JP6360035B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP6360035B2
JP6360035B2 JP2015505089A JP2015505089A JP6360035B2 JP 6360035 B2 JP6360035 B2 JP 6360035B2 JP 2015505089 A JP2015505089 A JP 2015505089A JP 2015505089 A JP2015505089 A JP 2015505089A JP 6360035 B2 JP6360035 B2 JP 6360035B2
Authority
JP
Japan
Prior art keywords
semiconductor device
mold resin
insulating layer
control circuit
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015505089A
Other languages
Japanese (ja)
Other versions
JPWO2014141346A1 (en
Inventor
山本 圭
圭 山本
和弘 多田
和弘 多田
清文 北井
清文 北井
弘行 芳原
弘行 芳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2014141346A1 publication Critical patent/JPWO2014141346A1/en
Application granted granted Critical
Publication of JP6360035B2 publication Critical patent/JP6360035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49531Additional leads the additional leads being a wiring board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49537Plurality of lead frames mounted in one device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/162Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits the devices being mounted on two or more different substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49506Lead-frames or other flat leads characterised by the die pad an insulative substrate being used as a diepad, e.g. ceramic, plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

この発明は、パワー半導体素子が搭載されたリードフレームや電気部品が実装されたプリント配線板、放熱部材としてのヒートシンクなどをトランスファーモールドによって封止したモールド型半導体装置に関するものである。   The present invention relates to a molded semiconductor device in which a lead frame on which a power semiconductor element is mounted, a printed wiring board on which electrical components are mounted, a heat sink as a heat radiating member, and the like are sealed by transfer molding.

従来の半導体装置においては、高信頼性かつ小型の半導体装置を実現するために、あらかじめ絶縁層を形成した絶縁金属基板を適用し、温度変化時の絶縁層への応力集中を緩和するために、パワー半導体素子周辺に多量のモールド樹脂を配置している。従来の半導体装置は、パワー半導体素子を含む回路部を一体的に補強するために、線膨張係数を特定した材質のモールド樹脂を備えている。(例えば特許文献1)。   In a conventional semiconductor device, in order to realize a highly reliable and small semiconductor device, an insulating metal substrate on which an insulating layer is formed in advance is applied, and in order to alleviate stress concentration on the insulating layer at the time of temperature change, A large amount of mold resin is arranged around the power semiconductor element. A conventional semiconductor device includes a mold resin having a material whose linear expansion coefficient is specified in order to integrally reinforce a circuit portion including a power semiconductor element. (For example, patent document 1).

特開平8−298299号公報(第4頁、第1図)JP-A-8-298299 (page 4, Fig. 1)

従来の半導体装置では、絶縁金属基板上に形成された回路部や半導体素子、リードフレームなどを一体的にモールド樹脂で封止している。小型化・低コスト化や生産性の観点から、これらの部材を絶縁性が確保できる範囲内で、できるだけモールド樹脂の使用量が少なくなるように封止される。   In a conventional semiconductor device, a circuit portion, a semiconductor element, a lead frame, and the like formed on an insulating metal substrate are integrally sealed with a mold resin. From the viewpoints of downsizing, cost reduction, and productivity, these members are sealed so that the amount of mold resin used is reduced as much as possible within a range in which insulation can be ensured.

ここで、プリント配線板と電気部品とを有してパワー半導体素子を制御する電気回路を形成した制御回路基板を、リードフレームとパワー半導体素子と一体的にトランスファーモールドによって封止する。これにより、制御回路基板とリードフレームやパワー半導体素子等とが別体である場合と比較して、半導体装置全体を小型化できるだけでなく、制御回路基板上の電気部品周辺も絶縁性の高いモールド樹脂によって封止されることになるため、電気部品の間隔を狭く実装でき、制御回路基板の小型化も実現できる。   Here, the control circuit board having the printed circuit board and the electric parts and forming the electric circuit for controlling the power semiconductor element is sealed together with the lead frame and the power semiconductor element by transfer molding. As a result, compared to the case where the control circuit board and the lead frame, power semiconductor element, etc. are separated, the entire semiconductor device can be reduced in size, and the periphery of the electrical components on the control circuit board can be a highly insulating mold. Since it is sealed with resin, the interval between the electrical components can be mounted narrowly, and the control circuit board can be downsized.

しかし、制御回路基板をリードフレームやパワー半導体素子等と一体的にモールド樹脂によって封止する場合、制御回路基板を内蔵した半導体装置全体の大きさは、従来の半導体装置と比較して非常に大きなものとなり、モールド樹脂の使用量もそれに比例して多くなる。そして、制御回路基板を内蔵した半導体装置は、半導体装置のサイズが大きくなることにより、モールド樹脂成形後や使用環境温度により従来の半導体装置と比較して、反りや熱応力の増大を招く。その結果、リードフレームと放熱用途の金属板との間に設けられた絶縁層の剥離やクラックが発生し、信頼性が低下するという問題があった。   However, when the control circuit board is sealed with a mold resin integrally with a lead frame, a power semiconductor element, etc., the overall size of the semiconductor device incorporating the control circuit board is much larger than that of a conventional semiconductor device. Therefore, the amount of mold resin used is also increased in proportion. A semiconductor device having a built-in control circuit board causes an increase in warpage and thermal stress as compared with a conventional semiconductor device after molding resin molding or due to a use environment temperature due to an increase in the size of the semiconductor device. As a result, there has been a problem that the insulating layer provided between the lead frame and the metal plate for heat dissipation is peeled or cracked, resulting in a decrease in reliability.

さらに、モールド樹脂に内蔵している制御回路基板の一部を半導体装置から突出させる構造をとることで、モールド樹脂成形時の位置決めや外部端子との電気的な接続が容易となることがある。この場合、制御回路基板の一部が突出していることによりモールド樹脂と制御回路基板との界面がモールド樹脂外部へ露出する。これにより、温度サイクル試験などの信頼性試験時に発生する応力に対して、モールド樹脂と制御回路基板との界面が露出していない場合に比べて、このモールド樹脂と制御回路基板との界面は剥離の起点となりやすいという問題点があった。   Further, by adopting a structure in which a part of the control circuit board built in the mold resin protrudes from the semiconductor device, positioning during molding resin molding and electrical connection with external terminals may be facilitated. In this case, since a part of the control circuit board protrudes, the interface between the mold resin and the control circuit board is exposed to the outside of the mold resin. As a result, the interface between the mold resin and the control circuit board is peeled off compared to the case where the interface between the mold resin and the control circuit board is not exposed to the stress generated during the reliability test such as the temperature cycle test. There was a problem that it was easy to become a starting point.

この発明は、上述のような問題点を解決するためになされたもので、リードフレームと金属板との間に設けられた絶縁層の剥離やクラックの発生を抑制することで、リードフレームと制御回路基板とをモールド樹脂によって一体的に封止することを可能とし、信頼性の高い半導体装置を得るものである。   The present invention has been made to solve the above-mentioned problems, and controls the lead frame by suppressing the peeling of the insulating layer provided between the lead frame and the metal plate and the occurrence of cracks. A circuit board and a resin can be integrally sealed with a mold resin, and a highly reliable semiconductor device is obtained.

この発明に係る半導体装置においては、一方の面に半導体素子が搭載された金属部材と、前記金属部材の他方の面側に絶縁層を介して配置されたアルミニウムを用いた金属板と、前記半導体素子と電気的に接続された電気部品が搭載され、前記金属部材と対向して配置されたプリント配線板と、前記金属部材と前記プリント配線板と前記金属板とを一体的に封止する封止樹脂とを備え、前記金属板の前記絶縁層が設けられている面とは反対側の面には凹凸が設けられ、かつ外周部に段差部が設けられ、前記絶縁層は、無機粉末が充填された樹脂であり、前記封止樹脂は、線膨張係数が15〜23×10−6(1/K)であり、前記段差部を覆い一体的に抱え込んで封止するものである。前記封止樹脂の線膨張係数は前記金属板の線膨張係数よりも小さい。前記凹凸の放熱フィンの役割を担う複数の凸部分は、前記金属板の前記外周部に設けられた前記段差部よりも前記金属板の内周側のみに配置されている。前記複数の凸部分は前記封止樹脂の外部のみに配置されている。 In the semiconductor device according to the present invention, a metal member having a semiconductor element mounted on one surface thereof, a metal plate using aluminum disposed on the other surface side of the metal member via an insulating layer, and the semiconductor A printed wiring board on which an electrical component electrically connected to the element is mounted and disposed opposite to the metal member, and a seal that integrally seals the metal member, the printed wiring board, and the metal plate. A surface of the metal plate opposite to the surface on which the insulating layer is provided, and a step is provided on the outer peripheral portion. The insulating layer is made of an inorganic powder. The sealing resin has a linear expansion coefficient of 15 to 23 × 10 −6 (1 / K), covers the stepped portion, and integrally seals it. The linear expansion coefficient of the sealing resin is smaller than the linear expansion coefficient of the metal plate. The plurality of convex portions serving as the uneven radiating fins are arranged only on the inner peripheral side of the metal plate with respect to the stepped portion provided on the outer peripheral portion of the metal plate. The plurality of convex portions are disposed only outside the sealing resin.

この発明は、制御回路基板を一体的に樹脂封止するための樹脂の線膨張係数を15〜23×10−6(1/K)とし、リードフレームと制御回路基板とを一体的に封止したので、大型の半導体装置においても信頼性試験によるリードフレームと金属板との間に設けられた絶縁層の剥離やクラックの発生を抑制し、高い信頼性を得ることができる。In the present invention, the linear expansion coefficient of resin for integrally sealing the control circuit board with resin is set to 15 to 23 × 10 −6 (1 / K), and the lead frame and the control circuit board are integrally sealed. Therefore, even in a large-sized semiconductor device, peeling of an insulating layer provided between a lead frame and a metal plate by a reliability test and generation of cracks can be suppressed, and high reliability can be obtained.

この発明の実施の形態1における半導体装置を示す断面模式図である。It is a cross-sectional schematic diagram which shows the semiconductor device in Embodiment 1 of this invention. この発明の実施の形態2における半導体装置を示す断面模式図である。It is a cross-sectional schematic diagram which shows the semiconductor device in Embodiment 2 of this invention. この発明の実施の形態3における半導体装置を示す断面模式図である。It is a cross-sectional schematic diagram which shows the semiconductor device in Embodiment 3 of this invention. この発明の実施の形態4における半導体装置を示す裏面模式図である。It is a back surface schematic diagram which shows the semiconductor device in Embodiment 4 of this invention. この発明の実施の形態4における半導体装置を示す裏面模式図である。It is a back surface schematic diagram which shows the semiconductor device in Embodiment 4 of this invention.

実施の形態1.
図1は、この発明の実施の形態1における半導体装置の構造を示す断面模式図である。なお、図1は半導体装置の構造を模式的に示した断面図であるため、各部の位置関係や各種配線や部品等は概略的に示されている。
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view showing the structure of the semiconductor device according to the first embodiment of the present invention. Note that FIG. 1 is a cross-sectional view schematically showing the structure of the semiconductor device, so that the positional relationship of each part, various wirings, parts, and the like are schematically shown.

はじめに、この発明の実施の形態1における半導体装置の全体構成を説明する。図1に示すように、半導体装置100は、金属部材であるリードフレーム2、制御回路基板5、金属基板7、封止樹脂であるモールド樹脂10を備えている。   First, the overall configuration of the semiconductor device according to the first embodiment of the present invention will be described. As shown in FIG. 1, the semiconductor device 100 includes a lead frame 2, which is a metal member, a control circuit substrate 5, a metal substrate 7, and a mold resin 10 which is a sealing resin.

リードフレーム2には、所定の電気回路の配線パターンが形成されている(図示せず)。リードフレーム2の一方の面(以下第1主面)には、半導体素子11としてIGBT(Insulated Gate Bipolar Transistor)やダイオード、電流値を検出するための電流検出手段としてのシャント抵抗、温度を検出するための温度検出手段としてのサーミスタ等(図示せず)がはんだ接合により搭載されている。なお、半導体素子11としてはIGBTに限られるものではなく、例えばMOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor)等を採用して実施してもよい。   The lead frame 2 is formed with a wiring pattern of a predetermined electric circuit (not shown). On one surface (hereinafter referred to as a first main surface) of the lead frame 2, an IGBT (Insulated Gate Bipolar Transistor) or a diode as the semiconductor element 11, a shunt resistance as a current detection means for detecting a current value, and temperature are detected. A thermistor or the like (not shown) as temperature detecting means for mounting is mounted by soldering. The semiconductor element 11 is not limited to the IGBT, and may be implemented by using, for example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) or the like.

これら半導体素子11等が配置される配線パターンの上方には、リードフレーム2の第1主面と所定の間隔をもって、プリント配線板3と電気部品4とにより半導体素子11等を制御する電気回路を形成した制御回路基板5が配置されている。そして、制御回路基板5とリードフレーム2との間(図示せず)や、リードフレーム2と半導体素子11との間等、必要な箇所がボンディングワイヤ6により適宜電気的接続されている。なお、本実施の形態1ではボンディングワイヤとしてアルミニウムワイヤを使用しているが、これもアルミニウムワイヤに限られることはない。銅ワイヤ等の抵抗値の低い材料でも良い。銅ワイヤのような抵抗値の低い材料を用いることで、大電流化への対応も可能となる。金ワイヤを用いた場合でも、同様の効果を得ることが可能である。   Above the wiring pattern in which the semiconductor elements 11 and the like are arranged, an electric circuit that controls the semiconductor elements 11 and the like by the printed wiring board 3 and the electric components 4 with a predetermined distance from the first main surface of the lead frame 2. The formed control circuit board 5 is arranged. Necessary portions such as between the control circuit board 5 and the lead frame 2 (not shown) and between the lead frame 2 and the semiconductor element 11 are appropriately electrically connected by bonding wires 6. In the first embodiment, an aluminum wire is used as a bonding wire, but this is not limited to an aluminum wire. A material having a low resistance value such as a copper wire may be used. By using a material having a low resistance value such as a copper wire, it is possible to cope with a large current. Even when a gold wire is used, the same effect can be obtained.

リードフレーム2の第1主面と反対側の面(第2主面とする)には、放熱板として機能する金属基板7が配設されている。金属基板7は、絶縁層8と金属板であるヒートシンク9からなり、リードフレーム2の第2主面、絶縁層8、ヒートシンク9の順に配設される。   On the surface opposite to the first main surface of the lead frame 2 (referred to as a second main surface), a metal substrate 7 that functions as a heat sink is disposed. The metal substrate 7 includes an insulating layer 8 and a heat sink 9 that is a metal plate. The second main surface of the lead frame 2, the insulating layer 8, and the heat sink 9 are arranged in this order.

半導体素子11等が搭載されたリードフレーム2と制御回路基板5と金属基板7とが、モールド樹脂10により一体的にトランスファーモールド封止されている。この際、リードフレーム2の外部リード部とヒートシンク9の絶縁層8が配置されている側とは反対の面は、モールド樹脂10から露出するような状態で封止されている。   The lead frame 2 on which the semiconductor element 11 and the like are mounted, the control circuit board 5, and the metal board 7 are integrally transfer-molded with a mold resin 10. At this time, the surface of the lead frame 2 opposite to the side where the insulating layer 8 of the heat sink 9 is disposed is sealed in a state where it is exposed from the mold resin 10.

制御回路基板5は、配線パターンが形成されたプリント配線板3とプリント配線板3の配線パターン上に搭載された電気部品4とを備えている。プリント配線板3は、例えば厚さ1.6mmの電子機器に一般的に用いられているものを使用することができるが、厚さもこれに限られるものではない。また、プリント配線板の耐熱性グレードもFR−4に限られることはなく、リードフレーム2に搭載する半導体素子11としてシリコンカーバイド(SiC:Silicon Carbide)を用いて素子の高温動作を想定する場合など、耐熱性グレードの高いFR−5相当のプリント配線板3を用いることもできる。   The control circuit board 5 includes a printed wiring board 3 on which a wiring pattern is formed and an electrical component 4 mounted on the wiring pattern of the printed wiring board 3. As the printed wiring board 3, for example, those generally used in an electronic device having a thickness of 1.6 mm can be used, but the thickness is not limited to this. In addition, the heat resistance grade of the printed wiring board is not limited to FR-4, and the case where high temperature operation of the element is assumed using silicon carbide (SiC) as the semiconductor element 11 to be mounted on the lead frame 2 or the like. A printed wiring board 3 corresponding to FR-5 having a high heat resistance grade can also be used.

電気部品4は、図1のようにプリント配線板3の両面に実装されていることが好ましいが、片面に実装でもかまわない。プリント配線板3の両面に電気部品を実装することにより、温度サイクルなどで発生する熱応力に対して表裏の熱膨張率差が抑えられること、剛性がより高くなることにより、発生する反りを抑えることができる。また、プリント配線板3の両面に実装することによりプリント配線板の面積は片面実装の半分程度に抑えられ、半導体装置の小型化につながる。   The electrical component 4 is preferably mounted on both sides of the printed wiring board 3 as shown in FIG. 1, but may be mounted on one side. By mounting electrical components on both sides of the printed wiring board 3, the difference in thermal expansion coefficient between the front and back surfaces against thermal stress generated by a temperature cycle or the like can be suppressed, and the generated warpage can be suppressed by increasing rigidity. be able to. Further, by mounting on both sides of the printed wiring board 3, the area of the printed wiring board can be suppressed to about half that of single-sided mounting, leading to miniaturization of the semiconductor device.

リードフレーム2と制御回路基板5とは、図1に示すように略並行に配置されている。このように略並行に配置する方法としては、リードフレーム2上に支柱を立てて制御回路基板5を支える方法、リードフレーム2と接続されたボンディングワイヤ(図示せず)で維持する方法等を用いることができる。リードフレーム2と制御回路基板5との間隔は、リードフレーム2の第1主面に搭載された半導体素子11等を電気的に接続するボンディンブワイヤ6のループ高さと、プリント配線板3のリードフレーム2と対向する側の面に配置される電気部品4の高さとを考慮して設定される。この間隔は、両者の接触を防ぐために必要な高さであって、かつ、出来るだけ狭くなるようにすることが望ましい。例えば、リードフレーム2の支柱を、リードフレーム2の一部を変形させたような導電性のものを用いて、支柱と制御回路基板5上の回路とを電気接続することも可能である。   The lead frame 2 and the control circuit board 5 are disposed substantially in parallel as shown in FIG. As a method of arranging them substantially in parallel as described above, a method of supporting a control circuit board 5 by placing a support on the lead frame 2, a method of maintaining with a bonding wire (not shown) connected to the lead frame 2, and the like are used. be able to. The distance between the lead frame 2 and the control circuit board 5 is such that the loop height of the bonding wire 6 that electrically connects the semiconductor elements 11 and the like mounted on the first main surface of the lead frame 2 and the lead of the printed wiring board 3. It is set in consideration of the height of the electric component 4 arranged on the surface facing the frame 2. It is desirable that this distance be as high as possible to prevent contact between the two and be as narrow as possible. For example, it is possible to electrically connect the column and the circuit on the control circuit board 5 by using a conductive column in which a part of the lead frame 2 is deformed as the column of the lead frame 2.

制御回路基板5をリードフレーム2の上方でなく、リードフレーム2と横並びにして全体をモールド樹脂10で一体的に封止することも考えられるが、半導体装置の設置面積が大きくなることや、モールド樹脂10の樹脂量が多くなり経済的でないこと、線膨張係数の違う各部材の配置不均衡により半導体装置の反りが大きくなるために好ましくない。ただし、半導体装置の設置面積による制約よりも半導体装置の高さに制約がある場合にはこの限りではない。   Although it is conceivable that the control circuit board 5 is placed side by side with the lead frame 2 instead of above the lead frame 2 and the whole is integrally sealed with the mold resin 10, the installation area of the semiconductor device increases, This is not preferable because the amount of the resin 10 is increased and it is not economical, and the warpage of the semiconductor device is increased due to the disequilibrium of the members having different linear expansion coefficients. However, this is not the case when the height of the semiconductor device is more restricted than the restriction due to the installation area of the semiconductor device.

金属基板7は、絶縁層8とヒートシンク9とを備え、リードフレーム2の第1主面上の半導体素子11等による熱を放熱するための放熱板としての役割を担う。絶縁層8は、エポキシ樹脂等の熱硬化性樹脂に熱伝導性の高い無機粉末フィラーが充填されたものであり、例えば、シリカやアルミナ、窒化硼素や窒化アルミニウム等の絶縁性の粉末を1種または複数混合して樹脂に充填されている。樹脂は、エポキシ樹脂等の熱硬化性樹脂がリードフレーム2やヒートシンク9との接着性に優れるため好ましいが、これに限定されるものではなく、例えば熱可塑性樹脂でもよい。絶縁層8の厚さは、200μm程度の膜厚で形成されている。絶縁層8の厚さはこれに限られるものではなく、半導体装置として要求される熱抵抗や熱容量、絶縁耐圧によって50〜300μmの範囲で適宜選択が可能である。   The metal substrate 7 includes an insulating layer 8 and a heat sink 9 and serves as a heat radiating plate for radiating heat from the semiconductor element 11 and the like on the first main surface of the lead frame 2. The insulating layer 8 is obtained by filling a thermosetting resin such as an epoxy resin with an inorganic powder filler having high thermal conductivity. For example, one type of insulating powder such as silica, alumina, boron nitride, or aluminum nitride is used. Alternatively, a plurality of them are mixed and filled in the resin. The resin is preferably a thermosetting resin such as an epoxy resin because it is excellent in adhesiveness to the lead frame 2 and the heat sink 9, but is not limited to this, and may be a thermoplastic resin, for example. The insulating layer 8 is formed with a thickness of about 200 μm. The thickness of the insulating layer 8 is not limited to this, and can be appropriately selected in the range of 50 to 300 μm depending on the thermal resistance, thermal capacity, and withstand voltage required for the semiconductor device.

ヒートシンク9は、例えば5mm厚のアルミニウム板等の金属板からなる。ヒートシンク9として使用する金属板は、放熱性を考えて選択することができ、アルミニウム板に限られたものではないが、制御回路基板5も一体的に封止した半導体装置は非常に大型となることから、軽量であるアルミニウムが好ましい。また、金属板の形状や厚さについても限定されることなく、半導体装置に要求される熱抵抗や熱容量によって厚い金属板や金属箔等を用いることができ、100μm〜10mmの範囲で適宜選択が可能である。金属板の寸法としては、一辺の長さが50mm以上のものが用いられる。半導体素子が複数搭載された場合、放熱性の観点から、ヒートシンクを50mm以上とすることで放熱性を確保している。   The heat sink 9 is made of a metal plate such as an aluminum plate having a thickness of 5 mm, for example. The metal plate used as the heat sink 9 can be selected in consideration of heat dissipation, and is not limited to the aluminum plate, but the semiconductor device in which the control circuit board 5 is integrally sealed is very large. Therefore, aluminum that is lightweight is preferable. Also, the shape and thickness of the metal plate are not limited, and a thick metal plate or metal foil can be used depending on the thermal resistance and heat capacity required for the semiconductor device, and can be selected as appropriate within a range of 100 μm to 10 mm. Is possible. As the dimension of the metal plate, one having a side length of 50 mm or more is used. When a plurality of semiconductor elements are mounted, heat dissipation is ensured by setting the heat sink to 50 mm or more from the viewpoint of heat dissipation.

半導体装置100は、モールド樹脂10によって一体的にトランスファーモールド成形される。モールド成形温度は、通常180℃前後で行われ、モールド成形後に室温まで冷却された場合や、信頼性試験のひとつである温度サイクル試験を実施した場合において、モールド樹脂は熱膨張や熱収縮する。モールド樹脂だけでなく各部材で熱膨張・熱収縮は発生し、ひずみ量は、(部材の長さ)×(部材の線膨張係数α)×(温度差ΔT)となることから、線膨張係数αの異なる材料が一体的に接していることにより温度差で応力や反りが発生する。ひずみ量は、部材サイズに伴って増大する。制御回路基板を一体的に内蔵した半導体装置は、内蔵していないものに比べて飛躍的に大型となり、半導体装置に占めるモールド樹脂の体積割合も高くなる。このため、温度差による半導体装置に発生する応力や反りは、モールド樹脂の線膨張係数の大小に大きく左右されることとなる。   The semiconductor device 100 is integrally formed by transfer molding with the mold resin 10. The mold molding temperature is usually about 180 ° C., and when the mold resin is cooled to room temperature after molding or when a temperature cycle test, which is one of reliability tests, is performed, the mold resin expands and contracts. Thermal expansion / shrinkage occurs not only in the mold resin but also in each member, and the strain amount is (member length) × (member linear expansion coefficient α) × (temperature difference ΔT). Stress and warp are generated due to temperature differences due to the integral contact of materials with different α. The amount of strain increases with the member size. A semiconductor device in which a control circuit board is integrally incorporated is dramatically larger in size than that in which a control circuit board is not incorporated, and the volume ratio of the mold resin in the semiconductor device is also increased. For this reason, the stress and warpage generated in the semiconductor device due to the temperature difference greatly depend on the magnitude of the linear expansion coefficient of the mold resin.

半導体装置に求められることとして、温度サイクルなどの信頼性試験においてヒートシンクからの絶縁層の剥離や絶縁層へのクラック発生による電気的信頼性低下防止だけでなく、放熱フィンとグリースを介して接触させる場合、グリース塗布面となるヒートシンクの露出面が凹形状に反っていることを避ける必要がある。これは、ヒートシンクや放熱フィンと比較して熱伝導性の悪いグリースが設置面の中央に厚く塗られると、放熱性の悪化を招くためである。   What is required of semiconductor devices is not only to prevent electrical reliability from being lowered due to peeling of the insulating layer from the heat sink or cracking of the insulating layer in reliability tests such as temperature cycling, but also to make the heat sink contact with the heat sink. In this case, it is necessary to avoid that the exposed surface of the heat sink serving as the grease application surface is warped in a concave shape. This is because if the grease having poor thermal conductivity is thickly applied to the center of the installation surface as compared with the heat sink or the heat radiating fin, the heat radiating property is deteriorated.

次に、本実施の形態1における半導体装置の製造方法について説明する。まず、ヒートシンク9の一方の面に対してエポキシ系樹脂を塗布して絶縁層8を形成する。そして、エッチング加工等を用いて絶縁層8上に例えば銅を用いた回路パターン(図示せず)を形成する。   Next, a method for manufacturing the semiconductor device according to the first embodiment will be described. First, the insulating layer 8 is formed by applying an epoxy resin to one surface of the heat sink 9. Then, a circuit pattern (not shown) using, for example, copper is formed on the insulating layer 8 using etching or the like.

次に、この回路パターン上の所定の位置にはんだペースト(図示せず)を塗布し、このはんだペーストの上に半導体素子11などの電子部品を実装する。その後リフローを行う。すなわち、金属基板7を高温に加熱して、塗布したはんだペーストを高温下で溶融して半導体素子11などの電子部品と回路パターンとを電気的に接続する。この回路パターンとリードフレームを接続する。接続は、例えばはんだ接合や超音波接合を用いることができる。   Next, a solder paste (not shown) is applied to a predetermined position on the circuit pattern, and an electronic component such as the semiconductor element 11 is mounted on the solder paste. Then reflow. That is, the metal substrate 7 is heated to a high temperature, and the applied solder paste is melted at a high temperature to electrically connect the electronic component such as the semiconductor element 11 and the circuit pattern. This circuit pattern is connected to the lead frame. For the connection, for example, solder bonding or ultrasonic bonding can be used.

次に、回路パターンと半導体素子11とをボンディングワイヤ6により電気的に接続する。所定の配線パターンが形成されたプリント配線板3に電気部品4を固着する。これにより制御回路基板5が形成される。リードフレーム2と制御回路基板5とは、所定の方法で電気的に接続される。次に、半導体素子11や回路パターンを備えたリードフレーム2、絶縁層8、制御回路基板5等の全体をトランスファーモールドによって封止するために、約180℃に設定された成形金型に設置してモールド樹脂10を流し込む。このとき、減圧雰囲気中においてモールド樹脂10を流し込んでもよく、これによりモールド樹脂10中に発生する空隙発生を抑制することも可能である。   Next, the circuit pattern and the semiconductor element 11 are electrically connected by the bonding wire 6. The electric component 4 is fixed to the printed wiring board 3 on which a predetermined wiring pattern is formed. Thereby, the control circuit board 5 is formed. The lead frame 2 and the control circuit board 5 are electrically connected by a predetermined method. Next, in order to seal the whole of the lead frame 2, the insulating layer 8, the control circuit board 5 and the like provided with the semiconductor element 11 and the circuit pattern by transfer molding, it is placed in a molding die set at about 180 ° C. Then, mold resin 10 is poured. At this time, the mold resin 10 may be poured in a reduced-pressure atmosphere, thereby suppressing generation of voids generated in the mold resin 10.

注入したモールド樹脂10は、成形金型温度に熱せられることで硬化し、成形金型から取り出すことが可能となる。その後、必要に応じてさらに硬化を進めるためにオーブン等で熱処理してもよい。また、このような方法に限定されることはなく、一方の面に絶縁層8が設けられたヒートシンク9と、あらかじめリフロー工程により半導体素子11が実装された回路パターンが形成された例えば銅を用いたリードフレーム2を成形金型の中でトランスファーモールド工程において一体的に封止してもよい。   The injected mold resin 10 is cured by being heated to the molding die temperature, and can be taken out from the molding die. Thereafter, heat treatment may be performed in an oven or the like to further cure as necessary. Further, the present invention is not limited to such a method. For example, a heat sink 9 provided with an insulating layer 8 on one surface and copper having a circuit pattern on which a semiconductor element 11 is mounted in advance by a reflow process are used. The existing lead frame 2 may be integrally sealed in a molding die in a transfer molding process.

モールド樹脂10は、例えば、エポキシ樹脂系モールド樹脂を選択することができる。モールド樹脂10は、エポキシ樹脂に充填材としてシリカやアルミナが充填されており、モールド成形前はタブレット状に形成されている。シリカは、溶融シリカや結晶シリカを用いることができ、単体でも複数を混合して充填することも可能である。モールド樹脂10の線膨張係数を小さく調整するためには線膨張係数の小さい溶融シリカを充填することが有効であり、逆にモールド樹脂10の線膨張係数を大きく調整する場合、シリカ充填量を少なくするか、シリカ充填量はあまり変えずに溶融シリカの一部を結晶シリカに置き変えることで対応することもできる。このようにすることにより、モールド樹脂10中のエポキシ樹脂の量が増加することを防止し、モールド樹脂10の難燃性低下を防止できる利点もある。   As the mold resin 10, for example, an epoxy resin mold resin can be selected. The mold resin 10 is filled with silica or alumina as a filler in an epoxy resin, and is formed in a tablet shape before molding. As the silica, fused silica or crystalline silica can be used, and a single substance can be mixed and filled. In order to adjust the linear expansion coefficient of the mold resin 10 to be small, it is effective to fill with fused silica having a small linear expansion coefficient. Conversely, when the linear expansion coefficient of the mold resin 10 is adjusted to be large, the silica filling amount is reduced. Alternatively, it is possible to cope with this by replacing a part of the fused silica with crystalline silica without changing the silica filling amount so much. By doing in this way, there also exists an advantage which can prevent that the quantity of the epoxy resin in the mold resin 10 increases, and can prevent the flame retardance fall of the mold resin 10. FIG.

モールド樹脂10は、通常室温において固形であるが、このトランスファーモールド工程において、180℃に設定された成形金型内で成形時には液状となって成形される。モールド樹脂10はエポキシ系などの熱硬化性樹脂であるため、加熱によって時間とともに硬化が進行し、成形金型内でリードフレーム2や制御回路基板5等と接着しながら固化する。このとき、モールド樹脂10は、液状から固体に変化するため体積収縮が生じる。そして、モールド成形後に成形金型から半導体装置100を取り出した際には、約180℃から室温まで冷めることになるため、150℃〜160℃の冷却工程を経ることとなる。ここで、モールド樹脂10のみならず、リードフレーム2や制御回路基板5、アルミニウムを用いたヒートシンク9等の各部材は、各線膨張係数に応じて熱収縮する。ヒートシンク9は、放熱性を高めるために例えば5mm厚などを用いることができ、リードフレーム2や制御回路基板5と比較して十分に厚い場合は、半導体装置100全体の反りへの影響も大きく、ヒートシンク9の一方の面に絶縁層8が設けられていることから、ヒートシンク9の反りは、ヒートシンク9からの絶縁層8の剥離や絶縁層8へのクラック発生への影響も大きい。   The mold resin 10 is normally solid at room temperature, but in this transfer molding step, it is molded in a liquid state during molding in a molding die set at 180 ° C. Since the mold resin 10 is an epoxy-based thermosetting resin, the curing progresses with time by heating, and solidifies while adhering to the lead frame 2, the control circuit board 5, and the like in the molding die. At this time, since the mold resin 10 changes from liquid to solid, volume shrinkage occurs. When the semiconductor device 100 is taken out from the molding die after molding, it is cooled from about 180 ° C. to room temperature, and thus a cooling process of 150 ° C. to 160 ° C. is performed. Here, not only the mold resin 10 but also each member such as the lead frame 2, the control circuit board 5, and the heat sink 9 using aluminum thermally contracts in accordance with each linear expansion coefficient. The heat sink 9 can have a thickness of, for example, 5 mm in order to improve heat dissipation. If the heat sink 9 is sufficiently thick compared to the lead frame 2 or the control circuit board 5, the influence on the warp of the entire semiconductor device 100 is large. Since the insulating layer 8 is provided on one surface of the heat sink 9, the warpage of the heat sink 9 has a great influence on the peeling of the insulating layer 8 from the heat sink 9 and the occurrence of cracks in the insulating layer 8.

モールド樹脂10の線膨張係数がヒートシンク9の材質であるアルミニウムの線膨張係数である約24×10−6(1/K)と同等であると、成形金型から取り出して室温まで冷える際の熱収縮量は、ヒートシンク9と同等となるが、成形金型から取り出す前に成形金型内でモールド樹脂10が硬化に伴い硬化収縮していることから、室温まで冷却されると半導体装置100としては凸反りとなる。(凸反りとは、ヒートシンク9の露出面側が凸状に反ることを意味することとする。)
一方、モールド樹脂10の線膨張係数がヒートシンク9の線膨張係数よりも小さい範囲においては、モールド成形後に成形金型から取り出して室温まで冷却した場合、半導体装置100の凸反りが抑制され、反り量が小さくなる。モールド樹脂10の線膨張係数をさらに小さくしすぎると、半導体装置100は逆に凹反りとなってしまう。
If the linear expansion coefficient of the mold resin 10 is equivalent to about 24 × 10 −6 (1 / K) which is the linear expansion coefficient of aluminum which is the material of the heat sink 9, the heat generated when the mold resin 10 is taken out from the mold and cooled to room temperature. Although the amount of shrinkage is the same as that of the heat sink 9, the mold resin 10 is cured and shrunk in the molding die as it is cured before being taken out from the molding die. Convex warpage. (The convex warpage means that the exposed surface side of the heat sink 9 warps in a convex shape.)
On the other hand, in the range where the linear expansion coefficient of the mold resin 10 is smaller than the linear expansion coefficient of the heat sink 9, when the mold is removed from the molding die and cooled to room temperature, the convex warpage of the semiconductor device 100 is suppressed, and the amount of warpage is reduced. Becomes smaller. If the linear expansion coefficient of the mold resin 10 is further reduced, the semiconductor device 100 will be concavely warped.

半導体装置100の反り量が大きくなることにより、ヒートシンク9の一方の面に設けられた絶縁層8の剥離やクラックが発生したり、制御回路基板5との剥離が生じたりすることにより電気的信頼性の低下を招く。   As the amount of warpage of the semiconductor device 100 increases, peeling or cracking of the insulating layer 8 provided on one surface of the heat sink 9 occurs or peeling from the control circuit board 5 causes electrical reliability. It causes a decline in sex.

制御回路基板5を一体的に内蔵したこのような半導体装置においては、使用環境温度におけるモールド樹脂10の線膨張係数が15〜23×10−6(1/K)とすることにより、凹反りとなることもなく、絶縁層8や制御回路基板5の剥離も抑制され、信頼性の高い半導体装置100を得ることができる。ここで、使用環境温度としては、半導体装置が用いられる周囲の環境温度あるいは、モールド樹脂の接触する半導体素子の動作温度のことであり、例えば−40℃〜125℃の範囲が考えられる。また、半導体素子11がSiCを用いた場合は、この使用環境温度の高温側は例えば150℃〜200℃となることが考えられる。In such a semiconductor device in which the control circuit board 5 is integrated, the linear expansion coefficient of the mold resin 10 at the use environment temperature is set to 15 to 23 × 10 −6 (1 / K). Accordingly, peeling of the insulating layer 8 and the control circuit substrate 5 is suppressed, and the highly reliable semiconductor device 100 can be obtained. Here, the use environment temperature is the ambient temperature in which the semiconductor device is used or the operating temperature of the semiconductor element in contact with the mold resin. For example, a range of −40 ° C. to 125 ° C. is conceivable. Moreover, when the semiconductor element 11 uses SiC, it is possible that the high temperature side of this use environment temperature will be 150 to 200 degreeC, for example.

また、半導体装置の信頼性試験のひとつとして、温度サイクル試験がある。この温度サイクル試験の温度差においても各部材の熱膨張差による反りが発生する。ヒートシンクは金属材料であるため温度サイクル条件により線膨張係数に大きな違いはない。しかし、モールド樹脂のような熱硬化性樹脂材料は、ガラス転移点温度(Tg)が存在し、Tgよりも高い温度では、ガラス領域からゴム領域となることで、線膨張係数が急激に増加することが一般的である。このことから、モールド樹脂のTgは、温度サイクル試験の高温側の温度よりも高いことが望ましい。例えば、温度サイクル試験が−40℃〜125℃で試験する場合、モールド樹脂10のTgは125℃以上であることが好ましい。より好ましくは、モールド樹脂10のTgは150℃以上である。このように設定することで、Tgは使用環境温度の高温側よりも高くなり、ヒートシンク9からの絶縁層8の剥離や絶縁層8へのクラックの発生の抑制や、モールド樹脂10と制御回路基板5との剥離が抑制できる。   As one of reliability tests for semiconductor devices, there is a temperature cycle test. Even in the temperature difference of the temperature cycle test, warpage due to a difference in thermal expansion of each member occurs. Since the heat sink is a metal material, there is no significant difference in the coefficient of linear expansion depending on the temperature cycle conditions. However, a thermosetting resin material such as a mold resin has a glass transition temperature (Tg), and at a temperature higher than Tg, the linear expansion coefficient increases rapidly from the glass region to the rubber region. It is common. From this, it is desirable that the Tg of the mold resin is higher than the temperature on the high temperature side of the temperature cycle test. For example, when the temperature cycle test is performed at −40 ° C. to 125 ° C., the Tg of the mold resin 10 is preferably 125 ° C. or higher. More preferably, the mold resin 10 has a Tg of 150 ° C. or higher. By setting in this way, the Tg becomes higher than the high temperature side of the operating environment temperature, the peeling of the insulating layer 8 from the heat sink 9 and the generation of cracks in the insulating layer 8 are suppressed, the mold resin 10 and the control circuit board. 5 can be prevented from peeling.

以上のように構成された半導体装置においては、トランスファーモールド成形に用いるモールド樹脂10の線膨張係数を15〜23×10−6(1/K)と設定することにより、アルミニウム製のヒートシンク9の反りを反りなしまたは凸反りの状態とすることができる。これにより、ヒートシンク9からの絶縁層8の剥離や絶縁層8へのクラックの発生を抑制し、モールド樹脂10と制御回路基板5との剥離も抑制されることで信頼性が向上する。In the semiconductor device configured as described above, by setting the linear expansion coefficient of the mold resin 10 used for transfer molding to 15 to 23 × 10 −6 (1 / K), the warp of the aluminum heat sink 9 is warped. Can be in a state of no warpage or convex warpage. Thereby, peeling of the insulating layer 8 from the heat sink 9 and generation of cracks in the insulating layer 8 are suppressed, and peeling between the mold resin 10 and the control circuit board 5 is also suppressed, thereby improving reliability.

また、モールド樹脂10の線膨張係数の範囲を限定することにより、モールド樹脂10成形後の半導体装置裏面に露出したヒートシンク9の表面が反りなしまたは凸形状(凸反り)となることから、このヒートシンク9へのフィン取付け時に放熱性で重要となる半導体装置中央部のグリースによる熱抵抗低下も防止できる。(ヒートシンク9の表面が凹反りすると、グリースを用いて放熱フィンを取り付けた場合、放熱性で重要な半導体装置の中央部でのグリースが厚くなり、放熱性が損なわれる。)   Further, by limiting the range of the linear expansion coefficient of the mold resin 10, the surface of the heat sink 9 exposed on the back surface of the semiconductor device after the molding resin 10 is molded has no warpage or a convex shape (convex warpage). It is also possible to prevent a decrease in thermal resistance due to grease at the center of the semiconductor device, which is important for heat dissipation when attaching the fins to 9. (If the surface of the heat sink 9 is warped, the grease at the center of the semiconductor device, which is important for heat dissipation, becomes thick when the heat dissipation fin is attached using grease, and heat dissipation is impaired.)

実施の形態2.
本実施の形態2においては、実施の形態1で用いたプリント配線板13の一部をモールド樹脂の外部へ突出させた点が異なる。このように、プリント配線板13の一部をモールド樹脂10の外部へ突出させることで、樹脂封止時の制御回路基板5の位置決めを容易に行うことが可能となる。
Embodiment 2. FIG.
The second embodiment is different in that a part of the printed wiring board 13 used in the first embodiment is projected outside the mold resin. As described above, by projecting a part of the printed wiring board 13 to the outside of the mold resin 10, it is possible to easily position the control circuit board 5 at the time of resin sealing.

図2は、この発明の実施の形態2における半導体装置を示す断面模式図である。図2において、半導体装置200は、金属部材であるリードフレーム2、制御回路基板5、金属基板7、封止樹脂であるモールド樹脂10を備える。図2に示すように、制御回路基板5はプリント配線板13を備え、プリント配線板13の一部が半導体装置200のモールド樹脂10の外部へ突出した構造となっていること以外は実施の形態1と同等の構造である。   FIG. 2 is a schematic sectional view showing a semiconductor device according to the second embodiment of the present invention. In FIG. 2, the semiconductor device 200 includes a lead frame 2 that is a metal member, a control circuit substrate 5, a metal substrate 7, and a mold resin 10 that is a sealing resin. As shown in FIG. 2, the control circuit board 5 includes a printed wiring board 13, and a configuration in which a part of the printed wiring board 13 protrudes outside the mold resin 10 of the semiconductor device 200 is an embodiment. The structure is equivalent to 1.

制御回路基板15は、リードフレーム2と略並行であることが望ましく、固定方法は特に限定されるものではないが、プリント配線板13の一部をモールド樹脂10から外部へ露出させることにより、この露出部を成形金型で挟みこんで固定することができる。これにより、制御回路基板5の配置位置や、リードフレームとの並行度がより正確にばらつきなく生産できるようになるという利点がある。また、プリント配線板13のモールド樹脂10の外部への突出部分の一部に配線パターンの一部を配置することもできる。   The control circuit board 15 is preferably substantially parallel to the lead frame 2 and the fixing method is not particularly limited. However, by exposing a part of the printed wiring board 13 from the mold resin 10 to the outside, The exposed portion can be sandwiched and fixed by a molding die. Thereby, there is an advantage that the arrangement position of the control circuit board 5 and the parallelism with the lead frame can be produced more accurately and without variation. Moreover, a part of wiring pattern can also be arrange | positioned to a part of protrusion part to the exterior of the mold resin 10 of the printed wiring board 13. FIG.

以上のように構成された半導体装置においては、トランスファーモールド成形に用いるモールド樹脂10の線膨張係数を15〜23×10−6(1/K)と設定することにより、アルミニウム製のヒートシンク9の反りを反りなしまたは凸反りとすることができる。これにより、絶縁層8の剥離やクラックの発生を抑制し、モールド樹脂10と制御回路基板5との剥離も抑制されることで信頼性が向上する。さらに、プリント配線板13は、モールド樹脂10の外部へ突出するようにしたので、樹脂封止時の制御回路基板5の位置決めを容易に行うことが可能となる。In the semiconductor device configured as described above, by setting the linear expansion coefficient of the mold resin 10 used for transfer molding to 15 to 23 × 10 −6 (1 / K), the warp of the aluminum heat sink 9 is warped. Can be warp-free or convex warp. Thereby, peeling of the insulating layer 8 and occurrence of cracks are suppressed, and peeling between the mold resin 10 and the control circuit board 5 is also suppressed, thereby improving reliability. Further, since the printed wiring board 13 protrudes to the outside of the mold resin 10, the control circuit board 5 can be easily positioned at the time of resin sealing.

実施の形態3.
本実施の形態3においては、実施の形態1で用いたヒートシンク9を凹凸が形成されたフィン付きヒートシンク12とした点が異なる。このように、ヒートシンクに凹凸を形成したことで放熱性を向上させることが可能となる。
Embodiment 3 FIG.
The third embodiment is different from the first embodiment in that the heat sink 9 used in the first embodiment is replaced with a finned heat sink 12 having irregularities formed thereon. Thus, it becomes possible to improve heat dissipation by forming unevenness in the heat sink.

図3は、この発明の実施の形態3における半導体装置を示す断面模式図である。図3において、半導体装置300は、金属部材であるリードフレーム2、制御回路基板5、金属基板17、封止樹脂であるモールド樹脂10を備える。図3に示すように、金属基板17はフィン付きヒートシンク12を備え、フィン付きヒートシンク12のリードフレーム2が配置された面の反対側の面に凹凸を設けた構造となっていること以外は実施の形態1と同等の構造である。   FIG. 3 is a schematic sectional view showing a semiconductor device according to the third embodiment of the present invention. In FIG. 3, the semiconductor device 300 includes a lead frame 2 that is a metal member, a control circuit substrate 5, a metal substrate 17, and a mold resin 10 that is a sealing resin. As shown in FIG. 3, the metal substrate 17 includes a heat sink 12 with fins, and is implemented except that the surface opposite to the surface on which the lead frame 2 of the heat sink 12 with fins is provided is provided with irregularities. The structure is equivalent to that of Form 1.

フィン付きヒートシンク12の露出面に凹凸が設けられることで放熱性はより高くなる。このとき凹凸の長さや間隔にもよるが、ヒートシンクの反りがヒートシンクの露出面側へ凹反りとなると放熱フィンの役割を担う凸部分が互いに接近してしまい放熱性が損なわれる。   Heat dissipation is further improved by providing irregularities on the exposed surface of the finned heat sink 12. At this time, although depending on the length and interval of the unevenness, when the heat sink warps to the exposed surface side of the heat sink, the convex portions serving as the heat radiating fins approach each other and heat dissipation is impaired.

以上のように構成された半導体装置においては、トランスファーモールド成形に用いるモールド樹脂10の線膨張係数を15〜23×10−6(1/K)と設定することにより、アルミニウム製のヒートシンク12の反りを反りなしまたは凸反りとすることができる。これにより、絶縁層8の剥離やクラックの発生を抑制し、モールド樹脂10と制御回路基板5との剥離も抑制されることで信頼性が向上する。さらに、フィン付きヒートシンク12の金属部材が配置された面の反対側の面に凹凸を設けたこととで放熱性を向上させることが可能となる。In the semiconductor device configured as described above, the linear expansion coefficient of the mold resin 10 used for transfer molding is set to 15 to 23 × 10 −6 (1 / K), so that the heat sink 12 made of aluminum is warped. Can be warp-free or convex warp. Thereby, peeling of the insulating layer 8 and occurrence of cracks are suppressed, and peeling between the mold resin 10 and the control circuit board 5 is also suppressed, thereby improving reliability. Furthermore, it is possible to improve heat dissipation by providing irregularities on the surface opposite to the surface on which the metal member of the finned heat sink 12 is disposed.

実施の形態4.
本実施の形態4においては、実施の形態1、実施の形態2、および実施の形態3で用いたヒートシンク9またはフィン付きヒートシンク12の絶縁層8が設けられた面とは反対側(裏面側)の外周部(端部)に段差部である段差13を設けた点が異なる。このように、ヒートシンクの裏面側の外周部(端部)に段差部を形成したことで放熱性を損なわず信頼性を向上させることが可能となる。
Embodiment 4 FIG.
In the fourth embodiment, the side opposite to the surface on which the insulating layer 8 of the heat sink 9 or the finned heat sink 12 used in the first, second, and third embodiments is provided (the back side). The difference is that a step 13, which is a stepped portion, is provided on the outer peripheral portion (end portion). Thus, it becomes possible to improve reliability, without impairing heat dissipation by forming the level | step-difference part in the outer peripheral part (end part) of the back surface side of a heat sink.

図4は、この発明の実施の形態1における半導体装置を示す裏面模式図である。図4において、ヒートシンク9の絶縁層8が設けられた面とは反対側(裏面側)の外周部に段差13を備えている。また、図4中の点線ABにおけるヒートシンク9の断面構造模式図は、図1または図2に示したような構造である。図5は、この発明の実施の形態4における半導体装置を示す裏面模式図である。図5において、フィン付きヒートシンク12のリードフレーム2が配置された面の反対側(裏面側)の面に凹凸を設け、さらに、この面の外周部(端部)に段差13を備えている。また、図5中の点線ABにおけるフィン付きヒートシンク12の断面構造模式図は、図3に示したような構造である。   FIG. 4 is a schematic back view showing the semiconductor device according to the first embodiment of the present invention. In FIG. 4, a step 13 is provided on the outer peripheral portion of the heat sink 9 opposite to the surface on which the insulating layer 8 is provided (back surface side). Moreover, the cross-sectional structure schematic diagram of the heat sink 9 in the dotted line AB in FIG. 4 is a structure as shown in FIG. 1 or FIG. FIG. 5 is a schematic backside view showing a semiconductor device according to the fourth embodiment of the present invention. In FIG. 5, unevenness is provided on the surface opposite to the surface on which the lead frame 2 of the finned heat sink 12 is disposed (back surface side), and a step 13 is provided on the outer peripheral portion (end portion) of this surface. Moreover, the cross-sectional structural schematic diagram of the finned heat sink 12 taken along the dotted line AB in FIG. 5 is the structure as shown in FIG.

図4、図5に示すように、ヒートシンク9またはフィン付きヒートシンク12の絶縁層8が設けられた面とは反対側の外周部に段差13を設けることが好ましい。このように段差13を設けたことでモールド樹脂10が金属板7,17の裏面側まで回り込むことで、モールド樹脂10がヒートシンク12を抱え込む構造となり、放熱性を損なわず信頼性を向上させることが可能で温度サイクル試験による信頼性が向上する。本実施の形態のように、制御回路基板5も一体的にモールド樹脂10によって封止した構造では、モールドされた半導体装置自体が大きくなり、また、さまざまな構成部材がモールド樹脂10内に封止されている。このような構造の場合では、実施の形態1〜3のようにモールド樹脂10の線膨張係数を規定による信頼性の向上だけなく、本実施の形態のようにヒートシンク9またはフィン付きヒートシンク12の絶縁層8が設けられた面とは反対側の外周部に段差13を設けることで、モールド樹脂10でヒートシンク12を抱え込む構造とすることで、さらに信頼性が向上した半導体装置を得ることが可能となる。   As shown in FIGS. 4 and 5, it is preferable to provide a step 13 on the outer peripheral portion of the heat sink 9 or the finned heat sink 12 opposite to the surface on which the insulating layer 8 is provided. By providing the step 13 as described above, the mold resin 10 wraps around to the back surface side of the metal plates 7 and 17, so that the mold resin 10 holds the heat sink 12, and the reliability can be improved without impairing heat dissipation. Possible and improved reliability by temperature cycle test. In the structure in which the control circuit board 5 is also integrally sealed with the mold resin 10 as in the present embodiment, the molded semiconductor device itself becomes large, and various components are sealed in the mold resin 10. Has been. In the case of such a structure, not only is the reliability improved by defining the linear expansion coefficient of the mold resin 10 as in the first to third embodiments, but also the insulation of the heat sink 9 or the finned heat sink 12 as in the present embodiment. By providing the step 13 on the outer peripheral portion opposite to the surface on which the layer 8 is provided, the structure in which the heat sink 12 is held by the mold resin 10 makes it possible to obtain a semiconductor device with further improved reliability. Become.

段差13の形状としては、特に限定されるものではないが、図に示したようにヒートシンクを抱え込む構造であることが好ましく、ヒートシンク9またはフィン付きヒートシンク12の絶縁層8が設けられた面の反対面側の外周部に対して、連続的に設けることが良い。また、段差13の形状は、ヒートシンク9またはフィン付きヒートシンク12の強度を損なわない程度に大きな大きさとすることで、より効果的となる。この段差13の大きさとしては、例えば、ヒートシンク9またはフィン付きヒートシンク12の大きさが70mm×50mm×厚さ5mmに対して、段差13の断面寸法としては1mm×1mm程度に設けることで放熱性を損なわず信頼性を向上させることが可能となる。また、この段差13を設けた構造は、絶縁層8として、絶縁シートを用いた場合により有効である。絶縁シートを用いた場合、温度サイクルにより発生する応力により、絶縁シート自身がシートシンク9やフィン付きヒートシンク12からの剥離や絶縁シート自身のクラック発生が発生し、信頼性を劣化させるが、このような段差13を設けることにより絶縁シートの剥離やクラックを抑制することが可能となり、信頼性を向上させることができる。   The shape of the step 13 is not particularly limited, but preferably has a structure for holding a heat sink as shown in the figure, and is opposite to the surface on which the insulating layer 8 of the heat sink 9 or the finned heat sink 12 is provided. It is good to provide continuously with respect to the outer peripheral part of a surface side. Moreover, the shape of the level | step difference 13 becomes more effective by making it large magnitude | size to such an extent that the intensity | strength of the heat sink 9 or the heat sink 12 with a fin is not impaired. As the size of the step 13, for example, the size of the heat sink 9 or the finned heat sink 12 is 70 mm × 50 mm × thickness 5 mm, and the cross-sectional dimension of the step 13 is about 1 mm × 1 mm. The reliability can be improved without impairing the above. The structure provided with the step 13 is more effective when an insulating sheet is used as the insulating layer 8. When the insulating sheet is used, the insulating sheet itself is peeled off from the sheet sink 9 or the finned heat sink 12 or cracked in the insulating sheet itself due to the stress generated by the temperature cycle, which deteriorates the reliability. Providing such a step 13 makes it possible to suppress peeling and cracking of the insulating sheet and improve reliability.

ヒートシンク9、フィン付きヒートシンク12として使用可能な金属板7,17の厚さは、0.1〜10mmの範囲内で適宜選択が可能であるが、より好ましくは、厚さが厚い範囲でより有効となる。特にアルミニウムなどの線膨張係数の大きな金属材料を用いる場合は、ヒートシンクの厚さによって信頼性に影響を与える。本実施の形態のように、制御回路基板をヒートシンクと対向させた配置し、モールド樹脂によって全体を樹脂封止した構造の場合、ヒートシンク以外の部材とのバランスも重要となってくる。本実施の形態では、制御回路基板の厚さよりもヒートシンクの厚さが厚い場合に特に有効であり、例えば制御回路基板の厚さが1.6mmである場合、ヒートシンクである金属板の厚さは1.6mm以上であることが好ましい。また、ヒートシンクの材料としては、銅を用いても良く、使用するヒートシンクの材料に合わせて、その他使用する材料の特性を適宜選択し使用することが可能である。   The thicknesses of the metal plates 7 and 17 that can be used as the heat sink 9 and the finned heat sink 12 can be appropriately selected within a range of 0.1 to 10 mm, but more preferably, the thickness is more effective within a thick range. It becomes. In particular, when a metal material having a large linear expansion coefficient such as aluminum is used, reliability is affected by the thickness of the heat sink. In the case of a structure in which the control circuit board is disposed facing the heat sink and the whole is resin-sealed with a mold resin as in the present embodiment, balance with members other than the heat sink is also important. In the present embodiment, it is particularly effective when the thickness of the heat sink is larger than the thickness of the control circuit board. For example, when the thickness of the control circuit board is 1.6 mm, the thickness of the metal plate as the heat sink is It is preferable that it is 1.6 mm or more. Moreover, copper may be used as the material of the heat sink, and the characteristics of other materials used can be appropriately selected and used in accordance with the heat sink material to be used.

以上のように構成された半導体装置においては、トランスファーモールド成形に用いるモールド樹脂10の線膨張係数を15〜23×10−6(1/K)と設定することにより、アルミニウム製のヒートシンク12の反りを反りなしまたは凸反りとすることができる。これにより、絶縁層8の剥離やクラックの発生を抑制し、モールド樹脂10と制御回路基板5との剥離も抑制されることで信頼性が向上する。また、ヒートシンク9の金属部材が配置された面の反対側の面またはフィン付きヒートシンク12の金属部材が配置された面の反対側の面に凹凸を設け、さらに、これらの面の外周部に段差13を設けたこととで放熱性を向上させることが可能となる。In the semiconductor device configured as described above, the linear expansion coefficient of the mold resin 10 used for transfer molding is set to 15 to 23 × 10 −6 (1 / K), so that the heat sink 12 made of aluminum is warped. Can be warp-free or convex warp. Thereby, peeling of the insulating layer 8 and occurrence of cracks are suppressed, and peeling between the mold resin 10 and the control circuit board 5 is also suppressed, thereby improving reliability. Further, unevenness is provided on the surface on the opposite side of the surface on which the metal member of the heat sink 9 is disposed or on the surface on the opposite side of the surface on which the metal member of the finned heat sink 12 is disposed, and a step is formed on the outer peripheral portion of these surfaces. By providing 13, it becomes possible to improve heat dissipation.

実施の形態1の構造の半導体装置であるパワーモジュールを作製し、パワーモジュール作製後絶縁層8である絶縁シートの剥離、制御回路基板5とモールド樹脂10との剥離の確認および温度サイクル信頼性試験に投入した。   A power module, which is a semiconductor device having the structure of the first embodiment, is manufactured, and after the power module is manufactured, the insulation sheet as the insulating layer 8 is peeled off, the peeling between the control circuit board 5 and the mold resin 10 is confirmed, and the temperature cycle reliability test It was thrown into.

[実施例1]
モールド樹脂の硬化後の線膨張係数は、充填材となるシリカの充填量を増減することにより、調整可能である。本実施例では、充填材として溶融シリカを用い、充填量を80重量%充填し、線膨張係数を15×10−6(1/K)に調整した。
[Example 1]
The linear expansion coefficient after hardening of mold resin can be adjusted by increasing / decreasing the filling amount of the silica used as a filler. In this example, fused silica was used as a filler, the filling amount was 80% by weight, and the linear expansion coefficient was adjusted to 15 × 10 −6 (1 / K).

このモールド樹脂を用いて、70mm×50mm×5mmのヒートシンクであるアルミベース板上に0.2mm厚の絶縁層、0.7mm厚の銅リードフレーム、一定の距離をおいて厚さ1.6mmの制御回路基板を搭載したものを一体的に成形した半導体装置を得たところ、モールド成形後のアルミベース板露出面の反りはほぼ0となり、絶縁層や制御回路基板とモールド樹脂との剥離がないことを超音波探傷装置による観察や切断断面からの顕微鏡観察によって確認した。また、−40℃/125℃の温度サイクル試験において500回後でも剥離や動作異常がないことを確認した。   Using this mold resin, a 0.2 mm thick insulating layer, a 0.7 mm thick copper lead frame, a 1.6 mm thick at a certain distance on an aluminum base plate which is a heat sink of 70 mm × 50 mm × 5 mm When a semiconductor device on which a control circuit board is mounted is integrally formed, the exposed surface of the aluminum base plate after molding is almost zero, and there is no separation between the insulating layer or the control circuit board and the mold resin. This was confirmed by observation with an ultrasonic flaw detector and microscopic observation from a cut section. Further, it was confirmed that there was no peeling or abnormal operation even after 500 times in a temperature cycle test of −40 ° C./125° C.

[実施例2]
本実施例では、充填材として溶融シリカを用い、充填量を77重量%充填し、線膨張係数を17×10−6(1/K)に調整した。
[Example 2]
In this example, fused silica was used as the filler, the filling amount was 77% by weight, and the linear expansion coefficient was adjusted to 17 × 10 −6 (1 / K).

このモールド樹脂を用いて70mm×50mm×5mmのアルミベース板上に0.2mm厚の絶縁層、0.7mm厚の銅リードフレーム、一定の距離をおいて厚さ1.6mmの制御回路基板を搭載したものを一体的に成形した半導体装置を得たところ、モールド成形後のアルミベース板露出面の反りは、凸反りで約15μmとなり、絶縁層や制御回路基板とモールド樹脂との剥離がないことを超音波探傷装置による観察や切断断面からの顕微鏡観察によって確認した。また、−40℃/125℃の温度サイクル試験において500回後でも剥離や動作異常がないことを確認した。   Using this mold resin, a 0.2 mm thick insulating layer, a 0.7 mm thick copper lead frame, and a 1.6 mm thick control circuit board on a 70 mm × 50 mm × 5 mm aluminum base plate As a result of obtaining a semiconductor device integrally molded with the mounted one, the warp of the exposed surface of the aluminum base plate after molding is about 15 μm due to the convex warp, and there is no separation between the insulating layer and the control circuit board and the mold resin. This was confirmed by observation with an ultrasonic flaw detector and microscopic observation from a cut section. Further, it was confirmed that there was no peeling or abnormal operation even after 500 times in a temperature cycle test of −40 ° C./125° C.

[実施例3]
本実施例では、充填材として溶融シリカを用い、充填量を73重量%充填し、線膨張係数を21×10−6(1/K)に調整した。
[Example 3]
In this example, fused silica was used as the filler, the filling amount was 73% by weight, and the linear expansion coefficient was adjusted to 21 × 10 −6 (1 / K).

このモールド樹脂を用いて70mm×50mm×5mmのアルミベース板上に0.2mm厚の絶縁層、0.7mm厚の銅リードフレーム、一定の距離をおいて厚さ1.6mmの制御回路基板を搭載したものを一体的に成形した半導体装置を得たところ、モールド成形後のアルミベース板露出面の反りは、凸反りで約60μmとなり、絶縁層や制御回路基板とモールド樹脂との剥離がないことを超音波探傷装置による観察や切断断面からの顕微鏡観察によって確認した。また、−40℃/125℃の温度サイクル試験において500回後でも剥離や動作異常がないことを確認した。   Using this mold resin, a 0.2 mm thick insulating layer, a 0.7 mm thick copper lead frame, and a 1.6 mm thick control circuit board on a 70 mm × 50 mm × 5 mm aluminum base plate As a result of obtaining a semiconductor device integrally molded with the mounted one, the warp of the exposed surface of the aluminum base plate after molding is about 60 μm due to the convex warp, and there is no separation between the insulating layer and the control circuit board and the mold resin. This was confirmed by observation with an ultrasonic flaw detector and microscopic observation from a cut section. Further, it was confirmed that there was no peeling or abnormal operation even after 500 times in a temperature cycle test of −40 ° C./125° C.

[実施例4]
本実施例では、充填材として溶融シリカと結晶シリカを用い、充填量を73重量%充填し、線膨張係数を23×10−6(1/K)に調整した。
[Example 4]
In this example, fused silica and crystalline silica were used as fillers, the filling amount was 73 wt%, and the linear expansion coefficient was adjusted to 23 × 10 −6 (1 / K).

このモールド樹脂を用いて70mm×50mm×5mmのアルミベース板上に0.2mm厚の絶縁層、0.7mm厚の銅リードフレーム、一定の距離をおいて厚さ1.6mmの制御回路基板を搭載したものを一体的に成形した半導体装置を得たところ、モールド成形後のアルミベース板露出面の反りは、凸反りで約70μmとなり、絶縁層や制御回路基板とモールド樹脂との剥離がないことを超音波探傷装置による観察や切断断面からの顕微鏡観察によって確認した。また、−40℃/125℃の温度サイクル試験において500回後でも剥離や動作異常がないことを確認した。   Using this mold resin, a 0.2 mm thick insulating layer, a 0.7 mm thick copper lead frame, and a 1.6 mm thick control circuit board on a 70 mm × 50 mm × 5 mm aluminum base plate As a result of obtaining a semiconductor device integrally molded with the mounted one, the warp of the exposed surface of the aluminum base plate after molding is about 70 μm due to the convex warp, and there is no separation between the insulating layer and the control circuit board and the mold resin. This was confirmed by observation with an ultrasonic flaw detector and microscopic observation from a cut section. Further, it was confirmed that there was no peeling or abnormal operation even after 500 times in a temperature cycle test of −40 ° C./125° C.

[実施例5]
本実施例では、アルミベースの厚みを0.1mmとした。モールド樹脂の充填材として溶融シリカを用い、充填量を77重量%充填し、線膨張係数を17×10−6(1/K)に調整した。
[Example 5]
In this example, the thickness of the aluminum base was 0.1 mm. Fused silica was used as a filler for the mold resin, the filling amount was 77% by weight, and the linear expansion coefficient was adjusted to 17 × 10 −6 (1 / K).

このモールド樹脂を用いて70mm×50mm×0.1mmのアルミベース板上に0.2mm厚の絶縁層、0.7mm厚の銅リードフレーム、一定の距離をおいて厚さ1.6mmの制御回路基板を搭載したものを一体的に成形した半導体装置を得たところ、モールド成形後のアルミベース板露出面の反りは、凸反りで約55μmとなり、絶縁層や制御回路基板とモールド樹脂との剥離がないことを超音波探傷装置による観察や切断断面からの顕微鏡観察によって確認した。また、−40℃/125℃の温度サイクル試験において500回後でも剥離や動作異常がないことを確認した。   Using this mold resin, a 0.2 mm thick insulating layer, a 0.7 mm thick copper lead frame on a 70 mm × 50 mm × 0.1 mm aluminum base plate, a 1.6 mm thick control circuit at a certain distance When a semiconductor device on which a substrate was mounted was integrally formed, the warp of the exposed surface of the aluminum base plate after molding was about 55 μm due to convex warpage, and the insulating layer or control circuit substrate and the mold resin were peeled off. It was confirmed by observation with an ultrasonic flaw detector and microscopic observation from a cut section. Further, it was confirmed that there was no peeling or abnormal operation even after 500 times in a temperature cycle test of −40 ° C./125° C.

[実施例6]
本実施例では、アルミベースの厚みを1mmとした。モールド樹脂の充填材として溶融シリカを用い、充填量を77重量%充填し、線膨張係数を17×10−6(1/K)に調整した。
[Example 6]
In this example, the thickness of the aluminum base was 1 mm. Fused silica was used as a filler for the mold resin, the filling amount was 77% by weight, and the linear expansion coefficient was adjusted to 17 × 10 −6 (1 / K).

このモールド樹脂を用いて70mm×50mm×1mmのアルミベース板上に0.2mm厚の絶縁層、0.7mm厚の銅リードフレーム、一定の距離をおいて厚さ1.6mmの制御回路基板を搭載したものを一体的に成形した半導体装置を得たところ、モールド成形後のアルミベース板露出面の反りは、凸反りで約20μmとなり、絶縁層や制御回路基板とモールド樹脂との剥離がないことを超音波探傷装置による観察や切断断面からの顕微鏡観察によって確認した。また、−40℃/125℃の温度サイクル試験において500回後でも剥離や動作異常がないことを確認した。   Using this mold resin, a 0.2 mm thick insulating layer, a 0.7 mm thick copper lead frame, and a 1.6 mm thick control circuit board on a 70 mm × 50 mm × 1 mm aluminum base plate As a result of obtaining a semiconductor device integrally molded with the mounted one, the warp of the exposed surface of the aluminum base plate after molding is about 20 μm due to the convex warp, and there is no separation between the insulating layer and the control circuit board and the mold resin. This was confirmed by observation with an ultrasonic flaw detector and microscopic observation from a cut section. Further, it was confirmed that there was no peeling or abnormal operation even after 500 times in a temperature cycle test of −40 ° C./125° C.

[実施例7]
本実施例では、アルミベースの厚みを2mmとした。モールド樹脂の充填材として溶融シリカを用い、充填量を77重量%充填し、線膨張係数を17×10−6(1/K)に調整した。
[Example 7]
In this example, the thickness of the aluminum base was 2 mm. Fused silica was used as a filler for the mold resin, the filling amount was 77% by weight, and the linear expansion coefficient was adjusted to 17 × 10 −6 (1 / K).

このモールド樹脂を用いて70mm×50mm×2mmのアルミベース板上に0.2mm厚の絶縁層、0.7mm厚の銅リードフレーム、一定の距離をおいて厚さ1.6mmの制御回路基板を搭載したものを一体的に成形した半導体装置を得たところ、モールド成形後のアルミベース板露出面の反りは、凸反りで約8μmとなり、絶縁層や制御回路基板とモールド樹脂との剥離がないことを超音波探傷装置による観察や切断断面からの顕微鏡観察によって確認した。また、−40℃/125℃の温度サイクル試験において500回後でも剥離や動作異常がないことを確認した。   Using this mold resin, a 0.2 mm thick insulating layer, a 0.7 mm thick copper lead frame, and a 1.6 mm thick control circuit board on a 70 mm × 50 mm × 2 mm aluminum base plate As a result of obtaining a semiconductor device integrally molded with the mounted one, the warp of the exposed surface of the aluminum base plate after molding is about 8 μm due to the convex warp, and there is no peeling between the insulating layer or the control circuit board and the mold resin. This was confirmed by observation with an ultrasonic flaw detector and microscopic observation from a cut section. Further, it was confirmed that there was no peeling or abnormal operation even after 500 times in a temperature cycle test of −40 ° C./125° C.

[実施例8]
本実施例では、アルミベースの厚みを3mmとした。モールド樹脂の充填材として溶融シリカを用い、充填量を77重量%充填し、線膨張係数を17×10−6(1/K)に調整した。
[Example 8]
In this example, the thickness of the aluminum base was 3 mm. Fused silica was used as a filler for the mold resin, the filling amount was 77% by weight, and the linear expansion coefficient was adjusted to 17 × 10 −6 (1 / K).

このモールド樹脂を用いて70mm×50mm×3mmのアルミベース板上に0.2mm厚の絶縁層、0.7mm厚の銅リードフレーム、一定の距離をおいて厚さ1.6mmの制御回路基板を搭載したものを一体的に成形した半導体装置を得たところ、モールド成形後のアルミベース板露出面の反りは、凸反りで約7μmとなり、絶縁層や制御回路基板とモールド樹脂との剥離がないことを超音波探傷装置による観察や切断断面からの顕微鏡観察によって確認した。また、−40℃/125℃の温度サイクル試験において500回後でも剥離や動作異常がないことを確認した。   Using this mold resin, a 0.2 mm thick insulating layer, a 0.7 mm thick copper lead frame, and a 1.6 mm thick control circuit board on a 70 mm × 50 mm × 3 mm aluminum base plate As a result of obtaining a semiconductor device integrally molded with the mounted one, the warp of the exposed surface of the aluminum base plate after molding is about 7 μm due to the convex warp, and there is no separation between the insulating layer and the control circuit board and the mold resin. This was confirmed by observation with an ultrasonic flaw detector and microscopic observation from a cut section. Further, it was confirmed that there was no peeling or abnormal operation even after 500 times in a temperature cycle test of −40 ° C./125° C.

[実施例9]
本実施例では、アルミベースの厚みを5mmとした。モールド樹脂の充填材として溶融シリカを用い、充填量を77重量%充填し、線膨張係数を17×10−6(1/K)に調整した。
[Example 9]
In this example, the thickness of the aluminum base was 5 mm. Fused silica was used as a filler for the mold resin, the filling amount was 77% by weight, and the linear expansion coefficient was adjusted to 17 × 10 −6 (1 / K).

このモールド樹脂を用いて70mm×50mm×5mmのアルミベース板上に0.2mm厚の絶縁層、0.7mm厚の銅リードフレーム、一定の距離をおいて厚さ1.6mmの制御回路基板を搭載したものを一体的に成形した半導体装置を得たところ、モールド成形後のアルミベース板露出面の反りは、凸反りで約15μmとなり、絶縁層や制御回路基板とモールド樹脂との剥離がないことを超音波探傷装置による観察や切断断面からの顕微鏡観察によって確認した。また、−40℃/125℃の温度サイクル試験において500回後でも剥離や動作異常がないことを確認した。   Using this mold resin, a 0.2 mm thick insulating layer, a 0.7 mm thick copper lead frame, and a 1.6 mm thick control circuit board on a 70 mm × 50 mm × 5 mm aluminum base plate As a result of obtaining a semiconductor device integrally molded with the mounted one, the warp of the exposed surface of the aluminum base plate after molding is about 15 μm due to the convex warp, and there is no separation between the insulating layer and the control circuit board and the mold resin. This was confirmed by observation with an ultrasonic flaw detector and microscopic observation from a cut section. Further, it was confirmed that there was no peeling or abnormal operation even after 500 times in a temperature cycle test of −40 ° C./125° C.

[実施例10]
本実施例では、アルミベースの厚みを10mmとした。モールド樹脂の充填材として溶融シリカを用い、充填量を77重量%充填し、線膨張係数を17×10−6(1/K)に調整した。
[Example 10]
In this example, the thickness of the aluminum base was 10 mm. Fused silica was used as a filler for the mold resin, the filling amount was 77% by weight, and the linear expansion coefficient was adjusted to 17 × 10 −6 (1 / K).

このモールド樹脂を用いて70mm×50mm×10mmのアルミベース板上に0.2mm厚の絶縁層、0.7mm厚の銅リードフレーム、一定の距離をおいて厚さ1.6mmの制御回路基板を搭載したものを一体的に成形した半導体装置を得たところ、モールド成形後のアルミベース板露出面の反りは、凸反りで約28μmとなり、絶縁層や制御回路基板とモールド樹脂との剥離がないことを超音波探傷装置による観察や切断断面からの顕微鏡観察によって確認した。また、−40℃/125℃の温度サイクル試験において500回後でも剥離や動作異常がないことを確認した。   Using this mold resin, a 0.2 mm thick insulating layer, a 0.7 mm thick copper lead frame, and a 1.6 mm thick control circuit board on a 70 mm × 50 mm × 10 mm aluminum base plate As a result of obtaining a semiconductor device integrally molded with the mounted one, the warp of the exposed surface of the aluminum base plate after molding is about 28 μm due to the convex warp, and there is no separation between the insulating layer and the control circuit board and the mold resin. This was confirmed by observation with an ultrasonic flaw detector and microscopic observation from a cut section. Further, it was confirmed that there was no peeling or abnormal operation even after 500 times in a temperature cycle test of −40 ° C./125° C.

[比較例1]
本比較例では、充填材として溶融シリカを用い、充填量を86重量%充填し、線膨張係数を10×10−6(1/K)に調整した。
[Comparative Example 1]
In this comparative example, fused silica was used as the filler, the filling amount was filled by 86% by weight, and the linear expansion coefficient was adjusted to 10 × 10 −6 (1 / K).

このモールド樹脂を用いて70mm×50mm×5mmのアルミベース板上に0.2mm厚の絶縁層、0.7mm厚の銅リードフレーム、一定の距離をおいて厚さ1.6mmの制御回路基板を搭載したものを一体的に成形した半導体装置を得たところ、モールド成形後のアルミベース板露出面の反りは、凹反りで約40μmとなった。これにより、グリースを介してアルミベース板を放熱フィンに接合した後の熱抵抗が約30%上昇した。また、成形後には、絶縁層の剥離が一部発生していることを超音波探傷装置にて確認した。   Using this mold resin, a 0.2 mm thick insulating layer, a 0.7 mm thick copper lead frame, and a 1.6 mm thick control circuit board on a 70 mm × 50 mm × 5 mm aluminum base plate When a semiconductor device was obtained by integrally molding the mounted one, the warp of the exposed surface of the aluminum base plate after molding was about 40 μm due to the concave warp. As a result, the thermal resistance after bonding the aluminum base plate to the heat radiating fin via the grease increased by about 30%. In addition, it was confirmed with an ultrasonic flaw detector that a part of the insulating layer was peeled off after molding.

[比較例2]
本比較例では、充填材として溶融シリカを用い、充填量を83重量%充填し、線膨張係数を13×10−6(1/K)に調整した。
[Comparative Example 2]
In this comparative example, fused silica was used as a filler, the filling amount was 83% by weight, and the linear expansion coefficient was adjusted to 13 × 10 −6 (1 / K).

このモールド樹脂を用いて70mm×50mm×5mmのアルミベース板上に0.2mm厚の絶縁層、0.7mm厚の銅リードフレーム、一定の距離をおいて厚さ1.6mmの制御回路基板を搭載したものを一体的に成形した半導体装置を得たところ、モールド成形後のアルミベース板露出面の反りは、凹反りで約15μmとなった。これにより、グリースを介してアルミベース板を放熱フィンに接合した後の熱抵抗が約10%上昇した。また、成形後は絶縁層や制御回路基板とモールド樹脂との剥離がないことを超音波探傷装置による観察や切断断面からの顕微鏡観察によって確認したが、−40℃/125℃の温度サイクル試験において500回後では、絶縁層の一部が剥離していることを確認した。   Using this mold resin, a 0.2 mm thick insulating layer, a 0.7 mm thick copper lead frame, and a 1.6 mm thick control circuit board on a 70 mm × 50 mm × 5 mm aluminum base plate When a semiconductor device was obtained by integrally molding the mounted one, the warp of the exposed surface of the aluminum base plate after molding was about 15 μm due to the concave warp. As a result, the thermal resistance after bonding the aluminum base plate to the heat radiating fin via the grease increased by about 10%. In addition, after molding, it was confirmed by observation with an ultrasonic flaw detector and microscopic observation from a cut section that there was no separation between the insulating layer or the control circuit board and the mold resin, but in a temperature cycle test of −40 ° C./125° C. After 500 times, it was confirmed that a part of the insulating layer was peeled off.

[比較例3]
本比較例では、充填材として溶融シリカと結晶シリカを用い、充填量を73重量%充填し、線膨張係数を25×10−6(1/K)に調整した。
[Comparative Example 3]
In this comparative example, fused silica and crystalline silica were used as fillers, the filling amount was 73 wt%, and the linear expansion coefficient was adjusted to 25 × 10 −6 (1 / K).

このモールド樹脂を用いて70mm×50mm×5mmのアルミベース板上に0.2mm厚の絶縁層、0.7mm厚の銅リードフレーム、一定の距離をおいて厚さ1.6mmの制御回路基板を搭載したものを一体的に成形した半導体装置を得たところ、モールド成形後のアルミベース板露出面の反りは、凸反りで約100μmとなった。成形後は絶縁層の剥離は発生しなかったが、制御回路基板とモールド樹脂との界面で一部剥離が発生していることを超音波探傷装置による観察や切断断面からの顕微鏡観察によって確認した。また、−40℃/125℃の温度サイクル試験において500回後では、制御回路基板とモールド樹脂の界面の剥離が進展していることを確認した。   Using this mold resin, a 0.2 mm thick insulating layer, a 0.7 mm thick copper lead frame, and a 1.6 mm thick control circuit board on a 70 mm × 50 mm × 5 mm aluminum base plate When a semiconductor device was obtained by integrally molding the mounted one, the warp of the exposed surface of the aluminum base plate after molding was about 100 μm due to convex warpage. Although peeling of the insulating layer did not occur after molding, it was confirmed by observation with an ultrasonic flaw detector or microscopic observation from a cut section that partial peeling occurred at the interface between the control circuit board and the mold resin. . Further, in the temperature cycle test of −40 ° C./125° C., it was confirmed that peeling of the interface between the control circuit board and the mold resin had progressed after 500 times.

なお、表1では、各実施例及び比較例で使用した樹脂の線膨張係数(α)(1/K)、アルミベース板の反り量(μm)および評価結果についてまとめた。   In Table 1, the linear expansion coefficient (α) (1 / K) of the resin used in each example and comparative example, the warpage amount (μm) of the aluminum base plate, and the evaluation results are summarized.

Figure 0006360035
Figure 0006360035

表1より、使用した樹脂のαが15〜23×10−6(1/K)の間であるときに、剥離の発生が抑制され、また、温度サイクル試験でも劣化が無いことがわかる。さらに、好ましくは、使用した樹脂のαは17〜23×10−6(1/K)の間である。樹脂のαを17×10−6(1/K)以上とすることで、製造バラつきを考慮した場合でも、アルミベース板の反りは凸反りとなり、確実に剥離の発生を抑制することができる。From Table 1, it can be seen that when the α of the used resin is between 15 and 23 × 10 −6 (1 / K), the occurrence of peeling is suppressed and there is no deterioration even in the temperature cycle test. Further preferably, α of the resin used is between 17 and 23 × 10 −6 (1 / K). By setting the α of the resin to 17 × 10 −6 (1 / K) or more, even when manufacturing variation is taken into consideration, the warp of the aluminum base plate becomes a convex warp, and the occurrence of peeling can be reliably suppressed.

なお、表2では、実施例5から実施例10で使用したアルミベース板の厚み(μm)、アルミベース板の反り量(μm)および評価結果についてまとめた。   Table 2 summarizes the thickness (μm) of the aluminum base plate used in Examples 5 to 10, the amount of warp (μm) of the aluminum base plate, and the evaluation results.

Figure 0006360035
Figure 0006360035

表2より、使用したアルミベース板の厚みが0.1〜10(mm)の間であるときに、剥離の発生が抑制され、また、温度サイクル試験でも劣化が無いことがわかる。ただし、モールド成形後のアルミベース板の反りは、アルミベース板の厚みにより異なり、信頼性がより高く、アルミベース板の反りが小さくなるアルミベース板の厚みは、制御回路基板の厚さ1.6〜約6(mm)の間である。   From Table 2, it can be seen that when the thickness of the used aluminum base plate is between 0.1 and 10 (mm), the occurrence of peeling is suppressed and there is no deterioration even in the temperature cycle test. However, the warp of the aluminum base plate after molding differs depending on the thickness of the aluminum base plate, and the thickness of the aluminum base plate with higher reliability and less warpage of the aluminum base plate is the thickness of the control circuit board 1. It is between 6 and about 6 (mm).

100,200,300 半導体装置、2 リードフレーム、3,13 プリント配線板、4 電気部品、5,15 制御回路基板、6 ボンディングワイヤ、7,17 金属基板、8 絶縁層、9 ヒートシンク、10 モールド樹脂、11 半導体素子、12 フィン付きヒートシンク、13 段差。   100, 200, 300 Semiconductor device, 2 Lead frame, 3, 13 Printed wiring board, 4 Electrical component, 5, 15 Control circuit board, 6 Bonding wire, 7, 17 Metal substrate, 8 Insulating layer, 9 Heat sink, 10 Mold resin , 11 Semiconductor element, 12 heat sink with fin, 13 steps.

Claims (6)

一方の面に半導体素子が搭載された金属部材と、
前記金属部材の他方の面側に絶縁層を介して配置されたアルミニウムを用いた金属板と、
前記半導体素子と電気的に接続された電気部品が搭載され、前記金属部材と対向して配置されたプリント配線板と、
前記金属部材と前記プリント配線板と前記金属板とを一体的に封止する封止樹脂とを備え、
前記金属板の前記絶縁層が設けられている面とは反対側の面には凹凸が設けられ、かつ外周部に段差部が設けられ、
前記絶縁層は、無機粉末が充填された樹脂であり、
前記封止樹脂は、線膨張係数が15〜23×10−6(1/K)であり、前記段差部を覆い一体的に抱え込んで封止し、
前記封止樹脂の線膨張係数は前記金属板の線膨張係数よりも小さく、
前記凹凸の放熱フィンの役割を担う複数の凸部分は、前記金属板の前記外周部に設けられた前記段差部よりも前記金属板の内周側のみに配置されており、
前記複数の凸部分は前記封止樹脂の外部のみに配置されていることを特徴とする半導体装置。
A metal member having a semiconductor element mounted on one surface;
A metal plate using aluminum disposed on the other surface side of the metal member via an insulating layer;
An electrical component electrically connected to the semiconductor element is mounted , and a printed wiring board disposed facing the metal member ;
A sealing resin that integrally seals the metal member, the printed wiring board, and the metal plate;
The surface of the metal plate opposite to the surface on which the insulating layer is provided is provided with irregularities, and a step portion is provided on the outer peripheral portion,
The insulating layer is a resin filled with inorganic powder,
The sealing resin has a linear expansion coefficient of 15 to 23 × 10 −6 (1 / K), covers the stepped portion and encloses and integrally seals the stepped portion,
The linear expansion coefficient of the sealing resin is smaller than the linear expansion coefficient of the metal plate,
The plurality of convex portions that play the role of the uneven heat dissipation fins are arranged only on the inner peripheral side of the metal plate rather than the stepped portion provided on the outer peripheral portion of the metal plate,
The plurality of convex portions are arranged only outside the sealing resin.
前記封止樹脂のガラス転移点温度は、使用環境温度よりも高いことを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein a glass transition point temperature of the sealing resin is higher than a use environment temperature. 前記プリント配線板の一部を前記封止樹脂の外部へ突出させたことを特徴とする請求項1または2に記載の半導体装置。 The semiconductor device according to claim 1 or 2, characterized in that a portion of the printed circuit board is protruded to the outside of the sealing resin. 前記プリント配線板の両面に前記電気部品を配置したことを特徴とする請求項1から請求項のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 3, characterized in that a said electrical components on both sides of the printed wiring board. 前記金属板の少なくとも一辺の長さが50mm以上であることを特徴とする請求項1から請求項のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 4, wherein the length of at least one side of the metal plate is 50mm or more. 前記金属板の厚さは、前記プリント配線板の厚さよりも厚いことを特徴とする請求項に記載の半導体装置。 The semiconductor device according to claim 5 , wherein a thickness of the metal plate is thicker than a thickness of the printed wiring board.
JP2015505089A 2013-03-15 2013-12-26 Semiconductor device Active JP6360035B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013053638 2013-03-15
JP2013053638 2013-03-15
PCT/JP2013/007628 WO2014141346A1 (en) 2013-03-15 2013-12-26 Semiconductor device

Publications (2)

Publication Number Publication Date
JPWO2014141346A1 JPWO2014141346A1 (en) 2017-02-16
JP6360035B2 true JP6360035B2 (en) 2018-07-18

Family

ID=51536049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015505089A Active JP6360035B2 (en) 2013-03-15 2013-12-26 Semiconductor device

Country Status (3)

Country Link
JP (1) JP6360035B2 (en)
CN (1) CN105144373A (en)
WO (1) WO2014141346A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405830A (en) * 2015-12-09 2016-03-16 西安华为技术有限公司 System-level packaging module and packaging method
CN108431950B (en) * 2015-12-25 2021-06-29 三菱电机株式会社 Semiconductor device and method for manufacturing the same
TWI730604B (en) * 2019-01-22 2021-06-11 美商莫仕有限公司 Intelligent connector using special electronic packaging manufacturing process and manufacturing method thereof
CN112750796A (en) * 2019-10-30 2021-05-04 新光电气工业株式会社 Semiconductor device and method for manufacturing semiconductor device
JP7080365B1 (en) 2021-03-02 2022-06-03 三菱電機株式会社 Semiconductor power module

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3516789B2 (en) * 1995-11-15 2004-04-05 三菱電機株式会社 Semiconductor power module
JP3674333B2 (en) * 1998-09-11 2005-07-20 株式会社日立製作所 Power semiconductor module and electric motor drive system using the same
JP4220641B2 (en) * 2000-01-13 2009-02-04 電気化学工業株式会社 Resin mold circuit board and electronic package
JP2003158226A (en) * 2001-11-20 2003-05-30 Sony Corp Semiconductor device
JP2006179732A (en) * 2004-12-24 2006-07-06 Hitachi Ltd Semiconductor power module
JP2007165692A (en) * 2005-12-15 2007-06-28 Denso Corp Method for manufacturing electronic equipment
JP4455488B2 (en) * 2005-12-19 2010-04-21 三菱電機株式会社 Semiconductor device
JP4569473B2 (en) * 2006-01-04 2010-10-27 株式会社日立製作所 Resin-encapsulated power semiconductor module
JP5018355B2 (en) * 2007-09-05 2012-09-05 株式会社デンソー Mold package
JP2009123953A (en) * 2007-11-15 2009-06-04 Omron Corp Transfer mold power module
JP5200037B2 (en) * 2010-01-21 2013-05-15 三菱電機株式会社 Power module
JP5258825B2 (en) * 2010-03-23 2013-08-07 三菱電機株式会社 Power semiconductor device and manufacturing method thereof
JP5373713B2 (en) * 2010-07-23 2013-12-18 三菱電機株式会社 Semiconductor device
CN103081098B (en) * 2010-09-02 2015-08-05 丰田自动车株式会社 Semiconductor module
DE112010006032B4 (en) * 2010-11-29 2018-10-04 Toyota Jidosha Kabushiki Kaisha Power module comprising a semiconductor device
JP5251991B2 (en) * 2011-01-14 2013-07-31 トヨタ自動車株式会社 Semiconductor module
JP2012182344A (en) * 2011-03-02 2012-09-20 Mitsubishi Electric Corp Power module
JP5807348B2 (en) * 2011-03-10 2015-11-10 富士電機株式会社 Semiconductor device and manufacturing method thereof
JP5518000B2 (en) * 2011-06-10 2014-06-11 三菱電機株式会社 Power module and manufacturing method thereof

Also Published As

Publication number Publication date
WO2014141346A1 (en) 2014-09-18
CN105144373A (en) 2015-12-09
JPWO2014141346A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5656907B2 (en) Power module
JP5472498B2 (en) Power module manufacturing method
US20150008570A1 (en) Semiconductor device
JP6360035B2 (en) Semiconductor device
JP6848802B2 (en) Semiconductor device
KR102004785B1 (en) Power Semi-Conductor package and Method of Manufacturing for the same
JP5895220B2 (en) Manufacturing method of semiconductor device
JP2011216564A (en) Power module and method of manufacturing the same
JP2003124400A (en) Semiconductor power module and manufacturing method therefor
JP2016018866A (en) Power module
JP6305176B2 (en) Semiconductor device and manufacturing method
JP6813259B2 (en) Semiconductor device
JP2016181536A (en) Power semiconductor device
US20150270201A1 (en) Semiconductor module package and method of manufacturing the same
JP2010192591A (en) Power semiconductor device and method of manufacturing the same
JP6095303B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2012209470A (en) Semiconductor device, semiconductor device module, and manufacturing method of the semiconductor device
JP5258825B2 (en) Power semiconductor device and manufacturing method thereof
JP2012138475A (en) Semiconductor module and method for manufacturing the same
JP2010050395A (en) Semiconductor device, and method of manufacturing the same
JP5195282B2 (en) Semiconductor device and manufacturing method thereof
JP2007027261A (en) Power module
JP4861200B2 (en) Power module
JP6417898B2 (en) Manufacturing method of semiconductor device
WO2015174198A1 (en) Semiconductor device and manufacturing method therefor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170302

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170310

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180621

R150 Certificate of patent or registration of utility model

Ref document number: 6360035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250