JP6966322B2 - Conductive materials and connection structures - Google Patents

Conductive materials and connection structures Download PDF

Info

Publication number
JP6966322B2
JP6966322B2 JP2017505671A JP2017505671A JP6966322B2 JP 6966322 B2 JP6966322 B2 JP 6966322B2 JP 2017505671 A JP2017505671 A JP 2017505671A JP 2017505671 A JP2017505671 A JP 2017505671A JP 6966322 B2 JP6966322 B2 JP 6966322B2
Authority
JP
Japan
Prior art keywords
solder
conductive
particles
electrode
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017505671A
Other languages
Japanese (ja)
Other versions
JPWO2017130892A1 (en
Inventor
宏 夏井
周治郎 定永
将大 伊藤
秀文 保井
英亮 石澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JPWO2017130892A1 publication Critical patent/JPWO2017130892A1/en
Priority to JP2021137207A priority Critical patent/JP2021185579A/en
Application granted granted Critical
Publication of JP6966322B2 publication Critical patent/JP6966322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/025Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • H05K3/363Assembling flexible printed circuits with other printed circuits by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Description

本発明は、はんだを有する導電性粒子を含む導電材料に関する。また、本発明は、上記導電材料を用いた接続構造体に関する。 The present invention relates to a conductive material containing conductive particles having solder. The present invention also relates to a connection structure using the above conductive material.

異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー中に導電性粒子が分散されている。 Anisotropic conductive materials such as anisotropic conductive pastes and anisotropic conductive films are widely known. In the anisotropic conductive material, the conductive particles are dispersed in the binder.

上記異方性導電材料は、各種の接続構造体を得るために、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等に使用されている。 In order to obtain various connection structures, the anisotropic conductive material may be used, for example, for connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), or connection between a semiconductor chip and a flexible printed circuit board (COF (COF). It is used for Chip on Film)), connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)), and connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)).

上記異方性導電材料により、例えば、フレキシブルプリント基板の電極とガラスエポキシ基板の電極とを電気的に接続する際には、ガラスエポキシ基板上に、導電性粒子を含む異方性導電材料を配置する。次に、フレキシブルプリント基板を積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、導電性粒子を介して電極間を電気的に接続して、接続構造体を得る。 With the anisotropic conductive material, for example, when the electrode of the flexible printed substrate and the electrode of the glass epoxy substrate are electrically connected, the anisotropic conductive material containing the conductive particles is arranged on the glass epoxy substrate. do. Next, the flexible printed substrates are laminated, heated and pressurized. As a result, the anisotropic conductive material is cured, and the electrodes are electrically connected to each other via the conductive particles to obtain a connection structure.

上記異方性導電材料の一例として、下記の特許文献1には、導電性粒子と、該導電性粒子の融点で硬化が完了しない樹脂成分とを含む異方性導電材料が記載されている。上記導電性粒子としては、具体的には、錫(Sn)、インジウム(In)、ビスマス(Bi)、銀(Ag)、銅(Cu)、亜鉛(Zn)、鉛(Pb)、カドミウム(Cd)、ガリウム(Ga)及びタリウム(Tl)等の金属や、これらの金属の合金が挙げられている。 As an example of the anisotropic conductive material, Patent Document 1 below describes an anisotropic conductive material containing conductive particles and a resin component whose curing is not completed at the melting point of the conductive particles. Specific examples of the conductive particles include tin (Sn), indium (In), bismuth (Bi), silver (Ag), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd). ), Metals such as gallium (Ga) and thallium (Tl), and alloys of these metals are mentioned.

特許文献1では、上記導電性粒子の融点よりも高く、かつ上記樹脂成分の硬化が完了しない温度に、異方性導電樹脂を加熱する樹脂加熱ステップと、上記樹脂成分を硬化させる樹脂成分硬化ステップとを経て、電極間を電気的に接続することが記載されている。また、特許文献1には、特許文献1の図8に示された温度プロファイルで実装を行うことが記載されている。特許文献1では、異方性導電樹脂が加熱される温度にて硬化が完了しない樹脂成分内で、導電性粒子が溶融する。 In Patent Document 1, a resin heating step for heating an anisotropic conductive resin to a temperature higher than the melting point of the conductive particles and the curing of the resin component is not completed, and a resin component curing step for curing the resin component. It is described that the electrodes are electrically connected through the above. Further, Patent Document 1 describes that the mounting is performed with the temperature profile shown in FIG. 8 of Patent Document 1. In Patent Document 1, the conductive particles are melted in the resin component whose curing is not completed at the temperature at which the anisotropic conductive resin is heated.

下記の特許文献2には、熱硬化性樹脂を含む樹脂層と、はんだ粉と、硬化剤とを含み、上記はんだ粉と上記硬化剤とが上記樹脂層中に存在する接着テープが開示されている。この接着テープは、フィルム状であり、ペースト状ではない。 Patent Document 2 below discloses an adhesive tape containing a resin layer containing a thermosetting resin, solder powder, and a curing agent, in which the solder powder and the curing agent are present in the resin layer. There is. This adhesive tape is in the form of a film, not in the form of a paste.

下記の特許文献3には、はんだ粒子、熱硬化性樹脂バインダー、及びフラックス成分を含有する熱硬化性樹脂組成物が開示されている。特許文献3では、上記フラックス成分としては、(1)ジカルボン酸もしくはトリカルボン酸とジエタノールアミン類もしくはトリエタノールアミン類との塩、並びに(2)カルボン酸無水物とジエタノールアミン類もしくはトリエタノールアミン類との付加反応物が挙げられている。 Patent Document 3 below discloses a thermosetting resin composition containing solder particles, a thermosetting resin binder, and a flux component. In Patent Document 3, the flux components include (1) a salt of dicarboxylic acid or tricarboxylic acid and diethanolamines or triethanolamines, and (2) addition of carboxylic acid anhydride and diethanolamines or triethanolamines. Reactants are listed.

特開2004−260131号公報Japanese Unexamined Patent Publication No. 2004-260131 WO2008/023452A1WO2008 / 023452A1 特開2013−256584号公報Japanese Unexamined Patent Publication No. 2013-256584

従来のはんだ粉や、はんだ層を表面に有する導電性粒子を含む異方性導電ペーストでは、保存安定性が低いことがある。更に、従来の異方性導電ペーストでは、電極間の接続時に接続対象部材上に導電材料が配置された後、長時間放置された場合、電極上にはんだが凝集しづらくなることがある。結果として、導通信頼性が低くなりやすい。 Conventional solder powder and anisotropic conductive paste containing conductive particles having a solder layer on the surface may have low storage stability. Further, in the conventional anisotropic conductive paste, when the conductive material is placed on the connection target member at the time of connection between the electrodes and then left for a long time, it may be difficult for the solder to aggregate on the electrodes. As a result, continuity reliability tends to be low.

本発明の目的は、保存安定性が高く、接続対象部材上に導電材料が配置された後、長時間放置されても優れたはんだ凝集性を示すことから、高い導通信頼性を発現できる導電材料を提供することである。また、本発明の目的は、上記導電材料を用いた接続構造体を提供することである。 An object of the present invention is a conductive material capable of exhibiting high conduction reliability because it has high storage stability and exhibits excellent solder cohesiveness even when the conductive material is placed on a member to be connected and then left for a long time. Is to provide. Another object of the present invention is to provide a connection structure using the above conductive material.

本発明の広い局面によれば、導電部の外表面部分に、はんだを有する複数の導電性粒子と、熱硬化性成分と、フラックスとを含み、前記フラックスが、酸と塩基との塩であり、25℃の導電材料中で、前記フラックスが25℃で固体で存在する、導電材料が提供される。 According to a broad aspect of the present invention, the outer surface portion of the conductive portion contains a plurality of conductive particles having solder, a thermosetting component, and a flux, and the flux is a salt of an acid and a base. , A conductive material in which the flux is present as a solid at 25 ° C. in a conductive material at 25 ° C. is provided.

本発明に係る導電材料のある特定の局面では、前記導電性粒子及び前記熱硬化性成分と混合されていない状態で、前記フラックス単体が、25℃で固体である。 In a particular aspect of the conductive material according to the present invention, the flux alone is solid at 25 ° C. without being mixed with the conductive particles and the thermosetting component.

本発明に係る導電材料のある特定の局面では、前記フラックスが、カルボキシル基を有する有機化合物とアミノ基を有する有機化合物との塩である。 In certain aspects of the conductive material according to the present invention, the flux is a salt of an organic compound having a carboxyl group and an organic compound having an amino group.

本発明に係る導電材料のある特定の局面では、25℃の導電材料中で、前記フラックスの平均粒子径が、30μm以下である。 In a specific aspect of the conductive material according to the present invention, the average particle size of the flux is 30 μm or less in the conductive material at 25 ° C.

本発明に係る導電材料のある特定の局面では、25℃の導電材料中で、前記フラックスの平均粒子径の、前記導電性粒子の平均粒子径に対する比が、3以下である。 In a particular aspect of the conductive material according to the present invention, the ratio of the average particle size of the flux to the average particle size of the conductive particles in the conductive material at 25 ° C. is 3 or less.

本発明に係る導電材料のある特定の局面では、前記フラックスの融点が、前記導電性粒子におけるはんだの融点−50℃以上、前記導電性粒子におけるはんだの融点+50℃以下である。 In a specific aspect of the conductive material according to the present invention, the melting point of the flux is -50 ° C or higher for the melting point of the solder in the conductive particles and + 50 ° C or lower for the melting point of the solder in the conductive particles.

本発明に係る導電材料のある特定の局面では、前記導電性粒子がはんだ粒子である。 In certain aspects of the conductive material according to the present invention, the conductive particles are solder particles.

本発明に係る導電材料のある特定の局面では、前記熱硬化性成分が、トリアジン骨格を有する熱硬化性化合物を含む。 In certain aspects of the conductive material according to the present invention, the thermosetting component comprises a thermosetting compound having a triazine skeleton.

本発明に係る導電材料のある特定の局面では、前記導電性粒子の表面上に、前記フラックスが付着している。 In certain aspects of the conductive material according to the present invention, the flux adheres to the surface of the conductive particles.

本発明に係る導電材料のある特定の局面では、前記導電性粒子の平均粒子径が1μm以上、40μm以下である。 In a specific aspect of the conductive material according to the present invention, the average particle size of the conductive particles is 1 μm or more and 40 μm or less.

本発明に係る導電材料のある特定の局面では、前記導電材料100重量%中、前記導電性粒子の含有量が10重量%以上、90重量%以下である。 In a specific aspect of the conductive material according to the present invention, the content of the conductive particles is 10% by weight or more and 90% by weight or less in 100% by weight of the conductive material.

本発明に係る導電材料のある特定の局面では、前記導電材料は、導電ペーストである。 In certain aspects of the conductive material according to the present invention, the conductive material is a conductive paste.

本発明の広い局面によれば、少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した導電材料であり、前記第1の電極と前記第2の電極とが前記接続部中のはんだ部により電気的に接続されている、接続構造体が提供される。 According to a broad aspect of the present invention, a first connection target member having at least one first electrode on the surface, a second connection target member having at least one second electrode on the surface, and the first connection target member. The connection target member and the connection portion connecting the second connection target member are provided, and the material of the connection portion is the above-mentioned conductive material, and the first electrode and the second electrode are used. Provided is a connection structure in which is electrically connected by a solder portion in the connection portion.

本発明に係る接続構造体のある特定の局面では、前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている。 In a specific aspect of the connection structure according to the present invention, the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode. When looking at the portion, the solder portion in the connection portion is arranged in 50% or more of the area of 100% of the portion where the first electrode and the second electrode face each other.

本発明に係る導電材料は、導電部の外表面部分に、はんだを有する複数の導電性粒子と、熱硬化性成分と、フラックスとを含み、上記フラックスが、酸と塩基との塩であり、25℃の導電材料中で、上記フラックスが固体で存在するので、導電材料の保存安定性を高めることができ、かつ、接続対象部材上に導電材料が配置された後、長時間放置されても優れたはんだ凝集性を示すことから、高い導通信頼性を発現できる。 The conductive material according to the present invention contains a plurality of conductive particles having solder, a thermosetting component, and a flux on the outer surface portion of the conductive portion, and the flux is a salt of an acid and a base. Since the flux exists as a solid in the conductive material at 25 ° C., the storage stability of the conductive material can be improved, and even if the conductive material is left on the connecting target member for a long time after being arranged. Since it exhibits excellent solder cohesiveness, high conduction reliability can be exhibited.

図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a connection structure obtained by using the conductive material according to the embodiment of the present invention. 図2(a)〜(c)は、本発明の一実施形態に係る導電材料を用いて、接続構造体を製造する方法の一例の各工程を説明するための断面図である。2 (a) to 2 (c) are cross-sectional views for explaining each step of an example of a method of manufacturing a connection structure using the conductive material according to the embodiment of the present invention. 図3は、接続構造体の変形例を示す断面図である。FIG. 3 is a cross-sectional view showing a modified example of the connection structure. 図4は、導電材料に使用可能な導電性粒子の第1の例を示す断面図である。FIG. 4 is a cross-sectional view showing a first example of conductive particles that can be used as a conductive material. 図5は、導電材料に使用可能な導電性粒子の第2の例を示す断面図である。FIG. 5 is a cross-sectional view showing a second example of conductive particles that can be used as a conductive material. 図6は、導電材料に使用可能な導電性粒子の第3の例を示す断面図である。FIG. 6 is a cross-sectional view showing a third example of conductive particles that can be used as a conductive material.

以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.

(導電材料)
本発明に係る導電材料は、複数の導電性粒子と、バインダーとを含む。上記導電性粒子は、導電部を有する。上記導電性粒子は、導電部の外表面部分に、はんだを有する。はんだは、導電部に含まれ、導電部の一部又は全部である。上記バインダーは、上記導電材料に含まれる導電性粒子を除く成分である。
(Conductive material)
The conductive material according to the present invention includes a plurality of conductive particles and a binder. The conductive particles have a conductive portion. The conductive particles have solder on the outer surface portion of the conductive portion. Solder is contained in the conductive portion and is a part or all of the conductive portion. The binder is a component excluding conductive particles contained in the conductive material.

本発明に係る導電材料は、上記バインダーとして、熱硬化性成分とフラックスとを含む。上記熱硬化性成分は、熱硬化性化合物と、熱硬化剤とを含むことが好ましい。 The conductive material according to the present invention contains a thermosetting component and a flux as the binder. The thermosetting component preferably contains a thermosetting compound and a thermosetting agent.

本発明に係る導電材料では、上記フラックスが、酸と塩基との塩である。更に、本発明に係る導電材料では、25℃の導電材料中で、上記フラックスが固体で存在する。より具体的には、本発明に係る導電材料では、25℃の導電材料中で、上記フラックスが25℃で固体で存在する。 In the conductive material according to the present invention, the flux is a salt of an acid and a base. Further, in the conductive material according to the present invention, the flux exists as a solid in the conductive material at 25 ° C. More specifically, in the conductive material according to the present invention, the flux exists as a solid at 25 ° C. in the conductive material at 25 ° C.

なお、上記フラックスが25℃の導電材料中で固体であるか否かについては、以下のように判断することができる。本明細書において、25℃で液体ではないフラックスに関しては、25℃でフラックスを含む導電材料を5分間静置したときに形状を保つフラックスを、25℃で固体のフラックスと定義し、25℃でフラックスを含む導電材料を5分間静置したときに形状を保たないフラックスを25℃で半固体のフラックスと定義する。また、25℃で半固体のフラックスは、25℃で固体のフラックスに含まれない。 Whether or not the flux is a solid in a conductive material at 25 ° C. can be determined as follows. In the present specification, with respect to a flux that is not liquid at 25 ° C, a flux that retains its shape when a conductive material containing a flux is allowed to stand at 25 ° C for 5 minutes is defined as a solid flux at 25 ° C, and is defined as a solid flux at 25 ° C. A flux that does not retain its shape when the conductive material containing the flux is allowed to stand for 5 minutes is defined as a semi-solid flux at 25 ° C. Further, the flux that is semi-solid at 25 ° C. is not included in the flux that is solid at 25 ° C.

本発明では、上記の構成が備えられているので、導電材料の保存安定性を高めることができる。更に、本発明では、上記の構成が備えられているので、接続対象部材上に導電材料が配置された後、長時間放置されても優れたはんだ凝集性を示すことから、高い導通信頼性を発現できる。 In the present invention, since the above configuration is provided, the storage stability of the conductive material can be improved. Further, in the present invention, since the above-mentioned configuration is provided, excellent solder cohesiveness is exhibited even if the conductive material is placed on the connecting target member and then left for a long time, so that high conduction reliability can be achieved. Can be expressed.

本発明では、上記導電性粒子及び上記熱硬化性成分と混合されていない状態で、上記フラックス単体が、25℃で固体であることが好ましい。上記導電性粒子及び上記熱硬化性成分と混合される前の上記フラックス単体が、25℃で固体であることが好ましい。これらの場合には、25℃の導電材料中で、上記フラックスを固体で存在させることが容易である。 In the present invention, it is preferable that the flux alone is a solid at 25 ° C. without being mixed with the conductive particles and the thermosetting component. It is preferable that the flux alone before being mixed with the conductive particles and the thermosetting component is solid at 25 ° C. In these cases, it is easy to allow the flux to exist as a solid in a conductive material at 25 ° C.

なお、上記フラックス単体が25℃で固体であるか否かについては、以下のように判断することができる。本明細書において、25℃で液体ではないフラックスに関しては、25℃でフラックス単体を5分間静置したときに形状を保つフラックスを、25℃で固体のフラックスと定義し、25℃でフラックス単体を5分間静置したときに形状を保たないフラックスを25℃で半固体のフラックスと定義する。また、25℃で半固体のフラックスは、25℃で固体のフラックスに含まれない。 Whether or not the flux alone is solid at 25 ° C. can be determined as follows. In the present specification, with respect to a flux that is not liquid at 25 ° C, a flux that retains its shape when the flux alone is allowed to stand at 25 ° C for 5 minutes is defined as a solid flux at 25 ° C, and the flux alone is defined as a flux at 25 ° C. A flux that does not retain its shape when left to stand for 5 minutes is defined as a semi-solid flux at 25 ° C. Further, the flux that is semi-solid at 25 ° C. is not included in the flux that is solid at 25 ° C.

接続構造体を得る際には、第1の接続対象部材上に導電材料を配置した後、第1の接続対象部材と導電材料との積層体が、導電材料上に第2の接続対象部材を配置する前に、一時的に保管されることがある。本発明では、上記積層体が保管されたとしても、導通信頼性に優れた接続構造体を得ることができる。 When obtaining the connection structure, after the conductive material is placed on the first connection target member, the laminate of the first connection target member and the conductive material forms the second connection target member on the conductive material. May be temporarily stored before placement. In the present invention, even if the laminated body is stored, a connection structure having excellent conduction reliability can be obtained.

また、本発明では、上記の構成が備えられているので、電極幅が狭くても導電性粒子におけるはんだを電極上に効率的に配置することができる。電極幅が狭い場合に、電極上に導電性粒子のはんだを寄せ集めにくい傾向があるが、本発明では、電極幅が狭くても、電極上にはんだを充分に寄せ集めることができる。本発明では、上記の構成が備えられているので、電極間を電気的に接続した場合に、導電性粒子におけるはんだが、上下の対向した電極間に位置しやすく、導電性粒子におけるはんだを電極(ライン)上に効率的に配置することができる。また、本発明では、電極幅が広いと、導電性粒子におけるはんだが電極上により一層効率的に配置される。 Further, in the present invention, since the above configuration is provided, the solder in the conductive particles can be efficiently arranged on the electrode even if the electrode width is narrow. When the electrode width is narrow, it tends to be difficult to collect the solder of the conductive particles on the electrode, but in the present invention, even if the electrode width is narrow, the solder can be sufficiently collected on the electrode. In the present invention, since the above configuration is provided, when the electrodes are electrically connected, the solder in the conductive particles is likely to be located between the upper and lower facing electrodes, and the solder in the conductive particles is placed in the electrodes. It can be efficiently placed on the (line). Further, in the present invention, when the electrode width is wide, the solder in the conductive particles is arranged more efficiently on the electrode.

また、導電性粒子におけるはんだの一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだの量をかなり少なくすることができる。本発明では、対向する電極間に位置していないはんだを、対向する電極間に効率的に移動させることができる。従って、電極間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。 Further, it is difficult for a part of the solder in the conductive particles to be arranged in the region (space) where the electrode is not formed, and the amount of the solder arranged in the region where the electrode is not formed can be considerably reduced. In the present invention, solder that is not located between the facing electrodes can be efficiently moved between the facing electrodes. Therefore, the continuity reliability between the electrodes can be improved. Moreover, it is possible to prevent electrical connection between horizontally adjacent electrodes that should not be connected, and it is possible to improve insulation reliability.

更に、本発明では、導電材料の硬化物の耐熱性を高めることができる。特に、光半導体装置に導電材料を用いた場合に、光照射時に発熱し、導電材料の硬化物が高温下に晒される。本発明に係る導電材料は、硬化物の耐熱性に優れているので、光半導体装置に好適に用いることができる。特に、熱硬化性化合物が、トリアジン骨格を有する熱硬化性化合物を含む場合に、硬化物の耐熱性が高くなる。 Further, in the present invention, the heat resistance of the cured product of the conductive material can be enhanced. In particular, when a conductive material is used in an optical semiconductor device, heat is generated during light irradiation, and the cured product of the conductive material is exposed to a high temperature. Since the conductive material according to the present invention has excellent heat resistance of the cured product, it can be suitably used for an optical semiconductor device. In particular, when the thermosetting compound contains a thermosetting compound having a triazine skeleton, the heat resistance of the cured product becomes high.

更に、本発明では、電極間の位置ずれを防ぐことができる。本発明では、導電材料を上面に配置した第1の接続対象部材に、第2の接続対象部材を重ね合わせた際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態で、第1の接続対象部材と第2の接続対象部材とが重ね合わされた場合でも、そのずれを補正して、第1の接続対象部材の電極と第2の接続対象部材の電極とを接続させることができる(セルフアライメント効果)。 Further, in the present invention, it is possible to prevent the positional deviation between the electrodes. In the present invention, when the second connection target member is superposed on the first connection target member on which the conductive material is arranged on the upper surface, the electrodes of the first connection target member and the electrodes of the second connection target member are used. Even if the first connection target member and the second connection target member are overlapped with each other in a state where the alignment of the first connection target member is misaligned, the misalignment is corrected and the electrode of the first connection target member and the second connection target member are overlapped. It can be connected to the electrodes of the member (self-alignment effect).

導電性粒子におけるはんだを電極上により一層効率的に配置するために、上記導電材料は、25℃で液状であることが好ましく、導電ペーストであることが好ましい。導電性粒子におけるはんだを電極上により一層効率的に配置するために、上記導電材料の25℃での粘度(η25)は好ましくは10Pa・s以上、より好ましくは50Pa・s以上、更に好ましくは100Pa・s以上であり、好ましくは800Pa・s以下、より好ましくは600Pa・s以下、更に好ましくは500Pa・s以下である。上記粘度(η25)は、配合成分の種類及び配合量により適宜調整可能である。 In order to more efficiently arrange the solder in the conductive particles on the electrode, the conductive material is preferably liquid at 25 ° C., and preferably a conductive paste. In order to more efficiently arrange the solder in the conductive particles on the electrode, the viscosity (η25) of the conductive material at 25 ° C. is preferably 10 Pa · s or more, more preferably 50 Pa · s or more, still more preferably 100 Pa · s. -S or more, preferably 800 Pa · s or less, more preferably 600 Pa · s or less, still more preferably 500 Pa · s or less. The viscosity (η25) can be appropriately adjusted depending on the type and amount of the compounding component.

上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定可能である。 The viscosity (η25) can be measured at 25 ° C. and 5 rpm using, for example, an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.).

上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。上記導電フィルムは異方性導電フィルムであることが好ましい。導電性粒子におけるはんだを電極上により一層効率的に配置する観点からは、上記導電材料は、導電ペーストであることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。 The conductive material can be used as a conductive paste, a conductive film, or the like. The conductive film is preferably an anisotropic conductive film. From the viewpoint of more efficiently arranging the solder in the conductive particles on the electrode, the conductive material is preferably a conductive paste. The conductive material is suitably used for electrical connection of electrodes. The conductive material is preferably a circuit connection material.

以下、上記導電材料に含まれる各成分を説明する。なお、本明細書において、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味し、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味し、「(メタ)アクリロイル」は「アクリロイル」と「メタクリロイル」との一方又は双方を意味する。 Hereinafter, each component contained in the conductive material will be described. In the present specification, "(meth) acrylate" means one or both of "acrylate" and "methacrylate", and "(meth) acrylic" means one or both of "acrylic" and "methacrylic". Meaning, "(meth) acryloyl" means one or both of "acryloyl" and "methacrylic".

(導電性粒子)
上記導電性粒子は、接続対象部材の電極間を電気的に接続する。上記導電性粒子は、導電部の外表面部分にはんだを有する。上記導電性粒子は、はんだにより形成されたはんだ粒子であってもよい。上記はんだ粒子は、はんだを導電部の外表面部分に有する。上記はんだ粒子は、中心部分及び導電部の外表面部分のいずれもがはんだにより形成されている。上記はんだ粒子は、中心部分及び導電性の外表面のいずれもがはんだである粒子である。上記はんだ粒子は、コア粒子として、基材粒子を有さない。上記はんだ粒子は、基材粒子と、上記基材粒子の表面上に配置された導電部とを備える導電性粒子とは異なる。上記はんだ粒子は、例えば、はんだを好ましくは80重量%以上、より好ましくは90重量%以上、更に好ましくは95重量%以上で含む。上記導電性粒子は、基材粒子と、該基材粒子の表面上に配置された導電部とを有していてもよい。この場合に、上記導電性粒子は、導電部の外表面部分に、はんだを有する。
(Conductive particles)
The conductive particles electrically connect between the electrodes of the member to be connected. The conductive particles have solder on the outer surface portion of the conductive portion. The conductive particles may be solder particles formed by soldering. The solder particles have solder on the outer surface portion of the conductive portion. In the solder particles, both the central portion and the outer surface portion of the conductive portion are formed of solder. The solder particles are particles in which both the central portion and the conductive outer surface are solder. The solder particles do not have base particles as core particles. The solder particles are different from the conductive particles having the base particles and the conductive portions arranged on the surface of the base particles. The solder particles contain, for example, solder in an amount of preferably 80% by weight or more, more preferably 90% by weight or more, still more preferably 95% by weight or more. The conductive particles may have a base material particles and a conductive portion arranged on the surface of the base material particles. In this case, the conductive particles have solder on the outer surface portion of the conductive portion.

なお、上記はんだ粒子を用いた場合と比べて、はんだにより形成されていない基材粒子と基材粒子の表面上に配置されたはんだ部とを備える導電性粒子を用いた場合には、電極上に導電性粒子が集まりにくくなり、導電性粒子同士のはんだ接合性が低いために、電極上に移動した導電性粒子が電極外に移動しやすくなる傾向があり、電極間の位置ずれの抑制効果も低くなる傾向がある。従って、上記導電性粒子は、はんだにより形成されたはんだ粒子であることが好ましい。 Compared with the case where the above-mentioned solder particles are used, when the conductive particles having the base particles not formed by the solder and the solder portion arranged on the surface of the base particles are used, they are on the electrode. Since the conductive particles are less likely to collect and the solder bondability between the conductive particles is low, the conductive particles that have moved on the electrodes tend to move easily to the outside of the electrodes, and the effect of suppressing the displacement between the electrodes is suppressed. Also tends to be low. Therefore, the conductive particles are preferably solder particles formed by soldering.

接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記導電性粒子の外表面(はんだの外表面)に、カルボキシル基又はアミノ基が存在することが好ましく、カルボキシル基が存在することが好ましく、アミノ基が存在することが好ましい。上記導電性粒子の外表面(はんだの外表面)に、Si−O結合、エーテル結合、エステル結合又は下記式(X)で表される基を介して、カルボキシル基又はアミノ基を含む基が共有結合していることが好ましい。カルボキシル基又はアミノ基を含む基は、カルボキシル基とアミノ基との双方を含んでいてもよい。なお、下記式(X)において、右端部及び左端部は結合部位を表す。 From the viewpoint of effectively lowering the connection resistance in the connection structure and effectively suppressing the generation of voids, the outer surface of the conductive particles (outer surface of the solder) has a carboxyl group or an amino group. Is preferable, a carboxyl group is preferably present, and an amino group is preferably present. A group containing a carboxyl group or an amino group is shared on the outer surface of the conductive particles (outer surface of the solder) via a Si—O bond, an ether bond, an ester bond or a group represented by the following formula (X). It is preferable that they are bonded. The group containing a carboxyl group or an amino group may contain both a carboxyl group and an amino group. In the following formula (X), the right end portion and the left end portion represent a binding site.

Figure 0006966322
Figure 0006966322

はんだの表面に水酸基が存在する。この水酸基とカルボキシル基を含む基とを共有結合させることにより、他の配位結合(キレート配位)等にて結合させる場合よりも強い結合を形成できるため、電極間の接続抵抗を低くし、かつボイドの発生を抑えることが可能な導電性粒子が得られる。 Hydroxyl groups are present on the surface of the solder. By covalently bonding this hydroxyl group and a group containing a carboxyl group, a stronger bond can be formed than in the case of bonding by another coordination bond (chelate coordination) or the like, so that the connection resistance between the electrodes is lowered. Moreover, conductive particles capable of suppressing the generation of voids can be obtained.

上記導電性粒子では、はんだの表面と、カルボキシル基を含む基との結合形態に、配位結合が含まれていなくてもよく、キレート配位による結合が含まれていなくてもよい。 In the above conductive particles, the bonding form between the surface of the solder and the group containing a carboxyl group may not include a coordination bond, or may not include a bond due to a chelate coordination.

接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記導電性粒子は、水酸基と反応可能な官能基とカルボキシル基又はアミノ基とを有する化合物(以下、化合物Xと記載することがある)を用いて、はんだの表面の水酸基に、上記水酸基と反応可能な官能基を反応させることにより得られることが好ましい。上記反応では、共有結合を形成させる。はんだの表面の水酸基と上記化合物Xにおける上記水酸基と反応可能な官能基とを反応させることで、はんだの表面にカルボキシル基又はアミノ基を含む基が共有結合しているはんだ粒子を容易に得ることができ、はんだの表面にエーテル結合又はエステル結合を介してカルボキシル基又はアミノ基を含む基が共有結合しているはんだ粒子を得ることもできる。上記はんだの表面の水酸基に上記水酸基と反応可能な官能基を反応させることで、はんだの表面に、上記化合物Xを共有結合の形態で化学結合させることができる。 From the viewpoint of effectively lowering the connection resistance in the connection structure and effectively suppressing the generation of voids, the conductive particles are compounds having a functional group capable of reacting with a hydroxyl group and a carboxyl group or an amino group (from the viewpoint of effectively suppressing the generation of voids. Hereinafter, it may be referred to as compound X), and it is preferably obtained by reacting a hydroxyl group on the surface of the solder with a functional group capable of reacting with the hydroxyl group. In the above reaction, a covalent bond is formed. By reacting the hydroxyl group on the surface of the solder with the functional group capable of reacting with the hydroxyl group in the compound X, it is possible to easily obtain solder particles in which a group containing a carboxyl group or an amino group is covalently bonded to the surface of the solder. It is also possible to obtain solder particles in which a group containing a carboxyl group or an amino group is covalently bonded to the surface of the solder via an ether bond or an ester bond. By reacting the hydroxyl group on the surface of the solder with a functional group capable of reacting with the hydroxyl group, the compound X can be chemically bonded to the surface of the solder in the form of a covalent bond.

上記水酸基と反応可能な官能基としては、水酸基、カルボキシル基、エステル基及びカルボニル基等が挙げられる。水酸基又はカルボキシル基が好ましい。上記水酸基と反応可能な官能基は、水酸基であってもよく、カルボキシル基であってもよい。 Examples of the functional group capable of reacting with the hydroxyl group include a hydroxyl group, a carboxyl group, an ester group and a carbonyl group. A hydroxyl group or a carboxyl group is preferable. The functional group capable of reacting with the hydroxyl group may be a hydroxyl group or a carboxyl group.

水酸基と反応可能な官能基を有する化合物としては、レブリン酸、グルタル酸、グリコール酸、コハク酸、リンゴ酸、シュウ酸、マロン酸、アジピン酸、5−ケトヘキサン酸、3−ヒドロキシプロピオン酸、4−アミノ酪酸、3−メルカプトプロピオン酸、3−メルカプトイソブチル酸、3−メチルチオプロピオン酸、3−フェニルプロピオン酸、3−フェニルイソブチル酸、4−フェニル酪酸、デカン酸、ドデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、9−ヘキサデセン酸、ヘプタデカン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、(9,12,15)−リノレン酸、ノナデカン酸、アラキジン酸、デカン二酸及びドデカン二酸等が挙げられる。グルタル酸又はグリコール酸が好ましい。上記水酸基と反応可能な官能基を有する化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。上記水酸基と反応可能な官能基を有する化合物は、カルボキシル基を少なくとも1つ有する化合物であることが好ましい。 Compounds having a functional group capable of reacting with a hydroxyl group include levulinic acid, glutaric acid, glycolic acid, succinic acid, malic acid, oxalic acid, malonic acid, adipic acid, 5-ketohexanoic acid, 3-hydroxypropionic acid, 4-. Aminobutyric acid, 3-mercaptopropionic acid, 3-mercaptoisobutyl acid, 3-methylthiopropionic acid, 3-phenylpropionic acid, 3-phenylisobutylic acid, 4-phenylbutyric acid, decanoic acid, dodecanoic acid, tetradecanoic acid, pentadecanoic acid, Hexadecanoic acid, 9-hexadecenoic acid, heptadecanoic acid, stearic acid, oleic acid, bacsenic acid, linoleic acid, (9,12,15) -linolenic acid, nonadecanoic acid, arachidic acid, decanedic acid, dodecanedic acid and the like. Be done. Glutaric acid or glycolic acid is preferred. As the compound having a functional group capable of reacting with the hydroxyl group, only one kind may be used, or two or more kinds may be used in combination. The compound having a functional group capable of reacting with the hydroxyl group is preferably a compound having at least one carboxyl group.

上記化合物Xは、フラックス作用を有することが好ましく、上記化合物Xははんだの表面に結合した状態でフラックス作用を有することが好ましい。フラックス作用を有する化合物は、はんだの表面の酸化膜及び電極の表面の酸化膜を除去可能である。カルボキシル基はフラックス作用を有する。 The compound X preferably has a flux action, and the compound X preferably has a flux action in a state of being bonded to the surface of the solder. The compound having a flux action can remove the oxide film on the surface of the solder and the oxide film on the surface of the electrode. The carboxyl group has a flux action.

フラックス作用を有する化合物としては、レブリン酸、グルタル酸、グリコール酸、アジピン酸、コハク酸、5−ケトヘキサン酸、3−ヒドロキシプロピオン酸、4−アミノ酪酸、3−メルカプトプロピオン酸、3−メルカプトイソブチル酸、3−メチルチオプロピオン酸、3−フェニルプロピオン酸、3−フェニルイソブチル酸及び4−フェニル酪酸等が挙げられる。グルタル酸、アジピン酸又はグリコール酸が好ましい。上記フラックス作用を有する化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 Compounds having a flux action include levulinic acid, glutaric acid, glycolic acid, adipic acid, succinic acid, 5-ketohexanoic acid, 3-hydroxypropionic acid, 4-aminobutyric acid, 3-mercaptopropionic acid, 3-mercaptoisobutyl acid. , 3-Methylthiopropionic acid, 3-phenylpropionic acid, 3-phenylisobutyl acid, 4-phenylbutyric acid and the like. Glutaric acid, adipic acid or glycolic acid are preferred. Only one kind of the above-mentioned compound having a flux action may be used, or two or more kinds may be used in combination.

接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記化合物Xにおける上記水酸基と反応可能な官能基が、水酸基又はカルボキシル基であることが好ましい。上記化合物Xにおける上記水酸基と反応可能な官能基は、水酸基であってもよく、カルボキシル基であってもよい。上記水酸基と反応可能な官能基がカルボキシル基である場合には、上記化合物Xは、カルボキシル基を少なくとも2個有することが好ましい。カルボキシル基を少なくとも2個有する化合物の一部のカルボキシル基を、はんだの表面の水酸基に反応させることで、はんだの表面にカルボキシル基を含む基が共有結合している導電性粒子が得られる。 From the viewpoint of effectively lowering the connection resistance in the connection structure and effectively suppressing the generation of voids, the functional group capable of reacting with the hydroxyl group in the compound X is preferably a hydroxyl group or a carboxyl group. The functional group capable of reacting with the hydroxyl group in the compound X may be a hydroxyl group or a carboxyl group. When the functional group capable of reacting with the hydroxyl group is a carboxyl group, the compound X preferably has at least two carboxyl groups. By reacting a partial carboxyl group of a compound having at least two carboxyl groups with a hydroxyl group on the surface of the solder, conductive particles in which a group containing the carboxyl group is covalently bonded to the surface of the solder can be obtained.

上記導電性粒子の製造方法は、例えば、導電性粒子を用いて、該導電性粒子、水酸基と反応可能な官能基とカルボキシル基とを有する化合物、触媒及び溶媒を混合する工程を備える。上記導電性粒子の製造方法では、上記混合工程により、はんだの表面に、カルボキシル基を含む基が共有結合している導電性粒子を容易に得ることができる。 The method for producing conductive particles includes, for example, a step of mixing the conductive particles, a compound having a functional group capable of reacting with a hydroxyl group and a carboxyl group, a catalyst, and a solvent using the conductive particles. In the method for producing conductive particles, conductive particles in which a group containing a carboxyl group is covalently bonded to the surface of the solder can be easily obtained by the mixing step.

また、上記導電性粒子の製造方法では、導電性粒子を用いて、該導電性粒子、上記水酸基と反応可能な官能基とカルボキシル基とを有する化合物、上記触媒及び上記溶媒を混合し、加熱することが好ましい。混合及び加熱工程により、はんだの表面に、カルボキシル基を含む基が共有結合している導電性粒子をより一層容易に得ることができる。 Further, in the method for producing conductive particles, the conductive particles are mixed with the conductive particles, a compound having a functional group and a carboxyl group capable of reacting with the hydroxyl group, the catalyst and the solvent, and heated. Is preferable. By the mixing and heating steps, conductive particles in which a group containing a carboxyl group is covalently bonded to the surface of the solder can be obtained more easily.

上記溶媒としては、メタノール、エタノール、プロパノール、ブタノール等のアルコール溶媒や、アセトン、メチルエチルケトン、酢酸エチル、トルエン及びキシレン等が挙げられる。上記溶媒は有機溶媒であることが好ましく、トルエンであることがより好ましい。上記溶媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the solvent include alcohol solvents such as methanol, ethanol, propanol and butanol, acetone, methyl ethyl ketone, ethyl acetate, toluene and xylene. The solvent is preferably an organic solvent, more preferably toluene. As the solvent, only one kind may be used, or two or more kinds may be used in combination.

上記触媒としては、p−トルエンスルホン酸、ベンゼンスルホン酸及び10−カンファースルホン酸等が挙げられる。上記触媒は、p−トルエンスルホン酸であることが好ましい。上記触媒は1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the catalyst include p-toluenesulfonic acid, benzenesulfonic acid, 10-camphorsulfonic acid and the like. The catalyst is preferably p-toluenesulfonic acid. Only one type of the catalyst may be used, or two or more types may be used in combination.

上記混合時に加熱することが好ましい。加熱温度は好ましくは90℃以上、より好ましくは100℃以上であり、好ましくは130℃以下、より好ましくは110℃以下である。 It is preferable to heat at the time of the above mixing. The heating temperature is preferably 90 ° C. or higher, more preferably 100 ° C. or higher, preferably 130 ° C. or lower, and more preferably 110 ° C. or lower.

接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記導電性粒子は、イソシアネート化合物を用いて、はんだの表面の水酸基に、上記イソシアネート化合物を反応させる工程を経て得られることが好ましい。上記反応では、共有結合を形成させる。はんだの表面の水酸基と上記イソシアネート化合物とを反応させることで、はんだの表面に、イソシアネート基に由来する基の窒素原子が共有結合している導電性粒子を容易に得ることができる。上記はんだの表面の水酸基に上記イソシアネート化合物を反応させることで、はんだの表面に、イソシアネート基に由来する基を共有結合の形態で化学結合させることができる。 From the viewpoint of effectively lowering the connection resistance in the connection structure and effectively suppressing the generation of voids, the above-mentioned conductive particles use an isocyanate compound and react the above-mentioned isocyanate compound with the hydroxyl group on the surface of the solder. It is preferable that it is obtained through a step of making it. In the above reaction, a covalent bond is formed. By reacting the hydroxyl group on the surface of the solder with the isocyanate compound, conductive particles in which the nitrogen atom of the group derived from the isocyanate group is covalently bonded to the surface of the solder can be easily obtained. By reacting the isocyanate compound with the hydroxyl group on the surface of the solder, a group derived from the isocyanate group can be chemically bonded to the surface of the solder in the form of a covalent bond.

また、イソシアネート基に由来する基には、シランカップリング剤を容易に反応させることができる。上記導電性粒子を容易に得ることができるので、上記カルボキシル基を含む基が、カルボキシル基を有するシランカップリング剤を用いた反応により導入されているか、又は、シランカップリング剤を用いた反応の後に、シランカップリング剤に由来する基にカルボキシル基を少なくとも1つ有する化合物を反応させることで導入されていることが好ましい。上記導電性粒子は、上記イソシアネート化合物を用いて、はんだの表面の水酸基に、上記イソシアネート化合物を反応させた後、カルボキシル基を少なくとも1つ有する化合物を反応させることにより得られることが好ましい。 Further, the silane coupling agent can be easily reacted with the group derived from the isocyanate group. Since the conductive particles can be easily obtained, the group containing the carboxyl group is introduced by the reaction using the silane coupling agent having a carboxyl group, or the reaction using the silane coupling agent. Later, it is preferably introduced by reacting a group derived from a silane coupling agent with a compound having at least one carboxyl group. The conductive particles are preferably obtained by reacting the hydroxyl group on the surface of the solder with the isocyanate compound using the isocyanate compound, and then reacting the compound having at least one carboxyl group.

接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記カルボキシル基を少なくとも1つ有する化合物が、カルボキシル基を複数有することが好ましい。 From the viewpoint of effectively lowering the connection resistance in the connection structure and effectively suppressing the generation of voids, it is preferable that the compound having at least one carboxyl group has a plurality of carboxyl groups.

上記イソシアネート化合物としては、ジフェニルメタン−4,4’−ジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、トルエンジイソシアネート(TDI)及びイソホロンジイソシアネート(IPDI)等が挙げられる。これら以外のイソシアネート化合物を用いてもよい。この化合物をはんだの表面に反応させた後、残イソシアネート基と、その残イソシアネート基と反応性を有し、かつカルボキシル基を有する化合物を反応させることで、はんだの表面に式(X)で表される基を介して、カルボキシル基を導入することができる。 Examples of the isocyanate compound include diphenylmethane-4,4'-diisocyanate (MDI), hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI) and isophorone diisocyanate (IPDI). Isocyanate compounds other than these may be used. After reacting this compound with the surface of the solder, the residual isocyanate group and the compound having reactivity with the residual isocyanate group and having a carboxyl group are reacted, so that the surface of the solder is represented by the formula (X). A carboxyl group can be introduced via the group to be added.

上記イソシアネート化合物としては、不飽和二重結合を有し、かつイソシアネート基を有する化合物を用いてもよい。例えば、2−アクリロイルオキシエチルイソシアネート及び2−イソシアナトエチルメタクリレートが挙げられる。この化合物のイソシアネート基をはんだの表面に反応させた後、残存している不飽和二重結合に対し反応性を有する官能基を有し、かつカルボキシル基を有する化合物を反応させることで、はんだの表面に式(X)で表される基を介して、カルボキシル基を導入することができる。 As the isocyanate compound, a compound having an unsaturated double bond and an isocyanate group may be used. For example, 2-acryloyloxyethyl isocyanate and 2-isocyanatoethyl methacrylate can be mentioned. After reacting the isocyanate group of this compound with the surface of the solder, the compound having a functional group reactive with the remaining unsaturated double bond and having a carboxyl group is reacted to form the solder. A carboxyl group can be introduced on the surface via a group represented by the formula (X).

上記シランカップリング剤としては、3−イソシアネートプロピルトリエトキシシラン(信越シリコーン社製「KBE−9007」)、及び3−イソシアネートプロピルトリメトキシシラン(MOMENTIVE社製「Y−5187」)等が挙げられる。上記シランカップリング剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the silane coupling agent include 3-isocyanatepropyltriethoxysilane (“KBE-9007” manufactured by Shinetsu Silicone Co., Ltd.) and 3-isocyanatepropyltrimethoxysilane (“Y-5187” manufactured by MOMENTIVE). Only one kind of the silane coupling agent may be used, or two or more kinds thereof may be used in combination.

上記カルボキシル基を少なくとも1つ有する化合物としては、レブリン酸、グルタル酸、グリコール酸、コハク酸、リンゴ酸、シュウ酸、マロン酸、アジピン酸、5−ケトヘキサン酸、3−ヒドロキシプロピオン酸、4−アミノ酪酸、3−メルカプトプロピオン酸、3−メルカプトイソブチル酸、3−メチルチオプロピオン酸、3−フェニルプロピオン酸、3−フェニルイソブチル酸、4−フェニル酪酸、デカン酸、ドデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、9−ヘキサデセン酸、ヘプタデカン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、(9,12,15)−リノレン酸、ノナデカン酸、アラキジン酸、デカン二酸及びドデカン二酸等が挙げられる。グルタル酸、アジピン酸又はグリコール酸が好ましい。上記カルボキシル基を少なくとも1つ有する化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the compound having at least one carboxyl group include levulinic acid, glutaric acid, glycolic acid, succinic acid, malic acid, oxalic acid, malonic acid, adipic acid, 5-ketohexanoic acid, 3-hydroxypropionic acid and 4-amino. Buty acid, 3-mercaptopropionic acid, 3-mercaptoisobutyl acid, 3-methylthiopropionic acid, 3-phenylpropionic acid, 3-phenylisobutylic acid, 4-phenylbutyric acid, decanoic acid, dodecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecane Acids, 9-hexadecenoic acid, heptadecanoic acid, stearic acid, oleic acid, baxenoic acid, linoleic acid, (9,12,15) -linolenic acid, nonadecanoic acid, arachidic acid, decanedic acid, dodecanedic acid and the like. .. Glutaric acid, adipic acid or glycolic acid are preferred. As the compound having at least one carboxyl group, only one kind may be used, or two or more kinds may be used in combination.

上記イソシアネート化合物を用いて、はんだの表面の水酸基に、上記イソシアネート化合物を反応させた後、カルボキシル基を複数有する化合物の一部のカルボキシル基を、はんだの表面の水酸基と反応させることで、カルボキシル基を含む基を残存させることができる。 After reacting the isocyanate compound with the hydroxyl group on the surface of the solder using the isocyanate compound, the carboxyl group of a part of the compound having a plurality of carboxyl groups is reacted with the hydroxyl group on the surface of the solder to form a carboxyl group. Groups containing the above can be retained.

上記導電性粒子の製造方法では、導電性粒子を用いて、かつ、イソシアネート化合物を用いて、はんだの表面の水酸基に、上記イソシアネート化合物を反応させた後、カルボキシル基を少なくとも1つ有する化合物を反応させて、はんだの表面に、上記式(X)で表される基を介して、カルボキシル基を含む基が結合している導電性粒子を得る。上記導電性粒子の製造方法では、上記の工程により、はんだの表面に、カルボキシル基を含む基が導入された導電性粒子を容易に得ることができる。 In the method for producing conductive particles, the isocyanate compound is reacted with the hydroxyl group on the surface of the solder by using the conductive particles and the isocyanate compound, and then the compound having at least one carboxyl group is reacted. Then, conductive particles having a group containing a carboxyl group bonded to the surface of the solder via a group represented by the above formula (X) are obtained. In the above-mentioned method for producing conductive particles, conductive particles in which a group containing a carboxyl group is introduced on the surface of the solder can be easily obtained by the above-mentioned steps.

上記導電性粒子の具体的な製造方法としては、以下の方法が挙げられる。有機溶媒に導電性粒子を分散させ、イソシアネート基を有するシランカップリング剤を添加する。その後、導電性粒子のはんだの表面の水酸基とイソシアネート基との反応触媒を用い、はんだの表面にシランカップリング剤を共有結合させる。次に、シランカップリング剤のケイ素原子に結合しているアルコキシ基を加水分解することで、水酸基を生成させる。生成した水酸基に、カルボキシル基を少なくとも1つ有する化合物のカルボキシル基を反応させる。 Specific examples of the method for producing the conductive particles include the following methods. Conductive particles are dispersed in an organic solvent, and a silane coupling agent having an isocyanate group is added. Then, a silane coupling agent is covalently bonded to the surface of the solder by using a reaction catalyst of a hydroxyl group and an isocyanate group on the surface of the solder of the conductive particles. Next, a hydroxyl group is generated by hydrolyzing the alkoxy group bonded to the silicon atom of the silane coupling agent. The generated hydroxyl group is reacted with the carboxyl group of the compound having at least one carboxyl group.

また、上記導電性粒子の具体的な製造方法としては、以下の方法が挙げられる。有機溶媒に導電性粒子を分散させ、イソシアネート基と不飽和二重結合を有する化合物を添加する。その後、導電性粒子のはんだの表面の水酸基とイソシアネート基との反応触媒を用い、共有結合を形成させる。その後、導入された不飽和二重結合に対して、不飽和二重結合、及びカルボキシル基を有する化合物を反応させる。 Moreover, the following method is mentioned as a specific manufacturing method of the said conductive particles. Conductive particles are dispersed in an organic solvent, and a compound having an isocyanate group and an unsaturated double bond is added. Then, a covalent bond is formed by using a reaction catalyst of a hydroxyl group on the surface of the solder of the conductive particles and an isocyanate group. Then, the introduced unsaturated double bond is reacted with the unsaturated double bond and the compound having a carboxyl group.

導電性粒子のはんだの表面の水酸基とイソシアネート基との反応触媒としては、錫系触媒(ジブチル錫ジラウレート等)、アミン系触媒(トリエチレンジアミン等)、カルボキシレート触媒(ナフテン酸鉛、酢酸カリウム等)、及びトリアルキルホスフィン触媒(トリエチルホスフィン等)等が挙げられる。 As reaction catalysts of hydroxyl groups and isocyanate groups on the solder surface of conductive particles, tin-based catalysts (dibutyltin dilaurate, etc.), amine-based catalysts (triethylenediamine, etc.), carboxylate catalysts (lead naphthenate, potassium acetate, etc.) , And a trialkylphosphine catalyst (triethylphosphine, etc.) and the like.

接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記カルボキシル基を少なくとも1つ有する化合物は、下記式(1)で表される化合物であることが好ましい。下記式(1)で表される化合物は、フラックス作用を有する。また、下記式(1)で表される化合物は、はんだの表面に導入された状態でフラックス作用を有する。 From the viewpoint of effectively lowering the connection resistance in the connection structure and effectively suppressing the generation of voids, the compound having at least one carboxyl group is a compound represented by the following formula (1). Is preferable. The compound represented by the following formula (1) has a flux action. Further, the compound represented by the following formula (1) has a flux action in a state of being introduced into the surface of the solder.

Figure 0006966322
Figure 0006966322

上記式(1)中、Xは、水酸基と反応可能な官能基を表し、Rは、炭素数1〜5の2価の有機基を表す。該有機基は、炭素原子と水素原子と酸素原子とを含んでいてもよい。該有機基は炭素数1〜5の2価の炭化水素基であってもよい。上記有機基の主鎖は2価の炭化水素基であることが好ましい。該有機基では、2価の炭化水素基にカルボキシル基や水酸基が結合していてもよい。上記式(1)で表される化合物には、例えばクエン酸が含まれる。 In the above formula (1), X represents a functional group capable of reacting with a hydroxyl group, and R represents a divalent organic group having 1 to 5 carbon atoms. The organic group may contain a carbon atom, a hydrogen atom and an oxygen atom. The organic group may be a divalent hydrocarbon group having 1 to 5 carbon atoms. The main chain of the organic group is preferably a divalent hydrocarbon group. In the organic group, a carboxyl group or a hydroxyl group may be bonded to a divalent hydrocarbon group. The compound represented by the above formula (1) includes, for example, citric acid.

上記カルボキシル基を少なくとも1つ有する化合物は、下記式(1A)又は下記式(1B)で表される化合物であることが好ましい。上記カルボキシル基を少なくとも1つ有する化合物は、下記式(1A)で表される化合物であることが好ましく、下記式(1B)で表される化合物であることがより好ましい。 The compound having at least one carboxyl group is preferably a compound represented by the following formula (1A) or the following formula (1B). The compound having at least one carboxyl group is preferably a compound represented by the following formula (1A), and more preferably a compound represented by the following formula (1B).

Figure 0006966322
Figure 0006966322

上記式(1A)中、Rは、炭素数1〜5の2価の有機基を表す。上記式(1A)中のRは上記式(1)中のRと同様である。 In the above formula (1A), R represents a divalent organic group having 1 to 5 carbon atoms. The R in the above formula (1A) is the same as the R in the above formula (1).

Figure 0006966322
Figure 0006966322

上記式(1B)中、Rは、炭素数1〜5の2価の有機基を表す。上記式(1B)中のRは上記式(1)中のRと同様である。 In the above formula (1B), R represents a divalent organic group having 1 to 5 carbon atoms. The R in the above formula (1B) is the same as the R in the above formula (1).

はんだの表面に、下記式(2A)又は下記式(2B)で表される基が結合していることが好ましい。はんだの表面に、下記式(2A)で表される基が結合していることが好ましく、下記式(2B)で表される基が結合していることがより好ましい。なお、下記式(2A)及び下記式(2B)において、左端部は結合部位を表す。 It is preferable that a group represented by the following formula (2A) or the following formula (2B) is bonded to the surface of the solder. It is preferable that the group represented by the following formula (2A) is bonded to the surface of the solder, and it is more preferable that the group represented by the following formula (2B) is bonded. In the following formula (2A) and the following formula (2B), the left end portion represents a binding site.

Figure 0006966322
Figure 0006966322

上記式(2A)中、Rは、炭素数1〜5の2価の有機基を表す。上記式(2A)中のRは上記式(1)中のRと同様である。 In the above formula (2A), R represents a divalent organic group having 1 to 5 carbon atoms. The R in the above formula (2A) is the same as the R in the above formula (1).

Figure 0006966322
Figure 0006966322

上記式(2B)中、Rは、炭素数1〜5の2価の有機基を表す。上記式(2B)中のRは上記式(1)中のRと同様である。 In the above formula (2B), R represents a divalent organic group having 1 to 5 carbon atoms. The R in the above formula (2B) is the same as the R in the above formula (1).

はんだの表面の濡れ性を高める観点からは、上記カルボキシル基を少なくとも1つ有する化合物の分子量は、好ましくは10000以下、より好ましくは1000以下、更に好ましくは500以下である。マイグレーションをより一層効果的に抑制する観点、及び接続構造体における接続抵抗をより一層効果的に低くする観点からは、上記カルボキシル基を少なくとも1つ有する化合物の分子量は、好ましくは80以上、より好ましくは100以上、更に好ましくは120以上である。 From the viewpoint of enhancing the wettability of the surface of the solder, the molecular weight of the compound having at least one carboxyl group is preferably 10,000 or less, more preferably 1000 or less, still more preferably 500 or less. From the viewpoint of suppressing migration more effectively and further effectively lowering the connection resistance in the connection structure, the molecular weight of the compound having at least one carboxyl group is preferably 80 or more, more preferably. Is 100 or more, more preferably 120 or more.

上記分子量は、上記カルボキシル基を少なくとも1つ有する化合物が重合体ではない場合、及び上記カルボキシル基を少なくとも1つ有する化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記カルボキシル基を少なくとも1つ有する化合物が重合体である場合は、重量平均分子量を意味する。 The molecular weight means a molecular weight that can be calculated from the structural formula when the compound having at least one carboxyl group is not a polymer and when the structural formula of the compound having at least one carboxyl group can be specified. When the compound having at least one carboxyl group is a polymer, it means the weight average molecular weight.

導電接続時に導電性粒子の凝集性を効果的に高めることができることから、上記導電性粒子は、導電性粒子本体と、上記導電性粒子本体の表面上に配置されたアニオンポリマーとを有することが好ましい。上記導電性粒子は、導電性粒子本体をアニオンポリマー又はアニオンポリマーとなる化合物で表面処理することにより得られることが好ましい。上記導電性粒子は、アニオンポリマー又はアニオンポリマーとなる化合物による表面処理物であることが好ましい。上記アニオンポリマー及び上記アニオンポリマーとなる化合物はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。上記アニオンポリマーは、酸性基を有するポリマーである。 Since the cohesiveness of the conductive particles can be effectively enhanced at the time of conductive connection, the conductive particles may have a conductive particle main body and an anionic polymer arranged on the surface of the conductive particle main body. preferable. The conductive particles are preferably obtained by surface-treating the main body of the conductive particles with an anionic polymer or a compound to be an anionic polymer. The conductive particles are preferably a surface-treated product of an anionic polymer or a compound that becomes an anionic polymer. Only one kind of the anion polymer and the compound to be the anion polymer may be used, or two or more kinds may be used in combination. The anionic polymer is a polymer having an acidic group.

導電性粒子本体をアニオンポリマーで表面処理する方法としては、アニオンポリマーとして、例えば(メタ)アクリル酸を共重合した(メタ)アクリルポリマー、ジカルボン酸とジオールとから合成されかつ両末端にカルボキシル基を有するポリエステルポリマー、ジカルボン酸の分子間脱水縮合反応により得られかつ両末端にカルボキシル基を有するポリマー、ジカルボン酸とジアミンとから合成されかつ両末端にカルボキシル基を有するポリエステルポリマー、並びにカルボキシル基を有する変性ポバール(日本合成化学社製「ゴーセネックスT」)等を用いて、アニオンポリマーのカルボキシル基と、導電性粒子本体の表面の水酸基とを反応させる方法が挙げられる。 As a method of surface-treating the main body of the conductive particles with an anionic polymer, for example, as an anionic polymer, a (meth) acrylic polymer copolymerized with (meth) acrylic acid, which is synthesized from a dicarboxylic acid and a diol and has carboxyl groups at both ends. Polyester polymer having, polymer obtained by intermolecular dehydration condensation reaction of dicarboxylic acid and having carboxyl group at both ends, polyester polymer synthesized from dicarboxylic acid and diamine and having carboxyl group at both ends, and modification having carboxyl group A method of reacting the carboxyl group of the anionic polymer with the hydroxyl group on the surface of the conductive particle body by using Poval (“Gosenex T” manufactured by Nippon Synthetic Chemical Co., Ltd.) can be mentioned.

上記アニオンポリマーのアニオン部分としては、上記カルボキシル基が挙げられ、それ以外には、トシル基(p−HCCS(=O)−)、スルホン酸イオン基(−SO )、及びリン酸イオン基(−PO )等が挙げられる。Examples of the anionic moiety of the anionic polymer include the carboxyl group, and other than that, a tosyl group (p-H 3 CC 6 H 4 S (= O) 2- ) and a sulfonic acid ion group (-SO 3 −). ), and phosphate ionic groups (-PO 4 -), and the like.

また、表面処理の他の方法としては、導電性粒子本体の表面の水酸基と反応する官能基を有し、更に、付加、縮合反応により重合可能な官能基を有する化合物を用いて、この化合物を導電性粒子本体の表面上にてポリマー化する方法が挙げられる。導電性粒子本体の表面の水酸基と反応する官能基としては、カルボキシル基、及びイソシアネート基等が挙げられ、付加、縮合反応により重合する官能基としては、水酸基、カルボキシル基、アミノ基、及び(メタ)アクリロイル基が挙げられる。 Further, as another method of surface treatment, a compound having a functional group that reacts with a hydroxyl group on the surface of the conductive particle body and further having a functional group that can be polymerized by an addition or condensation reaction is used to obtain this compound. Examples thereof include a method of polymerizing on the surface of the conductive particle body. Examples of the functional group that reacts with the hydroxyl group on the surface of the conductive particle body include a carboxyl group and an isocyanate group, and examples of the functional group polymerized by the addition and condensation reaction include a hydroxyl group, a carboxyl group, an amino group, and (meth). ) Acryloyl group is mentioned.

上記アニオンポリマーの重量平均分子量は好ましくは2000以上、より好ましくは3000以上であり、好ましくは10000以下、より好ましくは8000以下である。上記重量平均分子量が上記下限以上及び上記上限以下であると、導電性粒子の表面に十分な量の電荷、及びフラックス性を導入することができる。これにより、導電接続時に導電性粒子の凝集性を効果的に高めることができ、かつ、接続対象部材の接続時に、電極の表面の酸化膜を効果的に除去することができる。 The weight average molecular weight of the anionic polymer is preferably 2000 or more, more preferably 3000 or more, preferably 10,000 or less, and more preferably 8000 or less. When the weight average molecular weight is not less than the above lower limit and not more than the above upper limit, a sufficient amount of charge and flux property can be introduced on the surface of the conductive particles. Thereby, the cohesiveness of the conductive particles can be effectively enhanced at the time of conductive connection, and the oxide film on the surface of the electrode can be effectively removed at the time of connecting the member to be connected.

上記重量平均分子量が上記下限以上及び上記上限以下であると、導電性粒子本体の表面上にアニオンポリマーを配置することが容易であり、導電接続時に導電性粒子の凝集性を効果的に高めることができ、電極上に導電性粒子をより一層効率的に配置することができる。 When the weight average molecular weight is equal to or higher than the lower limit and lower than the upper limit, it is easy to dispose the anionic polymer on the surface of the conductive particle body, and the agglomeration of the conductive particles is effectively enhanced at the time of conductive connection. And the conductive particles can be arranged more efficiently on the electrodes.

上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。 The weight average molecular weight indicates the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).

導電性粒子本体をアニオンポリマーとなる化合物で表面処理することにより得られたポリマーの重量平均分子量は、導電性粒子中のはんだを溶解し、ポリマーの分解を起こさない希塩酸等により、導電性粒子を除去した後、残存しているポリマーの重量平均分子量を測定することで求めることができる。 The weight average molecular weight of the polymer obtained by surface-treating the main body of the conductive particles with a compound that becomes an anionic polymer is that the conductive particles are made of dilute hydrochloric acid or the like that dissolves the solder in the conductive particles and does not cause decomposition of the polymer. After removal, it can be determined by measuring the weight average molecular weight of the remaining polymer.

アニオンポリマーの導電性粒子の表面における導入量に関しては、導電性粒子1gあたりの酸価が、好ましくは1mgKOH以上、より好ましくは2mgKOH以上であり、好ましくは10mgKOH以下、より好ましくは6mgKOH以下である。 Regarding the amount of the anionic polymer introduced on the surface of the conductive particles, the acid value per 1 g of the conductive particles is preferably 1 mgKOH or more, more preferably 2 mgKOH or more, preferably 10 mgKOH or less, and more preferably 6 mgKOH or less.

上記酸価は以下のようにして測定可能である。導電性粒子1gを、アセトン36gに添加し、超音波にて1分間分散させる。その後、指示薬として、フェノールフタレインを用い、0.1mol/Lの水酸化カリウムエタノール溶液にて滴定する。 The acid value can be measured as follows. 1 g of conductive particles are added to 36 g of acetone and dispersed by ultrasonic waves for 1 minute. Then, phenolphthalein is used as an indicator and titrated with a 0.1 mol / L potassium hydroxide ethanol solution.

次に、図面を参照しつつ、導電性粒子の具体例を説明する。 Next, a specific example of the conductive particles will be described with reference to the drawings.

図4は、導電材料に使用可能な導電性粒子の第1の例を示す断面図である。 FIG. 4 is a cross-sectional view showing a first example of conductive particles that can be used as a conductive material.

図4に示す導電性粒子21は、はんだ粒子である。導電性粒子21は、全体がはんだにより形成されている。導電性粒子21は、基材粒子をコアに有さず、コア−シェル粒子ではない。導電性粒子21は、中心部分及び導電部の外表面部分のいずれもがはんだにより形成されている。 The conductive particles 21 shown in FIG. 4 are solder particles. The conductive particles 21 are entirely formed of solder. The conductive particles 21 do not have the base particles in the core and are not core-shell particles. In the conductive particles 21, both the central portion and the outer surface portion of the conductive portion are formed of solder.

図5は、導電材料に使用可能な導電性粒子の第2の例を示す断面図である。 FIG. 5 is a cross-sectional view showing a second example of conductive particles that can be used as a conductive material.

図5に示す導電性粒子31は、基材粒子32と、基材粒子32の表面上に配置された導電部33とを備える。導電部33は、基材粒子32の表面を被覆している。導電性粒子31は、基材粒子32の表面が導電部33により被覆された被覆粒子である。 The conductive particle 31 shown in FIG. 5 includes a base particle 32 and a conductive portion 33 arranged on the surface of the base particle 32. The conductive portion 33 covers the surface of the base particle 32. The conductive particles 31 are coated particles in which the surface of the base particles 32 is coated with the conductive portion 33.

導電部33は、第2の導電部33Aと、はんだ部33B(第1の導電部)とを有する。導電性粒子31は、基材粒子32と、はんだ部33Bとの間に、第2の導電部33Aを備える。従って、導電性粒子31は、基材粒子32と、基材粒子32の表面上に配置された第2の導電部33Aと、第2の導電部33Aの外表面上に配置されたはんだ部33Bとを備える。 The conductive portion 33 has a second conductive portion 33A and a solder portion 33B (first conductive portion). The conductive particle 31 includes a second conductive portion 33A between the base particle 32 and the solder portion 33B. Therefore, the conductive particles 31 include the base particles 32, the second conductive portion 33A arranged on the surface of the base particles 32, and the solder portion 33B arranged on the outer surface of the second conductive portion 33A. And prepare.

図6は、導電材料に使用可能な導電性粒子の第3の例を示す断面図である。 FIG. 6 is a cross-sectional view showing a third example of conductive particles that can be used as a conductive material.

上記のように、導電性粒子31における導電部33は2層構造を有する。図6に示す導電性粒子41は、単層の導電部として、はんだ部42を有する。導電性粒子41は、基材粒子32と、基材粒子32の表面上に配置されたはんだ部42とを備える。 As described above, the conductive portion 33 in the conductive particles 31 has a two-layer structure. The conductive particles 41 shown in FIG. 6 have a solder portion 42 as a single-layer conductive portion. The conductive particles 41 include a base particle 32 and a solder portion 42 arranged on the surface of the base particle 32.

上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることが好ましい。上記基材粒子は、銅粒子であってもよい。 Examples of the base particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles. The base particles are preferably base particles excluding metal, and are preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles. The base particles may be copper particles.

上記樹脂粒子を形成するための樹脂として、種々の有機物が好適に用いられる。上記樹脂粒子を形成するための樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン系共重合体等が挙げられる。上記ジビニルベンゼン系共重合体等としては、ジビニルベンゼン−スチレン共重合体及びジビニルベンゼン−(メタ)アクリル酸エステル共重合体等が挙げられる。上記樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Various organic substances are preferably used as the resin for forming the resin particles. Examples of the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene and polybutadiene; acrylic resins such as polymethylmethacrylate and polymethylacrylate; polycarbonate. , Polyaldehyde, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide , Polyacetal, polyimide, polyamideimide, polyether ether ketone, polyether sulfone, divinylbenzene polymer, divinylbenzene-based copolymer and the like. Examples of the divinylbenzene-based copolymer and the like include a divinylbenzene-styrene copolymer and a divinylbenzene- (meth) acrylic acid ester copolymer. Since the hardness of the resin particles can be easily controlled within a suitable range, the resin for forming the resin particles is a weight obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferably coalesced.

上記樹脂粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合には、該エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the resin particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, the polymerizable monomer having an ethylenically unsaturated group is a non-crosslinkable monomer. Examples thereof include crosslinkable monomers.

上記非架橋性の単量体としては、例えば、スチレン、α−メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2−ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル化合物;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。 Examples of the non-crosslinkable monomer include styrene-based monomers such as styrene and α-methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; and methyl ( Meta) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) Alkyl (meth) acrylate compounds such as meta) acrylate and isobornyl (meth) acrylate; oxygen atoms such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate and glycidyl (meth) acrylate. Containing (meth) acrylate compound; nitrile-containing monomer such as (meth) acrylonitrile; vinyl ether compound such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether; acid vinyl ester such as vinyl acetate, vinyl butyrate, vinyl laurate, vinyl stearate, etc. Compounds; unsaturated hydrocarbons such as ethylene, propylene, isoprene, and butadiene; halogen-containing monomers such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride, and chlorstyrene. Can be mentioned.

上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ−(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。 Examples of the crosslinkable monomer include tetramethylol methanetetra (meth) acrylate, tetramethylol methanetri (meth) acrylate, tetramethylol methanedi (meth) acrylate, trimethylol propanetri (meth) acrylate, and dipenta. Elythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylate compounds such as acrylates, (poly) tetramethylene glycol di (meth) acrylates, 1,4-butanediol di (meth) acrylates; triallyl (iso) cyanurate, triallyl trimellitate, divinylbenzene, Examples thereof include silane-containing monomers such as diallyl phthalate, diallyl acrylamide, diallyl ether, γ- (meth) acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, and vinyltrimethoxysilane.

上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。 The resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of swelling and polymerizing a monomer together with a radical polymerization initiator using non-crosslinked seed particles.

上記基材粒子が金属を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子を形成するための無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 When the base particle is an inorganic particle other than a metal or an organic-inorganic hybrid particle, examples of the inorganic substance for forming the base particle include silica, alumina, barium titanate, zirconia, and carbon black. The particles formed of the silica are not particularly limited, but for example, after hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form crosslinked polymer particles, firing is performed as necessary. Examples include particles obtained by doing so. Examples of the organic-inorganic hybrid particles include organic-inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.

上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。上記基材粒子が金属粒子である場合に、該金属粒子は銅粒子であることが好ましい。但し、上記基材粒子は金属粒子ではないことが好ましい。 When the base material particles are metal particles, examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium. When the base material particles are metal particles, it is preferable that the metal particles are copper particles. However, it is preferable that the base particles are not metal particles.

上記基材粒子の表面上に導電部を形成する方法、並びに上記基材粒子の表面上又は上記第2の導電部の表面上にはんだ部を形成する方法は特に限定されない。上記導電部及び上記はんだ部を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、メカノケミカル反応による方法、物理的蒸着又は物理的吸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。無電解めっき、電気めっき又は物理的な衝突による方法が好適である。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法では、例えば、シーターコンポーザ(徳寿工作所社製)等が用いられる。 The method of forming the conductive portion on the surface of the base material particles and the method of forming the solder portion on the surface of the base material particles or on the surface of the second conductive portion are not particularly limited. Examples of the method for forming the conductive portion and the solder portion include a method by electroplating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption, and the like. Further, a method of coating the surface of the base material particles with a metal powder or a paste containing the metal powder and the binder and the like can be mentioned. Electroless plating, electroplating or physical collision methods are preferred. Examples of the method by physical vapor deposition include methods such as vacuum deposition, ion plating, and ion sputtering. Further, in the above-mentioned physical collision method, for example, a seater composer (manufactured by Tokuju Kosakusho Co., Ltd.) or the like is used.

上記基材粒子の融点は、上記はんだ部の融点よりも高いことが好ましい。上記基材粒子の融点は、好ましくは160℃を超え、より好ましくは300℃を超え、更に好ましくは400℃を超え、特に好ましくは450℃を超える。なお、上記基材粒子の融点は、400℃未満であってもよい。上記基材粒子の融点は、160℃以下であってもよい。上記基材粒子の軟化点は260℃以上であることが好ましい。上記基材粒子の軟化点は260℃未満であってもよい。 The melting point of the base particles is preferably higher than the melting point of the solder portion. The melting point of the base particles preferably exceeds 160 ° C., more preferably exceeds 300 ° C., further preferably exceeds 400 ° C., and particularly preferably exceeds 450 ° C. The melting point of the base particles may be less than 400 ° C. The melting point of the base particles may be 160 ° C. or lower. The softening point of the base particles is preferably 260 ° C. or higher. The softening point of the base particles may be less than 260 ° C.

上記導電性粒子は、単層のはんだ部を有していてもよい。上記導電性粒子は、複数の層の導電部(はんだ部,第2の導電部)を有していてもよい。すなわち、上記導電性粒子では、導電部を2層以上積層してもよい。 The conductive particles may have a single-layer solder portion. The conductive particles may have a plurality of layers of conductive portions (solder portion, second conductive portion). That is, in the conductive particles, two or more conductive portions may be laminated.

上記はんだは、融点が450℃以下である金属(低融点金属)であることが好ましい。上記はんだ部は、融点が450℃以下である金属層(低融点金属層)であることが好ましい。上記低融点金属層は、低融点金属を含む層である。上記導電性粒子におけるはんだは、融点が450℃以下である金属粒子(低融点金属粒子)であることが好ましい。上記低融点金属粒子は、低融点金属を含む粒子である。該低融点金属とは、融点が450℃以下の金属を示す。低融点金属の融点は好ましくは300℃以下、より好ましくは160℃以下である。また、上記導電性粒子におけるはんだは錫を含むことが好ましい。上記はんだ部に含まれる金属100重量%中及び上記導電性粒子におけるはんだに含まれる金属100重量%中、錫の含有量は好ましくは30重量%以上、より好ましくは40重量%以上、更に好ましくは70重量%以上、特に好ましくは90重量%以上である。上記導電性粒子におけるはんだ中の錫の含有量が上記下限以上であると、導電性粒子と電極との導通信頼性がより一層高くなる。 The solder is preferably a metal having a melting point of 450 ° C. or lower (low melting point metal). The solder portion is preferably a metal layer (low melting point metal layer) having a melting point of 450 ° C. or lower. The low melting point metal layer is a layer containing a low melting point metal. The solder in the conductive particles is preferably metal particles having a melting point of 450 ° C. or lower (low melting point metal particles). The low melting point metal particles are particles containing a low melting point metal. The low melting point metal means a metal having a melting point of 450 ° C. or lower. The melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 160 ° C. or lower. Further, the solder in the conductive particles preferably contains tin. The tin content is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 40% by weight or more, in 100% by weight of the metal contained in the solder portion and 100% by weight of the metal contained in the solder in the conductive particles. It is 70% by weight or more, particularly preferably 90% by weight or more. When the content of tin in the solder in the conductive particles is at least the above lower limit, the conduction reliability between the conductive particles and the electrode becomes even higher.

なお、上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP−AES」)、又は蛍光X線分析装置(島津製作所社製「EDX−800HS」)等を用いて測定可能である。 The tin content may be determined using a high frequency inductively coupled plasma emission spectrophotometer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation). It is measurable.

上記はんだを導電部の外表面部分に有する導電性粒子を用いることで、はんだが溶融して電極に接合し、はんだが電極間を導通させる。例えば、はんだと電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、はんだを導電部の外表面部分に有する導電性粒子の使用により、はんだと電極との接合強度が高くなる結果、はんだと電極との剥離がより一層生じ難くなり、導通信頼性が効果的に高くなる。 By using the conductive particles having the solder on the outer surface portion of the conductive portion, the solder melts and is bonded to the electrodes, and the solder conducts the electrodes. For example, the solder and the electrode are likely to make surface contact rather than point contact, so that the connection resistance is low. Further, by using the conductive particles having the solder on the outer surface portion of the conductive portion, the bonding strength between the solder and the electrode is increased, and as a result, the peeling between the solder and the electrode is more difficult to occur, and the conduction reliability is effective. Will be high.

上記はんだ部及び上記はんだ粒子を構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金は、錫−銀合金、錫−銅合金、錫−銀−銅合金、錫−ビスマス合金、錫−亜鉛合金、錫−インジウム合金等が挙げられる。電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫−銀合金、錫−銀−銅合金、錫−ビスマス合金、錫−インジウム合金であることが好ましい。錫−ビスマス合金、錫−インジウム合金であることがより好ましい。 The low melting point metal constituting the solder portion and the solder particles is not particularly limited. The low melting point metal is preferably tin or an alloy containing tin. Examples of the alloy include tin-silver alloy, tin-copper alloy, tin-silver-copper alloy, tin-bismuth alloy, tin-zinc alloy, tin-indium alloy and the like. The low melting point metal is preferably tin, tin-silver alloy, tin-silver-copper alloy, tin-bismuth alloy, or tin-indium alloy because of its excellent wettability to the electrode. More preferably, it is a tin-bismuth alloy or a tin-indium alloy.

上記はんだ(はんだ部)を構成する材料は、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだの組成としては、例えば亜鉛、金、銀、鉛、銅、錫、ビスマス、インジウム等を含む金属組成が挙げられる。低融点で鉛フリーである錫−インジウム系(117℃共晶)、又は錫−ビスマス系(139℃共晶)が好ましい。すなわち、上記はんだは、鉛を含まないことが好ましく、錫とインジウムとを含むはんだ、又は錫とビスマスとを含むはんだであることが好ましい。 The material constituting the solder (solder portion) is preferably a filler material having a liquidus line of 450 ° C. or lower based on JIS Z3001: welding terminology. Examples of the composition of the solder include a metal composition containing zinc, gold, silver, lead, copper, tin, bismuth, indium and the like. A tin-indium system (117 ° C. eutectic) or a tin-bismuth system (139 ° C. eutectic), which has a low melting point and is lead-free, is preferable. That is, the solder preferably does not contain lead, and is preferably a solder containing tin and indium, or a solder containing tin and bismuth.

上記はんだと電極との接合強度をより一層高めるために、上記導電性粒子におけるはんだは、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、パラジウム等の金属を含んでいてもよい。また、はんだと電極との接合強度を更に一層高める観点からは、上記導電性粒子におけるはんだは、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。はんだ部又は導電性粒子におけるはんだと電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、上記導電性粒子におけるはんだ100重量%中、好ましくは0.0001重量%以上、好ましくは1重量%以下である。 In order to further increase the bonding strength between the solder and the electrode, the solder in the conductive particles is nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium, cobalt, bismuth, manganese. , Chromium, molybdenum, palladium and the like may be contained. Further, from the viewpoint of further increasing the bonding strength between the solder and the electrode, the solder in the conductive particles preferably contains nickel, copper, antimony, aluminum or zinc. From the viewpoint of further increasing the bonding strength between the solder and the electrode in the solder portion or the conductive particles, the content of these metals for increasing the bonding strength is preferably 0 in 100% by weight of the solder in the conductive particles. It is .0001% by weight or more, preferably 1% by weight or less.

上記第2の導電部の融点は、上記はんだ部の融点よりも高いことが好ましい。上記第2の導電部の融点は好ましくは160℃を超え、より好ましくは300℃を超え、更に好ましくは400℃を超え、更に一層好ましくは450℃を超え、特に好ましくは500℃を超え、最も好ましくは600℃を超える。上記はんだ部は融点が低いために導電接続時に溶融する。上記第2の導電部は導電接続時に溶融しないことが好ましい。上記導電性粒子は、はんだを溶融させて用いられることが好ましく、上記はんだ部を溶融させて用いられることが好ましく、上記はんだ部を溶融させてかつ上記第2の導電部を溶融させずに用いられることが好ましい。上記第2の導電部の融点が上記はんだ部の融点をよりも高いことによって、導電接続時に、上記第2の導電部を溶融させずに、上記はんだ部のみを溶融させることができる。 The melting point of the second conductive portion is preferably higher than the melting point of the solder portion. The melting point of the second conductive portion preferably exceeds 160 ° C, more preferably 300 ° C, further preferably 400 ° C, even more preferably 450 ° C, particularly preferably 500 ° C, and most. It preferably exceeds 600 ° C. Since the solder portion has a low melting point, it melts at the time of conductive connection. It is preferable that the second conductive portion does not melt at the time of conductive connection. The conductive particles are preferably used by melting the solder, preferably by melting the solder portion, and are used by melting the solder portion and not melting the second conductive portion. It is preferable to be Since the melting point of the second conductive portion is higher than the melting point of the solder portion, it is possible to melt only the solder portion without melting the second conductive portion at the time of conductive connection.

上記はんだ部の融点と上記第2の導電部との融点との差の絶対値は、0℃を超え、好ましくは5℃以上、より好ましくは10℃以上、更に好ましくは30℃以上、特に好ましくは50℃以上、最も好ましくは100℃以上である。 The absolute value of the difference between the melting point of the solder portion and the melting point of the second conductive portion exceeds 0 ° C., preferably 5 ° C. or higher, more preferably 10 ° C. or higher, still more preferably 30 ° C. or higher, particularly preferably. Is 50 ° C. or higher, most preferably 100 ° C. or higher.

上記第2の導電部は、金属を含むことが好ましい。上記第2の導電部を構成する金属は、特に限定されない。該金属としては、例えば、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)を用いてもよい。上記金属は1種のみが用いられてもよく、2種以上が併用されてもよい。 The second conductive portion preferably contains a metal. The metal constituting the second conductive portion is not particularly limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof. Further, tin-doped indium oxide (ITO) may be used as the metal. Only one kind of the above metal may be used, or two or more kinds thereof may be used in combination.

上記第2の導電部は、ニッケル層、パラジウム層、銅層又は金層であることが好ましく、ニッケル層又は金層であることがより好ましく、銅層であることが更に好ましい。導電性粒子は、ニッケル層、パラジウム層、銅層又は金層を有することが好ましく、ニッケル層又は金層を有することがより好ましく、銅層を有することが更に好ましい。これらの好ましい導電部を有する導電性粒子を電極間の接続に用いることにより、電極間の接続抵抗がより一層低くなる。また、これらの好ましい導電部の表面には、はんだ部をより一層容易に形成できる。 The second conductive portion is preferably a nickel layer, a palladium layer, a copper layer or a gold layer, more preferably a nickel layer or a gold layer, and further preferably a copper layer. The conductive particles preferably have a nickel layer, a palladium layer, a copper layer or a gold layer, more preferably have a nickel layer or a gold layer, and even more preferably have a copper layer. By using the conductive particles having these preferable conductive portions for the connection between the electrodes, the connection resistance between the electrodes is further lowered. Further, a solder portion can be more easily formed on the surface of these preferable conductive portions.

上記はんだ部の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは10μm以下、より好ましくは1μm以下、更に好ましくは0.3μm以下である。はんだ部の厚みが上記下限以上及び上記上限以下であると、充分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子を充分に変形する。 The thickness of the solder portion is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 10 μm or less, more preferably 1 μm or less, still more preferably 0.3 μm or less. When the thickness of the solder portion is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles are not too hard, and the conductive particles are sufficiently deformed at the time of connection between the electrodes. ..

上記導電部の厚み(導電部全体の厚み)は、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは10μm以下、より好ましくは1μm以下、更に好ましくは0.5μm以下、特に好ましくは0.3μm以下である。上記導電部の厚みは、導電部が多層である場合には導電層全体の厚みである。導電部の厚みが上記下限以上及び上記上限以下であると、充分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が充分に変形する。 The thickness of the conductive portion (thickness of the entire conductive portion) is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 10 μm or less, more preferably 1 μm or less, still more preferably 0.5 μm or less. Particularly preferably, it is 0.3 μm or less. The thickness of the conductive portion is the thickness of the entire conductive layer when the conductive portion has multiple layers. When the thickness of the conductive portion is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles are not too hard, and the conductive particles are sufficiently deformed at the time of connection between the electrodes. ..

上記導電部が複数の層により形成されている場合に、最外層の導電層の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上であり、好ましくは0.5μm以下、より好ましくは0.1μm以下である。上記最外層の導電層の厚みが上記下限以上及び上記上限以下であると、最外層の導電層による被覆が均一になり、耐腐食性が充分に高くなり、かつ電極間の接続抵抗がより一層低くなる。また、上記最外層が金層である場合に、金層の厚みが薄いほど、コストが低くなる。 When the conductive portion is formed of a plurality of layers, the thickness of the outermost conductive layer is preferably 0.001 μm or more, more preferably 0.01 μm or more, preferably 0.5 μm or less, more preferably. Is 0.1 μm or less. When the thickness of the conductive layer of the outermost layer is not less than the above lower limit and not more than the above upper limit, the coating by the conductive layer of the outermost layer becomes uniform, the corrosion resistance is sufficiently high, and the connection resistance between the electrodes is further increased. It gets lower. Further, when the outermost layer is a gold layer, the thinner the gold layer, the lower the cost.

上記導電部の厚みは、例えば電界放射型走査型電子顕微鏡(FE−SEM)を用いて、導電性粒子の断面を観察することにより測定できる。 The thickness of the conductive portion can be measured by observing the cross section of the conductive particles using, for example, a field emission scanning electron microscope (FE-SEM).

得られた導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。その検査用埋め込み樹脂中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。 The obtained conductive particles are added to "Technobit 4000" manufactured by Kulzer so as to have a content of 30% by weight and dispersed to prepare an embedded resin for conducting a conductive particle inspection. A cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the embedded resin for inspection.

そして、電界放射型走査型電子顕微鏡(FE−SEM)を用いて、画像倍率5万倍に設定し、50個の導電性粒子を無作為に選択し、それぞれの導電性粒子の導電部を観察することが好ましい。得られた導電性粒子における導電部の厚みを計測し、それを算術平均して導電部の厚みとすることが好ましい。 Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, 50 conductive particles were randomly selected, and the conductive part of each conductive particle was observed. It is preferable to do so. It is preferable to measure the thickness of the conductive portion in the obtained conductive particles and arithmetically average the thickness to obtain the thickness of the conductive portion.

上記導電性粒子の平均粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、更に好ましくは3μm以上であり、好ましくは100μm以下、より好ましくは50μm以下、更に好ましくは40μm以下、特に好ましくは30μm以下である。上記導電性粒子の平均粒子径が上記下限以上及び上記上限以下であると、電極上に導電性粒子におけるはんだをより一層効率的に配置することができ、電極間に導電性粒子におけるはんだを多く配置することが容易であり、導通信頼性がより一層高くなる。 The average particle size of the conductive particles is preferably 0.5 μm or more, more preferably 1 μm or more, still more preferably 3 μm or more, preferably 100 μm or less, more preferably 50 μm or less, still more preferably 40 μm or less, and particularly preferably. Is 30 μm or less. When the average particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the solder in the conductive particles can be arranged more efficiently on the electrodes, and more solder in the conductive particles is formed between the electrodes. It is easy to arrange and the continuity reliability is further improved.

上記導電性粒子の「平均粒子径」は、数平均粒子径を示す。導電性粒子の平均粒子径は、例えば、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。 The "average particle size" of the conductive particles indicates a number average particle size. The average particle size of the conductive particles can be obtained, for example, by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.

なお、熱硬化性成分及びフラックスと混合される前の導電性粒子単体と、熱硬化性成分及びフラックスと混合された後の導電材料中での導電性粒子とで、導電性粒子の平均粒子径は一般的に同じである The average particle size of the conductive particles is the single conductive particles before being mixed with the thermosetting component and the flux, and the conductive particles in the conductive material after being mixed with the thermosetting component and the flux. Is generally the same

上記導電性粒子の形状は特に限定されない。上記導電性粒子の形状は、球状であってもよく、扁平状などの球形状以外の形状であってもよい。 The shape of the conductive particles is not particularly limited. The shape of the conductive particles may be spherical or may be a shape other than a spherical shape such as a flat shape.

上記導電材料100重量%中、上記導電性粒子の含有量は好ましくは1重量%以上、より好ましくは2重量%以上、更に好ましくは10重量%以上、特に好ましくは20重量%以上、最も好ましくは30重量%以上であり、好ましくは90重量%以下、より好ましくは80重量%以下、更に好ましくは60重量%以下、特に好ましくは50重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極上に導電性粒子におけるはんだをより一層効率的に配置することができ、電極間に導電性粒子におけるはんだを多く配置することが容易であり、導通信頼性がより一層高くなる。導通信頼性をより一層高める観点からは、上記導電性粒子の含有量は多い方が好ましい。 The content of the conductive particles in 100% by weight of the conductive material is preferably 1% by weight or more, more preferably 2% by weight or more, still more preferably 10% by weight or more, particularly preferably 20% by weight or more, and most preferably. It is 30% by weight or more, preferably 90% by weight or less, more preferably 80% by weight or less, still more preferably 60% by weight or less, and particularly preferably 50% by weight or less. When the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the solder in the conductive particles can be arranged more efficiently on the electrodes, and a large amount of solder in the conductive particles is arranged between the electrodes. It is easy to do, and the continuity reliability is further improved. From the viewpoint of further enhancing the conduction reliability, it is preferable that the content of the conductive particles is large.

(熱硬化性化合物)
上記熱硬化性化合物は、加熱により硬化可能な化合物である。上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。導電材料の硬化性及び粘度をより一層良好にし、導通信頼性及び接続信頼性をより一層高める観点から、エポキシ化合物又はエピスルフィド化合物が好ましく、エポキシ化合物がより好ましい。上記導電材料は、エポキシ化合物を含むことが好ましい。上記熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermosetting compound)
The thermosetting compound is a compound that can be cured by heating. Examples of the thermosetting compound include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenol compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds and polyimide compounds. Epoxy compounds or episulfide compounds are preferable, and epoxy compounds are more preferable, from the viewpoint of further improving the curability and viscosity of the conductive material and further enhancing the conduction reliability and connection reliability. The conductive material preferably contains an epoxy compound. Only one kind of the thermosetting compound may be used, or two or more kinds may be used in combination.

硬化物の耐熱性を効果的に高める観点、並びに硬化物の誘電率を効果的に低くする観点からは、上記熱硬化性化合物は、窒素原子を有する熱硬化性化合物を含むことが好ましく、トリアジン骨格を有する熱硬化性化合物を含むことがより好ましい。 From the viewpoint of effectively increasing the heat resistance of the cured product and effectively lowering the dielectric constant of the cured product, the thermosetting compound preferably contains a thermosetting compound having a nitrogen atom, and triazine. It is more preferable to contain a thermosetting compound having a skeleton.

上記トリアジン骨格を有する熱硬化性化合物としてはトリアジントリグリシジルエーテル等が挙げられ、日産化学工業社製TEPICシリーズ(TEPIC−G、TEPIC−S、TEPIC−SS、TEPIC−HP、TEPIC−L、TEPIC−PAS、TEPIC−VL、TEPIC−UC)等が挙げられる。 Examples of the thermosetting compound having a triazine skeleton include triazine triglycidyl ether and the like, and the TEPIC series (TEPIC-G, TEPIC-S, TEPIC-SS, TEPIC-HP, TEPIC-L, TEPIC-) manufactured by Nissan Chemical Industries, Ltd. PAS, TEPIC-VL, TEPIC-UC) and the like.

上記エポキシ化合物としては、芳香族エポキシ化合物が挙げられる。レゾルシノール型エポキシ化合物、ナフタレン型エポキシ化合物、ビフェニル型エポキシ化合物、ベンゾフェノン型エポキシ化合物等の結晶性エポキシ化合物が好ましい。常温(23℃)で固体であり、かつ溶融温度がはんだの融点以下であるエポキシ化合物が好ましい。溶融温度は好ましくは100℃以下、より好ましくは80℃以下であり、好ましくは40℃以上である。上記の好ましいエポキシ化合物を用いることで、接続対象部材を貼り合わせた段階では、粘度が高く、搬送等の衝撃により加速度が付与された際に、第1の接続対象部材と、第2の接続対象部材との位置ずれを抑制することができ、なおかつ、硬化時の熱により、導電材料の粘度を大きく低下させることができ、はんだの凝集を効率よく進行させることができる。 Examples of the epoxy compound include aromatic epoxy compounds. Crystalline epoxy compounds such as resorcinol-type epoxy compounds, naphthalene-type epoxy compounds, biphenyl-type epoxy compounds, and benzophenone-type epoxy compounds are preferable. An epoxy compound that is solid at room temperature (23 ° C.) and has a melting temperature equal to or lower than the melting point of the solder is preferable. The melting temperature is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and preferably 40 ° C. or higher. By using the above-mentioned preferable epoxy compound, the viscosity is high at the stage where the members to be connected are bonded, and when acceleration is applied due to an impact such as transportation, the first member to be connected and the second connection target are connected. It is possible to suppress the misalignment with the member, and the viscosity of the conductive material can be greatly reduced by the heat at the time of curing, and the aggregation of the solder can be efficiently promoted.

上記導電材料100重量%中、上記熱硬化性化合物の含有量は、好ましくは20重量%以上、より好ましくは40重量%以上、更に好ましくは50重量%以上であり、好ましくは99重量%以下、より好ましくは98重量%以下、更に好ましくは90重量%以下、特に好ましくは80重量%以下である。耐衝撃性をより一層高める観点からは、上記熱硬化性化合物の含有量は多い方が好ましい。 The content of the thermosetting compound in 100% by weight of the conductive material is preferably 20% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more, and preferably 99% by weight or less. It is more preferably 98% by weight or less, further preferably 90% by weight or less, and particularly preferably 80% by weight or less. From the viewpoint of further enhancing the impact resistance, it is preferable that the content of the thermosetting compound is large.

(熱硬化剤)
上記熱硬化剤は、上記熱硬化性化合物を熱硬化させる。上記熱硬化剤としては、イミダゾール硬化剤、フェノール硬化剤、チオール硬化剤、アミン硬化剤、酸無水物硬化剤、熱カチオン開始剤及び熱ラジカル発生剤等がある。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermosetting agent)
The thermosetting agent heat-cures the thermosetting compound. Examples of the heat curing agent include an imidazole curing agent, a phenol curing agent, a thiol curing agent, an amine curing agent, an acid anhydride curing agent, a thermal cation initiator, a thermal radical generator and the like. Only one type of the thermosetting agent may be used, or two or more types may be used in combination.

上記イミダゾール硬化剤としては、特に限定されず、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテート、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン及び2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物等が挙げられる。 The above-mentioned imidazole curing agent is not particularly limited, and is not particularly limited, 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2, 4-Diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine and 2,4-diamino-6- [2'-methylimidazole- (1')]-ethyl-s- Examples thereof include triazine isocyanuric acid adduct.

上記チオール硬化剤としては、特に限定されず、トリメチロールプロパントリス−3−メルカプトプロピオネート、ペンタエリスリトールテトラキス−3−メルカプトプロピオネート及びジペンタエリスリトールヘキサ−3−メルカプトプロピオネート等が挙げられる。 The thiol curing agent is not particularly limited, and examples thereof include trimethylolpropanetris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and dipentaerythritol hexa-3-mercaptopropionate. ..

上記チオール硬化剤の溶解度パラメーターは、好ましくは9.5以上、好ましくは12以下である。上記溶解度パラメーターは、Fedors法にて計算される。例えば、トリメチロールプロパントリス−3−メルカプトプロピオネートの溶解度パラメーターは9.6、ジペンタエリスリトールヘキサ−3−メルカプトプロピオネートの溶解度パラメーターは11.4である。 The solubility parameter of the thiol curing agent is preferably 9.5 or more, preferably 12 or less. The solubility parameter is calculated by the Fedors method. For example, the solubility parameter for trimethylolpropane tris-3-mercaptopropionate is 9.6 and the solubility parameter for dipentaerythritol hexa-3-mercaptopropionate is 11.4.

上記アミン硬化剤としては、特に限定されず、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラスピロ[5.5]ウンデカン、ビス(4−アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。 The amine curing agent is not particularly limited, and is hexamethylenediamine, octamethylenediamine, decamethylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5.5]. Examples thereof include undecane, bis (4-aminocyclohexyl) methane, metaphenylenediamine and diaminodiphenyl sulfone.

上記熱カチオン開始剤としては、ヨードニウム系カチオン硬化剤、オキソニウム系カチオン硬化剤及びスルホニウム系カチオン硬化剤等が挙げられる。上記ヨードニウム系カチオン硬化剤としては、ビス(4−tert−ブチルフェニル)ヨードニウムヘキサフルオロホスファート等が挙げられる。上記オキソニウム系カチオン硬化剤としては、トリメチルオキソニウムテトラフルオロボラート等が挙げられる。上記スルホニウム系カチオン硬化剤としては、トリ−p−トリルスルホニウムヘキサフルオロホスファート等が挙げられる。 Examples of the thermal cation initiator include an iodonium-based cation curing agent, an oxonium-based cation curing agent, and a sulfonium-based cation curing agent. Examples of the iodine-based cationic curing agent include bis (4-tert-butylphenyl) iodinenium hexafluorophosphate and the like. Examples of the oxonium-based cationic curing agent include trimethyloxonium tetrafluoroborate. Examples of the sulfonium-based cationic curing agent include tri-p-tolylsulfonium hexafluorophosphate.

上記熱ラジカル発生剤としては、特に限定されず、アゾ化合物及び有機過酸化物等が挙げられる。上記アゾ化合物としては、アゾビスイソブチロニトリル(AIBN)等が挙げられる。上記有機過酸化物としては、ジ−tert−ブチルペルオキシド及びメチルエチルケトンペルオキシド等が挙げられる。 The thermal radical generator is not particularly limited, and examples thereof include azo compounds and organic peroxides. Examples of the azo compound include azobisisobutyronitrile (AIBN) and the like. Examples of the organic peroxide include di-tert-butyl peroxide and methyl ethyl ketone peroxide.

上記熱硬化剤の反応開始温度は、好ましくは50℃以上、より好ましくは70℃以上、更に好ましくは80℃以上であり、好ましくは250℃以下、より好ましくは200℃以下、更に好ましくは150℃以下、特に好ましくは140℃以下である。上記熱硬化剤の反応開始温度が上記下限以上及び上記上限以下であると、導電性粒子におけるはんだが電極上により一層効率的に配置される。上記熱硬化剤の反応開始温度は80℃以上、140℃以下であることが特に好ましい。 The reaction start temperature of the thermosetting agent is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, still more preferably 80 ° C. or higher, preferably 250 ° C. or lower, more preferably 200 ° C. or lower, still more preferably 150 ° C. or higher. Below, it is particularly preferably 140 ° C. or lower. When the reaction start temperature of the thermosetting agent is not less than the above lower limit and not more than the above upper limit, the solder in the conductive particles is more efficiently arranged on the electrode. It is particularly preferable that the reaction start temperature of the thermosetting agent is 80 ° C. or higher and 140 ° C. or lower.

導電性粒子におけるはんだを電極上により一層効率的に配置する観点からは、上記熱硬化剤の反応開始温度は、上記導電性粒子におけるはんだの融点よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。 From the viewpoint of more efficiently arranging the solder in the conductive particles on the electrode, the reaction start temperature of the thermal curing agent is preferably higher than the melting point of the solder in the conductive particles, and is 5 ° C. or higher. Is more preferable, and it is even more preferable that the temperature is 10 ° C. or higher.

上記熱硬化剤の反応開始温度は、DSCでの発熱ピークの立ち上がり開始の温度を意味する。 The reaction start temperature of the thermosetting agent means the temperature at which the exothermic peak starts to rise in the DSC.

上記熱硬化剤の含有量は特に限定されない。上記熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上であり、好ましくは200重量部以下、より好ましくは100重量部以下、更に好ましくは75重量部以下である。熱硬化剤の含有量が上記下限以上であると、導電材料を充分に硬化させることが容易である。熱硬化剤の含有量が上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。 The content of the thermosetting agent is not particularly limited. With respect to 100 parts by weight of the thermosetting compound, the content of the thermosetting agent is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, preferably 200 parts by weight or less, and more preferably. It is 100 parts by weight or less, more preferably 75 parts by weight or less. When the content of the thermosetting agent is at least the above lower limit, it is easy to sufficiently cure the conductive material. When the content of the thermosetting agent is not more than the above upper limit, it becomes difficult for the surplus thermosetting agent that was not involved in the curing to remain after curing, and the heat resistance of the cured product is further increased.

(フラックス)
上記導電材料は、フラックスを含む。フラックスの使用により、導電性粒子におけるはんだを電極上により一層効果的に配置することができる。また、本発明では、上記フラックスが、金属の表面を洗浄する効果を有する酸と、その酸を中和する作用を有する塩基との組み合わせであり、これら酸と塩基との塩である。
(flux)
The conductive material contains a flux. The use of flux allows the solder in the conductive particles to be more effectively placed on the electrodes. Further, in the present invention, the flux is a combination of an acid having an effect of cleaning the surface of a metal and a base having an effect of neutralizing the acid, and is a salt of these acids and a base.

この特定の酸と塩基との塩である上記フラックスが25℃で固体であると、導電材料の保存安定性が高くなり、接続対象部材上に導電材料が配置された後、長時間放置されても優れたはんだ凝集性を示すことから、高い導通信頼性を発現できる導電材料を提供することができる。上記フラックスは、酸と塩基との塩であり、かつ25℃で固体であることが好ましい。 When the flux, which is a salt of this specific acid and base, is solid at 25 ° C., the storage stability of the conductive material becomes high, and after the conductive material is placed on the member to be connected, it is left for a long time. Also, since it exhibits excellent solder cohesiveness, it is possible to provide a conductive material capable of exhibiting high conduction reliability. The flux is preferably a salt of an acid and a base and is preferably solid at 25 ° C.

上記フラックスは、例えば、カルボキシル基を有する有機化合物とアミノ基を有する化合物との塩であり、カルボキシル基を有する有機化合物とアミノ基を有する有機化合物との塩であることが好ましい。 The flux is, for example, a salt of an organic compound having a carboxyl group and a compound having an amino group, and preferably a salt of an organic compound having a carboxyl group and an organic compound having an amino group.

また、導電材料の保存安定性を効果的に高くし、接続対象部材上に導電材料が配置された後、長時間放置されても優れたはんだ凝集性を示し、高い導通信頼性を発現させる観点から、特定の酸と塩基との塩である上記フラックスは25℃で固体であることが好ましい。上記フラックスは、1種のみが用いられてもよく、2種以上が併用されてもよい。 Further, from the viewpoint of effectively increasing the storage stability of the conductive material, exhibiting excellent solder cohesiveness even when the conductive material is left for a long time after being placed on the member to be connected, and exhibiting high conduction reliability. Therefore, the flux, which is a salt of a specific acid and a base, is preferably solid at 25 ° C. Only one kind of the above flux may be used, or two or more kinds of the flux may be used in combination.

上記フラックスは、例えば、カルボン酸又はカルボン酸無水物とアミノ基含有化合物とを中和反応させることにより得ることができる。上記フラックスは、カルボン酸又はカルボン酸無水物とアミノ基含有化合物との中和反応物であることが好ましい。 The flux can be obtained, for example, by neutralizing a carboxylic acid or carboxylic acid anhydride with an amino group-containing compound. The flux is preferably a neutralization reaction product of a carboxylic acid or a carboxylic acid anhydride and an amino group-containing compound.

上記カルボン酸又はカルボン酸無水物としては、脂肪族系カルボン酸であるコハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、リンゴ酸、環状脂肪族カルボン酸であるシクロヘキシルカルボン酸、1,4−シクロヘキシルジカルボン酸、芳香族カルボン酸であるイソフタル酸、テレフタル酸、トリメリット酸、及びエチレンジアミン四酢酸、並びにこれらの酸無水物等が挙げられる。 Examples of the carboxylic acid or carboxylic acid anhydride include succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, malic acid, which are aliphatic carboxylic acids, and cyclohexylcarboxylic acid, 1,4 which is a cyclic aliphatic carboxylic acid. -Cyclohexyldicarboxylic acid, aromatic carboxylic acid isophthalic acid, terephthalic acid, trimellitic acid, and ethylenediamine tetraacetic acid, and acid anhydrides thereof and the like can be mentioned.

フラックス効果をより一層高めるために、上記酸及び上記カルボキシル基を有する有機化合物は、複数のカルボキシル基を有することが好ましい。複数のカルボキシル基を有する有機化合物としては、ジカルボン酸及びトリカルボン酸等が挙げられる。また、塩を形成しやすくするために、上記酸及び上記カルボキシル基を有する有機化合物は、アルキル基を有することが好ましく、該アルキル基とカルボキル基との炭素数の合計は好ましくは4以上、好ましくは8以下である。 In order to further enhance the flux effect, the acid and the organic compound having a carboxyl group preferably have a plurality of carboxyl groups. Examples of the organic compound having a plurality of carboxyl groups include dicarboxylic acid and tricarboxylic acid. Further, in order to facilitate the formation of a salt, the acid and the organic compound having a carboxyl group preferably have an alkyl group, and the total number of carbon atoms of the alkyl group and the carboxyl group is preferably 4 or more, preferably 4 or more. Is 8 or less.

上記反応物を得るために、カルボン酸のエステルを用いてもよい。カルボン酸のエステルとしては、上記のカルボン酸のアルキルエステル等が挙げられる。上記のカルボン酸のアルキルエステルのアルキル基としては、炭素数が1〜4のアルキル基が挙げられ、該アルキル基の炭素数は好ましくは3以下、より好ましくは2以下である。 Esters of carboxylic acids may be used to obtain the above reactants. Examples of the carboxylic acid ester include the above-mentioned alkyl esters of carboxylic acid. Examples of the alkyl group of the above-mentioned alkyl ester of carboxylic acid include an alkyl group having 1 to 4 carbon atoms, and the alkyl group has preferably 3 or less carbon atoms, and more preferably 2 or less carbon atoms.

上記アミノ基含有化合物のうち芳香族骨格を有さないアミノ基含有化合物としては、ジエタノールアミン、トリエタノールアミン、メチルジエタノールアミン、エチルジエタノールアミン、シクロヘキシルアミン及びジシクロヘキシルアミン等が挙げられる。 Among the above amino group-containing compounds, examples of the amino group-containing compound having no aromatic skeleton include diethanolamine, triethanolamine, methyldiethanolamine, ethyldiethanolamine, cyclohexylamine and dicyclohexylamine.

上記アミノ基含有化合物のうち芳香族骨格を有するアミノ基含有化合物としては、ベンジルアミン、ベンズヒドリルアミン、2−メチルベンジルアミン、3−メチルベンジルアミン、及び4−tert−ブチルベンジルアミン等が挙げられる。二級アミンとしては、N−メチルベンジルアミン、N−エチルベンジルアミン、N−フェニルベンジルアミン、N−tert−ブチルベンジルアミン、及びN−イソプロピルベンジルアミン等が挙げられる。三級アミンとしては、N,N−ジメチルベンジルアミン、イミダゾール化合物、及びトリアゾール化合物が挙げられる。導電材料の保存安定性を効果的に高くし、電極間の接続時に導電性粒子を除く成分をより一層流れ難くする観点からは、上記アミノ基含有化合物は、芳香族アミン化合物又は脂肪族脂環式アミン化合物であることが好ましい。 Among the above amino group-containing compounds, examples of the amino group-containing compound having an aromatic skeleton include benzylamine, benzhydrylamine, 2-methylbenzylamine, 3-methylbenzylamine, 4-tert-butylbenzylamine and the like. .. Examples of the secondary amine include N-methylbenzylamine, N-ethylbenzylamine, N-phenylbenzylamine, N-tert-butylbenzylamine, N-isopropylbenzylamine and the like. Examples of the tertiary amine include N, N-dimethylbenzylamine, an imidazole compound, and a triazole compound. From the viewpoint of effectively increasing the storage stability of the conductive material and making it more difficult for the components other than the conductive particles to flow when connected between the electrodes, the amino group-containing compound is an aromatic amine compound or an aliphatic alicyclic. It is preferably an amine compound.

上記フラックスの活性温度(融点)は、好ましくは40℃以上、より好ましくは50℃以上である。上記フラックスの活性温度が上記下限以上であると、保存安定性がより一層高くなる。 The active temperature (melting point) of the flux is preferably 40 ° C. or higher, more preferably 50 ° C. or higher. When the active temperature of the flux is at least the above lower limit, the storage stability is further improved.

導電性粒子におけるはんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、好ましくは上記導電性粒子におけるはんだの融点−50℃以上、より好ましくは上記導電性粒子におけるはんだの融点−30℃以上であり、好ましくは上記導電性粒子におけるはんだの融点+50℃以下、より好ましくは上記導電性粒子におけるはんだの融点+30℃以下、更に好ましくは上記導電性粒子におけるはんだの融点未満である。上記フラックスの融点が上記下限以上及び上記上限以下であると、フラックス効果がより一層効果的に発揮され、はんだが電極上により一層効率的に配置される。 From the viewpoint of more efficiently arranging the solder in the conductive particles on the electrode, the melting point of the flux is preferably -50 ° C or higher, more preferably the melting point of the solder in the conductive particles, and more preferably the solder in the conductive particles. The melting point is −30 ° C. or higher, preferably the melting point of the solder in the conductive particles + 50 ° C. or lower, more preferably the melting point of the solder in the conductive particles + 30 ° C. or lower, and more preferably less than the melting point of the solder in the conductive particles. be. When the melting point of the flux is equal to or higher than the lower limit and lower than the upper limit, the flux effect is more effectively exhibited and the solder is more efficiently arranged on the electrode.

導電性粒子におけるはんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記熱硬化剤の反応開始温度よりも、低いことが好ましく、5℃以上低いことがより好ましく、10℃以上低いことが更に好ましい。 From the viewpoint of more efficiently arranging the solder in the conductive particles on the electrode, the melting point of the flux is preferably lower than the reaction start temperature of the thermosetting agent, and more preferably 5 ° C. or higher. It is more preferable that the temperature is as low as 10 ° C. or higher.

上記フラックスは、導電材料中に分散されていてもよく、導電性粒子の表面上に付着していてもよい。 The flux may be dispersed in the conductive material or may be attached to the surface of the conductive particles.

25℃の導電材料中で、上記フラックスは固体で存在する。フラックスが導電材料中に均一に溶解した状態で添加されている場合、熱硬化性成分とフラックスとが一部反応することで導電材料の粘度が上昇してしまうことがある。また、接続対象部材上に導電材料が配置され、導電材料が空気と長時間接触する状態に置かれると、空気中の水分によりフラックスと熱硬化性化合物との反応が促進されたり、フラックスとはんだの表面との反応により金属イオンが生成したりするなどして、はんだの凝集性や隣接電極間の絶縁性に悪影響を与えることがある。それに対して、25℃の導電材料中で、上記フラックスは固体で存在すると、フラックスの表面のみが上記影響をうけるだけですむので、高い保存安定性や、長時間放置後でも高い導通性、絶縁性を発現することができる。 The flux exists as a solid in a conductive material at 25 ° C. When the flux is added in a uniformly dissolved state in the conductive material, the viscosity of the conductive material may increase due to a partial reaction between the thermosetting component and the flux. Further, when the conductive material is placed on the member to be connected and the conductive material is placed in contact with air for a long time, the reaction between the flux and the thermosetting compound is promoted by the moisture in the air, or the flux and the solder Metal ions may be generated by the reaction with the surface of the solder, which may adversely affect the cohesiveness of the solder and the insulation between adjacent electrodes. On the other hand, if the flux exists as a solid in a conductive material at 25 ° C, only the surface of the flux is affected by the above, so that it has high storage stability, high conductivity even after being left for a long time, and insulation. Can express sex.

また、25℃の導電材料中で、上記フラックスは固体で存在しており、上記フラックスがはんだの融点より低い温度で溶解する場合には、導電材料がペーストである場合、室温(23℃)では導電材料にチクソ性を付与することができる。これにより、導電性粒子の沈降を防止したり、塗布後の形状保持性を発現したりすることができ、不要な箇所への導電材料の流出をより一層防止することができる。導電材料がフィルムである場合、上記フラックスが固体であることで、導電材料中の液状分を低減することができるため、フィルムのカット性を向上させることができ、カット面からの滲み出しを抑制することができる。 Further, in the conductive material at 25 ° C., the flux exists as a solid, and when the flux melts at a temperature lower than the melting point of the solder, when the conductive material is a paste, at room temperature (23 ° C.). It is possible to impart a chixo property to a conductive material. As a result, it is possible to prevent the settling of the conductive particles and to develop the shape retention after coating, and it is possible to further prevent the conductive material from flowing out to unnecessary places. When the conductive material is a film, since the flux is solid, the liquid content in the conductive material can be reduced, so that the cutability of the film can be improved and the exudation from the cut surface can be suppressed. can do.

また、上記フラックスがはんだの融点より低い温度で溶解する場合には、はんだの融点では、フラックスは溶解しているため、導電材料の溶融粘度が充分に下がり、より一層良好なはんだ凝集性を示すことができる。 Further, when the flux melts at a temperature lower than the melting point of the solder, the flux is melted at the melting point of the solder, so that the melt viscosity of the conductive material is sufficiently lowered, and even better solder cohesiveness is exhibited. be able to.

更に、上記フラックスがはんだの融点より低い温度で溶解する場合には、はんだの融点以上では、フラックスが熱硬化性化合物、又は、熱硬化剤に溶解し、更に、熱硬化性化合物又は熱硬化剤とフラックスのカルボキシル基、アミノ基とが反応することで、フラックス成分が硬化系中に取り込まれる。これにより、隣接電極間の高い絶縁性を発現することができ、更に電極の腐食を防止することができる。 Further, when the flux melts at a temperature lower than the melting point of the solder, the flux dissolves in the thermosetting compound or the thermosetting agent above the melting point of the solder, and further, the thermosetting compound or the thermosetting agent. When the carboxyl group and amino group of the flux react with each other, the flux component is incorporated into the curing system. As a result, high insulation between adjacent electrodes can be exhibited, and corrosion of the electrodes can be prevented.

25℃の導電材料中で、フラックスの平均粒子径は好ましくは30μm以下である。フラックスの平均粒子径が上記の範囲にあることで、フラックスを樹脂と反応することなく導電材料中に存在させることができ、導電材料の保存安定性をより一層高めることができる。同様の理由から、フラックスの平均粒子径は好ましくは0.1μm以上である。 In the conductive material at 25 ° C., the average particle size of the flux is preferably 30 μm or less. When the average particle size of the flux is in the above range, the flux can be present in the conductive material without reacting with the resin, and the storage stability of the conductive material can be further improved. For the same reason, the average particle size of the flux is preferably 0.1 μm or more.

上記フラックスの「平均粒子径」は、数平均粒子径を示す。フラックスの平均粒子径は、例えば、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。 The "average particle size" of the above flux indicates a number average particle size. The average particle size of the flux is obtained, for example, by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.

なお、導電性粒子及び熱硬化性成分と混合される前のフラックス単体と、導電性粒子及び熱硬化性成分と混合された後の導電材料中のフラックスとで、フラックスの平均粒子径に差異がない場合には、導電性粒子及び熱硬化性成分と混合される前のフラックス単体で、平均粒子径を評価することができる。 There is a difference in the average particle size of the flux between the single flux before being mixed with the conductive particles and the thermosetting component and the flux in the conductive material after being mixed with the conductive particles and the thermosetting component. If not, the average particle size can be evaluated with the flux alone before being mixed with the conductive particles and the thermosetting component.

また、25℃の導電材料中で、フラックスの平均粒子径の、導電性粒子の平均粒子径に対する比(フラックスの平均粒子径/導電性粒子の平均粒子径)は、好ましくは3以下、より好ましくは1以下、更に好ましくは0.2以下である。上記比が上記上限以下であると、フラックスを導電性粒子に対して効果的に接触させることができ、加熱時のフラックス性能をより一層高めることができる。同様の理由から、上記比(フラックスの平均粒子径/導電性粒子の平均粒子径)は好ましくは0.005以上、より好ましくは0.01以上、更に好ましくは0.02以上である。 Further, in the conductive material at 25 ° C., the ratio of the average particle size of the flux to the average particle size of the conductive particles (average particle size of the flux / average particle size of the conductive particles) is preferably 3 or less, more preferably. Is 1 or less, more preferably 0.2 or less. When the above ratio is not more than the above upper limit, the flux can be effectively brought into contact with the conductive particles, and the flux performance at the time of heating can be further improved. For the same reason, the above ratio (average particle size of flux / average particle size of conductive particles) is preferably 0.005 or more, more preferably 0.01 or more, still more preferably 0.02 or more.

上記導電材料100重量%中、上記フラックスの含有量は好ましくは0.5重量%以上であり、好ましくは30重量%以下、より好ましくは25重量%以下である。 In 100% by weight of the conductive material, the content of the flux is preferably 0.5% by weight or more, preferably 30% by weight or less, and more preferably 25% by weight or less.

(絶縁性粒子)
導電材料の硬化物により接続される接続対象部材間の間隔、並びに導電性粒子におけるはんだにより接続される接続対象部材間の間隔を高精度に制御する観点からは、上記導電材料は、絶縁性粒子を含むことが好ましい。上記導電材料において、上記絶縁性粒子は、導電性粒子の表面に付着していなくてもよい。上記導電材料中で、上記絶縁性粒子は導電性粒子と離れて存在することが好ましい。
(Insulating particles)
From the viewpoint of highly accurate control of the spacing between the members to be connected connected by the cured product of the conductive material and the spacing between the members to be connected connected by the solder in the conductive particles, the conductive material is an insulating particle. It is preferable to include. In the conductive material, the insulating particles may not be attached to the surface of the conductive particles. In the conductive material, the insulating particles are preferably present apart from the conductive particles.

上記絶縁性粒子の平均粒子径は、好ましくは10μm以上、より好ましくは20μm以上、更に好ましくは25μm以上であり、好ましくは100μm以下、より好ましくは75μm以下、更に好ましくは50μm以下である。上記絶縁性粒子の平均粒子径が上記下限以上及び上記上限以下であると、導電材料の硬化物により接続される接続対象部材間の間隔、並びに導電性粒子におけるはんだにより接続される接続対象部材間の間隔がより一層適度になる。 The average particle size of the insulating particles is preferably 10 μm or more, more preferably 20 μm or more, still more preferably 25 μm or more, preferably 100 μm or less, more preferably 75 μm or less, still more preferably 50 μm or less. When the average particle size of the insulating particles is equal to or greater than the above lower limit and equal to or less than the above upper limit, the distance between the members to be connected connected by the cured product of the conductive material and the distance between the members to be connected connected by the solder in the conductive particles. The interval between the two becomes even more appropriate.

上記絶縁性粒子の「平均粒子径」は、数平均粒子径を示す。絶縁性粒子の平均粒子径は、例えば、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。 The "average particle size" of the insulating particles indicates a number average particle size. The average particle size of the insulating particles can be obtained, for example, by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.

なお、導電性粒子、熱硬化性成分及びフラックスと混合される前の絶縁性粒子単体と、導電性粒子、熱硬化性成分及びフラックスと混合された後の導電材料中の絶縁性粒子とで、絶縁性粒子の平均粒子径は一般的に同じである。 In addition, the insulating particles alone before being mixed with the conductive particles, the thermosetting component and the flux, and the insulating particles in the conductive material after being mixed with the conductive particles, the thermosetting component and the flux. The average particle size of the insulating particles is generally the same.

上記絶縁性粒子の材料としては、絶縁性の樹脂、及び絶縁性の無機物等が挙げられる。上記絶縁性の樹脂としては、基材粒子として用いることが可能な樹脂粒子を形成するための樹脂として挙げた上記樹脂が挙げられる。上記絶縁性の無機物としては、基材粒子として用いることが可能な無機粒子を形成するための無機物として挙げた上記無機物が挙げられる。 Examples of the material of the insulating particles include an insulating resin and an insulating inorganic substance. Examples of the insulating resin include the above-mentioned resins mentioned as resins for forming resin particles that can be used as base particles. Examples of the insulating inorganic substance include the above-mentioned inorganic substances mentioned as the inorganic substances for forming the inorganic particles that can be used as the base particles.

上記絶縁性粒子の材料である絶縁性樹脂の具体例としては、ポリオレフィン類、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。 Specific examples of the insulating resin that is the material of the insulating particles include polyolefins, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked products of thermoplastic resins, and heat. Examples thereof include curable resins and water-soluble resins.

上記ポリオレフィン類としては、ポリエチレン、エチレン−酢酸ビニル共重合体及びエチレン−アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート及びポリブチル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン−アクリル酸エステル共重合体、SB型スチレン−ブタジエンブロック共重合体、及びSBS型スチレン−ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。なかでも、水溶性樹脂が好ましく、ポリビニルアルコールがより好ましい。 Examples of the polyolefins include polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer and the like. Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate. Examples of the block polymer include polystyrene, styrene-acrylic acid ester copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof. Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers. Examples of the thermosetting resin include epoxy resin, phenol resin, melamine resin and the like. Examples of the water-soluble resin include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinylpyrrolidone, polyethylene oxide, methyl cellulose and the like. Of these, a water-soluble resin is preferable, and polyvinyl alcohol is more preferable.

上記導電材料100重量%中、上記絶縁性粒子の含有量は好ましくは0.1重量%以上、より好ましくは0.5重量%以上であり、好ましくは10重量%以下、より好ましくは5重量%以下である。上記導電材料は、絶縁性粒子を含んでいなくてもよい。絶縁性粒子の含有量が上記下限以上及び上記上限以下であると、導電材料の硬化物により接続される接続対象部材間の間隔、並びに導電性粒子におけるはんだにより接続される接続対象部材間の間隔がより一層適度になる。 The content of the insulating particles in 100% by weight of the conductive material is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, preferably 10% by weight or less, and more preferably 5% by weight. It is as follows. The conductive material may not contain insulating particles. When the content of the insulating particles is equal to or greater than the above lower limit and equal to or less than the above upper limit, the spacing between the members to be connected connected by the cured product of the conductive material and the spacing between the members to be connected connected by the solder in the conductive particles. Becomes even more moderate.

(他の成分)
上記導電材料は、必要に応じて、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
(Other ingredients)
The conductive material may be, for example, a filler, a bulking agent, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, or a lubricant, if necessary. , Antistatic agents, flame retardants and other various additives may be contained.

(接続構造体及び接続構造体の製造方法)
本発明に係る接続構造体は、少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述した導電材料であり、上記接続部が、上述した導電材料により形成されている。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記接続部中のはんだ部により電気的に接続されている。
(Connection structure and manufacturing method of connection structure)
The connection structure according to the present invention includes a first connection target member having at least one first electrode on the surface, a second connection target member having at least one second electrode on the surface, and the first connection target member. The connection target member is provided with a connection portion connecting the second connection target member. In the connection structure according to the present invention, the material of the connection portion is the above-mentioned conductive material, and the above-mentioned connection portion is formed of the above-mentioned conductive material. In the connection structure according to the present invention, the first electrode and the second electrode are electrically connected by a solder portion in the connection portion.

上記接続構造体の製造方法は、上述した導電材料を用いて、少なくとも1つの第1の電極を表面に有する第1の接続対象部材の表面上に、上記導電材料を配置する工程と、上記導電材料の上記第1の接続対象部材側とは反対の表面上に、少なくとも1つの第2の電極を表面に有する第2の接続対象部材を、上記第1の電極と上記第2の電極とが対向するように配置する工程と、上記導電性粒子におけるはんだの融点以上に上記導電材料を加熱することで、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部を、上記導電材料の硬化物により形成し、かつ、上記第1の電極と上記第2の電極とを、上記接続部中のはんだ部により電気的に接続する工程とを備える。好ましくは、上記熱硬化性成分、熱硬化性化合物の硬化温度以上に上記導電材料を加熱する。 The method for manufacturing the connection structure includes a step of arranging the conductive material on the surface of a first connection target member having at least one first electrode on the surface using the above-mentioned conductive material, and the above-mentioned conductivity. A second connection target member having at least one second electrode on the surface on the surface of the material opposite to the first connection target member side is provided by the first electrode and the second electrode. A connection in which the first connection target member and the second connection target member are connected by heating the conductive material above the melting point of the solder in the conductive particles and the step of arranging them so as to face each other. The portion is formed of a cured product of the conductive material, and includes a step of electrically connecting the first electrode and the second electrode by a solder portion in the connecting portion. Preferably, the conductive material is heated above the curing temperature of the thermosetting component and the thermosetting compound.

本発明に係る接続構造体及び上記接続構造体の製造方法では、特定の導電材料を用いているので、複数の導電性粒子におけるはんだが第1の電極と第2の電極との間に集まりやすく、はんだを電極(ライン)上に効率的に配置することができる。また、はんだの一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだの量をかなり少なくすることができる。従って、第1の電極と第2の電極との間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。 Since a specific conductive material is used in the connection structure according to the present invention and the method for manufacturing the connection structure, solder in a plurality of conductive particles tends to collect between the first electrode and the second electrode. , Solder can be efficiently placed on the electrode (line). Further, it is difficult for a part of the solder to be arranged in the region (space) where the electrode is not formed, and the amount of the solder arranged in the region where the electrode is not formed can be considerably reduced. Therefore, the conduction reliability between the first electrode and the second electrode can be improved. Moreover, it is possible to prevent electrical connection between horizontally adjacent electrodes that should not be connected, and it is possible to improve insulation reliability.

また、複数の導電性粒子におけるはんだを電極上に効率的に配置し、かつ電極が形成されていない領域に配置されるはんだの量をかなり少なくするためには、導電フィルムではなく、導電ペーストを用いることが好ましい。 Further, in order to efficiently arrange the solder in the plurality of conductive particles on the electrodes and to considerably reduce the amount of the solder arranged in the region where the electrodes are not formed, a conductive paste is used instead of the conductive film. It is preferable to use it.

電極間でのはんだ部の厚みは、好ましくは10μm以上、より好ましくは20μm以上であり、好ましくは100μm以下、より好ましくは80μm以下である。電極の表面上のはんだ濡れ面積(電極の露出した面積100%中のはんだが接している面積、上記接続部を形成する前の上記第1の電極と上記第1の電極と電気的に接続される上記第2の電極との露出した面積100%に対する、上記接続部を形成した後の上記はんだ部が接している面積)は、好ましくは50%以上、より好ましくは70%以上であり、好ましくは100%以下である。 The thickness of the solder portion between the electrodes is preferably 10 μm or more, more preferably 20 μm or more, preferably 100 μm or less, and more preferably 80 μm or less. The solder wet area on the surface of the electrode (the area in contact with the solder in 100% of the exposed area of the electrode, the first electrode and the first electrode before forming the connection portion are electrically connected to each other. The area in contact with the solder portion after forming the connection portion with respect to the exposed area of 100% with the second electrode) is preferably 50% or more, more preferably 70% or more, and is preferable. Is 100% or less.

本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、加圧を行わず、上記導電材料には、上記第2の接続対象部材の重量が加わるか、又は、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程の内の少なくとも一方において、加圧を行い、かつ、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程の双方において、加圧の圧力が1MPa未満であることが好ましい。1MPa以上の加圧の圧力を加えないことで、導電性粒子におけるはんだの凝集がかなり促進される。接続対象部材の反りを抑える観点からは、本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程の内の少なくとも一方において、加圧を行い、かつ、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程の双方において、加圧の圧力が1MPa未満であってもよい。加圧を行う場合に、上記第2の接続対象部材を配置する工程のみにおいて、加圧を行ってもよく、上記接続部を形成する工程のみにおいて、加圧を行ってもよく、上記第2の接続対象部材を配置する工程と上記接続部を形成する工程との双方において、加圧を行ってもよい。加圧の圧力が1MPa未満には、加圧していない場合が含まれる。加圧を行う場合に、加圧の圧力は、好ましくは0.9MPa以下、より好ましくは0.8MPa以下である。加圧の圧力が0.8MPa以下である場合に、加圧の圧力が0.8MPaを超える場合と比べて、導電性粒子におけるはんだの凝集がより一層顕著に促進される。 In the method for manufacturing a connection structure according to the present invention, no pressurization is performed in the step of arranging the second connection target member and the step of forming the connection portion, and the second connection is made to the conductive material. Pressurization is performed and the second connection target member is pressed in at least one of the steps of adding the weight of the target member or arranging the second connection target member and forming the connection portion. It is preferable that the pressurizing pressure is less than 1 MPa in both the step of arranging the above and the step of forming the connection portion. By not applying a pressure of 1 MPa or more, the aggregation of the solder in the conductive particles is considerably promoted. From the viewpoint of suppressing warpage of the connection target member, in the method for manufacturing a connection structure according to the present invention, addition is performed in at least one of the step of arranging the second connection target member and the step of forming the connection portion. The pressure of pressurization may be less than 1 MPa in both the step of applying pressure and arranging the second connection target member and the step of forming the connection portion. When pressurizing, pressurization may be performed only in the step of arranging the second connection target member, or pressurization may be performed only in the step of forming the connection portion. Pressurization may be performed in both the step of arranging the connection target member and the step of forming the connection portion. The pressure of pressurization is less than 1 MPa includes the case of not pressurizing. When pressurizing, the pressurizing pressure is preferably 0.9 MPa or less, more preferably 0.8 MPa or less. When the pressurizing pressure is 0.8 MPa or less, the aggregation of the solder in the conductive particles is further remarkably promoted as compared with the case where the pressurizing pressure exceeds 0.8 MPa.

本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、加圧を行わず、上記導電材料には、上記第2の接続対象部材の重量が加わることが好ましく、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、上記導電材料には、上記第2の接続対象部材の重量の力を超える加圧圧力は加わらないことが好ましい。これらの場合には、複数のはんだ部において、はんだ量の均一性をより一層高めることができる。更に、はんだ部の厚みをより一層効果的に厚くすることができ、複数の導電性粒子におけるはんだが電極間に多く集まりやすくなり、複数の導電性粒子におけるはんだを電極(ライン)上により一層効率的に配置することができる。また、複数の導電性粒子におけるはんだの一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置される導電性粒子におけるはんだの量をより一層少なくすることができる。従って、電極間の導通信頼性をより一層高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続をより一層防ぐことができ、絶縁信頼性をより一層高めることができる。 In the method for manufacturing a connection structure according to the present invention, no pressurization is performed in the step of arranging the second connection target member and the step of forming the connection portion, and the second connection is made to the conductive material. It is preferable that the weight of the target member is added, and in the step of arranging the second connection target member and the step of forming the connection portion, the conductive material exceeds the force of the weight of the second connection target member. It is preferable that no pressurizing pressure is applied. In these cases, the uniformity of the soldering amount can be further improved in the plurality of soldered portions. Further, the thickness of the solder portion can be increased more effectively, and a large amount of solder in a plurality of conductive particles can easily collect between the electrodes, and the solder in a plurality of conductive particles can be more efficiently collected on the electrode (line). Can be arranged as a target. Further, it is difficult for a part of the solder in the plurality of conductive particles to be arranged in the region (space) where the electrode is not formed, and the amount of the solder in the conductive particles arranged in the region where the electrode is not formed is further increased. Can be reduced. Therefore, the continuity reliability between the electrodes can be further improved. Moreover, it is possible to further prevent electrical connection between electrodes adjacent in the lateral direction that should not be connected, and it is possible to further improve insulation reliability.

更に、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、加圧を行わず、上記導電材料に、上記第2の接続対象部材の重量が加われば、接続部が形成される前に電極が形成されていない領域(スペース)に配置されていたはんだが第1の電極と第2の電極との間により一層集まりやすくなり、複数の導電性粒子におけるはんだを電極(ライン)上により一層効率的に配置することができることも、本発明者らは見出した。本発明では、導電フィルムではなく、導電ペーストを用いるという構成と、加圧を行わず、上記導電ペーストには、上記第2の接続対象部材の重量が加わるようにするという構成とを組み合わせて採用することには、本発明の効果をより一層高いレベルで得るために大きな意味がある。 Further, in the step of arranging the second connection target member and the step of forming the connection portion, if no pressurization is performed and the weight of the second connection target member is added to the conductive material, the connection portion is formed. The solder that was placed in the area (space) where the electrodes were not formed before being formed becomes easier to collect between the first electrode and the second electrode, and the solder in the plurality of conductive particles is attached to the electrodes (the electrodes). The present inventors have also found that the arrangement can be performed more efficiently on the line). In the present invention, a configuration in which a conductive paste is used instead of a conductive film and a configuration in which the weight of the second connection target member is added to the conductive paste without applying pressure are adopted in combination. It is of great significance to do so in order to obtain the effect of the present invention at an even higher level.

なお、WO2008/023452A1では、はんだ粉を電極表面に押し流して効率よく移動させる観点からは、接着時に所定の圧力で加圧するとよいことが記載されており、加圧圧力は、はんだ領域を更に確実に形成する観点では、例えば、0MPa以上、好ましくは1MPa以上とすることが記載されており、更に、接着テープに意図的に加える圧力が0MPaであっても、接着テープ上に配置された部材の自重により、接着テープに所定の圧力が加わってもよいことが記載されている。WO2008/023452A1では、接着テープに意図的に加える圧力が0MPaであってもよいことは記載されているが、0MPaを超える圧力を付与した場合と0MPaとした場合との効果の差異については、何ら記載されていない。また、WO2008/023452A1では、フィルム状ではなく、ペースト状の導電ペーストを用いることの重要性についても何ら認識されていない。 In WO2008 / 023452A1, it is described that it is preferable to pressurize at a predetermined pressure at the time of bonding from the viewpoint of pushing the solder powder to the electrode surface and moving it efficiently, and the pressurizing pressure further ensures the solder region. From the viewpoint of forming the adhesive tape, for example, it is described that the pressure is 0 MPa or more, preferably 1 MPa or more, and even if the pressure intentionally applied to the adhesive tape is 0 MPa, the member arranged on the adhesive tape It is stated that a predetermined pressure may be applied to the adhesive tape due to its own weight. WO2008 / 023452A1 describes that the pressure intentionally applied to the adhesive tape may be 0 MPa, but there is no difference in the effect between the case where the pressure exceeding 0 MPa is applied and the case where the pressure is 0 MPa. Not listed. Further, in WO2008 / 023452A1, the importance of using a paste-like conductive paste instead of a film-like one is not recognized at all.

また、導電フィルムではなく、導電ペーストを用いれば、導電ペーストの塗布量によって、接続部及びはんだ部の厚みを調整することが容易になる。一方で、導電フィルムでは、接続部の厚みを変更したり、調整したりするためには、異なる厚みの導電フィルムを用意したり、所定の厚みの導電フィルムを用意したりしなければならないという問題がある。また、導電フィルムでは、導電ペーストと比べて、はんだの溶融温度で、導電フィルムの溶融粘度を十分に下げることができず、はんだの凝集が阻害されやすい傾向がある。 Further, if a conductive paste is used instead of the conductive film, it becomes easy to adjust the thickness of the connecting portion and the solder portion depending on the amount of the conductive paste applied. On the other hand, in the case of the conductive film, in order to change or adjust the thickness of the connecting portion, it is necessary to prepare a conductive film having a different thickness or a conductive film having a predetermined thickness. There is. Further, in the conductive film, the melt viscosity of the conductive film cannot be sufficiently lowered at the melting temperature of the solder as compared with the conductive paste, and the aggregation of the solder tends to be easily hindered.

以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a connection structure obtained by using the conductive material according to the embodiment of the present invention.

図1に示す接続構造体1は、第1の接続対象部材2と、第2の接続対象部材3と、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4とを備える。接続部4は、上述した導電材料により形成されている。本実施形態では、導電材料は、導電性粒子として、はんだ粒子を含む。 The connection structure 1 shown in FIG. 1 is a connection connecting the first connection target member 2, the second connection target member 3, the first connection target member 2, and the second connection target member 3. A unit 4 is provided. The connecting portion 4 is formed of the above-mentioned conductive material. In the present embodiment, the conductive material includes solder particles as the conductive particles.

接続部4は、複数のはんだ粒子が集まり互いに接合したはんだ部4Aと、熱硬化性成分が熱硬化された硬化物部4Bとを有する。本実施形態では、はんだ部4Aを形成するために、導電性粒子として、はんだ粒子を用いている。はんだ粒子は、中心部分及び導電部の外表面のいずれもが、はんだにより形成されている。 The connecting portion 4 has a solder portion 4A in which a plurality of solder particles are gathered and bonded to each other, and a cured product portion 4B in which a thermosetting component is thermoset. In this embodiment, solder particles are used as the conductive particles in order to form the solder portion 4A. Both the central portion and the outer surface of the conductive portion of the solder particles are formed of solder.

第1の接続対象部材2は表面(上面)に、複数の第1の電極2aを有する。第2の接続対象部材3は表面(下面)に、複数の第2の電極3aを有する。第1の電極2aと第2の電極3aとが、はんだ部4Aにより電気的に接続されている。従って、第1の接続対象部材2と第2の接続対象部材3とが、はんだ部4Aにより電気的に接続されている。なお、接続部4において、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだは存在しない。はんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだ部4Aと離れたはんだは存在しない。なお、少量であれば、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)に、はんだが存在していてもよい。 The first connection target member 2 has a plurality of first electrodes 2a on the surface (upper surface). The second connection target member 3 has a plurality of second electrodes 3a on the surface (lower surface). The first electrode 2a and the second electrode 3a are electrically connected by the solder portion 4A. Therefore, the first connection target member 2 and the second connection target member 3 are electrically connected by the solder portion 4A. In the connecting portion 4, no solder is present in a region (cured product portion 4B portion) different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a. In the region different from the solder portion 4A (cured product portion 4B portion), there is no solder separated from the solder portion 4A. If the amount is small, the solder may be present in a region (cured product portion 4B portion) different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a.

図1に示すように、接続構造体1では、第1の電極2aと第2の電極3aとの間に、複数のはんだ粒子が集まり、複数のはんだ粒子が溶融した後、はんだ粒子の溶融物が電極の表面を濡れ拡がった後に固化して、はんだ部4Aが形成されている。このため、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接続面積が大きくなる。すなわち、はんだ粒子を用いることにより、導電部の外表面部分がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接触面積が大きくなる。このため、接続構造体1における導通信頼性及び接続信頼性が高くなる。 As shown in FIG. 1, in the connection structure 1, a plurality of solder particles are gathered between the first electrode 2a and the second electrode 3a, and after the plurality of solder particles are melted, the melt of the solder particles is formed. The surface of the electrode is wet and spread, and then solidified to form the solder portion 4A. Therefore, the connection area between the solder portion 4A and the first electrode 2a and the solder portion 4A and the second electrode 3a becomes large. That is, by using the solder particles, the solder portion 4A, the first electrode 2a, and the solder are compared with the case where the outer surface portion of the conductive portion is a metal such as nickel, gold, or copper. The contact area between the portion 4A and the second electrode 3a becomes large. Therefore, the continuity reliability and the connection reliability in the connection structure 1 are improved.

なお、図1に示す接続構造体1では、はんだ部4Aの全てが、第1,第2の電極2a,3a間の対向している領域に位置している。図3に示す変形例の接続構造体1Xは、接続部4Xのみが、図1に示す接続構造体1と異なる。接続部4Xは、はんだ部4XAと硬化物部4XBとを有する。接続構造体1Xのように、はんだ部4XAの多くが、第1,第2の電極2a,3aの対向している領域に位置しており、はんだ部4XAの一部が第1,第2の電極2a,3aの対向している領域から側方にはみ出していてもよい。第1,第2の電極2a,3aの対向している領域から側方にはみ出しているはんだ部4XAは、はんだ部4XAの一部であり、はんだ部4XAから離れたはんだではない。なお、本実施形態では、はんだ部から離れたはんだの量を少なくすることができるが、はんだ部から離れたはんだが硬化物部中に存在していてもよい。 In the connection structure 1 shown in FIG. 1, all of the solder portions 4A are located in facing regions between the first and second electrodes 2a and 3a. In the connection structure 1X of the modified example shown in FIG. 3, only the connection portion 4X is different from the connection structure 1 shown in FIG. The connection portion 4X has a solder portion 4XA and a cured product portion 4XB. Like the connection structure 1X, most of the solder portions 4XA are located in the facing regions of the first and second electrodes 2a and 3a, and a part of the solder portions 4XA is the first and second electrodes. The electrodes 2a and 3a may protrude laterally from the facing regions. The solder portion 4XA protruding laterally from the facing regions of the first and second electrodes 2a and 3a is a part of the solder portion 4XA, and is not the solder separated from the solder portion 4XA. In this embodiment, the amount of solder separated from the solder portion can be reduced, but the solder separated from the solder portion may be present in the cured product portion.

はんだ粒子の使用量を少なくすれば、接続構造体1を得ることが容易になる。はんだ粒子の使用量を多くすれば、接続構造体1Xを得ることが容易になる。 If the amount of solder particles used is reduced, it becomes easy to obtain the connection structure 1. If the amount of solder particles used is increased, it becomes easy to obtain the connection structure 1X.

導通信頼性をより一層高める観点からは、接続構造体1,1Xでは、第1の電極2aと接続部4,4Xと第2の電極3aとの積層方向に第1の電極2aと第2の電極3aとの対向し合う部分をみたときに、第1の電極2aと第2の電極3aとの対向し合う部分の面積100%中の50%以上(より好ましくは60%以上、更に好ましくは70%以上、特に好ましくは80%以上、最も好ましくは90%以上)に、接続部4,4X中のはんだ部4A,4XAが配置されていることが好ましい。 From the viewpoint of further enhancing the conduction reliability, in the connection structure 1, 1X, the first electrode 2a and the second electrode 2a and the second electrode 2a are in the stacking direction of the first electrode 2a, the connection portions 4, 4X, and the second electrode 3a. When looking at the portions facing each other with the electrode 3a, 50% or more (more preferably 60% or more, still more preferably 60% or more) of the area of the facing portions of the first electrode 2a and the second electrode 3a is 100%. It is preferable that the solder portions 4A and 4XA in the connecting portions 4 and 4X are arranged in 70% or more, particularly preferably 80% or more, and most preferably 90% or more).

導通信頼性をより一層高める観点からは、上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の50%以上(より好ましくは60%以上、更に好ましくは70%以上、特に好ましくは80%以上、最も好ましくは90%以上)に、上記接続部中のはんだ部が配置されていることが好ましい。 From the viewpoint of further enhancing the conduction reliability, the portion where the first electrode and the second electrode face each other is seen in the stacking direction of the first electrode, the connection portion, and the second electrode. Occasionally, 50% or more (more preferably 60% or more, still more preferably 70% or more, particularly preferably 80% or more) of the area of the portion where the first electrode and the second electrode face each other is 100% or more. , Most preferably 90% or more), it is preferable that the solder portion in the connection portion is arranged.

導通信頼性をより一層高める観点からは、上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の60%以上(より好ましくは70%以上、より一層好ましくは80%以上、更に好ましくは90%以上、特に好ましくは95%以上、最も好ましくは99%以上)が配置されていることが好ましい。 From the viewpoint of further enhancing conduction reliability, the first electrode and the second electrode face each other in a direction orthogonal to the stacking direction of the first electrode, the connection portion, and the second electrode. When looking at the mating portions, 60% or more (more preferably 70% or more, still more preferably 80) of the solder portion in the connection portion is in the facing portion between the first electrode and the second electrode. % Or more, more preferably 90% or more, particularly preferably 95% or more, and most preferably 99% or more).

次に、本発明の一実施形態に係る導電材料を用いて、接続構造体1を製造する方法の一例を説明する。 Next, an example of a method for manufacturing the connection structure 1 using the conductive material according to the embodiment of the present invention will be described.

先ず、第1の電極2aを表面(上面)に有する第1の接続対象部材2を用意する。次に、図2(a)に示すように、第1の接続対象部材2の表面上に、熱硬化性成分11Bと、複数のはんだ粒子11Aと、特定のフラックスとを含む導電材料11を配置する(第1の工程)。用いた導電材料は、熱硬化性成分11Bとして、熱硬化性化合物と熱硬化剤とを含む。 First, the first connection target member 2 having the first electrode 2a on the surface (upper surface) is prepared. Next, as shown in FIG. 2A, a conductive material 11 containing a thermosetting component 11B, a plurality of solder particles 11A, and a specific flux is arranged on the surface of the first connection target member 2. (First step). The conductive material used contains a thermosetting compound and a thermosetting agent as the thermosetting component 11B.

第1の接続対象部材2の第1の電極2aが設けられた表面上に、導電材料11を配置する。導電材料11の配置の後に、はんだ粒子11Aは、第1の電極2a(ライン)上と、第1の電極2aが形成されていない領域(スペース)上との双方に配置されている。 The conductive material 11 is arranged on the surface of the first connection target member 2 on which the first electrode 2a is provided. After the arrangement of the conductive material 11, the solder particles 11A are arranged both on the first electrode 2a (line) and on the region (space) where the first electrode 2a is not formed.

導電材料11の配置方法としては、特に限定されないが、ディスペンサーによる塗布、スクリーン印刷、及びインクジェット装置による吐出等が挙げられる。 The method of arranging the conductive material 11 is not particularly limited, and examples thereof include coating with a dispenser, screen printing, and ejection with an inkjet device.

また、第2の電極3aを表面(下面)に有する第2の接続対象部材3を用意する。次に、図2(b)に示すように、第1の接続対象部材2の表面上の導電材料11において、導電材料11の第1の接続対象部材2側とは反対側の表面上に、第2の接続対象部材3を配置する(第2の工程)。導電材料11の表面上に、第2の電極3a側から、第2の接続対象部材3を配置する。このとき、第1の電極2aと第2の電極3aとを対向させる。 Further, a second connection target member 3 having the second electrode 3a on the surface (lower surface) is prepared. Next, as shown in FIG. 2B, in the conductive material 11 on the surface of the first connection target member 2, on the surface of the conductive material 11 opposite to the first connection target member 2 side. The second connection target member 3 is arranged (second step). The second connection target member 3 is arranged on the surface of the conductive material 11 from the second electrode 3a side. At this time, the first electrode 2a and the second electrode 3a are opposed to each other.

次に、はんだ粒子11Aの融点以上に導電材料11を加熱する(第3の工程)。好ましくは、熱硬化性成分11B(バインダー)の硬化温度以上に導電材料11を加熱する。この加熱時には、電極が形成されていない領域に存在していたはんだ粒子11Aは、第1の電極2aと第2の電極3aとの間に集まる(自己凝集効果)。導電フィルムではなく、導電ペーストを用いた場合には、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間に効果的に集まる。また、はんだ粒子11Aは溶融し、互いに接合する。また、熱硬化性成分11Bは熱硬化する。この結果、図2(c)に示すように、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4を、導電材料11により形成する。導電材料11により接続部4が形成され、複数のはんだ粒子11Aが接合することによってはんだ部4Aが形成され、熱硬化性成分11Bが熱硬化することによって硬化物部4Bが形成される。はんだ粒子11Aが十分に移動すれば、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの移動が開始してから、第1の電極2aと第2の電極3aとの間にはんだ粒子11Aの移動が完了するまでに、温度を一定に保持しなくてもよい。 Next, the conductive material 11 is heated above the melting point of the solder particles 11A (third step). Preferably, the conductive material 11 is heated above the curing temperature of the thermosetting component 11B (binder). At the time of this heating, the solder particles 11A existing in the region where the electrodes are not formed gather between the first electrode 2a and the second electrode 3a (self-aggregation effect). When a conductive paste is used instead of the conductive film, the solder particles 11A are effectively collected between the first electrode 2a and the second electrode 3a. Further, the solder particles 11A are melted and bonded to each other. Further, the thermosetting component 11B is thermoset. As a result, as shown in FIG. 2C, the connecting portion 4 connecting the first connection target member 2 and the second connection target member 3 is formed of the conductive material 11. The connecting portion 4 is formed by the conductive material 11, the solder portion 4A is formed by joining the plurality of solder particles 11A, and the cured product portion 4B is formed by thermosetting the thermosetting component 11B. If the solder particles 11A move sufficiently, the solder particles 11A that are not located between the first electrode 2a and the second electrode 3a start to move, and then the first electrode 2a and the second electrode 2a and the second electrode It is not necessary to keep the temperature constant until the movement of the solder particles 11A to and from 3a is completed.

本実施形態では、上記第2の工程及び上記第3の工程において、加圧を行わない方が好ましい。この場合には、導電材料11には、第2の接続対象部材3の重量が加わる。このため、接続部4の形成時に、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間に効果的に集まる。なお、上記第2の工程及び上記第3の工程の内の少なくとも一方において、加圧を行えば、はんだ粒子が第1の電極と第2の電極との間に集まろうとする作用が阻害される傾向が高くなる。 In the present embodiment, it is preferable not to pressurize in the second step and the third step. In this case, the weight of the second connection target member 3 is added to the conductive material 11. Therefore, when the connecting portion 4 is formed, the solder particles 11A are effectively collected between the first electrode 2a and the second electrode 3a. If pressure is applied in at least one of the second step and the third step, the action of solder particles to collect between the first electrode and the second electrode is hindered. The tendency is high.

また、本実施形態では、加圧を行っていないため、導電材料を塗布した第1の接続対象部材に、第2の接続対象部材を重ね合わせた際に、第1の接続対象部材の電極と第2の接続対象部材の電極のアライメントがずれた状態で、第1の接続対象部材と第2の接続対象部材とが重ね合わされた場合でも、そのずれを補正して、第1の接続対象部材の電極と第2の接続対象部材との電極を接続させることができる(セルフアライメント効果)。これは、第1の接続対象部材の電極と第2の接続対象部材の電極との間に自己凝集した溶融したはんだが、第1の接続対象部材の電極と第2の接続対象部材の電極との間のはんだと導電材料のその他の成分とが接する面積が最小となる方がエネルギー的に安定になるため、その最小の面積となる接続構造であるアライメントのあった接続構造にする力が働くためである。この際、導電材料が硬化していないこと、及び、その温度、時間にて、導電材料の導電性粒子以外の成分の粘度が十分低いことが望ましい。 Further, in the present embodiment, since the pressure is not applied, when the second connection target member is superposed on the first connection target member coated with the conductive material, the electrode of the first connection target member is used. Even if the first connection target member and the second connection target member are overlapped with each other in a state where the electrodes of the second connection target member are misaligned, the misalignment is corrected and the first connection target member is corrected. The electrode of the above and the electrode of the second connection target member can be connected (self-alignment effect). This is because the molten solder that self-aggregates between the electrode of the first connection target member and the electrode of the second connection target member is the electrode of the first connection target member and the electrode of the second connection target member. Since the area where the solder between the solder and other components of the conductive material come into contact with each other is the smallest, it is energetically stable. This is because. At this time, it is desirable that the conductive material is not cured and that the viscosity of the components other than the conductive particles of the conductive material is sufficiently low at the temperature and time.

このようにして、図1に示す接続構造体1が得られる。なお、上記第2の工程と上記第3の工程とは連続して行われてもよい。また、上記第2の工程を行った後に、得られる第1の接続対象部材2と導電材料11と第2の接続対象部材3との積層体を、加熱部に移動させて、上記第3の工程を行ってもよい。上記加熱を行うために、加熱部材上に上記積層体を配置してもよく、加熱された空間内に上記積層体を配置してもよい。 In this way, the connection structure 1 shown in FIG. 1 is obtained. The second step and the third step may be continuously performed. Further, after performing the second step, the obtained laminate of the first connection target member 2, the conductive material 11 and the second connection target member 3 is moved to the heating unit, and the third The process may be performed. In order to perform the heating, the laminate may be arranged on the heating member, or the laminate may be arranged in the heated space.

上記第3の工程における上記加熱温度は、好ましくは140℃以上、より好ましくは160℃以上であり、好ましくは450℃以下、より好ましくは250℃以下、更に好ましくは200℃以下である。 The heating temperature in the third step is preferably 140 ° C. or higher, more preferably 160 ° C. or higher, preferably 450 ° C. or lower, more preferably 250 ° C. or lower, still more preferably 200 ° C. or lower.

上記第3の工程における加熱方法としては、はんだの融点以上及び熱硬化性化合物の硬化温度以上に、接続構造体全体を、リフロー炉を用いて又はオーブンを用いて加熱する方法や、接続構造体の接続部のみを局所的に加熱する方法が挙げられる。 As a heating method in the third step, a method of heating the entire connection structure using a reflow furnace or an oven at a temperature equal to or higher than the melting point of the solder and a temperature higher than the curing temperature of the thermosetting compound, or a connection structure. A method of locally heating only the connection portion of the solder is mentioned.

局所的に加熱する方法に用いる器具としては、ホットプレート、熱風を付与するヒートガン、はんだゴテ、及び赤外線ヒーター等が挙げられる。 Examples of the appliance used for the method of locally heating include a hot plate, a heat gun for applying hot air, a soldering iron, an infrared heater, and the like.

また、ホットプレートにて局所的に加熱する際、接続部直下は、熱伝導性の高い金属にて、その他の加熱することが好ましくない個所は、フッ素樹脂等の熱伝導性の低い材質にて、ホットプレート上面を形成することが好ましい。 When locally heating on a hot plate, use a metal with high thermal conductivity directly under the connection, and use a material with low thermal conductivity such as fluororesin in other areas where heating is not preferable. , It is preferable to form the upper surface of the hot plate.

上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1,第2の接続対象部材は、電子部品であることが好ましい。 The first and second connection target members are not particularly limited. Specific examples of the first and second connection target members include electronic components such as semiconductor chips, semiconductor packages, LED chips, LED packages, capacitors and diodes, resin films, printed circuit boards, flexible printed circuit boards, and flexible devices. Examples thereof include electronic components such as flat cables, rigid flexible boards, glass epoxy boards, circuit boards such as glass boards, and the like. The first and second connection target members are preferably electronic components.

上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、半導体チップ、樹脂フィルム、フレキシブルプリント基板、リジッドフレキシブル基板又はフレキシブルフラットケーブルであることが好ましく、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることがより好ましい。上記第2の接続対象部材が、半導体チップ、樹脂フィルム、フレキシブルプリント基板、リジッドフレキシブル基板又はフレキシブルフラットケーブルであることが好ましく樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることがより好ましい。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル及びリジッドフレキシブル基板は、柔軟性が高く、比較的軽量であるという性質を有する。このような接続対象部材の接続に導電フィルムを用いた場合には、導電性粒子におけるはんだが電極上に集まりにくい傾向がある。これに対して、導電ペーストを用いることで、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いたとしても、導電性粒子におけるはんだを電極上に効率的に集めることで、電極間の導通信頼性を充分に高めることができる。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いる場合に、半導体チップ等の他の接続対象部材を用いた場合と比べて、加圧を行わないことによる電極間の導通信頼性の向上効果がより一層効果的に得られる。 It is preferable that at least one of the first connection target member and the second connection target member is a semiconductor chip, a resin film, a flexible printed substrate, a rigid flexible substrate or a flexible flat cable, and a resin film and a flexible print. More preferably, it is a substrate, a flexible flat cable or a rigid flexible substrate. The second connection target member is preferably a semiconductor chip, a resin film, a flexible printed substrate, a rigid flexible substrate or a flexible flat cable, and more preferably a resin film, a flexible printed substrate, a flexible flat cable or a rigid flexible substrate. preferable. Resin films, flexible printed substrates, flexible flat cables and rigid flexible substrates have the properties of high flexibility and relatively light weight. When a conductive film is used for connecting such a member to be connected, the solder in the conductive particles tends to be difficult to collect on the electrode. On the other hand, by using the conductive paste, even if a resin film, a flexible printed substrate, a flexible flat cable or a rigid flexible substrate is used, the solder in the conductive particles can be efficiently collected on the electrodes, and the electrodes can be separated from each other. Conduction reliability can be sufficiently enhanced. When a resin film, flexible printed substrate, flexible flat cable, or rigid flexible substrate is used, the conduction reliability between the electrodes due to no pressurization is higher than when other connected members such as semiconductor chips are used. The improvement effect can be obtained even more effectively.

上記接続対象部材の形態にはペリフェラルやエリアアレイ等が存在する。各部材の特徴として、ペリフェラル基板では、電極が基板の外周部のみに存在する。エリアアレイ基板では、面内に電極が存在する。 The form of the connection target member includes a peripheral, an area array, and the like. As a feature of each member, in the peripheral substrate, the electrodes are present only on the outer peripheral portion of the substrate. In the area array substrate, electrodes are present in the plane.

上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrode provided on the connection target member include a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, a SUS electrode, and a metal electrode such as a tungsten electrode. When the connection target member is a flexible printed substrate, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode. When the electrode is an aluminum electrode, it may be an electrode formed only of aluminum, or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer. Examples of the material of the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al and Ga.

以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.

熱硬化性化合物1:レゾルシノール型エポキシ化合物、共栄社化学製「エポライトTDC−LC」、エポキシ当量120g/eq Thermosetting compound 1: Resorcinol type epoxy compound, "Epolite TDC-LC" manufactured by Kyoeisha Chemical Co., Ltd., epoxy equivalent 120 g / eq

熱硬化性化合物2:高反応型エポキシ化合物、株式会社ADEKA製「EP−3300S」、エポキシ当量165g/eq Thermosetting compound 2: Highly reactive epoxy compound, "EP-3300S" manufactured by ADEKA CORPORATION, epoxy equivalent 165 g / eq

熱硬化剤1:トリメチロールプロパントリス(3−メルカプトプロピネート)、SC有機化学社製「TMMP」 Thermosetting agent 1: Trimethylolpropanetris (3-mercaptopropinate), SC Organic Chemical Co., Ltd. "TMMP"

熱硬化剤2:トジペンタエリスリトールヘキサキス(3−メルカプトプロピオネート)、SC有機化学社製「DPMP」 Thermosetting agent 2: Todipentaerythritol hexakis (3-mercaptopropionate), SC Organic Chemical Co., Ltd. "DPMP"

潜在性エポキシ熱硬化剤1:T&K TOKA社製「フジキュア7000」 Latent Epoxy Thermosetting Agent 1: "Fuji Cure 7000" manufactured by T & K TOKA

フラックス1の作製方法:
3つ口フラスコに、アセトン160gと、グルタル酸(和光純薬工業社製)32gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)26gを30分かけて滴下し、滴下完了後2時間室温で撹拌した。析出した白色結晶をろ過により分取し、アセトンで洗浄し、真空乾燥し、フラックス1を得た。平均粒子径は走査型電子顕微鏡(日立製作所社製「S−4300SEN」)を用いて、任意の粒子50個で測定し、平均値を算出した。また融点はDSC(セイコーインスツル社製「DSC6200」)にて吸熱ピークを測定した。
Method for producing flux 1:
160 g of acetone and 32 g of glutaric acid (manufactured by Wako Pure Chemical Industries, Ltd.) were placed in a three-necked flask and dissolved at room temperature until uniform. Then, 26 g of benzylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 30 minutes, and after the addition was completed, the mixture was stirred at room temperature for 2 hours. The precipitated white crystals were separated by filtration, washed with acetone and vacuum dried to obtain flux 1. The average particle size was measured with 50 arbitrary particles using a scanning electron microscope (“S-4300SEN” manufactured by Hitachi, Ltd.), and the average value was calculated. As for the melting point, the endothermic peak was measured by DSC (“DSC6200” manufactured by Seiko Instruments Inc.).

フラックス2の作製方法:
フラックス1と同様の方法で得られた白色結晶について、平均粒子径が10μmになるまで乳鉢にて粉砕して、フラックス2を得た。
Method for producing flux 2:
The white crystals obtained by the same method as for flux 1 were pulverized in a mortar until the average particle size became 10 μm to obtain flux 2.

フラックス3の作製方法:
フラックス1と同様の方法で得られた白色結晶について、平均粒子径が1μmになるまで乳鉢にて粉砕して、フラックス3を得た。
Method for producing flux 3:
The white crystals obtained by the same method as for flux 1 were pulverized in a mortar until the average particle size became 1 μm to obtain flux 3.

フラックス4の作製方法:
フラックス1と同様の方法で得られた白色結晶について、平均粒子径が0.05μmになるまで乳鉢にて粉砕して、フラックス4を得た。
Method for producing flux 4:
The white crystals obtained by the same method as for flux 1 were pulverized in a mortar until the average particle size became 0.05 μm to obtain flux 4.

フラックス5の作製方法:
3つ口フラスコに、アセトン160gと、シクロヘキサンカルボン酸(和光純薬工業社製)31gとを入れ、室温で均一になるまで溶解させた。その後、シクロヘキシルアミン(東京化成工業製)24gを30分かけて滴下し、滴下完了後2時間室温で撹拌した。析出した白色結晶をろ過により分取し、アセトンで洗浄し、真空乾燥した。その後、乳鉢にて、平均粒子径が10μmになるまで粉砕し、フラックス5を得た。
Method for producing flux 5:
160 g of acetone and 31 g of cyclohexanecarboxylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) were placed in a three-necked flask and dissolved at room temperature until uniform. Then, 24 g of cyclohexylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise over 30 minutes, and after the addition was completed, the mixture was stirred at room temperature for 2 hours. The precipitated white crystals were separated by filtration, washed with acetone, and vacuum dried. Then, in a mortar, it was pulverized until the average particle size became 10 μm to obtain a flux 5.

フラックス6の作製方法:
3つ口フラスコに、アセトン160gと、アジピン酸(和光純薬工業社製)35gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)26gを30分かけて滴下し、滴下完了後2時間室温で撹拌した。析出した白色結晶をろ過により分取し、アセトンで洗浄し、真空乾燥した。その後、乳鉢にて、平均粒子径が10μmになるまで粉砕し、フラックス6を得た。
Method for producing flux 6:
Acetone (160 g) and adipic acid (manufactured by Wako Pure Chemical Industries, Ltd.) (35 g) were placed in a three-necked flask and dissolved at room temperature until uniform. Then, 26 g of benzylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 30 minutes, and after the addition was completed, the mixture was stirred at room temperature for 2 hours. The precipitated white crystals were separated by filtration, washed with acetone, and vacuum dried. Then, in a mortar, it was pulverized until the average particle size became 10 μm to obtain a flux 6.

フラックス7の作製方法:
3つ口フラスコに、クエン酸一水和物12.6gに、トリエタノールアミン26.8gを添加し、120℃のオイルバスで撹拌しながらクエン酸を溶解させた。得られたクエン酸トリエタノールアミン塩は、25℃で液体であった。
How to make flux 7:
To 12.6 g of citric acid monohydrate, 26.8 g of triethanolamine was added to a three-necked flask, and citric acid was dissolved while stirring in an oil bath at 120 ° C. The obtained triethanolamine citrate salt was liquid at 25 ° C.

フラックス8の作製方法:
3つ口フラスコに、グルタル酸35.0gに、トリエタノールアミン37.25gを添加し、120℃のオイルバスで撹拌しながらグルタル酸を溶解させた。得られたグルタル酸トリエタノールアミン塩は、25℃で半固体であった。
Method for producing flux 8:
In a three-necked flask, 37.25 g of triethanolamine was added to 35.0 g of glutaric acid, and glutaric acid was dissolved while stirring in an oil bath at 120 ° C. The obtained glutaric acid triethanolamine salt was semi-solid at 25 ° C.

なお、25℃で固形のフラックスに関しては、導電性粒子及び熱硬化性成分と混合される前のフラックス単体と、導電性粒子及び熱硬化性成分と混合された後の導電材料中のフラックスとで、フラックスの平均粒子径は同じであった。 Regarding the flux solid at 25 ° C., the flux alone before being mixed with the conductive particles and the thermosetting component and the flux in the conductive material after being mixed with the conductive particles and the thermosetting component are used. , The average particle size of the flux was the same.

はんだ粒子1(SnBiはんだ粒子、融点139℃、三井金属社製「DS−10」、平均粒子径(メディアン径12μm)) Solder particles 1 (SnBi solder particles, melting point 139 ° C., "DS-10" manufactured by Mitsui Mining & Smelting Co., Ltd., average particle diameter (median diameter 12 μm))

はんだ粒子2(SACはんだ粒子、融点217℃、三井金属社製「DS−10」、平均粒子径(メディアン径12μm)) Solder particles 2 (SAC solder particles, melting point 217 ° C, "DS-10" manufactured by Mitsui Mining & Smelting Co., Ltd., average particle diameter (median diameter 12 μm))

はんだ粒子3の作製方法:
3つ口フラスコに、アセトン160gと、グルタル酸(和光純薬工業社製)32gとを入れ、室温で均一になるまで溶解させた。その後、はんだ粒子1を100g入れて15分攪拌させた後、ベンジルアミン(和光純薬工業社製)26gを30分かけて滴下し、滴下完了後2時間室温で撹拌することで、はんだ粒子の表面にフラックスを析出させた。その後、はんだ粒子をアセトンで1回洗浄し、真空乾燥して、はんだ粒子3を得た。
Method for producing solder particles 3:
160 g of acetone and 32 g of glutaric acid (manufactured by Wako Pure Chemical Industries, Ltd.) were placed in a three-necked flask and dissolved at room temperature until uniform. Then, 100 g of the solder particles 1 were added and stirred for 15 minutes, then 26 g of benzylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 30 minutes, and after the addition was completed, the solder particles were stirred at room temperature for 2 hours to obtain the solder particles. Flux was deposited on the surface. Then, the solder particles were washed once with acetone and vacuum dried to obtain solder particles 3.

(実施例1〜6,9,11〜17、参考例7,8,10及び比較例1〜2)
(1)異方性導電ペーストの作製
下記の表1,2に示す成分を下記の表1,2に示す配合量で配合して、異方性導電ペーストを得た。得られた異方性導電ペーストにおいて、フラックスは、表1,2に示す状態で存在していた。
(Examples 1 to 6, 9, 11 to 17 , Reference Examples 7, 8 and 10 and Comparative Examples 1 to 2)
(1) Preparation of Anisotropic Conductive Paste The components shown in Tables 1 and 2 below were blended in the blending amounts shown in Tables 1 and 2 below to obtain an anisotropic conductive paste. In the obtained anisotropic conductive paste, the flux was present in the states shown in Tables 1 and 2.

(2)接続構造体(エリアアレイ)の作製
第1の接続対象部材として、半導体チップ本体(サイズ5×5mm、厚み0.4mm)の表面に、400μmピッチで直径250μm、厚み10μmの銅電極が、エリアアレイにて配置されている半導体チップを準備した。銅電極の数は、半導体チップ1個当たり、10個×10個の合計100個である。
(2) Preparation of Connection Structure (Area Array) As the first connection target member, a copper electrode having a diameter of 250 μm and a thickness of 10 μm is placed on the surface of a semiconductor chip body (size 5 × 5 mm, thickness 0.4 mm) at a pitch of 400 μm. , The semiconductor chips arranged in the area array were prepared. The number of copper electrodes is 10 x 10 per semiconductor chip, for a total of 100.

第2の接続対象部材として、ガラスエポキシ基板本体(サイズ20×20mm、厚み1.2mm、材質FR−4)の表面に、第1の接続対象部材の電極に対して、同じパターンとなるように、金電極が配置されており、金電極が配置されていない領域にソルダーレジスト膜が形成されているガラスエポキシ基板を準備した。銅電極の表面とソルダーレジスト膜の表面との段差は、15μmであり、ソルダーレジスト膜は銅電極よりも突出している。 As the second connection target member, the same pattern is formed on the surface of the glass epoxy substrate main body (size 20 × 20 mm, thickness 1.2 mm, material FR-4) with respect to the electrodes of the first connection target member. , A glass epoxy substrate was prepared in which a solder resist film was formed in a region where a gold electrode was arranged and a gold electrode was not arranged. The step between the surface of the copper electrode and the surface of the solder resist film is 15 μm, and the solder resist film protrudes from the copper electrode.

上記ガラスエポキシ基板の上面に、作製直後の異方性導電ペーストを厚さ50μmとなるように塗工し、異方性導電ペースト層を形成した。23℃50%RHにて、2時間放置後、異方性導電ペースト層の上面に半導体チップを電極同士が対向するように積層した。異方性導電ペースト層には、上記半導体チップの重量は加わる。その状態から、異方性導電ペースト層の温度が、昇温開始から5秒後にはんだの融点(実施例1〜6,9,12〜17、参考例7,8及び比較例1,2では139℃、参考例10、実施例11では、217℃)となるように加熱した。更に、昇温開始から15秒後に、異方性導電ペースト層の温度がはんだの融点+21℃(実施例1〜6,9,12〜17、参考例7,8及び比較例1,2では160℃、参考例10、実施例11では、238℃)となるように加熱し、5分間保持することで異方性導電ペースト層を硬化させ、接続構造体を得た。加熱時には、加圧を行わなかった。 An anisotropic conductive paste immediately after production was applied to the upper surface of the glass epoxy substrate so as to have a thickness of 50 μm to form an anisotropic conductive paste layer. After standing at 23 ° C. and 50% RH for 2 hours, semiconductor chips were laminated on the upper surface of the anisotropic conductive paste layer so that the electrodes face each other. The weight of the semiconductor chip is added to the anisotropic conductive paste layer. From that state, the temperature of the anisotropic conductive paste layer was 139 in the melting points of the solder (Examples 1 to 6, 9 , 12 to 17, Reference Examples 7 and 8 and Comparative Examples 1 and 2) 5 seconds after the start of temperature rise. The temperature was increased to 217 ° C. in Reference Example 10 and Example 11). Further, 15 seconds after the start of temperature rise, the temperature of the anisotropic conductive paste layer is the melting point of the solder + 21 ° C. (Examples 1 to 6, 9 , 12 to 17, Reference Examples 7 and 8 and Comparative Examples 1 and 2 are 160. The anisotropic conductive paste layer was cured by heating at ° C., Reference Example 10 and Example 11 at 238 ° C.) and holding for 5 minutes to obtain a connecting structure. No pressurization was performed during heating.

(評価)
(1)粘度
異方性導電ペーストの25℃での粘度(η25)を、E型粘度計(東機産業社製「TVE22L」)を用いて、25℃及び5rpmの条件で測定した。
(evaluation)
(1) Viscosity The viscosity (η25) of the anisotropic conductive paste at 25 ° C. was measured at 25 ° C. and 5 rpm using an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.).

(2)保存安定性
異方性導電ペーストをシリンジに入れ、23℃で24時間保管した。保管後に、異方性導電ペーストの25℃での粘度(η25)を、E型粘度計(東機産業社製「TVE22L」)を用いて、25℃及び5rpmの条件で測定した。保存安定性を下記の基準で判定した。
(2) Storage stability The anisotropic conductive paste was placed in a syringe and stored at 23 ° C. for 24 hours. After storage, the viscosity (η25) of the anisotropic conductive paste at 25 ° C. was measured at 25 ° C. and 5 rpm using an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.). Storage stability was judged according to the following criteria.

[保存安定性の判定基準]
○○:保管後の粘度が保管前の粘度の±25%以内
○:○○の基準に相当せず、保管後の粘度が保管前の粘度の±50%以内
△:○○及び○の基準に相当せず、保管後の粘度が保管前の粘度の±75%以内
×:○○、○及び△の基準に相当しない
[Criteria for storage stability]
○○: Viscosity after storage is within ± 25% of viscosity before storage ○: Viscosity after storage does not correspond to the standard of ○○, and viscosity after storage is within ± 50% of viscosity before storage △: Standard of ○○ and ○ And the viscosity after storage is within ± 75% of the viscosity before storage ×: Does not correspond to the criteria of ○○, ○ and △

(3)はんだ部の厚み
得られた接続構造体を断面観察することにより、上下の電極間に位置しているはんだ部の厚みを評価した。
(3) Thickness of solder portion The thickness of the solder portion located between the upper and lower electrodes was evaluated by observing the cross section of the obtained connection structure.

(4)電極上のはんだの配置精度1
得られた接続構造体において、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極と第2の電極との対向し合う部分の面積100%中の、接続部中のはんだ部が配置されている面積の割合Xを評価した。電極上のはんだの配置精度1を下記の基準で判定した。
(4) Solder placement accuracy on electrodes 1
In the obtained connection structure, when the portions facing each other of the first electrode and the second electrode are seen in the stacking direction of the first electrode, the connection portion, and the second electrode, the first electrode and the second electrode are used. The ratio X of the area where the solder portion in the connection portion is arranged in the area of 100% of the portions facing each other with the second electrode was evaluated. The solder placement accuracy 1 on the electrode was determined according to the following criteria.

[電極上のはんだの配置精度1の判定基準]
○○:割合Xが70%以上
○:割合Xが60%以上、70%未満
△:割合Xが50%以上、60%未満
×:割合Xが50%未満
[Criteria for determining solder placement accuracy 1 on electrodes]
○ ○: Ratio X is 70% or more ○: Ratio X is 60% or more and less than 70% Δ: Ratio X is 50% or more and less than 60% ×: Ratio X is less than 50%

(5)電極上のはんだの配置精度2
得られた接続構造体において、第1の電極と接続部と第2の電極との積層方向と直交する方向に第1の電極と第2の電極との対向し合う部分をみたときに、接続部中のはんだ部100%中、第1の電極と第2の電極との対向し合う部分に配置されている接続部中のはんだ部の割合Yを評価した。電極上のはんだの配置精度2を下記の基準で判定した。
(5) Solder placement accuracy on electrodes 2
In the obtained connection structure, when the portions facing each other of the first electrode and the second electrode are seen in the direction orthogonal to the stacking direction of the first electrode, the connection portion, and the second electrode, they are connected. The ratio Y of the solder portion in the connection portion arranged at the portion where the first electrode and the second electrode face each other in the solder portion 100% in the portion was evaluated. The solder placement accuracy 2 on the electrode was determined according to the following criteria.

[電極上のはんだの配置精度2の判定基準]
○○:割合Yが99%以上
○:割合Yが90%以上、99%未満
△:割合Yが70%以上、90%未満
×:割合Yが70%未満
[Criteria for determining solder placement accuracy 2 on electrodes]
○ ○: Ratio Y is 99% or more ○: Ratio Y is 90% or more and less than 99% △: Ratio Y is 70% or more and less than 90% ×: Ratio Y is less than 70%

(6)上下の電極間の導通信頼性
得られた接続構造体(n=15個)において、上下の電極間の1接続箇所当たりの接続抵抗をそれぞれ、4端子法により、測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を下記の基準で判定した。但し、n=15個中一つでも上下の電極間が導通していない場合には、「×」と判定した。
(6) Conduction reliability between the upper and lower electrodes In the obtained connection structure (n = 15 pieces), the connection resistance per connection point between the upper and lower electrodes was measured by the 4-terminal method. The average value of the connection resistance was calculated. From the relationship of voltage = current × resistance, the connection resistance can be obtained by measuring the voltage when a constant current is passed. The continuity reliability was judged according to the following criteria. However, when even one of the n = 15 electrodes did not conduct electricity between the upper and lower electrodes, it was determined to be "x".

[導通信頼性の判定基準]
○○:接続抵抗の平均値が50mΩ以下
○:接続抵抗の平均値が50mΩを超え、70mΩ以下
△:接続抵抗の平均値が70mΩを超え、100mΩ以下
×:接続抵抗の平均値が100mΩを超える、又は接続不良が生じている
[Criteria for continuity reliability]
○ ○: Average value of connection resistance is 50 mΩ or less ○: Average value of connection resistance is more than 50 mΩ, 70 mΩ or less △: Average value of connection resistance is more than 70 mΩ, 100 mΩ or less ×: Average value of connection resistance is more than 100 mΩ Or there is a poor connection

(7)横方向に隣接する電極間の絶縁信頼性
得られた接続構造体(n=15個)において、85℃、湿度85%の雰囲気中に100時間放置後、横方向に隣接する電極間に、15Vを印加し、抵抗値を25箇所で測定した。絶縁信頼性を下記の基準で判定した。但し、n=15個中一つでも横方向に隣接する電極間が導通している場合には、「×」と判定した。
(7) Insulation reliability between electrodes adjacent in the lateral direction In the obtained connection structure (n = 15 pieces), after being left in an atmosphere of 85 ° C. and humidity of 85% for 100 hours, between the electrodes adjacent in the lateral direction. 15V was applied to, and the resistance value was measured at 25 points. The insulation reliability was judged according to the following criteria. However, when even one of the n = 15 electrodes is conducting between adjacent electrodes in the lateral direction, it is determined to be "x".

[絶縁信頼性の判定基準]
○○○:接続抵抗の平均値が1014Ω以上
○○:接続抵抗の平均値が10Ω以上、1014Ω未満
○:接続抵抗の平均値が10Ω以上、10Ω未満
△:接続抵抗の平均値が10Ω以上、10Ω未満
×:接続抵抗の平均値が10Ω未満
[Criteria for insulation reliability]
○○○: ○○ average value of connection resistance 10 14 Omega above: average value of connection resistance 10 8 Omega to less than 10 14 Omega ○: Average connection resistance 10 6 Omega to less than 10 8 Omega △ : connection average value of the resistance is 10 5 Omega to less than 10 6 Omega ×: average value of connection resistance is less than 10 5 Omega

詳細及び結果を下記の表1,2に示す。 Details and results are shown in Tables 1 and 2 below.

Figure 0006966322
Figure 0006966322

Figure 0006966322
Figure 0006966322

1,1X…接続構造体
2…第1の接続対象部材
2a…第1の電極
3…第2の接続対象部材
3a…第2の電極
4,4X…接続部
4A,4XA…はんだ部
4B,4XB…硬化物部
11…導電材料
11A…はんだ粒子(導電性粒子)
11B…熱硬化性成分
21…導電性粒子(はんだ粒子)
31…導電性粒子
32…基材粒子
33…導電部(はんだを有する導電部)
33A…第2の導電部
33B…はんだ部
41…導電性粒子
42…はんだ部
1,1X ... Connection structure 2 ... First connection target member 2a ... First electrode 3 ... Second connection target member 3a ... Second electrode 4,4X ... Connection part 4A, 4XA ... Solder part 4B, 4XB … Hardened material 11… Conductive material 11A… Solder particles (conductive particles)
11B ... Thermosetting component 21 ... Conductive particles (solder particles)
31 ... Conductive particles 32 ... Base particles 33 ... Conductive parts (conductive parts with solder)
33A ... Second conductive part 33B ... Solder part 41 ... Conductive particles 42 ... Solder part

Claims (12)

導電部の外表面部分に、はんだを有する複数の導電性粒子と、
熱硬化性成分と、
フラックスとを含み、
前記フラックスが、カルボキシル基を有する有機化合物とベンジルアミンとの塩であり
5℃の導電材料中で、前記フラックスが固体で存在し、
前記フラックスの平均粒子径が0.1μm以上、30μm以下である、導電材料。
A plurality of conductive particles having solder on the outer surface of the conductive part,
Thermosetting ingredients and
Including flux
The flux is a salt of an organic compound having a carboxyl group and benzylamine .
The flux exists as a solid in a conductive material at 25 ° C.
The average particle size of the flux is 0.1μm or more, Ru der below 30 [mu] m, a conductive material.
前記導電性粒子及び前記熱硬化性成分と混合されていない状態で、前記フラックス単体が、25℃で固体である、請求項1に記載の導電材料。 The conductive material according to claim 1, wherein the flux alone is a solid at 25 ° C. without being mixed with the conductive particles and the thermosetting component. 前記フラックスの平均粒子径の、前記導電性粒子の平均粒子径に対する比が、3以下である、請求項1又は2に記載の導電材料。 The conductive material according to claim 1 or 2 , wherein the ratio of the average particle diameter of the flux to the average particle diameter of the conductive particles is 3 or less. 前記フラックスの融点が、前記導電性粒子におけるはんだの融点−50℃以上、前記導電性粒子におけるはんだの融点+50℃以下である、請求項1〜のいずれか1項に記載の導電材料。 The conductive material according to any one of claims 1 to 3 , wherein the melting point of the flux is -50 ° C or higher for the melting point of the solder in the conductive particles and + 50 ° C or lower for the melting point of the solder in the conductive particles. 前記導電性粒子がはんだ粒子である、請求項1〜のいずれか1項に記載の導電材料。 The conductive material according to any one of claims 1 to 4 , wherein the conductive particles are solder particles. 前記熱硬化性成分が、トリアジン骨格を有する熱硬化性化合物を含む、請求項1〜のいずれか1項に記載の導電材料。 The conductive material according to any one of claims 1 to 5 , wherein the thermosetting component contains a thermosetting compound having a triazine skeleton. 前記導電性粒子の表面上に、前記フラックスが付着している、請求項1〜のいずれか1項に記載の導電材料。 The conductive material according to any one of claims 1 to 6 , wherein the flux is adhered to the surface of the conductive particles. 前記導電性粒子の平均粒子径が1μm以上、40μm以下である、請求項1〜のいずれか1項に記載の導電材料。 The conductive material according to any one of claims 1 to 7 , wherein the average particle diameter of the conductive particles is 1 μm or more and 40 μm or less. 導電材料100重量%中、前記導電性粒子の含有量が10重量%以上、90重量%以下である、請求項1〜のいずれか1項に記載の導電材料。 The conductive material according to any one of claims 1 to 8 , wherein the content of the conductive particles is 10% by weight or more and 90% by weight or less in 100% by weight of the conductive material. 導電ペーストである、請求項1〜のいずれか1項に記載の導電材料。 The conductive material according to any one of claims 1 to 9 , which is a conductive paste. 少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、
少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、
前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
前記接続部の材料が、請求項1〜10のいずれか1項に記載の導電材料であり、
前記第1の電極と前記第2の電極とが前記接続部中のはんだ部により電気的に接続されている、接続構造体。
A first connection target member having at least one first electrode on the surface,
A second connection target member having at least one second electrode on the surface,
A connection portion connecting the first connection target member and the second connection target member is provided.
The material of the connection portion is the conductive material according to any one of claims 1 to 10.
A connection structure in which the first electrode and the second electrode are electrically connected by a solder portion in the connection portion.
前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている、請求項11に記載の接続構造体。 When the portions facing each other of the first electrode and the second electrode are seen in the stacking direction of the first electrode, the connection portion, and the second electrode, the first electrode and the first electrode are seen. The connection structure according to claim 11 , wherein the solder portion in the connection portion is arranged in 50% or more of the area of 100% of the portions facing the electrodes of 2.
JP2017505671A 2016-01-25 2017-01-23 Conductive materials and connection structures Active JP6966322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021137207A JP2021185579A (en) 2016-01-25 2021-08-25 Conductive material and connection structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016011399 2016-01-25
JP2016011399 2016-01-25
PCT/JP2017/002089 WO2017130892A1 (en) 2016-01-25 2017-01-23 Conductive material and connection structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021137207A Division JP2021185579A (en) 2016-01-25 2021-08-25 Conductive material and connection structure

Publications (2)

Publication Number Publication Date
JPWO2017130892A1 JPWO2017130892A1 (en) 2018-11-15
JP6966322B2 true JP6966322B2 (en) 2021-11-17

Family

ID=59397845

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017505671A Active JP6966322B2 (en) 2016-01-25 2017-01-23 Conductive materials and connection structures
JP2021137207A Pending JP2021185579A (en) 2016-01-25 2021-08-25 Conductive material and connection structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021137207A Pending JP2021185579A (en) 2016-01-25 2021-08-25 Conductive material and connection structure

Country Status (5)

Country Link
JP (2) JP6966322B2 (en)
KR (1) KR102618237B1 (en)
CN (1) CN108028090B (en)
TW (2) TW202331749A (en)
WO (1) WO2017130892A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200015445A (en) * 2017-06-01 2020-02-12 세키스이가가쿠 고교가부시키가이샤 Conductive Material and Connecting Structure
WO2020054288A1 (en) 2018-09-14 2020-03-19 積水化学工業株式会社 Conductive material and connection structure

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219294A (en) * 1999-12-03 2001-08-14 Tdk Corp Thermosetting flux for soldering and soldering method
JP3888573B2 (en) * 2001-06-29 2007-03-07 富士電機ホールディングス株式会社 Solder composition
JP2004202518A (en) * 2002-12-24 2004-07-22 Nof Corp Flux composition for soldering, solder paste, and method for soldering
JP3769688B2 (en) 2003-02-05 2006-04-26 独立行政法人科学技術振興機構 Terminal connection method and semiconductor device mounting method
CN101268559B (en) * 2005-08-04 2010-11-17 日亚化学工业株式会社 Light-emitting device, method for manufacturing same, molded body and sealing member
JPWO2008023452A1 (en) 2006-08-25 2010-01-07 住友ベークライト株式会社 Adhesive tape, joined body and semiconductor package
JP2010221260A (en) * 2009-03-24 2010-10-07 Mitsubishi Materials Corp Solder powder and solder paste using the same
JP5671225B2 (en) * 2009-05-22 2015-02-18 積水化学工業株式会社 Conductive fine particles, anisotropic conductive material, and conductive connection structure
JP5617210B2 (en) * 2009-09-14 2014-11-05 デクセリアルズ株式会社 Light-reflective anisotropic conductive adhesive and light-emitting device
JP5526698B2 (en) * 2009-10-16 2014-06-18 デクセリアルズ株式会社 Light reflective conductive particles, anisotropic conductive adhesive, and light emitting device
US9073153B2 (en) * 2010-02-09 2015-07-07 Nordson Corporation Flux and solder material and method of making same
JP5900349B2 (en) * 2011-01-27 2016-04-06 日立化成株式会社 Conductive adhesive composition, connector and solar cell module
JP5916376B2 (en) * 2011-09-13 2016-05-11 株式会社タムラ製作所 Adhesive composition and method for connecting solar cell and wiring board using the same
JP2013256584A (en) 2012-06-12 2013-12-26 Panasonic Corp Thermosetting resin composition, flux composition, and semiconductor apparatus using the same
JP2014063846A (en) * 2012-09-20 2014-04-10 Asahi Kasei E-Materials Corp Protective layer of metal surface and method for forming the same
JP6013118B2 (en) * 2012-09-28 2016-10-25 株式会社タムラ製作所 Insulating adhesive composition and circuit board
CN104718234B (en) * 2013-01-17 2018-06-29 积水化学工业株式会社 Electronic component-use solidification compound and connection structural bodies
CN104822773B (en) * 2013-05-23 2017-09-22 积水化学工业株式会社 Conductive material and connection structural bodies
JP2015216026A (en) * 2014-05-10 2015-12-03 アルプス電気株式会社 Conductive paste and wiring board
CN105849820B (en) * 2014-05-14 2018-10-26 积水化学工业株式会社 The manufacturing method of conductive paste, the manufacturing method of conductive paste, connection structural bodies and connection structural bodies
SG11201606128QA (en) * 2014-08-29 2016-09-29 Furukawa Electric Co Ltd Conductive adhesive composition
CN104607826B (en) * 2014-12-09 2017-02-01 华南理工大学 Cleaning-free solid-state scaling powder for aluminum low-temperature soldering and preparing method
JP6734141B2 (en) * 2015-08-19 2020-08-05 積水化学工業株式会社 Conductive material and connection structure

Also Published As

Publication number Publication date
JPWO2017130892A1 (en) 2018-11-15
CN108028090B (en) 2020-11-13
CN108028090A (en) 2018-05-11
JP2021185579A (en) 2021-12-09
KR20180105110A (en) 2018-09-27
TWI778950B (en) 2022-10-01
TW201732841A (en) 2017-09-16
TW202331749A (en) 2023-08-01
KR102618237B1 (en) 2023-12-28
WO2017130892A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6630284B2 (en) Conductive material and connection structure
JP7425824B2 (en) Conductive material, connected structure, and method for manufacturing connected structure
JP2021185579A (en) Conductive material and connection structure
JP6798887B2 (en) Conductive materials and connecting structures
WO2017179532A1 (en) Conductive material and connected structure
JP2017195180A (en) Conductive material and connection structure
WO2017033932A1 (en) Electroconductive material and connection structure
JP2018006084A (en) Conductive material, connection structure and method for producing connection structure
JP6734141B2 (en) Conductive material and connection structure
KR102569944B1 (en) Electroconductive material and connection structure
JP2017224602A (en) Conductive material, connection structure and method for producing connection structure
WO2017029993A1 (en) Electrically conductive material, and connecting structure
WO2018174065A1 (en) Conductive material, and connection structure
JP6523105B2 (en) Conductive material, connection structure and method of manufacturing connection structure
JP2018045906A (en) Conductive material, method for producing conductive material, and connection structure
JP2018046004A (en) Conductive material and connection structure
JP2018006085A (en) Conductive material, connection structure, and method for producing connection structure
JP2017188327A (en) Conductive material, connection structure and method for producing connection structure
TW201709220A (en) Conductive material and connection structure
TW201721662A (en) Conductive material and connection structure
JP2018046003A (en) Conductive material and connection structure
JP2018060786A (en) Conductive material and connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210825

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210825

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210902

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211021

R151 Written notification of patent or utility model registration

Ref document number: 6966322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151