JP2010192591A - Power semiconductor device and method of manufacturing the same - Google Patents

Power semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2010192591A
JP2010192591A JP2009033995A JP2009033995A JP2010192591A JP 2010192591 A JP2010192591 A JP 2010192591A JP 2009033995 A JP2009033995 A JP 2009033995A JP 2009033995 A JP2009033995 A JP 2009033995A JP 2010192591 A JP2010192591 A JP 2010192591A
Authority
JP
Japan
Prior art keywords
power semiconductor
wire bundle
semiconductor device
cooling fin
lead frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009033995A
Other languages
Japanese (ja)
Inventor
Seiji Oka
誠次 岡
Takeshi Oi
健史 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009033995A priority Critical patent/JP2010192591A/en
Publication of JP2010192591A publication Critical patent/JP2010192591A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power semiconductor device which includes a power semiconductor module and a cooling fin bonded via a bonding member superior in thermal conductivity and electric insulation, can efficiently conduct generated heat of a power semiconductor element to the cooling fin, and can be miniaturized and increased in capacity. <P>SOLUTION: The power semiconductor device 100 includes the cooling fin 6 bonded with the power semiconductor module 1 via the bonding member 7. An exposed surface of a leadframe 2 from sealing resin 5 in the power semiconductor module and a bonding surface of the cooling fin are bonded via the bonding member formed of matrix resin and a wire flux of aluminum fibers having an electrically insulative alumite layer on a surface filled with the matrix resin. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はリードフレームを用いた電力用半導体モジュールに冷却フィンを一体化させた電力用半導体装置とその製造方法に関するものである。   The present invention relates to a power semiconductor device in which a cooling fin is integrated with a power semiconductor module using a lead frame, and a manufacturing method thereof.

電気自動車や産業用機器のモータの駆動装置に用いられる電力用半導体装置としてインバータ装置がある。インバータ装置は、大電流を高速にスイッチングして、直流からモータを駆動する交流を得ており、電力用半導体素子としてのIGBT(Insulated Gate Bipolar Transistor)チップとダイオードチップ等が用いられている。
近年、インバータ装置等の電力用半導体装置は、小型・大容量化が要求されており、電力用半導体素子からの発熱を効率的に放散させることが要望されている。そのため、電力用半導体装置には、熱をよく放散させる放熱用の冷却フィンが用いられる。冷却フィンは電力用半導体装置を構成する電力用半導体モジュールのヒートシンクに取り付けられるが、冷却フィンは電力用半導体モジュールの回路と電気的に絶縁する必要がある。
There is an inverter device as a power semiconductor device used for a motor drive device of an electric vehicle or industrial equipment. An inverter device obtains an alternating current for driving a motor from a direct current by switching a large current at a high speed, and an IGBT (Insulated Gate Bipolar Transistor) chip and a diode chip are used as a power semiconductor element.
In recent years, power semiconductor devices such as inverter devices are required to be small and have a large capacity, and it is desired to efficiently dissipate heat generated from power semiconductor elements. For this reason, cooling fins for heat dissipation that dissipate heat well are used in power semiconductor devices. Although the cooling fin is attached to the heat sink of the power semiconductor module constituting the power semiconductor device, the cooling fin needs to be electrically insulated from the circuit of the power semiconductor module.

従来の電力用半導体モジュールとして、セラミック板の一方の面に電力用半導体素子の搭載部が形成され、他方の面に金属板が設けられたセラミック基板を、回路基板として用いたパワーモジュール装置がある。このパワーモジュール装置へ冷却フィンを取り付ける場合は、パワーモジュール装置のセラミック基板の金属板に冷却フィンを接合することになる。そして、パワーモジュール装置の回路と冷却フィンとの間の電気的絶縁は、セラミック基板のセラミック板により行われる(例えば、特許文献1参照)。   2. Description of the Related Art As a conventional power semiconductor module, there is a power module device in which a ceramic substrate having a power semiconductor element mounting portion formed on one surface of a ceramic plate and a metal plate provided on the other surface is used as a circuit board. . When the cooling fin is attached to the power module device, the cooling fin is joined to the metal plate of the ceramic substrate of the power module device. And the electrical insulation between the circuit of a power module apparatus and a cooling fin is performed by the ceramic board of a ceramic substrate (for example, refer patent document 1).

また、従来の電力用半導体モジュールとして、金属板の一方の面に樹脂絶縁層を介して電力用半導体素子を搭載する回路パターンが形成された樹脂絶縁金属基板を、回路基板として用いたパワー半導体モジュールがある。このパワー半導体モジュールでは、樹脂絶縁金属基板の金属板に冷却体である冷却フィンが接合されている。そして、パワー半導体モジュールの回路と冷却体との間の電気的絶縁は、樹脂絶縁金属基板の樹脂絶縁層により行われる(例えば、特許文献2参照)。   Also, as a conventional power semiconductor module, a power semiconductor module using a resin insulated metal substrate on which a circuit pattern for mounting a power semiconductor element is formed on one surface of a metal plate via a resin insulation layer as a circuit board There is. In this power semiconductor module, a cooling fin as a cooling body is joined to a metal plate of a resin insulating metal substrate. And the electrical insulation between the circuit of a power semiconductor module and a cooling body is performed by the resin insulation layer of a resin insulation metal substrate (for example, refer patent document 2).

また、従来の電力用半導体モジュールとして、金属板の一方の面に樹脂絶縁層を介して電力用半導体素子を搭載するリードフレームが設けられた電子パッケージがある。この電子パッケージへ冷却フィンを取り付ける場合は、電子パッケージの金属板に冷却フィンを接合することになる。電子パッケージの回路と冷却フィンとの間の電気的絶縁は、金属板上の樹脂絶縁層により行われる(例えば、特許文献3参照)。   As a conventional power semiconductor module, there is an electronic package in which a lead frame for mounting a power semiconductor element is provided on one surface of a metal plate via a resin insulating layer. When the cooling fin is attached to the electronic package, the cooling fin is joined to the metal plate of the electronic package. Electrical insulation between the circuit of the electronic package and the cooling fin is performed by a resin insulating layer on a metal plate (see, for example, Patent Document 3).

また、従来の電力用半導体モジュールとして、金属板のヒートシンクに半導体素子を搭載した半導体装置がある。この半導体装置は、金属板のヒートシンクに、表面に絶縁酸化膜であるアルマイトが形成されたアルミニウムの冷却部材(冷却フィンに相当する)が接合されており、半導体装置の回路と冷却部材との間の電気的絶縁は、冷却部材の表面に形成された絶縁酸化膜であるアルマイトにより行われる(例えば、特許文献4参照)。   As a conventional power semiconductor module, there is a semiconductor device in which a semiconductor element is mounted on a heat sink of a metal plate. In this semiconductor device, an aluminum cooling member (corresponding to a cooling fin) having an anodized aluminum oxide film formed on its surface is joined to a heat sink of a metal plate. The electrical insulation is performed by alumite, which is an insulating oxide film formed on the surface of the cooling member (see, for example, Patent Document 4).

特許平8−316357号公報(第2頁、第1図)Japanese Patent No. 8-316357 (2nd page, Fig. 1) 特開2007−43098号公報(第4頁、第1図)JP 2007-43098 A (page 4, FIG. 1) 特開2001−196495号公報(第3頁、第1図)Japanese Patent Laid-Open No. 2001-196495 (page 3, FIG. 1) 特開2005−327791号公報(第3頁、第3図)Japanese Patent Laying-Open No. 2005-327791 (page 3, FIG. 3)

上記特許文献1〜3に記載の電力用半導体モジュールに冷却フィンを設けた電力用半導体装置において、電力用半導体素子の放熱性を向上させるには、電力用半導体素子で発生した熱を冷却フィンに効率良く伝導する必要がある。
そのため、特許文献1に記載の電力用半導体モジュールを用いた電力用半導体装置では、電気絶縁を維持するセラミック板の熱抵抗を低減させる必要がある。セラミック板の熱抵抗を低減させる手段には、セラミック板の厚さを薄くするか、高熱伝導率のセラミック板を用いることが挙げられる。
しかし、厚さの薄いセラミック板を用いると、金属板との接合時に金属板との熱膨張率の違いにより割れてしまうとの問題があった。また、高熱伝導率のセラミック板は高価であり、電力用半導体装置がコストアップとなるとの問題があった。
In the power semiconductor device provided with cooling fins in the power semiconductor modules described in Patent Documents 1 to 3, heat generated in the power semiconductor elements is used as cooling fins in order to improve the heat dissipation of the power semiconductor elements. It is necessary to conduct efficiently.
Therefore, in the power semiconductor device using the power semiconductor module described in Patent Document 1, it is necessary to reduce the thermal resistance of the ceramic plate that maintains electrical insulation. Means for reducing the thermal resistance of the ceramic plate include reducing the thickness of the ceramic plate or using a ceramic plate having high thermal conductivity.
However, when a thin ceramic plate is used, there is a problem in that it is cracked due to a difference in thermal expansion coefficient between the metal plate and the metal plate. Moreover, the ceramic plate having high thermal conductivity is expensive, and there is a problem that the cost of the power semiconductor device is increased.

また、特許文献2と特許文献3とに記載の電力用半導体モジュールを用いた電力用半導体装置では、電気絶縁を維持する樹脂絶縁層の熱抵抗を低減させる必要がある。
樹脂絶縁層の熱抵抗を低減させる手段には、樹脂絶縁層に無機フィラーを充填し、樹脂絶縁層の熱伝導率を高くすることが挙げられる。
しかし、樹脂絶縁層への無機フィラーの充填量には限界があり、樹脂絶縁層の熱伝導率の向上には限界があるとの問題があった。
Moreover, in the power semiconductor device using the power semiconductor module described in Patent Document 2 and Patent Document 3, it is necessary to reduce the thermal resistance of the resin insulating layer that maintains electrical insulation.
Means for reducing the thermal resistance of the resin insulating layer include filling the resin insulating layer with an inorganic filler to increase the thermal conductivity of the resin insulating layer.
However, there is a limit in the amount of the inorganic filler filled in the resin insulating layer, and there is a problem that there is a limit in improving the thermal conductivity of the resin insulating layer.

また、上記特許文献1〜3に記載の電力用半導体モジュールを用いた電力用半導体装置では、電力用半導体モジュールと冷却フィンとの接合には、シリコーングリースが用いられるのが一般的である。
しかし、シリコーングリースは、電力用半導体モジュールにおける、電力用半導体素子から冷却フィンにいたる熱伝導路を形成する他の部材に比べて、熱伝導率が低く、1〜3W/mKの範囲であり、シリコーングリース接合部で熱抵抗が上昇する。そのため、冷却フィンへの熱流量を大きくするには、シリコーングリース接合部の面積を大きくする必要があり、電力用半導体モジュールと冷却フィンとが大きくなり、電力用半導体装置の小型・大容量化が図りにくいとの問題があった。
Moreover, in the power semiconductor device using the power semiconductor module described in Patent Documents 1 to 3, silicone grease is generally used for joining the power semiconductor module and the cooling fin.
However, the silicone grease has a low thermal conductivity and is in the range of 1 to 3 W / mK compared to other members that form a heat conduction path from the power semiconductor element to the cooling fin in the power semiconductor module. Thermal resistance increases at silicone grease joints. Therefore, in order to increase the heat flow to the cooling fin, it is necessary to increase the area of the silicone grease joint, and the power semiconductor module and the cooling fin become larger, which reduces the size and capacity of the power semiconductor device. There was a problem that it was difficult to plan.

また、特許文献4に記載の電力用半導体モジュールでは、金属板のヒートシンクへの冷却部材の接合が接着剤で行われている。しかし、接着剤は、電力用半導体モジュールにおいて、半導体素子から冷却部材にいたる熱伝導路を形成する他の部材に比べて熱伝導率が低い。このため、接着材接合部で熱抵抗が上昇するので、この接合部の面積を大きくする必要があり、半導体装置と冷却部材とが大きくなり、半導体装置の小型・大容量化が図りにくいとの問題があった。   Further, in the power semiconductor module described in Patent Document 4, the cooling member is bonded to the heat sink of the metal plate with an adhesive. However, the adhesive has a lower thermal conductivity in the power semiconductor module than in other members that form a heat conduction path from the semiconductor element to the cooling member. For this reason, since the thermal resistance increases at the adhesive joint portion, it is necessary to increase the area of the joint portion, the semiconductor device and the cooling member become large, and it is difficult to reduce the size and capacity of the semiconductor device. There was a problem.

本発明は、上記のような問題を解決するためになされたものであり、その目的は、熱伝導性と電気絶縁性に優れた接合部材で電力用半導体モジュールと冷却フィンとが接合され、電力用半導体素子の発熱を冷却フィンに効率よく伝導できるとともに、電力用半導体モジュールの回路と放熱フィンとが電気的に絶縁された、小型・大容量化が可能な電力用半導体装置およびその製造方法を提供することである。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to join a power semiconductor module and a cooling fin with a joining member excellent in thermal conductivity and electrical insulation. A power semiconductor device capable of efficiently conducting heat generated by a semiconductor element to a cooling fin and electrically insulating the circuit of the power semiconductor module and the heat dissipating fin, and capable of reducing the capacity, and a method for manufacturing the same Is to provide.

本発明に係わる電力用半導体装置は、電力用半導体モジュールに接合部材を介して冷却フィンが接合された電力用半導体装置であって、接合部材が、マトリックス樹脂と、マトリックス樹脂に充填された表面に電気絶縁性のアルマイト層を有するアルミニウム繊維のワイヤー束とから形成されたものである。   A power semiconductor device according to the present invention is a power semiconductor device in which a cooling fin is joined to a power semiconductor module via a joining member, and the joining member is formed on a matrix resin and a surface filled with the matrix resin. It is formed from a wire bundle of aluminum fibers having an electrically insulating alumite layer.

また、本発明に係わる電力用半導体装置の製造方法は、アルミニウム繊維のワイヤー束を硫酸中に浸漬し、アルミニウム繊維のワイヤー束のアルミニウム表面を酸化する酸化処理工程と、酸化処理工程で得られた酸化処理アルミニウム繊維のワイヤー束を純水で洗浄し、酸化処理アルミニウム繊維のワイヤー束の酸化層を封孔処理する封孔処理工程と、封孔処理工程で得られた封孔処理アルミニウム繊維のワイヤー束を乾燥する乾燥工程と、乾燥工程で得られたアルマイト層形成ワイヤー束を、上板と下板とが所定の間隔で設置された型の隙間に配置するセット工程と、型にセットされたアルマイト層形成ワイヤー束に、液状熱硬化性樹脂を真空下で注入して、アルマイト層形成ワイヤー束の空隙に液状熱硬化性樹脂を含浸させる含浸処理工程と、含浸処理工程で得られた液状熱硬化性樹脂含浸ワイヤー束を予備加熱して、液状熱硬化性樹脂をBステージ化するBステージ化工程と、Bステージ化工程で得られたシート状の接合部材前駆体を、所定の大きさに打ち抜き、電力用半導体モジュールのリードフレームが露出した面と冷却フィンの接合面との間に配設する接合部材前駆体配設工程と、接合部材前駆体配設工程で電力用半導体モジュールのリードフレームが露出した面と冷却フィンの接合面とに挟まれたシート状の接合部材前駆体を、加熱・加圧して硬化させる接合部材前駆体硬化工程とを備え、接合部材前駆体硬化工程により接合部材前駆体を硬化させて形成した接合部材で、電力用半導体モジュールと冷却フィンとを接合するものである。   Moreover, the manufacturing method of the semiconductor device for electric power concerning this invention was obtained by the oxidation treatment process which immerses the wire bundle of aluminum fiber in sulfuric acid, and oxidizes the aluminum surface of the wire bundle of aluminum fiber, and the oxidation treatment process. Washing the wire bundle of oxidized aluminum fibers with pure water and sealing the oxidized layer of the wire bundle of oxidized aluminum fibers, and the wire of the sealed aluminum fibers obtained in the sealing process A drying process for drying the bundle, an alumite layer forming wire bundle obtained in the drying process, a setting process for placing the upper plate and the lower plate in a gap between the molds set at predetermined intervals, and a mold set An impregnation treatment process in which a liquid thermosetting resin is injected into the alumite layer forming wire bundle under vacuum, and the liquid crystal thermosetting resin is impregnated into the voids of the alumite layer forming wire bundle. And pre-heating the liquid thermosetting resin-impregnated wire bundle obtained in the impregnation treatment step to form a B-stage of the liquid thermosetting resin, and a sheet-like shape obtained in the B-stage forming step. A joining member precursor disposing step of punching the joining member precursor to a predetermined size and disposing between the exposed surface of the lead frame of the power semiconductor module and the joining surface of the cooling fin, and the joining member precursor A joining member precursor curing step in which a sheet-like joining member precursor sandwiched between the surface where the lead frame of the power semiconductor module is exposed and the joining surface of the cooling fin in the disposing step is heated and pressed to cure. And a joining member formed by curing the joining member precursor in the joining member precursor curing step, and joining the power semiconductor module and the cooling fin.

本発明に係わる電力用半導体装置は、電力用半導体モジュールに接合部材を介して冷却フィンが接合された電力用半導体装置であって、接合部材が、マトリックス樹脂と、マトリックス樹脂に充填された表面に電気絶縁性のアルマイト層を有するアルミニウム繊維のワイヤー束とから形成されたものであり、電力用半導体素子の発熱を冷却フィンに効率よく伝導できるとともに、電力用半導体モジュールの回路と放熱フィンとが電気的に絶縁されており、小型・大容量化が可能なものである。   A power semiconductor device according to the present invention is a power semiconductor device in which a cooling fin is joined to a power semiconductor module via a joining member, and the joining member is formed on a matrix resin and a surface filled with the matrix resin. It is formed from a bundle of aluminum fiber wires having an electrically insulating anodized layer, and can efficiently conduct heat generated by the power semiconductor element to the cooling fin, and the circuit of the power semiconductor module and the heat dissipation fin can be electrically connected. It is insulated and can be reduced in size and capacity.

また、本発明に係わる電力用半導体装置の製造方法は、アルミニウム繊維のワイヤー束を硫酸中に浸漬し、アルミニウム繊維のワイヤー束のアルミニウム表面を酸化する酸化処理工程と、酸化処理工程で得られた酸化処理アルミニウム繊維のワイヤー束を純水で洗浄し、酸化処理アルミニウム繊維のワイヤー束の酸化層を封孔処理する封孔処理工程と、封孔処理工程で得られた封孔処理アルミニウム繊維のワイヤー束を乾燥する乾燥工程と、乾燥工程で得られたアルマイト層形成ワイヤー束を、上板と下板とが所定の間隔で設置された型の隙間に配置するセット工程と、型にセットされたアルマイト層形成ワイヤー束に、液状熱硬化性樹脂を真空下で注入して、アルマイト層形成ワイヤー束の空隙に液状熱硬化性樹脂を含浸させる含浸処理工程と、含浸処理工程で得られた液状熱硬化性樹脂含浸ワイヤー束を予備加熱して、液状熱硬化性樹脂をBステージ化するBステージ化工程と、Bステージ化工程で得られたシート状の接合部材前駆体を、所定の大きさに打ち抜き、電力用半導体モジュールのリードフレームが露出した面と冷却フィンの接合面との間に配設する接合部材前駆体配設工程と、接合部材前駆体配設工程で電力用半導体モジュールのリードフレームが露出した面と冷却フィンの接合面とに挟まれたシート状の接合部材前駆体を、加熱・加圧して硬化させる接合部材前駆体硬化工程とを備え、接合部材前駆体硬化工程により接合部材前駆体を硬化させて形成した接合部材で、電力用半導体モジュールと冷却フィンとを接合するものであり、電力用半導体素子の発熱を冷却フィンに効率よく伝導できるとともに、電力用半導体モジュールの回路と放熱フィンとが電気的に絶縁されており、小型・大容量化が可能な電力用半導体装置を得ることができる。   Moreover, the manufacturing method of the semiconductor device for electric power concerning this invention was obtained by the oxidation treatment process which immerses the wire bundle of aluminum fiber in sulfuric acid, and oxidizes the aluminum surface of the wire bundle of aluminum fiber, and the oxidation treatment process. Washing the wire bundle of oxidized aluminum fibers with pure water and sealing the oxidized layer of the wire bundle of oxidized aluminum fibers, and the wire of the sealed aluminum fibers obtained in the sealing process A drying process for drying the bundle, an alumite layer forming wire bundle obtained in the drying process, a setting process for placing the upper plate and the lower plate in a gap between the molds set at predetermined intervals, and a mold set An impregnation treatment process in which a liquid thermosetting resin is injected into the alumite layer forming wire bundle under vacuum, and the liquid crystal thermosetting resin is impregnated into the voids of the alumite layer forming wire bundle. And pre-heating the liquid thermosetting resin-impregnated wire bundle obtained in the impregnation treatment step to form a B-stage of the liquid thermosetting resin, and a sheet-like shape obtained in the B-staging step A joining member precursor disposing step for punching the joining member precursor to a predetermined size and disposing it between the surface where the lead frame of the power semiconductor module is exposed and the joining surface of the cooling fin, and a joining member precursor A joining member precursor curing step in which a sheet-like joining member precursor sandwiched between the surface where the lead frame of the power semiconductor module is exposed and the joining surface of the cooling fin in the disposing step is heated and pressed to cure. A joining member formed by curing the joining member precursor in the joining member precursor curing step, and joining the power semiconductor module and the cooling fin to cool the heat generated by the power semiconductor element. Together can be efficiently conducted to the fins, the circuit of the power semiconductor module and heat radiating fins are electrically isolated, it can be downsized with a larger capacity to obtain a power semiconductor device capable.

本発明の実施の形態1に係わる電力用半導体装置の断面模式図である。1 is a schematic cross-sectional view of a power semiconductor device according to a first embodiment of the present invention. 本発明の実施の形態1に係わる電力用半導体装置に用いられる接合部材の断面模式図である。It is a cross-sectional schematic diagram of the joining member used for the power semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態1に係わる電力用半導体装置の製造に用いられる接合部材前駆体の製造工程を示す図である。It is a figure which shows the manufacturing process of the joining member precursor used for manufacture of the power semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態1に係わる電力用半導体装置の製造における電力用半導体モジュールと冷却フィンとの接合工程を説明する図である。It is a figure explaining the joining process of the power semiconductor module and cooling fin in manufacture of the power semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態2に係わる電力用半導体装置の製造における電力用半導体モジュールと冷却フィンとの接合工程を説明する図である。It is a figure explaining the joining process of the power semiconductor module and cooling fin in manufacture of the power semiconductor device concerning Embodiment 2 of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係わる電力用半導体装置の断面模式図である。
図1に示すように、本実施の形態の電力用半導体装置100には、リードフレーム2と電力用半導体素子3とワイヤーボンド4と封止樹脂5とで形成される電力用半導体モジュール1が用いられる。
本実施の形態の電力用半導体モジュール1では、電力用半導体素子3はリードフレーム2の半導体素子搭載部2aに接合され、また、電力用半導体素子3はリードフレーム2の端子部2bの一端部とワイヤーボンド4で接続されている。
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view of a power semiconductor device according to Embodiment 1 of the present invention.
As shown in FIG. 1, a power semiconductor module 1 formed of a lead frame 2, a power semiconductor element 3, a wire bond 4, and a sealing resin 5 is used for the power semiconductor device 100 of the present embodiment. It is done.
In the power semiconductor module 1 of the present embodiment, the power semiconductor element 3 is joined to the semiconductor element mounting portion 2 a of the lead frame 2, and the power semiconductor element 3 is connected to one end of the terminal portion 2 b of the lead frame 2. They are connected by wire bonds 4.

封止樹脂5は、リードフレーム2と電力用半導体素子3とワイヤーボンド4とを封止している。しかし、リードフレーム2における、半導体素子搭載部2aの半導体素子搭載面に対向する面と端子部2bのワイヤーボンド接続面に対向する面とが封止樹脂5から露出しており、封止樹脂5からのリードフレーム2の露出面を形成している。
また、リードフレーム2の端子部2bにおける、端子部2bのワイヤーボンド4が接続された一端部の反対側の端部である他端部は、封止樹脂4から突出しており、この突出部が外部回路に接続される。図1では、突出部は、折り曲げられ、封止樹脂5の上面に接しているが、折り曲げられず、封止樹脂5の上面に対して垂直に延出していても良い。
The sealing resin 5 seals the lead frame 2, the power semiconductor element 3, and the wire bond 4. However, the surface of the lead frame 2 that faces the semiconductor element mounting surface of the semiconductor element mounting portion 2a and the surface that faces the wire bond connection surface of the terminal portion 2b are exposed from the sealing resin 5, and the sealing resin 5 The exposed surface of the lead frame 2 is formed.
In addition, the other end portion of the terminal portion 2b of the lead frame 2 opposite to the one end portion to which the wire bond 4 of the terminal portion 2b is connected protrudes from the sealing resin 4, and this protruding portion is Connected to external circuit. In FIG. 1, the protruding portion is bent and is in contact with the upper surface of the sealing resin 5. However, the protruding portion may not be bent and may extend perpendicular to the upper surface of the sealing resin 5.

本実施の形態の電力用半導体装置100は、電力用半導体モジュール1と、冷却フィン6と、電力用半導体モジュール1と冷却フィン6とを接合するとともに、電力用半導体モジュール1の回路と冷却フィン6との間を電気絶縁する接合部材7とで形成されている。
そして、接合部材7の一方の面は、電力用半導体モジュール1における、封止樹脂5からのリードフレーム2の露出面とこの露出面がある封止樹脂面とに接着しており、接合部材7の一方の面に対向する他方の面は、冷却フィン6に接着している。
Power semiconductor device 100 according to the present embodiment joins power semiconductor module 1, cooling fin 6, power semiconductor module 1 and cooling fin 6, and circuit of power semiconductor module 1 and cooling fin 6. And a joining member 7 that electrically insulates between the two.
One surface of the bonding member 7 is adhered to the exposed surface of the lead frame 2 from the sealing resin 5 and the sealing resin surface having the exposed surface in the power semiconductor module 1. The other surface opposite to the one surface is bonded to the cooling fin 6.

本実施の形態において、リードフレーム2には、例えば、銅、銅合金、アルミニウム、アルミニウム合金等のうちのいずれか1種類の金属が用いられるが、電力用半導体素子3をはんだで実装する場合は、銅または銅合金が好ましい。
また、冷却フィン6には、例えば、銅、銅合金、アルミニウム、アルミニウム合金等のうちのいずれか1種類の金属が用いられるが、軽量化の面ではアルミニウムまたはアルミニウム合金が好ましく、冷却効率を高めるためには銅または銅合金が好ましい。
また、ワイヤーボンド4には、例えば、アルミニウム線が用いられる。
In the present embodiment, for example, any one of copper, copper alloy, aluminum, aluminum alloy and the like is used for the lead frame 2, but when the power semiconductor element 3 is mounted with solder, Copper or copper alloy is preferred.
In addition, for the cooling fin 6, for example, any one metal of copper, copper alloy, aluminum, aluminum alloy and the like is used, but aluminum or aluminum alloy is preferable in terms of weight reduction, and the cooling efficiency is improved. For this purpose, copper or a copper alloy is preferred.
Moreover, for the wire bond 4, for example, an aluminum wire is used.

図2は、本発明の実施の形態1に係わる電力用半導体装置に用いられる接合部材の断面模式図である。
図2に示すように、本実施の形態の接合部材7は、主に電力用半導体モジュール1と冷却フィン6との接合に寄与するマトリックス樹脂8に、主に電力用半導体モジュール1の熱を冷却フィン6へ伝導するのに寄与する表面に電気絶縁性のアルマイト層を有するアルミニウム繊維のワイヤーの束(アルマイト層形成ワイヤー束と記す)10とで形成されている。そして、マトリックス樹脂8とアルマイト層形成ワイヤー束10とで形成されている接合部材7は、電気絶縁性を有している。
本実施の形態では、接合部材7のマトリックス樹脂8には、例えば、熱硬化性の、エポキシ樹脂、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、シリコーン樹脂等のうちのいずれか1種類の樹脂が用いられるが、接着性と耐熱性の面からエポキシ樹脂が好ましい。
FIG. 2 is a schematic cross-sectional view of a joining member used in the power semiconductor device according to the first embodiment of the present invention.
As shown in FIG. 2, the joining member 7 of the present embodiment mainly cools the heat of the power semiconductor module 1 to the matrix resin 8 that contributes to the joining of the power semiconductor module 1 and the cooling fin 6. A bundle of aluminum fiber wires (referred to as an alumite layer forming wire bundle) 10 having an electrically insulating anodized layer on the surface contributing to conduction to the fin 6 is formed. And the joining member 7 formed with the matrix resin 8 and the alumite layer formation wire bundle 10 has electrical insulation.
In the present embodiment, for the matrix resin 8 of the joining member 7, for example, any one of a thermosetting epoxy resin, a polyester resin, an acrylic resin, a urethane resin, a silicone resin, and the like is used. However, an epoxy resin is preferable in terms of adhesiveness and heat resistance.

本実施の形態では、接合部材7中における、アルマイト層形成ワイヤー束10の体積分率は、40%〜95%の範囲が好ましい。アルマイト層形成ワイヤー束10の体積分率が40%未満では、接合部材7の熱伝導率が小さくなり、電力用半導体素子3で発生した熱を放熱フィン6に効率よく伝達できない。アルマイト層形成ワイヤー束10の体積分率が95%より大きいと、後述するアルマイト層形成ワイヤー束10の空隙へのマトリックス樹脂8の充填が不十分になり、接合部材7の接着性が低下するとともに、耐電圧も低下する。   In the present embodiment, the volume fraction of the alumite layer forming wire bundle 10 in the bonding member 7 is preferably in the range of 40% to 95%. When the volume fraction of the alumite layer forming wire bundle 10 is less than 40%, the thermal conductivity of the bonding member 7 becomes small, and the heat generated in the power semiconductor element 3 cannot be efficiently transferred to the radiation fins 6. When the volume fraction of the alumite layer forming wire bundle 10 is greater than 95%, the matrix resin 8 is insufficiently filled in the gaps of the alumite layer forming wire bundle 10 described later, and the adhesiveness of the joining member 7 is reduced. The withstand voltage also decreases.

次に、本実施の形態の電力用半導体装置の製造方法について説明する。
図3は、本発明の実施の形態1に係わる電力用半導体装置の製造に用いられる接合部材前駆体の製造工程を示す図である。
第1の接合部材前駆体製造工程では、図3(a)に示すように、厚みが約100μmのアルミニウムのワイヤーが稠密に入り組んで構成されたアルミニウム繊維のワイヤー束11を準備する。
第2の接合部材前駆体製造工程は、図3(b)に示すように、アルミニウム繊維のワイヤー束11を硫酸30中に約1時間浸漬し、アルミニウム繊維のワイヤー束11のアルミニウム表面を酸化する酸化処理工程である。
第3の接合部材前駆体製造工程は、図3(c)に示すように、酸化処理工程で得られた、表面が酸化されたアルミニウム繊維のワイヤー束(酸化処理アルミニウム繊維のワイヤー束と記す)12を純水31で洗浄して、酸化処理アルミニウム繊維のワイヤー束12の酸化層を封孔する封孔処理工程である。
Next, a method for manufacturing the power semiconductor device of the present embodiment will be described.
FIG. 3 is a diagram showing a manufacturing process of a joining member precursor used for manufacturing the power semiconductor device according to the first embodiment of the present invention.
In the first joining member precursor manufacturing process, as shown in FIG. 3A, an aluminum fiber wire bundle 11 is prepared in which aluminum wires having a thickness of about 100 μm are closely packed together.
In the second bonding member precursor manufacturing step, as shown in FIG. 3B, the aluminum fiber wire bundle 11 is immersed in sulfuric acid 30 for about 1 hour to oxidize the aluminum surface of the aluminum fiber wire bundle 11. It is an oxidation treatment process.
As shown in FIG. 3 (c), the third bonding member precursor manufacturing step is a wire bundle of aluminum fibers obtained in the oxidation treatment step whose surface is oxidized (referred to as a wire bundle of oxidation-treated aluminum fibers). 12 is a sealing treatment step in which 12 is washed with pure water 31 to seal the oxide layer of the wire bundle 12 of oxidized aluminum fibers.

第4の接合部材前駆体製造工程は、図3(d)に示すように、封孔処理で得られたアルミニウム繊維のワイヤー束(封孔処理アルミニウム繊維のワイヤー束と記す)13を、乾燥装置15にて乾燥する乾燥工程である。
第5の接合部材前駆体製造工程は、図3(e)に示すように、乾燥工程で得られた、表面に厚みが約20〜40μmのアルマイト層を有するワイヤーが入り組んで構成されたアルマイト層形成ワイヤー束10を、上板21と下板22とが所定の間隔で設置された型20の隙間に配置するセット工程である。
第6の接合部材前駆体製造工程は、図3(f)に示すように、セット工程で、型20の隙間にセットされたアルマイト層形成ワイヤー束10に、液状熱硬化性樹脂9を真空下で注入して、アルマイト層形成ワイヤー束10の空隙に液状熱硬化性樹脂9を含浸する含浸工程である。
As shown in FIG. 3 (d), the fourth bonding member precursor manufacturing step uses a drying device for forming a wire bundle of aluminum fibers (referred to as a wire bundle of sealed aluminum fibers) 13 obtained by the sealing treatment. 15 is a drying process.
As shown in FIG. 3 (e), the fifth joining member precursor manufacturing step is an alumite layer formed by intricately having a wire having an alumite layer having a thickness of about 20 to 40 μm on the surface, obtained in the drying step. This is a setting process in which the forming wire bundle 10 is arranged in the gap of the mold 20 in which the upper plate 21 and the lower plate 22 are installed at a predetermined interval.
In the sixth joining member precursor manufacturing process, as shown in FIG. 3 (f), in the setting process, the liquid thermosetting resin 9 is placed under vacuum on the alumite layer forming wire bundle 10 set in the gap of the mold 20. This is an impregnation process in which the liquid thermosetting resin 9 is impregnated into the voids of the alumite layer forming wire bundle 10.

第7の接合部材前駆体製造工程は、図3(g)に示すように、含浸工程で、液状熱硬化性樹脂9が空隙に含浸されたアルマイト層形成ワイヤー束(液状熱硬化性樹脂含浸ワイヤー束と記す)7aを、型20の上板21と下板22とで予備加熱して、液状熱硬化性樹脂9をBステージ化するBステージ化工程である。
このような一連の接合部材前駆体製造工程により、図3(h)に示されるシート状の接合部材前駆体7bを得る。
本実施の形態の電力用半導体装置に用いられる接合部材前駆体7bは、液状熱硬化性樹脂9をBステージ化して形成したプリプレグであるので、液状熱硬化性樹脂9には、プリプレグ化が容易なエポキシ樹脂を用いるのが好ましい。
As shown in FIG. 3 (g), the seventh joining member precursor manufacturing process is an impregnation process in which an alumite layer forming wire bundle (liquid thermosetting resin impregnated wire) in which the liquid thermosetting resin 9 is impregnated in the voids. This is a B-stage forming step in which the liquid thermosetting resin 9 is B-staged by preheating the a) 7a with the upper plate 21 and the lower plate 22 of the mold 20.
Through such a series of manufacturing steps of the joining member precursor, the sheet-like joining member precursor 7b shown in FIG. 3 (h) is obtained.
Since the joining member precursor 7b used in the power semiconductor device of the present embodiment is a prepreg formed by converting the liquid thermosetting resin 9 into a B-stage, the liquid thermosetting resin 9 can be easily formed into a prepreg. It is preferable to use an epoxy resin.

図4は、本発明の実施の形態1に係わる電力用半導体装置の製造における電力用半導体モジュールと冷却フィンとの接合工程を説明する図である。
第1の接合工程は、図4(a)に示すように、所定の大きさに打ち抜かれたシート状の接合部材前駆体7bを、一方の面が電力用半導体モジュール1におけるリードフレーム2が露出した面と対向し、他方の面が冷却フィン6の接合面と対向するように配設する接合部材前駆体配設工程である。
FIG. 4 is a diagram illustrating a joining process between the power semiconductor module and the cooling fin in the manufacture of the power semiconductor device according to the first embodiment of the present invention.
In the first bonding step, as shown in FIG. 4A, the sheet-shaped bonding member precursor 7b punched to a predetermined size is exposed, and the lead frame 2 in the power semiconductor module 1 is exposed on one side. This is a joining member precursor disposing step in which the facing surface is disposed and the other surface is disposed so as to face the joining surface of the cooling fin 6.

第2の接合工程は、図4(b)に示すように、電力用半導体モジュール1のリードフレーム2が露出した面と冷却フィン6の接合面とで挟まれたシート状の接合部材前駆体7bを、加熱装置23を用い真空下で、矢印方向に加圧しながら加熱して、シート状の接合部材前駆体7bのBステージ状熱硬化性樹脂を硬化させる接合部材前駆体硬化工程である。
このBステージ状熱硬化性樹脂の硬化物がマトリックス樹脂8であり、接合部材前駆体7bの硬化物が接合部材7となる。
このような一連の接合工程により、図4(c)に示す、電力用半導体モジュール1に冷却フィン6を接合部材7で接合して一体化させた電力用半導体装置100が得られる。
In the second bonding step, as shown in FIG. 4B, a sheet-like bonding member precursor 7 b sandwiched between the surface of the power semiconductor module 1 where the lead frame 2 is exposed and the bonding surface of the cooling fin 6. Is a joining member precursor curing step in which the B-stage thermosetting resin of the sheet-like joining member precursor 7b is cured by heating while pressing in the direction of the arrow in a vacuum using the heating device 23.
The cured product of the B-stage thermosetting resin is the matrix resin 8, and the cured product of the bonding member precursor 7 b is the bonding member 7.
Through such a series of joining steps, a power semiconductor device 100 shown in FIG. 4C in which the cooling fin 6 is joined to the power semiconductor module 1 by the joining member 7 and integrated is obtained.

また、本実施の形態において、接合部材前駆体7bに用いられる液状熱硬化性樹脂9に、無機フィラーを充填しても良い。無機フィラーを充填した液状熱硬化性樹脂を用いると、接合部材前駆体7bを硬化して得られた接合部材7が、アルマイト層形成ワイヤー束10に加え無機フィラーも含有したものとなり、接合部材7の熱膨張率を低下させることができる。無機フィラーとしては、アルミナ(Al)、酸化マグネシューム(MgO)、窒化硼素(BN)、炭化珪素(SiC)、窒化珪素(Si)、窒化アルミニウム(AlN)等が挙げられ、これらのうちの少なくとも1種類の無機フィラーが用いられる。 In the present embodiment, the liquid thermosetting resin 9 used for the bonding member precursor 7b may be filled with an inorganic filler. When a liquid thermosetting resin filled with an inorganic filler is used, the bonding member 7 obtained by curing the bonding member precursor 7b contains an inorganic filler in addition to the alumite layer forming wire bundle 10, and the bonding member 7 The thermal expansion coefficient can be reduced. Examples of the inorganic filler include alumina (Al 2 O 3 ), magnesium oxide (MgO), boron nitride (BN), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), and the like. At least one of these inorganic fillers is used.

例えば、銅のリードフレーム2にアルミニウム製の冷却フィン6を接合する場合は、接合部材7の熱膨張率を、銅の熱膨張率とアルミニウムの熱膨張率との中間の値にするのが好ましい。具体的には、アルマイト層形成ワイヤー束10の体積分率が50%の接合部材7には、体積分率で約60%のアルミナフィラーを含有する熱硬化性樹脂が好ましい。無機フィラーにはアルミナ以外のものも用いることができ、窒化アルミニウムのフィラーを用いると接合部材7の熱伝導率を向上できる。   For example, when joining the aluminum cooling fin 6 to the copper lead frame 2, it is preferable that the thermal expansion coefficient of the bonding member 7 is an intermediate value between the thermal expansion coefficient of copper and the thermal expansion coefficient of aluminum. . Specifically, a thermosetting resin containing an alumina filler having a volume fraction of about 60% is preferable for the bonding member 7 having a volume fraction of the alumite layer forming wire bundle 10 of 50%. As the inorganic filler, materials other than alumina can be used. When an aluminum nitride filler is used, the thermal conductivity of the bonding member 7 can be improved.

本実施の形態の電力用半導体装置100は、接合部材7に、アルマイト層形成ワイヤー束、すなわち、表面にアルマイト層を有するアルミニウム繊維のワイヤーの束10が用いられている。そのため、接合部材7では、アルマイト層形成ワイヤー束10を形成するワイヤーの一端がリードフレーム2の接合部材7との接着面と接し、アルマイト層形成ワイヤー束10を形成するワイヤーの他端が冷却フィン6の接合部材7との接着面と接している。すなわち、接合部材7中に、リードフレーム2から冷却フィン6に至る、アルミニウム繊維ワイヤーの熱伝導路が形成されており、接合部材7の熱伝導性が極めて高い。
そして、アルミニウム繊維の表面には、電気絶縁性のアルマイト層が形成されており、接合部材7は電気絶縁性を保持している。しかも、アルマイト層は、熱伝導率が約70W/mKと大きく、接合部材7の高熱伝導性が維持される。
また、本実施の形態の電力用半導体装置100は、電力用半導体素子を搭載したリードフレーム2と冷却フィン6とが高熱伝導性の接合部材7のみで接合されているので、この面からも、電力用半導体素子から冷却フィン6への熱伝導性を向上できる。それと、電力用半導体装置100の高さを低くでき、電力用半導体装置100の小型化にも有効である。
In the power semiconductor device 100 of the present embodiment, an alumite layer forming wire bundle, that is, a bundle 10 of aluminum fiber wires having an alumite layer on the surface is used for the joining member 7. Therefore, in the joining member 7, one end of the wire forming the alumite layer forming wire bundle 10 is in contact with the bonding surface with the joining member 7 of the lead frame 2, and the other end of the wire forming the alumite layer forming wire bundle 10 is the cooling fin. 6 is in contact with the bonding surface with the joining member 7. That is, the heat conduction path of the aluminum fiber wire from the lead frame 2 to the cooling fin 6 is formed in the joining member 7, and the heat conductivity of the joining member 7 is extremely high.
An electrically insulating alumite layer is formed on the surface of the aluminum fiber, and the joining member 7 retains electrical insulation. Moreover, the alumite layer has a large thermal conductivity of about 70 W / mK, and the high thermal conductivity of the joining member 7 is maintained.
In addition, in the power semiconductor device 100 of the present embodiment, the lead frame 2 on which the power semiconductor element is mounted and the cooling fin 6 are joined only by the high thermal conductivity joining member 7. The thermal conductivity from the power semiconductor element to the cooling fin 6 can be improved. In addition, the height of the power semiconductor device 100 can be reduced, which is effective for reducing the size of the power semiconductor device 100.

また、アルミニウム繊維の表面に形成されたアルマイト層に、アルミニウムとの熱膨張差によって、クラックが発生しても、このクラックにマトリックス樹脂8(本実施の形態では、エポキシ樹脂)が充填され、接合部材7の電気絶縁性と耐電圧性とは低下しない。
すなわち、本実施の形態の電力用半導体装置100は、高熱伝導性と電気絶縁性を有する接合部材7で、電力用半導体モジュール1と冷却フィン6とが一体化された、放熱性に優れ、小型・大容量化が可能な電力用半導体装置である。
また、本実施の形態の電力用半導体装置の製造方法では、プリプレグ状の接合部材前駆体7bを用いるので、電力用半導体モジュール1と冷却フィン6との間への配設が容易である。電力用半導体モジュール1と冷却フィン6との接合に、Bステージ状の熱硬化性樹脂と、内部にアルミニウムが存在し屈曲性を有するアルマイト層形成ワイヤー束10とで形成されたプリプレグ状の接合部材前駆体7bを用いるので、接合時の圧力を変化させることにより、接合部材7の厚みを制御することができる。
Further, even if a crack occurs in the alumite layer formed on the surface of the aluminum fiber due to a difference in thermal expansion from aluminum, the crack is filled with matrix resin 8 (in this embodiment, epoxy resin) and bonded. The electrical insulation and voltage resistance of the member 7 do not deteriorate.
That is, the power semiconductor device 100 according to the present embodiment is a bonding member 7 having high thermal conductivity and electrical insulation, and the power semiconductor module 1 and the cooling fin 6 are integrated. -Power semiconductor device capable of increasing capacity.
Further, in the method for manufacturing the power semiconductor device according to the present embodiment, since the prepreg-shaped joining member precursor 7b is used, the power semiconductor device 1 and the cooling fin 6 can be easily disposed. A prepreg-like bonding member formed by joining a B-stage-shaped thermosetting resin and an alumite layer forming wire bundle 10 having aluminum inside and having flexibility in bonding between the power semiconductor module 1 and the cooling fin 6. Since the precursor 7b is used, the thickness of the joining member 7 can be controlled by changing the pressure at the time of joining.

実施の形態2.
本発明の実施の形態2に係わる電力用半導体装置200は、接合部材の形成方法と接合部材による電力用半導体モジュール1と冷却フィン6との接合方法が異なる以外、実施の形態1の電力用半導体装置100と同様である。
次に、本実施の形態の電力用半導体装置の製造方法について説明する。
まず、アルマイト層形成ワイヤー束10の製造工程について説明する。
アルマイト層形成ワイヤー束10の製造は、実施の形態1に示した接合部材前駆体の製造工程における、第1〜第4の工程により行われる。
Embodiment 2. FIG.
The power semiconductor device 200 according to the second embodiment of the present invention is different from the power semiconductor device according to the first embodiment except that the bonding member forming method and the bonding method between the power semiconductor module 1 and the cooling fin 6 by the bonding member are different. This is the same as the device 100.
Next, a method for manufacturing the power semiconductor device of the present embodiment will be described.
First, the manufacturing process of the alumite layer forming wire bundle 10 will be described.
Manufacture of the alumite layer forming wire bundle 10 is performed by the 1st-4th process in the manufacturing process of the joining member precursor shown in Embodiment 1. FIG.

図5は、本発明の実施の形態2に係わる電力用半導体装置の製造における電力用半導体モジュールと冷却フィンとの接合工程を説明する図である。
第1の接合工程は、図5(a)に示すように、所定の大きさに切断されたシート状のアルマイト層形成ワイヤー束10を、一方の面が電力用半導体モジュール1におけるリードフレーム2が露出した面と対向し、他方の面が冷却フィン6の接合面と対向するように配設するアルマイト層形成ワイヤー束配設工程である。
第2の接合工程は、図5(b)に示すように、アルマイト層形成ワイヤー束配設工程で電力用半導体モジュール1と冷却フィン6との間に配設したアルマイト層形成ワイヤー束10を所定の圧力で加圧保持するとともに、真空下で液状熱硬化性樹脂9を注入し、アルマイト層形成ワイヤー束10の空隙に液状熱硬化性樹脂9を含浸する含浸処理工程である。
FIG. 5 is a diagram for explaining a joining process between the power semiconductor module and the cooling fin in the manufacture of the power semiconductor device according to the second embodiment of the present invention.
As shown in FIG. 5 (a), the first joining step is performed by using a sheet-like alumite layer forming wire bundle 10 cut into a predetermined size, and having one surface of the lead frame 2 in the power semiconductor module 1. This is an alumite layer forming wire bundle arranging step in which the exposed surface is opposed and the other surface is opposed to the joint surface of the cooling fin 6.
In the second bonding step, as shown in FIG. 5B, the alumite layer forming wire bundle 10 disposed between the power semiconductor module 1 and the cooling fin 6 in the alumite layer forming wire bundle disposing step is predetermined. This is an impregnation treatment step in which the liquid thermosetting resin 9 is injected under a vacuum and the liquid thermosetting resin 9 is impregnated into the gaps of the alumite layer forming wire bundle 10 while being pressurized and held at a pressure of 5 mm.

第3の接合工程は、図5(c)に示すように、含浸処理工程で液状熱硬化性樹脂9が含浸されたアルマイト層形成ワイヤー束、すなわち、液状熱硬化性樹脂含浸ワイヤー束7aを、加熱装置24を用い真空下で、矢印方向に加圧しながら加熱して、液状熱硬化性樹脂9を硬化させる含浸樹脂硬化工程である。
この液状熱硬化性樹脂9の硬化物がマトリックス樹脂8であり、液状熱硬化性樹脂含浸ワイヤー束7aの硬化物が接合部材7となる。
このような一連の工程により、図5(d)に示す電力用半導体モジュール1に冷却フィン6を接合部材7で接合して一体化させた電力用半導体装置200が得られる。
本実施の形態の電力用半導体装置200に用いられた接合部材7中のアルマイト層形成ワイヤー束10の体積分率も、実施の形態1の電力用半導体装置100に用いられた接合部材6のそれと同様である。
In the third joining step, as shown in FIG. 5C, the alumite layer forming wire bundle impregnated with the liquid thermosetting resin 9 in the impregnation treatment step, that is, the liquid thermosetting resin impregnated wire bundle 7a, This is an impregnation resin curing step in which the liquid thermosetting resin 9 is cured by heating while applying pressure in the direction of the arrow under vacuum using the heating device 24.
The cured product of the liquid thermosetting resin 9 is the matrix resin 8, and the cured product of the liquid thermosetting resin-impregnated wire bundle 7 a is the bonding member 7.
Through such a series of steps, the power semiconductor device 200 in which the cooling fin 6 is joined to the power semiconductor module 1 shown in FIG.
The volume fraction of the alumite layer forming wire bundle 10 in the bonding member 7 used in the power semiconductor device 200 of the present embodiment is also the same as that of the bonding member 6 used in the power semiconductor device 100 of the first embodiment. It is the same.

本実施の形態で用いられる液状熱硬化性樹脂9にも、エポキシ樹脂、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、シリコーン樹脂等のうちのいずれか1種類の樹脂が用いられる。
また、本実施の形態で用いられる液状熱硬化性樹脂9にも、無機フィラーを充填しても良い。無機フィラーを充填した液状熱硬化性樹脂を用いると、接合部材7がアルマイト層形成ワイヤー束10に加え無機フィラーも含有したものとなり、接合部材7の熱膨張率を低下させることができる。無機フィラーとしては、アルミナ(Al)、酸化マグネシューム(MgO)、窒化硼素(BN)、炭化珪素(SiC)、窒化珪素(Si)、窒化アルミニウム(AlN)等が挙げられ、これらのうちの少なくとも1種類の無機フィラーが用いられる。
As the liquid thermosetting resin 9 used in the present embodiment, any one of epoxy resin, polyester resin, acrylic resin, urethane resin, silicone resin, and the like is used.
In addition, the liquid thermosetting resin 9 used in the present embodiment may be filled with an inorganic filler. When the liquid thermosetting resin filled with the inorganic filler is used, the joining member 7 contains the inorganic filler in addition to the alumite layer forming wire bundle 10, and the thermal expansion coefficient of the joining member 7 can be reduced. Examples of the inorganic filler include alumina (Al 2 O 3 ), magnesium oxide (MgO), boron nitride (BN), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), and the like. At least one of these inorganic fillers is used.

例えば、銅のリードフレーム2にアルミニウム製の冷却フィン6を接合する場合は、接合部材7の熱膨張率を、銅の熱膨張率とアルミニウムの熱膨張率との中間の値にするのが好ましい。具体的には、アルマイト層形成ワイヤー束10の体積分率が50%の接合部材7には、体積分率で約60%のアルミナフィラーを含有する熱硬化性樹脂が好ましい。無機フィラーにはアルミナ以外のものも用いることができ、窒化アルミニウムのフィラーを用いると接合部材7の熱伝導率を向上できる。   For example, when joining the aluminum cooling fin 6 to the copper lead frame 2, it is preferable that the thermal expansion coefficient of the bonding member 7 is an intermediate value between the thermal expansion coefficient of copper and the thermal expansion coefficient of aluminum. . Specifically, a thermosetting resin containing an alumina filler having a volume fraction of about 60% is preferable for the bonding member 7 having a volume fraction of the alumite layer forming wire bundle 10 of 50%. As the inorganic filler, materials other than alumina can be used. When an aluminum nitride filler is used, the thermal conductivity of the bonding member 7 can be improved.

本実施の形態の電力用半導体装置200も、電力用半導体モジュール1と冷却フィン6とが、マトリックス樹脂8とアルマイト層形成ワイヤー束10とで形成された接合部材7で接合されており、実施の形態1の電力用半導体装置100と同様な効果がある。
本実施の形態の電力用半導体装置の製造方法では、電力用半導体モジュール1と冷却フィン6との間に保持されたアルマイト層形成ワイヤー束10に、液状熱硬化性樹脂9を、直接に注入硬化して形成した接合部材7で、電力用半導体モジュール1と冷却フィン6とを接合しているので、製造工程が少なく、生産性が優れている。
また、本実施の形態の電力用半導体装置の製造方法では、電力用半導体モジュール1と冷却フィン6とを、屈曲性を有するアルマイト層形成ワイヤー束10の空隙に充填した液状熱硬化性樹脂で接合するので、接合時の圧力を変化させることにより、接合部材7の厚みを制御することができる。
Also in the power semiconductor device 200 of the present embodiment, the power semiconductor module 1 and the cooling fin 6 are joined by the joining member 7 formed by the matrix resin 8 and the alumite layer forming wire bundle 10. There is an effect similar to that of the power semiconductor device 100 of the first embodiment.
In the manufacturing method of the power semiconductor device of the present embodiment, the liquid thermosetting resin 9 is directly injected and cured to the alumite layer forming wire bundle 10 held between the power semiconductor module 1 and the cooling fin 6. Since the power semiconductor module 1 and the cooling fin 6 are joined by the joining member 7 formed as described above, the number of manufacturing steps is small and the productivity is excellent.
Further, in the method for manufacturing the power semiconductor device of the present embodiment, the power semiconductor module 1 and the cooling fin 6 are joined with a liquid thermosetting resin filled in the voids of the alumite layer forming wire bundle 10 having flexibility. Therefore, the thickness of the joining member 7 can be controlled by changing the pressure at the time of joining.

本発明に係わる電力用半導体装置とその製造方法は、電力用半導体素子の発熱を冷却フィンに効率よく伝導できる電力用半導体装置を得ることができるので、小型・大容量化が要求される電気自動車や産業用機器等のモータの駆動装置に用いることができる。   The power semiconductor device and the manufacturing method thereof according to the present invention can provide a power semiconductor device capable of efficiently conducting heat generated by the power semiconductor element to the cooling fin, and thus an electric vehicle that is required to have a small size and a large capacity. It can be used for motor drive devices such as industrial equipment.

1 電力用半導体モジュール、2 リードフレーム、2a 半導体素子搭載部、
2b 端子部、3 電力用半導体素子、4 ワイヤーボンド、5 封止樹脂、
6 冷却フィン、7 接合部材、7a 液状熱硬化性樹脂含浸ワイヤー束、
7b 接合部材前駆体、8 マトリックス樹脂、9 液状熱硬化性樹脂、
10 アルマイト層形成ワイヤー束、11 アルミニウム繊維のワイヤー束、
12 酸化処理アルミニウム繊維のワイヤー束、
13 封孔処理アルミニウム繊維のワイヤー束、15 乾燥装置、20 型、
21 上板、22 下板、23,24 加熱装置、30 硫酸、31 純水、
100,200 電力用半導体装置。
1 power semiconductor module, 2 lead frame, 2a semiconductor element mounting portion,
2b terminal part, 3 power semiconductor element, 4 wire bond, 5 sealing resin,
6 cooling fins, 7 joining members, 7a liquid thermosetting resin-impregnated wire bundle,
7b bonding member precursor, 8 matrix resin, 9 liquid thermosetting resin,
10 alumite layer forming wire bundle, 11 aluminum fiber wire bundle,
12 Wire bundle of oxidized aluminum fiber,
13 Wire bundle of sealed aluminum fiber, 15 Drying device, 20 type,
21 Upper plate, 22 Lower plate, 23, 24 Heating device, 30 Sulfuric acid, 31 Pure water,
100, 200 Power semiconductor device.

Claims (8)

電力用半導体モジュールに接合部材を介して冷却フィンが接合された電力用半導体装置であって、上記接合部材が、マトリックス樹脂と、上記マトリックス樹脂に充填された表面に電気絶縁性のアルマイト層を有するアルミニウム繊維のワイヤー束とから形成された電力用半導体装置。   A power semiconductor device in which cooling fins are joined to a power semiconductor module via a joining member, wherein the joining member has a matrix resin and an electrically insulating alumite layer on a surface filled with the matrix resin. A power semiconductor device formed from a wire bundle of aluminum fibers. 電力用半導体モジュールが、半導体素子搭載部と端子部を備えたリードフレームと、上記リードフレームの半導体素子搭載部に搭載された電力用半導体素子と、上記電力用半導体素子と上記リードフレームの端子部とを接続するワイヤーボンドと、上記リードフレームの上記電力用半導体素子が搭載された面に対向する面と上記リードフレームの上記ワイヤーボンドが接合された面に対向する面とを露出させて、上記リードフレームと上記電力用半導体素子と上記ワイヤーボンドとを封止する封止樹脂とで形成され、上記電力用半導体モジュールにおける上記封止樹脂からの上記リードフレームの露出面が接合部材と接着していることを特徴とする請求項1に記載の電力用半導体装置。   A power semiconductor module includes a lead frame having a semiconductor element mounting portion and a terminal portion, a power semiconductor element mounted on the semiconductor element mounting portion of the lead frame, and a terminal portion of the power semiconductor element and the lead frame. And exposing a surface of the lead frame that faces the surface on which the power semiconductor element is mounted and a surface of the lead frame that faces the surface to which the wire bond is bonded. The lead frame is formed of a sealing resin that seals the power semiconductor element and the wire bond, and the exposed surface of the lead frame from the sealing resin in the power semiconductor module is bonded to a bonding member. The power semiconductor device according to claim 1, wherein the power semiconductor device is a power semiconductor device. 接合部材のマトリックス樹脂が、熱硬化性樹脂であることを特徴とする請求項1または請求項2に記載の電力用半導体装置。   3. The power semiconductor device according to claim 1, wherein the matrix resin of the joining member is a thermosetting resin. 接合部材中に、アルミナ、酸化マグネシューム、窒化硼素、炭化珪素、窒化珪素、窒化アルミニウムのうちの少なくとも1種類の無機フィラーを含有していることを特徴とする請求項1または請求項2に記載の電力用半導体装置。   The bonding member contains at least one inorganic filler selected from the group consisting of alumina, magnesium oxide, boron nitride, silicon carbide, silicon nitride, and aluminum nitride. Power semiconductor device. リードフレームに、銅、銅合金、アルミニウム、アルミニウム合金のうちのいずれか1種類の金属を用いたことを特徴とする請求項1または請求項2に記載の電力用半導体装置。   3. The power semiconductor device according to claim 1, wherein any one of copper, copper alloy, aluminum, and aluminum alloy is used for the lead frame. 4. 冷却フィンに、銅、銅合金、アルミニウム、アルミニウム合金のうちのいずれか1種類の金属を用いたことを特徴とする請求項1または請求項2に記載の電力用半導体装置。   3. The power semiconductor device according to claim 1, wherein any one of copper, copper alloy, aluminum, and aluminum alloy is used for the cooling fin. アルミニウム繊維のワイヤー束を硫酸中に浸漬し、上記アルミニウム繊維のワイヤー束のアルミニウム表面を酸化する酸化処理工程と、
上記酸化処理工程で得られた酸化処理アルミニウム繊維のワイヤー束を純水で洗浄し、上記酸化処理アルミニウム繊維のワイヤー束の酸化層を封孔処理する封孔処理工程と、
上記封孔処理工程で得られた封孔処理アルミニウム繊維のワイヤー束を乾燥する乾燥工程と、
上記乾燥工程で得られたアルマイト層形成ワイヤー束を、上板と下板とが所定の間隔で設置された型の隙間に配置するセット工程と、
上記型にセットされた上記アルマイト層形成ワイヤー束に、液状熱硬化性樹脂を真空下で注入して、上記アルマイト層形成ワイヤー束の空隙に上記液状熱硬化性樹脂を含浸させる含浸処理工程と、
上記含浸処理工程で得られた液状熱硬化性樹脂含浸ワイヤー束を予備加熱して、上記液状熱硬化性樹脂をBステージ化するBステージ化工程と、
上記Bステージ化工程で得られたシート状の接合部材前駆体を、所定の大きさに打ち抜き、電力用半導体モジュールのリードフレームが露出した面と冷却フィンの接合面との間に配設する接合部材前駆体配設工程と、
上記接合部材前駆体配設工程で上記電力用半導体モジュールのリードフレームが露出した面と上記冷却フィンの接合面とに挟まれた上記シート状の接合部材前駆体を、加熱・加圧して硬化させる接合部材前駆体硬化工程とを備え、
上記接合部材前駆体硬化工程により上記接合部材前駆体を硬化させて形成した接合部材で、上記電力用半導体モジュールと上記冷却フィンとを接合する電力用半導体装置の製造方法。
An oxidation treatment step of immersing the aluminum fiber wire bundle in sulfuric acid and oxidizing the aluminum surface of the aluminum fiber wire bundle;
The wire bundle of oxidized aluminum fibers obtained in the oxidation treatment step is washed with pure water, and the sealing treatment step of sealing the oxide layer of the wire bundle of oxidized aluminum fibers,
A drying step of drying the wire bundle of the sealed aluminum fiber obtained in the sealing processing step;
An alumite layer forming wire bundle obtained in the drying step, a setting step of placing the upper plate and the lower plate in a gap between the molds installed at a predetermined interval;
Impregnation treatment step of injecting the liquid thermosetting resin into the alumite layer forming wire bundle set in the mold under vacuum and impregnating the liquid thermosetting resin into the voids of the alumite layer forming wire bundle;
A B-staging step for pre-heating the liquid thermosetting resin-impregnated wire bundle obtained in the impregnation treatment step and converting the liquid thermosetting resin into a B-stage;
The sheet-like joining member precursor obtained in the B-stage process is punched to a predetermined size, and is disposed between the surface where the lead frame of the power semiconductor module is exposed and the joining surface of the cooling fin. A member precursor arrangement step;
In the joining member precursor disposing step, the sheet-like joining member precursor sandwiched between the surface where the lead frame of the power semiconductor module is exposed and the joining surface of the cooling fin is heated and pressurized to be cured. A bonding member precursor curing step,
A method for manufacturing a power semiconductor device, wherein the power semiconductor module and the cooling fin are joined by a joining member formed by curing the joining member precursor in the joining member precursor curing step.
請求項7に記載の製造方法で得られたアルマイト層形成ワイヤー束を、所定の大きさに打ち抜き、電力用半導体モジュールのリードフレームが露出した面と冷却フィンの接合面との間に配設するアルマイト層形成ワイヤー束配設工程と、
上記アルマイト層形成ワイヤー束配設工程で上記電力用半導体モジュールのリードフレームが露出した面と上記冷却フィンの接合面とに挟まれた上記アルマイト層形成ワイヤー束に、液状熱硬化性樹脂を真空化下で注入して、上記アルマイト層形成ワイヤー束の空隙に上記液状熱硬化性樹脂を含浸させる含浸処理工程と、
上記含浸処理工程で得られた液状熱硬化性樹脂含浸ワイヤー束を、加熱・加圧して硬化させる含浸樹脂硬化工程とを備え、
上記含浸樹脂硬化工程により、上記液状熱硬化性樹脂含浸ワイヤー束を硬化させて形成した接合部材で、上記電力用半導体モジュールと上記冷却フィンとを接合する電力用半導体装置の製造方法。
The alumite layer forming wire bundle obtained by the manufacturing method according to claim 7 is punched into a predetermined size and disposed between the surface of the power semiconductor module where the lead frame is exposed and the joint surface of the cooling fin. Alumite layer forming wire bundle arranging step;
Liquid thermosetting resin is evacuated into the alumite layer forming wire bundle sandwiched between the surface where the lead frame of the power semiconductor module is exposed and the joint surface of the cooling fin in the alumite layer forming wire bundle arranging step An impregnation treatment step of injecting under the above and impregnating the liquid thermosetting resin into the voids of the alumite layer forming wire bundle,
A liquid thermosetting resin impregnated wire bundle obtained in the impregnation treatment step, and an impregnation resin curing step for curing by heating and pressurizing,
A method for manufacturing a power semiconductor device, wherein the power semiconductor module and the cooling fin are joined by a joining member formed by curing the liquid thermosetting resin impregnated wire bundle in the impregnation resin curing step.
JP2009033995A 2009-02-17 2009-02-17 Power semiconductor device and method of manufacturing the same Pending JP2010192591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009033995A JP2010192591A (en) 2009-02-17 2009-02-17 Power semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009033995A JP2010192591A (en) 2009-02-17 2009-02-17 Power semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010192591A true JP2010192591A (en) 2010-09-02

Family

ID=42818326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009033995A Pending JP2010192591A (en) 2009-02-17 2009-02-17 Power semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010192591A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102810532A (en) * 2011-05-30 2012-12-05 株式会社电装 Semiconductor device and driving apparatus including semiconductor device
EP2695795A1 (en) 2011-04-07 2014-02-12 Mitsubishi Electric Corporation Molded module and electric power steering apparatus
WO2015001648A1 (en) * 2013-07-04 2015-01-08 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
JP2016046499A (en) * 2014-08-27 2016-04-04 三菱電機株式会社 Cooling member
WO2020021642A1 (en) * 2018-07-24 2020-01-30 日立化成株式会社 Circuit-package manufacturing method and circuit package
EP3770956A1 (en) 2019-07-25 2021-01-27 ABB Schweiz AG Power semiconductor module
JP7233621B1 (en) 2020-03-31 2023-03-06 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Power module device with improved thermal performance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2695795A1 (en) 2011-04-07 2014-02-12 Mitsubishi Electric Corporation Molded module and electric power steering apparatus
CN102810532A (en) * 2011-05-30 2012-12-05 株式会社电装 Semiconductor device and driving apparatus including semiconductor device
WO2015001648A1 (en) * 2013-07-04 2015-01-08 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
US9472538B2 (en) 2013-07-04 2016-10-18 Mitsubishi Electric Corporation Semiconductor device manufacturing method and semiconductor device
JP6065978B2 (en) * 2013-07-04 2017-01-25 三菱電機株式会社 Semiconductor device manufacturing method, semiconductor device
JP2016046499A (en) * 2014-08-27 2016-04-04 三菱電機株式会社 Cooling member
WO2020021642A1 (en) * 2018-07-24 2020-01-30 日立化成株式会社 Circuit-package manufacturing method and circuit package
EP3770956A1 (en) 2019-07-25 2021-01-27 ABB Schweiz AG Power semiconductor module
JP7233621B1 (en) 2020-03-31 2023-03-06 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Power module device with improved thermal performance
JP2023510648A (en) * 2020-03-31 2023-03-14 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Power module device with improved thermal performance

Similar Documents

Publication Publication Date Title
JP6356550B2 (en) Semiconductor device and manufacturing method thereof
JP4635564B2 (en) Semiconductor device
JP5472498B2 (en) Power module manufacturing method
WO2015029186A1 (en) Semiconductor module, semiconductor device, and automobile
JP2009536458A (en) Semiconductor module and manufacturing method thereof
JP2010192591A (en) Power semiconductor device and method of manufacturing the same
US20090237890A1 (en) Semiconductor device and method for manufacturing the same
JP4385324B2 (en) Semiconductor module and manufacturing method thereof
JP2016018866A (en) Power module
JP2011216564A (en) Power module and method of manufacturing the same
JP2012119597A (en) Semiconductor device and manufacturing method of the same
US20220102249A1 (en) Dual side cooling power module and manufacturing method of the same
JP2015095540A (en) Semiconductor device and manufacturing method of the same
JP2008258547A (en) Semiconductor device, and manufacturing method thereof
JP6337954B2 (en) Insulating substrate and semiconductor device
JP6945418B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
JPWO2014141346A1 (en) Semiconductor device
JP2012138475A (en) Semiconductor module and method for manufacturing the same
JP2012209470A (en) Semiconductor device, semiconductor device module, and manufacturing method of the semiconductor device
JP7204919B2 (en) Power module and manufacturing method thereof
JP2011238643A (en) Power semiconductor module
JP5840102B2 (en) Power semiconductor device
JP2018133598A (en) Semiconductor device and manufacturing method of the same
JP2012209469A (en) Power semiconductor device
JP6417898B2 (en) Manufacturing method of semiconductor device