an elastic sheet (that is, a heat dissipation sheet) in a mold in an embodiment. 実施形態において弾性シートを金型でH/Sの外表面に圧着することでシールする工程(その序盤)を示す図式的断面図である。FIG. 5 is a schematic cross-sectional view showing a step (early stage) of sealing an elastic sheet by pressing it against the outer surface of an H / S with a mold in an embodiment. 実施形態において弾性シートを金型でH/Sの外表面に圧着することでシールする工程(その終盤)を示す図式的断面図である。FIG. 5 is a schematic cross-sectional view showing a step (the final stage thereof) of sealing an elastic sheet by crimping it to the outer surface of the H / S with a mold in the embodiment. 実施形態において金型内でモールドを施す工程を示す図式的断面図である。It is a schematic cross-sectional view which shows the process of applying a mold in a mold in an embodiment. 実施形態においてモールド成型体を金型から取り外す工程を示す図式的断面図である。It is a schematic cross-sectional view which shows the process of removing a molded body from a mold in an embodiment. 実施形態においてモールド成型体である半導体装置から露出した弾性シートの主面にピンフィン板を取り付ける工程を示す図式的断面図である。FIG. 5 is a schematic cross-sectional view showing a step of attaching a pin fin plate to a main surface of an elastic sheet exposed from a semiconductor device which is a molded body in an embodiment.

実施形態に係る半導体装置の製造方法を、図1から図7を参照して説明する。ここに図1〜図7は、実施形態に係る製造方法の各工程を、順を追って示したものである。
図1に示すように先ず、基材の一例であるリードフレーム11の一方の面(図1中上面)で、パワーデバイスを構成する半導体素子13aがはんだ12aにより接合され、更に半導体素子13aの表面(図1中上面)に金属製のH/S15aがはんだ14aにより接合される。他方で、リードフレーム11の他方の表面(図1中下面)で、パワーデバイスを構成する半導体素子13bがはんだ12bにより接合され、更に半導体素子13bの表面(図1中下面)に金属製のH/S15bがはんだ14bにより接合される。
A method for manufacturing a semiconductor device according to an embodiment will be described with reference to FIGS. 1 to 7. Here, FIGS. 1 to 7 show step by step each step of the manufacturing method according to the embodiment.
As shown in FIG. 1, first, the semiconductor element 13a constituting the power device is bonded by the solder 12a on one surface (upper surface in the middle of FIG. 1) of the lead frame 11 which is an example of the base material, and further, the surface of the semiconductor element 13a. Metallic H / S15a is joined to (upper surface in FIG. 1) by solder 14a. On the other hand, on the other surface of the lead frame 11 (lower surface in FIG. 1), the semiconductor element 13b constituting the power device is bonded by the solder 12b, and further, the metal H is attached to the surface of the semiconductor element 13b (lower surface in FIG. 1). / S15b is joined by solder 14b.

これらにより、リードフレーム11、半導体素子13a、13b、H/S15a、15bを夫々含む積層構造10がリードフレーム11の複数個所に構築される。複数の積層構造10は、製造しようとする半導体装置の仕様に応じて、リードフレーム11の一方の面上及び他方の面上における複数の箇所に構築され、一枚の素子基板1とされる。以下に詳述するように、素子基板1に、放熱機能を有する各種部材を取り付けると共に絶縁機能を有するモールドをほぼ全域に施すことで、半導体装置を製造する。 As a result, the laminated structure 10 including the lead frame 11, the semiconductor elements 13a, 13b, H / S15a, and 15b is constructed at a plurality of places of the lead frame 11. The plurality of laminated structures 10 are constructed at a plurality of locations on one surface and the other surface of the lead frame 11 according to the specifications of the semiconductor device to be manufactured, and are regarded as one element substrate 1. As will be described in detail below, a semiconductor device is manufactured by attaching various members having a heat dissipation function to the element substrate 1 and applying a mold having an insulating function to almost the entire area.

この段階では、該複数の個所で(言い換えれば、複数の積層構造10間で)、H/S15aの外表面(図1中上面)は平坦にならない。同様に、該複数の個所で、H/S15bの外表面(図1中下面)は平坦にならない。 At this stage, the outer surface (upper surface in FIG. 1) of the H / S 15a is not flat at the plurality of locations (in other words, among the plurality of laminated structures 10). Similarly, the outer surface (lower surface in FIG. 1) of the H / S 15b is not flat at the plurality of locations.

より具体的には、一の積層構造10(図1では右側の積層構造10)におけるH/S15aの外表面の高さH1aと、他の積層構造10(図1では左側の積層構造10)におけるH/S15aの外表面の高さH2aとはその性質上完全には一致しない。或いは無視できない程度の高さの差が両者間に生じる。同様に一の積層構造10におけるH/S15bの外表面の高さH1bと、他の積層構造10におけるH/S15bの外表面の高さH2bとはその性質上完全には一致しない。或いは、無視できない程度の高さの差が両者間に生じる。これは、H/S15a,15bには、はんだ付けの熱が冷却される際の熱収縮により複数の個所間に段差或いは寸法公差が生じてしまうからである。即ち、冷却後におけるはんだの厚みが複数の箇所間で均一にならないため、このような段差が生じてしまうからである。 More specifically, the height H1a of the outer surface of the H / S 15a in one laminated structure 10 (the laminated structure 10 on the right side in FIG. 1) and the other laminated structure 10 (the laminated structure 10 on the left side in FIG. 1). Due to its nature, it does not completely match the height H2a of the outer surface of H / S15a. Alternatively, there is a non-negligible height difference between the two. Similarly, the height H1b of the outer surface of the H / S 15b in one laminated structure 10 and the height H2b of the outer surface of the H / S 15b in the other laminated structure 10 do not completely match in nature. Alternatively, there is a non-negligible height difference between the two. This is because the H / S 15a and 15b have a step or a dimensional tolerance between a plurality of locations due to heat shrinkage when the heat of soldering is cooled. That is, since the thickness of the solder after cooling is not uniform among the plurality of locations, such a step is generated.

そこで本実施形態では、はんだ付け後に、H/S15aの外表面の高さH1a及びH2a,H/S15bの外表面の高さH1b及びH2bが、複数の箇所で夫々計測される。ここでの計測は、H/S15a、15bの外表面に微細な機械的ダメージや微細な埃等の付着などを避けるべく、好ましくは、非接触方式の距離測定機により実行される。 Therefore, in the present embodiment, after soldering, the heights H1a and H2a of the outer surface of the H / S15a and the heights H1b and H2b of the outer surface of the H / S15b are measured at a plurality of points, respectively. The measurement here is preferably performed by a non-contact type distance measuring machine in order to avoid fine mechanical damage and adhesion of fine dust and the like to the outer surfaces of the H / S 15a and 15b.

図2に示すように次に、このように計測された高さの複数の個所相互間におけるばらつきを相補するように層厚が設定されると共に放熱板の少なくとも一部として機能する弾性シート31a,31b(言い換えれば放熱シート)が用意される。即ち、H/S15a、15bの外表面に対向配置されることになる弾性シート31a,31bにおける、H/S15a、15bの外表面と反対側に向く外表面の高さの差が、複数の箇所に対応する複数の弾性シート相互間で無くなる若しくは低減されるように、H/S15aの外表面の高さのばらつきに応じて層厚t1a,t1bが設定された複数の弾性シート31aが用意され、H/S15bの外表面の高さのばらつきに応じて層厚t2a,t2bが設定された複数の弾性シート31bが用意される。 As shown in FIG. 2, next, the elastic sheet 31a, in which the layer thickness is set so as to complement the variation between the plurality of locations of the measured heights and functions as at least a part of the heat sink, 31b (in other words, a heat sink) is prepared. That is, there are a plurality of differences in the heights of the outer surfaces of the elastic sheets 31a and 31b facing the outer surfaces of the H / S 15a and 15b facing opposite to the outer surface of the H / S 15a and 15b. A plurality of elastic sheets 31a having layer thicknesses t1a and t1b set according to the variation in the height of the outer surface of the H / S 15a are prepared so as to be eliminated or reduced among the plurality of elastic sheets corresponding to the above. A plurality of elastic sheets 31b having layer thicknesses t2a and t2b set according to the variation in the height of the outer surface of the H / S 15b are prepared.

言い換えれば、H/S15a(図1参照)の層厚と弾性シート31aの層厚t1a,t1bとの合計は、複数の個所相互間で等しくなるように、複数の弾性シート31aの層厚t1a,t1bが設定される。同様に、H/S15b(図1参照)の層厚と弾性シート31bの層厚t2a,t2bとの合計は、複数の個所相互間で等しくなるように、複数の弾性シート31bの層厚t2a,t2bが設定される。 In other words, the sum of the layer thickness of H / S15a (see FIG. 1) and the layer thicknesses t1a and t1b of the elastic sheet 31a is equal among the plurality of locations so that the layer thickness t1a of the plurality of elastic sheets 31a is equal. t1b is set. Similarly, the sum of the layer thickness of H / S15b (see FIG. 1) and the layer thicknesses t2a and t2b of the elastic sheet 31b is equal among the plurality of locations so that the layer thickness t2a of the plurality of elastic sheets 31b is equal. t2b is set.

このように層厚が設定された複数の弾性シート31aは、夫々対応するH/S15aに対向することになる位置において、上側可動入子41aの押圧面(図2中、下側に向く面)に固定される。複数の弾性シート31bは、夫々対応するH/S15bに対向することになる位置において、下側可動入子41bの押圧面(図2中、上側に向く面)に固定される。 The plurality of elastic sheets 31a whose layer thickness is set in this way are the pressing surfaces of the upper movable nesting 41a (the surface facing downward in FIG. 2) at the positions where they face each of the corresponding H / S15a. Is fixed to. The plurality of elastic sheets 31b are fixed to the pressing surface (the surface facing upward in FIG. 2) of the lower movable insert 41b at a position facing each of the corresponding H / S 15b.

弾性シート31a,31bは、典型的には絶縁性樹脂から構成され、上側可動入子41a及び下側可動入子41bに夫々複数開孔された排気通路45を介しての真空排気による吸着力(即ち真空チャック)により、上側可動入子41a、下側可動入子41bの押圧面に固定される。或いは、このような真空排気による固定に代え、弾性シート31a.31bは、上側可動入子41a、下側可動入子41bの押圧面に夫々、所定膜厚になるように塗布されることで、形成されてもよい。 The elastic sheets 31a and 31b are typically made of an insulating resin, and have a suction force (adsorption force by vacuum exhaust) through an exhaust passage 45 having a plurality of holes in the upper movable insert 41a and the lower movable insert 41b, respectively. That is, it is fixed to the pressing surface of the upper movable insert 41a and the lower movable insert 41b by the vacuum chuck). Alternatively, instead of fixing by such vacuum exhaust, the elastic sheet 31a. The 31b may be formed by being applied to the pressing surfaces of the upper movable insert 41a and the lower movable insert 41b so as to have a predetermined film thickness, respectively.

このような弾性シート31a、31bは、例えば、エポキシ樹脂をベースに窒化ホウ素及びアルミナを含んでなる絶縁性熱伝導材から構成される。但し、その材料としては、弾性に加えて、放熱性或いは熱伝導性、電気的絶縁性、並びに、半導体装置に要求される物理的及び化学的安定性に優れていれば、エポキシ樹脂に限定されない。弾性シート31a、31bが電気的絶縁性を有することで、同じく電気的絶縁性を有するモールド樹脂50の一部を弾性シート31a、31bに置き換える構造が可能とされていると捉えることもできる。 Such elastic sheets 31a and 31b are made of, for example, an insulating heat conductive material containing boron nitride and alumina based on an epoxy resin. However, the material is not limited to the epoxy resin as long as it is excellent in heat dissipation or thermal conductivity, electrical insulation, and physical and chemical stability required for semiconductor devices in addition to elasticity. .. It can be considered that the elastic sheets 31a and 31b have an electrical insulating property, so that a structure in which a part of the mold resin 50 having the same electrical insulating property is replaced with the elastic sheets 31a and 31b is possible.

なお、本実施形態では、外表面の高さH1a及びH2aを計測するのに代えて、H/S15aの外表面からH/S15bの外表面までの高さ、言い換えれば、各積層構造10(図1参照)の積層方向の合計層厚(即ち図1中、{H1a+リードフレーム11の層厚+H1b}や、{H2a+リードフレーム11の層厚+H2b})を計測するのでもよい。この場合にも、計測結果に基づいて、該ばらつきを相補する、弾性シート31a,31bの層厚の設定/選択が行われればよい。 In this embodiment, instead of measuring the heights H1a and H2a of the outer surface, the height from the outer surface of the H / S15a to the outer surface of the H / S15b, in other words, each laminated structure 10 (FIG. The total layer thickness in the stacking direction (that is, {H1a + layer thickness of lead frame 11 + H1b} or {H2a + layer thickness of lead frame 11 + H2b} in FIG. 1) may be measured. Also in this case, the layer thicknesses of the elastic sheets 31a and 31b that complement the variation may be set / selected based on the measurement result.

図3に示すように、このように層厚が設定された弾性シート31a,31bは、真空ポンプ48により排気通路45(図2参照)及び排気管47(図3参照)を介して真空排気されることで、金型40の押圧面(即ち、金型40を構成する上側可動入子41a及び下側可動入子41bの押圧面)に真空吸着される。ここに金型40は、上下母型42a,42bの中央に組み込まれた上型可動入子41a及び下型可動入子41b(図2参照)を備えてなる。 As shown in FIG. 3, the elastic sheets 31a and 31b having the layer thickness set in this way are evacuated by the vacuum pump 48 through the exhaust passage 45 (see FIG. 2) and the exhaust pipe 47 (see FIG. 3). As a result, it is vacuum-sucked to the pressing surface of the mold 40 (that is, the pressing surface of the upper movable insert 41a and the lower movable insert 41b constituting the mold 40). Here, the mold 40 includes an upper mold movable insert 41a and a lower mold movable insert 41b (see FIG. 2) incorporated in the center of the upper and lower mother molds 42a and 42b.

リードフレームのアラインメントマーク(即ちアラインメント穴)に、下母型42bに設けられたアラインメント突部43が嵌められ、シール用及びモールド用の部材相互間の位置決めが正確に行われる。金型40によって、複数の(層厚が相互に異なる)弾性シート31a,31bは、上型可動入子41a及び下型可動入子41bの押圧面に固定されたまま一挙に、複数のH/S15a,15bの外表面(即ち高さが相異なる表面)に対して、その背後から押圧される。なお、金型の構造によっては、上下母型に弾性シートを直接固定する方法を採用することも可能である。 The alignment protrusion 43 provided on the lower mother die 42b is fitted into the alignment mark (that is, the alignment hole) of the lead frame, and the members for sealing and molding are accurately positioned with each other. Depending on the mold 40, the plurality of elastic sheets 31a and 31b (those having different layer thicknesses) are fixed to the pressing surfaces of the upper mold movable insert 41a and the lower mold movable insert 41b, and a plurality of H / The outer surfaces of S15a and 15b (that is, surfaces having different heights) are pressed from behind. Depending on the structure of the mold, it is also possible to adopt a method of directly fixing the elastic sheet to the upper and lower mother molds.

図4に示すように次に、このように弾性シート31a,31bをH/S15a,15bの外表面上に、図中下向矢印43a及び下向矢印43bで示すように金型40で押圧する。これにより、弾性シート31a,31bが圧縮され、金型40の押圧面及び弾性シート31a,31b(その外表面)の層間が夫々シールされる。同時に、弾性シート31a,31bが圧縮され、弾性シート31a,31b(その外表面と反対側にある面)及びH/S15a、15bの外表面の層間が夫々シールされる。すると、H/S15a,15bの外表面の高さにばらつきがあるにもかかわらず、金型40の押圧面及び(前記ばらつきを相補する層厚を夫々有する)複数の弾性シート31a,31bの層間についても、複数の弾性シート31a,31b及び(前記ばらつきがある)複数のH/S15a、15bの層間夫々についても、簡単にして隙間なく或いは強固にシールすることが可能となる。 As shown in FIG. 4, the elastic sheets 31a and 31b are then pressed onto the outer surface of the H / S 15a and 15b by the mold 40 as shown by the down arrow 43a and the down arrow 43b in the figure. .. As a result, the elastic sheets 31a and 31b are compressed, and the layers between the pressing surface of the mold 40 and the elastic sheets 31a and 31b (the outer surface thereof) are sealed. At the same time, the elastic sheets 31a and 31b are compressed, and the layers between the elastic sheets 31a and 31b (the surface opposite to the outer surface thereof) and the outer surfaces of the H / S 15a and 15b are sealed, respectively. Then, despite the variation in the heights of the outer surfaces of the H / S 15a and 15b, the pressing surface of the mold 40 and the layers between the plurality of elastic sheets 31a and 31b (each having a layer thickness that complements the variation). With respect to the above, it is possible to easily and firmly seal the layers of the plurality of elastic sheets 31a and 31b and the plurality of H / S 15a and 15b (with the above-mentioned variation) without gaps or firmly.

図5に示すように次に、このようにシールされた状態で、金型40内にモールド樹脂50を注入し硬化させることで、各積層構造10に対するモールドが施される。具体的には、例えば、エポキシ樹脂を、素子基板1(図1参照)に対する損傷を回避する条件として樹脂圧力10Mpa以下、金型温度210度C未満の条件で、トランスファーモールドする。すると、弾性シート31a,31bが圧縮されているので、その復元力或いは弾性力によって、隙間なくシールされた金型40の押圧面及び複数の弾性シート31a,31bの層間についても、同じく該復元力或いは弾性力によって隙間なくシールされた複数の弾性シート31a,31b及び複数のH/S15a,15bの層間夫々についても、モールド樹脂が入り込まないようにできる。このように弾性シート31a,31bとモールド樹脂50とを同時に成型できるので、製造上、大変便利である。 Next, as shown in FIG. 5, in the sealed state as described above, the mold resin 50 is injected into the mold 40 and cured to form a mold for each laminated structure 10. Specifically, for example, the epoxy resin is transfer-molded under the condition that the resin pressure is 10 Mpa or less and the mold temperature is less than 210 ° C. as a condition for avoiding damage to the element substrate 1 (see FIG. 1). Then, since the elastic sheets 31a and 31b are compressed, the restoring force is also applied to the pressing surface of the mold 40 sealed without gaps and the layers between the plurality of elastic sheets 31a and 31b due to the restoring force or the elastic force. Alternatively, the mold resin can be prevented from entering the layers of the plurality of elastic sheets 31a and 31b and the plurality of H / S 15a and 15b that are sealed without gaps by the elastic force. Since the elastic sheets 31a and 31b and the mold resin 50 can be molded at the same time in this way, it is very convenient in manufacturing.

図6に示すように次に、金型40を取り外す。すると、複数の弾性シート31a,31bの外表面には、その層厚の厚薄に関わらず、モールド樹脂50が残らず、しかも、複数の弾性シート31a、31bの外表面は、その層厚の厚薄に関わらず、高さが実質的に或いは実践上完全に揃えられる。加えて、弾性シート31a,31bの外表面の平行度も金型40の押圧面の平行度に応じて確保されると共に、H/S15a,15b相互間の距離も確保される。同時にH/S15a,15b及び弾性シート31a,31bの層間にモールド樹脂50が入り込んで、両者間の熱伝導率を低下させるような不都合な事態も、未然防止されている。 Next, as shown in FIG. 6, the mold 40 is removed. Then, the mold resin 50 does not remain on the outer surfaces of the plurality of elastic sheets 31a and 31b regardless of the thickness of the layer, and the outer surfaces of the plurality of elastic sheets 31a and 31b are thin and thin. Regardless, the heights are virtually or practically perfectly aligned. In addition, the parallelism of the outer surfaces of the elastic sheets 31a and 31b is secured according to the parallelism of the pressing surface of the mold 40, and the distance between the H / S 15a and 15b is also secured. At the same time, an inconvenient situation in which the mold resin 50 enters between the layers of the H / S 15a and 15b and the elastic sheets 31a and 31b and the thermal conductivity between the two is lowered is also prevented.

このようにして、弾性シート31a,31bのH/S15a,15bへの接合或いは弾性シート31a,31bの成型を含む形でモールド成型が実行される。即ち、弾性シート31a,31bの成型或いはH/S15a,15bへの接合と、モールド樹脂50による素子基板1(図1参照)に対する絶縁とを同時並行的に実行できることになる。この結果、内部に放熱板の少なくとも一部としてとして機能する弾性シート31a,31bを有すると共に、その概ね全域が樹脂モールドされた半導体装置100が構築される。 In this way, molding is executed including joining the elastic sheets 31a and 31b to the H / S 15a and 15b or molding the elastic sheets 31a and 31b. That is, the molding of the elastic sheets 31a and 31b or the joining to the H / S 15a and 15b and the insulation of the element substrate 1 (see FIG. 1) by the mold resin 50 can be executed in parallel at the same time. As a result, a semiconductor device 100 having elastic sheets 31a and 31b that function as at least a part of the heat radiating plate and having a resin-molded almost the entire area thereof is constructed.

図7に示すように次に、放熱板を弾性シート31a,31bと共に構成するピンフィン板60a,60bを、弾性シート31a,31bに取り付ける。ピンフィン板60a,60bは夫々、複数のピンフィン61a,61bを有しており、その断面積の広さ及び冷却用空気の対流に優れている。ピンフィン板60a,60bは、H/S15a,15b及び弾性シート31a,31bと協調して、動作時における半導体素子13a,13bで発生する熱を効率良く放熱可能となる。例えば、パワーデバイスを構成する当該半導体装置(図7参照)を、HV車両やEV車両のインバータ内に設置している冷却器に係るパワーカードに利用すれば、高い冷却性能をもったパワーカードを構築できる。 Next, as shown in FIG. 7, the pin fin plates 60a and 60b, which constitute the heat sink together with the elastic sheets 31a and 31b, are attached to the elastic sheets 31a and 31b. The pin fin plates 60a and 60b each have a plurality of pin fins 61a and 61b, and are excellent in the wide cross-sectional area and the convection of cooling air. The pin fin plates 60a and 60b can efficiently dissipate heat generated by the semiconductor elements 13a and 13b during operation in cooperation with the H / S 15a and 15b and the elastic sheets 31a and 31b. For example, if the semiconductor device (see FIG. 7) constituting the power device is used for a power card related to a cooler installed in an inverter of an HV vehicle or an EV vehicle, a power card having high cooling performance can be obtained. Can be built.

以上図1から図7を参照して説明したように、本実施形態では、モールド体を切削する必要やH/Sの主面を適宜削除する必要が無く、よって切削後の洗浄や切削用刃具の定期交換を行ったりする必要もない。このように、本実施形態の製造方法を用いれば、少ない工程数で放熱性に優れた半導体装置を製造できる。 As described above with reference to FIGS. 1 to 7, in the present embodiment, it is not necessary to cut the molded body or to appropriately delete the main surface of the H / S, and therefore it is not necessary to perform cleaning after cutting or a cutting tool for cutting. There is no need to perform regular replacement. As described above, by using the manufacturing method of the present embodiment, it is possible to manufacture a semiconductor device having excellent heat dissipation with a small number of steps.

以上に説明した実施形態から導き出される発明の態様を以下に説明する。 Aspects of the invention derived from the embodiments described above will be described below.

<1>
本発明の一態様に係る半導体装置の製造方法は、平板状の基材の少なくとも一方の表面上における複数の個所で夫々、前記基材及び半導体素子の間並びに前記半導体素子及びヒートスプレッタの間をはんだで接合する工程と、前記接合されたヒートスプレッタの前記接合された半導体素子と反対側に向く外表面の高さを前記複数の個所で夫々計測する工程と、前記計測された高さの前記複数の個所相互間におけるばらつきを相補するように層厚が設定されると共に放熱板として機能する弾性シートを、前記基材、前記半導体素子及び前記ヒートスプレッタが積層されてなる積層構造並びに前記弾性シートを包含する金型の内部空間で、前記複数の個所夫々における前記外表面に対向配置させ前記金型の押圧面で前記外表面上に押圧することで、前記押圧面及び前記弾性シートの層間並びに前記弾性シート及び前記外表面の層間を夫々シールする工程と、前記層間が夫々シールされている状態で、前記金型内にモールド樹脂を注入し硬化させることで、前記積層構造に対するモールドを施す工程とを備える。
<1>
The method for manufacturing a semiconductor device according to one aspect of the present invention is to solder between the base material and the semiconductor element and between the semiconductor element and the heat spreader at a plurality of positions on at least one surface of the flat plate-shaped base material. A step of measuring the height of the outer surface of the joined heat spreader facing the side opposite to the joined semiconductor element at each of the plurality of locations, and a step of measuring the heights of the measured heights. An elastic sheet in which a layer thickness is set so as to complement variations between locations and functions as a heat dissipation plate includes the substrate, a laminated structure in which the semiconductor element and the heat spreader are laminated, and the elastic sheet. In the internal space of the mold, by arranging them facing the outer surface at each of the plurality of locations and pressing the pressing surface of the mold onto the outer surface, the layers between the pressing surface and the elastic sheet and the elastic sheet are pressed. A step of sealing each of the layers of the outer surface and a step of molding the laminated structure by injecting a mold resin into the mold and curing the layers in a state where the layers are sealed are provided. ..

上述の態様においては、基材の両面又は片面である表面上で、半導体素子及びH/Sがこの順に積層され、基材及び半導体素子の間並びに半導体素子及びH/Sの間は夫々、はんだで接合される。このような積層及びはんだ付けは、基材の表面上における複数の箇所で夫々行われる。この段階では、該複数の個所で、H/Sの外表面は平坦にならない。これは、H/Sには、はんだ付けの熱が冷却される際の熱収縮が生じ、複数の個所間に段差或いは寸法公差が生じてしまうからである。 In the above aspect, the semiconductor element and the H / S are laminated in this order on the surface which is both sides or one side of the base material, and solder between the base material and the semiconductor element and between the semiconductor element and the H / S, respectively. Joined at. Such lamination and soldering are performed at a plurality of locations on the surface of the base material, respectively. At this stage, the outer surface of the H / S is not flat at the plurality of locations. This is because the H / S undergoes thermal shrinkage when the heat of soldering is cooled, and a step or a dimensional tolerance occurs between a plurality of locations.

そこではんだ付け後に、H/Sの外表面の高さが、複数の箇所で夫々計測される。典型的には、基材の表面若しくは厚み方向の中心面からの外表面の高さ又は基準面からの積層方向の外表面の高さ、言い換えれば、半導体素子、ヒートスプレッタ及び基材が積層され接合されてなる積層構造の積層方向の厚みが、複数の個所で夫々計測される。 Therefore, after soldering, the height of the outer surface of the H / S is measured at each of a plurality of points. Typically, the height of the outer surface from the center surface in the surface or thickness direction of the base material or the height of the outer surface in the stacking direction from the reference plane, in other words, the semiconductor element, the heat spreader and the base material are laminated and bonded. The thickness of the laminated structure formed in the laminated structure is measured at a plurality of points.

更に、このように計測された高さの複数の個所相互間におけるばらつきを相補するように層厚が設定されると共に放熱板の少なくとも一部として機能する弾性シートが用意される。即ち、H/Sの外表面に対向配置されることになる弾性シートにおける、H/Sの外表面と反対側に向く外表面の高さの差が、複数の箇所に対応する複数の弾性シート相互間で無くなる若しくは低減されるように、H/Sの外表面の高さのばらつきに応じて層厚が可変に設定された複数の弾性シートが用意される。即ち、H/Sの層厚と弾性シートの層厚との合計は、複数の個所相互間で等しくなるように、複数の弾性シート各々の層厚に対して調整が加えられる。このような弾性シートは、典型的には絶縁性樹脂から構成され、金型の押圧面に、接合手段(例えば、材料自身の粘着力や別途塗布された接着剤による接着力、或いは真空排気による吸着力)により固定される形で、設置されるか又は塗布される。 Further, an elastic sheet is prepared in which the layer thickness is set so as to complement the variation between the plurality of locations of the measured heights and which functions as at least a part of the heat sink. That is, in the elastic sheet that is arranged to face the outer surface of the H / S, the difference in height of the outer surface facing the opposite side from the outer surface of the H / S corresponds to a plurality of elastic sheets. A plurality of elastic sheets whose layer thickness is variably set according to the variation in the height of the outer surface of the H / S are prepared so as to be eliminated or reduced between the two. That is, adjustments are made to the layer thickness of each of the plurality of elastic sheets so that the total of the layer thickness of the H / S and the layer thickness of the elastic sheet becomes equal among the plurality of locations. Such an elastic sheet is typically made of an insulating resin, and is applied to the pressing surface of the mold by a joining means (for example, the adhesive force of the material itself, the adhesive force of a separately applied adhesive, or vacuum exhaust. It is installed or applied in a form that is fixed by (adhesive force).

その後、このように層厚が設定された弾性シートがその背後から金型の押圧面で、H/Sの外表面上に押圧される。弾性シートをH/Sの外表面上に押圧することで、押圧面及び弾性シートの層間並びに弾性シート及びH/Sの外表面の層間を夫々シールする。すると、H/Sの外表面の高さにばらつきがあるにもかかわらず、押圧面及び複数の弾性シートの層間についても、複数の弾性シート及び複数のH/Sの層間夫々についても、簡単にして隙間なく或いは強固にシールすることが可能となる。 After that, the elastic sheet having the layer thickness set in this way is pressed from behind the elastic sheet onto the outer surface of the H / S by the pressing surface of the mold. By pressing the elastic sheet onto the outer surface of the H / S, the layers of the pressing surface and the elastic sheet and the layers of the elastic sheet and the outer surface of the H / S are sealed, respectively. Then, despite the variation in the height of the outer surface of the H / S, the layers of the pressing surface and the plurality of elastic sheets, and the layers of the plurality of elastic sheets and the plurality of H / Ss can be simplified. It is possible to seal tightly or without gaps.

その後、このようにシールされた状態で、金型内にモールド樹脂を注入し硬化させることで、積層構造に対するモールドが施される。すると、隙間なくシールされた押圧面及び複数の弾性シートの層間についても、隙間なくシールされた複数の弾性シート及び複数のH/Sの層間夫々についても、モールド樹脂が入り込まないようにできる。この結果、金型を取り外した際に、複数の弾性シートの外表面には、その層厚の厚薄に関わらず、モールド樹脂が残らず、しかも、複数の弾性シートの外表面は、その層厚の厚薄に関わらず、高さが実質的に或いは実践上完全に揃えられたことになる。 Then, in the state of being sealed in this way, the mold resin is injected into the mold and cured to form a mold for the laminated structure. Then, the mold resin can be prevented from entering the pressing surface sealed without gaps and the layers of the plurality of elastic sheets, and the layers of the plurality of elastic sheets and the plurality of H / Ss sealed without gaps. As a result, when the mold is removed, the mold resin does not remain on the outer surface of the plurality of elastic sheets regardless of the thickness of the layer, and the outer surface of the plurality of elastic sheets has the layer thickness. Regardless of the thickness of the, the height is practically or practically perfectly aligned.

これらの結果、モールド樹脂等に対する切削工程がなくなるので、即ちモールド体を切削したりH/Sの主面を適宜削除したりで工程数が多くなること或いは高コストになることを、極めて効率良く避けることが可能となる。しかも、例えば半導体素子等と金属冷却装置との絶縁を確保する目的で放熱板としての絶縁版を後付する等の必要もなくなり、金型内に絶縁樹脂からなる弾性シート或いは放熱シートを、直接塗布又は設置しモールド成型と同時に弾性シートをH/S上に成型できるので、製造効率が極めて高い。 As a result, the cutting process for the mold resin or the like is eliminated, that is, the number of processes is increased or the cost is increased by cutting the molded body or deleting the main surface of the H / S as appropriate, which is extremely efficient. It will be possible to avoid it. Moreover, for example, it is not necessary to retrofit an insulating plate as a heat sink for the purpose of ensuring insulation between the semiconductor element or the like and the metal cooling device, and an elastic sheet or a heat dissipation sheet made of an insulating resin is directly placed in the mold. Since the elastic sheet can be molded on the H / S at the same time as coating or installation and molding, the manufacturing efficiency is extremely high.

本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う半導体装置の製造方法もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, and can be appropriately modified within the scope of claims and within the scope not contrary to the gist or idea of the invention that can be read from the entire specification. The manufacturing method is also included in the technical scope of the present invention.

1…素子基板、10…積層構造、11…リードフレーム、12a、12b、14a、14b…はんだ、13a、13b…半導体素子、15a、15b…H/S(ヒートスプレッタ)、31a、31b…弾性シート(放熱シート)、40…金型、50…モールド樹脂、60a、60b…ピンフィン板 1 ... Element substrate, 10 ... Laminated structure, 11 ... Lead frame, 12a, 12b, 14a, 14b ... Solder, 13a, 13b ... Semiconductor element, 15a, 15b ... H / S (heat spreader), 31a, 31b ... Elastic sheet ( Heat spreader), 40 ... mold, 50 ... mold resin, 60a, 60b ... pin fin plate

Claims (1)

平板状の基材の少なくとも一方の表面上における複数の個所で夫々、前記基材及び半導体素子の間並びに前記半導体素子及びヒートスプレッタの間をはんだで接合する工程と、
前記接合されたヒートスプレッタの前記接合された半導体素子と反対側に向く外表面の高さを前記複数の個所で夫々計測する工程と、
前記計測された高さの前記複数の個所相互間におけるばらつきを相補するように層厚が設定されると共に放熱板として機能する弾性シートを、前記基材、前記半導体素子及び前記ヒートスプレッタが積層されてなる積層構造並びに前記弾性シートを包含する金型の内部空間で、前記複数の個所夫々における前記外表面に対向配置させ前記金型の押圧面で前記外表面上に押圧することで、前記押圧面及び前記弾性シートの層間並びに前記弾性シート及び前記外表面の層間を夫々シールする工程と、
前記層間が夫々シールされている状態で、前記金型内にモールド樹脂を注入し硬化させることで、前記積層構造に対するモールドを施す工程と
を備えることを特徴とする半導体装置の製造方法。
A step of soldering between the base material and the semiconductor element and between the semiconductor element and the heat spreader at a plurality of locations on at least one surface of the flat plate-shaped base material.
A step of measuring the height of the outer surface of the bonded heat spreader facing the opposite side of the bonded semiconductor element at each of the plurality of locations.
The base material, the semiconductor element, and the heat spreader are laminated on an elastic sheet whose layer thickness is set so as to complement the variation of the measured height between the plurality of locations and which functions as a heat dissipation plate. In the inner space of the mold including the laminated structure and the elastic sheet, the pressing surface is arranged to face the outer surface at each of the plurality of locations and pressed onto the outer surface by the pressing surface of the mold. And the steps of sealing the layers of the elastic sheet and the layers of the elastic sheet and the outer surface, respectively.
A method for manufacturing a semiconductor device, which comprises a step of forming a mold on the laminated structure by injecting a mold resin into the mold and curing the layers in a state where the layers are sealed.
JP2018009020A 2018-01-23 2018-01-23 Manufacturing method of semiconductor device Active JP6973109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018009020A JP6973109B2 (en) 2018-01-23 2018-01-23 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018009020A JP6973109B2 (en) 2018-01-23 2018-01-23 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2019129204A JP2019129204A (en) 2019-08-01
JP6973109B2 true JP6973109B2 (en) 2021-11-24

Family

ID=67471353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018009020A Active JP6973109B2 (en) 2018-01-23 2018-01-23 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP6973109B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125700A (en) * 1996-10-17 1998-05-15 Hitachi Ltd Pressurized contact type semiconductor device and its assembling method
JP4479121B2 (en) * 2001-04-25 2010-06-09 株式会社デンソー Manufacturing method of semiconductor device
JP4302607B2 (en) * 2004-01-30 2009-07-29 株式会社デンソー Semiconductor device
JP2011216564A (en) * 2010-03-31 2011-10-27 Mitsubishi Electric Corp Power module and method of manufacturing the same
JP2016039206A (en) * 2014-08-06 2016-03-22 トヨタ自動車株式会社 Semiconductor device manufacturing method and semiconductor device

Also Published As

Publication number Publication date
JP2019129204A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
JP5484429B2 (en) Power converter
US7405107B2 (en) Semiconductor device, method and apparatus for fabricating the same
JP6743916B2 (en) Semiconductor device and method of manufacturing semiconductor device
US9870947B1 (en) Method for collective (wafer-scale) fabrication of electronic devices and electronic device
US12096569B2 (en) Manufacturing method of insulated metal substrate
JP2011187877A (en) Semiconductor device, and method of manufacturing the same
JP2012119597A (en) Semiconductor device and manufacturing method of the same
JP2013030649A (en) Semiconductor module and manufacturing method of the same
JP2011181879A (en) Semiconductor device and method of manufacturing the same
JP6360035B2 (en) Semiconductor device
JP2010192591A (en) Power semiconductor device and method of manufacturing the same
JP5398269B2 (en) Power module and power semiconductor device
JP6973109B2 (en) Manufacturing method of semiconductor device
JP7204919B2 (en) Power module and manufacturing method thereof
JP7059714B2 (en) Power converter and manufacturing method of power converter
JP6080929B2 (en) Semiconductor module
JP2012054487A (en) Electronic device
JP5680011B2 (en) Power semiconductor device and method for manufacturing power semiconductor device
JP2011198864A (en) Power semiconductor device and method of manufacturing the same
JP5984652B2 (en) Semiconductor device and manufacturing method thereof
JP2010141034A (en) Semiconductor device and manufacturing method of the same
JP2013105928A (en) Semiconductor device
JP3960264B2 (en) Manufacturing method of semiconductor device
JP3985558B2 (en) Method for manufacturing thermally conductive substrate
KR101606117B1 (en) Heat sink unit and manufacture method of heat sink unit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200401

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200827

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200918

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R151 Written notification of patent or utility model registration

Ref document number: 6973109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151