JP6960997B2 - 画像処理システム、サーバ装置、画像処理方法、及び画像処理プログラム - Google Patents

画像処理システム、サーバ装置、画像処理方法、及び画像処理プログラム Download PDF

Info

Publication number
JP6960997B2
JP6960997B2 JP2019535016A JP2019535016A JP6960997B2 JP 6960997 B2 JP6960997 B2 JP 6960997B2 JP 2019535016 A JP2019535016 A JP 2019535016A JP 2019535016 A JP2019535016 A JP 2019535016A JP 6960997 B2 JP6960997 B2 JP 6960997B2
Authority
JP
Japan
Prior art keywords
image
image processing
processing target
target area
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019535016A
Other languages
English (en)
Other versions
JPWO2019031086A1 (ja
Inventor
修平 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2019031086A1 publication Critical patent/JPWO2019031086A1/ja
Application granted granted Critical
Publication of JP6960997B2 publication Critical patent/JP6960997B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/387Composing, repositioning or otherwise geometrically modifying originals
    • H04N1/3872Repositioning or masking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/262Analysis of motion using transform domain methods, e.g. Fourier domain methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/571Depth or shape recovery from multiple images from focus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)
  • Image Analysis (AREA)
  • Editing Of Facsimile Originals (AREA)

Description

本発明は画像処理システム、サーバ装置、画像処理方法、及び画像処理プログラムに係り、特に画像処理に関する。
被写体を撮像し、撮像画像から被写体の検出対象を検出する技術が知られている。また、被写体を分割して撮像し、分割画像を合成して被写体の全体を表す合成画像を生成する技術が知られている。被写体の例として、建築物の壁が挙げられる。検出対象の例として、建築物の壁の損傷が挙げられる。損傷の例として、ひび割れ、及び穴等が挙げられる。
ひび割れ等の損傷検出において、入力される撮像画像の一部の画質が悪い場合、画質が悪い部分は損傷を検出できないことがあり得る。また、損傷を検出できたとしても、検出精度が低くなることがあり得る。画質が悪い場合の例として、ピンぼけ、極端に明るい、極端に暗い、及び階調が潰れている等が挙げられる。
分割画像を合成して合成画像を生成する場合において、損傷の検出結果を表す分割画像合成する際に、二つの分割画像が重畳する合成画像の重畳領域において、二つの検出結果のうち画質が悪い方を採用して合成画像を生成してしまうことがあり得る。そうすると、画質がよい方の検出結果では損傷が検出できているのに、合成画像において損傷が検出できていないことになるおそれがある。
また、二つの分割画像が重畳する合成画像の重畳領域に画質が悪い領域が存在する場合、画像合成処理において画質が悪い領域の画素を使用してしまうと、合成画像の画質も悪くなってしまう。
合成画像において画質が悪い領域が存在せず、被写体の全体を網羅した撮像をしたいという課題に対して、特許文献1に記載の技術が知られている。
特許文献1は、重複を許して複数の領域に分割して被写体を撮像し、重複部分における複数の分割画像の合焦状態を比較し、合焦状態が最も良好と判定された分割画像を用いて画像合成処理を行う画像入力装置が記載されている。
また、合焦状態を比較する際に、高速フーリエ変換、及び離散コサイン変換等を用いて画素値を周波数領域に変換し、周波数領域におけるピーク周波数の大小関係に基づいて、ぼけ量の比較を定量的に行っている。
特開2004−72533号公報
複数の原因に起因する画質の低下が発生する場合があり得る。しかしながら、特許文献1に記載の発明は、合焦状態の良否の判定の際に、複数の原因に起因する画質の低下について考慮されていない。
本発明はこのような事情に鑑みてなされたもので、複数の原因に起因する画質の低下を考慮した画像処理対象領域の決定を可能とする画像処理システム、サーバ装置、画像処理方法、及び画像処理プログラムを提供することを目的とする。
上記目的を達成するために、次の発明態様を提供する。
第1態様に係る画像処理システムは、画像に含まれる検出対象を検出する検出処理、及び複数の画像の対応関係を算出して対応関係に基づいて複数の画像を合成する合成処理の少なくともいずれか一方を実行する画像処理システムであって、被写体を撮像した画像を取得する画像取得部と、画像取得部を用いて取得した画像における画質の判断結果を表す画質判断情報を取得する画質判断情報取得部と、画質判断情報取得部を用いて取得した画質判断情報を用いて、画像取得部を用いて取得した画像における画像処理対象領域を決定する画像処理対象領域決定部と、画像処理対象領域決定部を用いて決定した画像処理対象領域に対して、検出処理、及び合成処理の少なくともいずれか一方を実行する画像処理部と、を備え、画像処理対象領域決定部は、二以上の画質判断情報のそれぞれに対応する二以上の仮画像処理対象領域を導出し、二以上の仮画像処理対象領域の論理積として表される領域を画像処理対象領域として決定する画像処理システムである。
第1態様によれば、二以上の画質判断情報のそれぞれに基づいて生成される、二以上の仮画像処理対象領域の論理積として表される領域を画像処理対象領域として決定する。これにより、複数の画質低下の原因が考慮された画像処理対象領域を決定することが可能である。
画質の判断結果の一例として、判断対象の画像における合焦している領域、及び合焦していない領域を区別する情報が挙げられる。
二以上の仮画像処理対象領域の論理積には、第一条件に基づいて第一仮画像処理対象領域を決定し、第一仮画像処理対象領域を対象として第二条件に基づいて第二仮画像処理対象領域を決定した場合の第二仮画像処理対象領域が含まれる。
第2態様は、第1態様の画像処理システムにおいて、画質判断情報取得部は、画像の撮像における撮像条件を取得する撮像条件取得部、及び画像を解析する解析部の少なくともいずれか一方を備え、画像処理対象領域決定部は、画像の撮像条件、及び解析部の解析結果の少なくともいずれか一方を用いて仮画像処理対象領域を決定する構成としてもよい。
第2態様によれば、画像の解析結果、及び撮像条件の少なくともいずれか一方を用いて仮画像処理対象領域を決定することが可能である。
二つの仮画像処理対象領域は、撮像条件を用いて導出される第一仮画像処理対象領域、及び画質解析の結果を用いて導出される第二仮画像処理対象領域が含まれてもよい。二つの仮画像処理対象領域は、二つの解析結果を用いて導出してもよいし、二つの撮像条件を用いて導出してもよい。
第3態様は、第2態様の画像処理システムにおいて、撮像条件取得部は、撮像条件として撮像角度、及びフォーカス位置を取得し、画像処理対象領域決定部は、撮像角度、及びフォーカス位置に基づいて定められた画像の非端部を仮画像処理対象領域として決定する構成としてもよい。
第3態様によれば、撮像角度、及びフォーカス位置を用いて、仮画像処理対象領域を決定し得る。
撮像角度は、被写体と撮像装置とを最短距離で結ぶ基準の方向に対する、撮像装置の光軸の方向を表す。撮像装置をチルト動作させた場合、撮像角度は基準の方向に対して上方向、又は下方向を向く角度となる。撮像装置をパン動作させた場合、撮像角度は基準の方向に対して左方向、又は右方向を向く角度となる。
第4態様は、第2態様の画像処理システムにおいて、撮像条件取得部は、撮像条件として撮像角度、フォーカス位置、被写体距離、焦点距離、絞り値、及び許容錯乱円径を取得し、画像処理対象領域決定部は、撮像角度、フォーカス位置、被写体距離、焦点距離、絞り値、及び許容錯乱円径に基づいて定められた画像の非端部を仮画像処理対象領域として決定する構成としてもよい。
第4態様によれば、撮像角度、フォーカス位置、被写体距離、焦点距離、絞り値、及び許容錯乱円径を用いて仮画像処理対象領域を決定することが可能である。
第5態様は、第4態様の画像処理システムにおいて、被写体距離、焦点距離、絞り値、及び許容錯乱円径を用いて、撮像範囲における被写界深度を算出する被写界深度算出部と、撮像角度、及び焦点距離を用いて、撮像範囲における焦点ずれの距離を表す焦点ずれ量を算出する焦点ずれ量算出部と、を備え、画像処理対象領域決定部は、焦点ずれ量算出部を用いて算出された焦点ずれ量が、被写界深度算出部を用いて算出された被写界深度の範囲に収まる領域を仮画像処理対象領域として決定する構成としてもよい。
第5態様によれば、焦点ずれが被写界深度の範囲に収まる領域を仮画像処理対象領域として決定し得る。
第6態様は、第2態様の画像処理システムにおいて、撮像条件取得部は、撮像条件としてレンズの種類、及びフォーカス位置を取得し、画像処理対象領域決定部は、レンズの種類、及びフォーカス位置に基づいて、フォーカス位置が撮像範囲の中心部の場合は中心部を含む領域であり、レンズの特性から定められる領域を仮画像処理対象領域として決定し、フォーカス位置が撮像範囲の周辺部の場合は周辺部を含む領域であり、レンズの特性から定められる領域を仮画像処理対象領域として決定する構成としてもよい。
第6態様によれば、レンズの特性に起因する像面湾曲が生じる場合に、フォーカス位置に基づいて、仮画像処理対象領域を決定し得る。
レンズの種類ごとに、フォーカス位置と合焦領域との関係を記憶した記憶部を備えてもよい。画像処理対象領域決定部は、レンズの種類、及びフォーカス位置を用いて合焦領域を記憶部から読み出してもよい。
第7態様は、第2態様から第6態様のいずれか一態様の画像処理システムにおいて、撮像条件取得部は、撮像条件としてストロボの発光の有無を取得し、画像処理対象領域決定部は、ストロボから被写体へ照射されたストロボ光が到達したストロボ光到達領域を仮画像処理対象領域として決定する構成としてもよい。
第7態様によれば、ストロボ光が到達したストロボ光到達領域を仮画像処理対象領域として決定し得る。
第8態様は、第7態様の画像処理システムにおいて、撮像条件取得部は、撮像条件として被写体距離を取得し、画像処理対象領域決定部は、被写体距離に応じて定められたストロボ光到達領域を仮画像処理対象領域として決定する構成としてもよい。
第8態様によれば、被写体距離に基づいて定められたストロボ光到達領域を仮画像処理対象領域として決定し得る。
被写体距離とストロボ光到達領域との関係を記憶した記憶部を備えてもよい。画像処理対象領域決定部は、被写体距離を用いてストロボ光到達領域を記憶部から読み出してもよい。
第9態様は、第2態様から第8態様のいずれか一態様の画像処理システムにおいて、解析部は、解析対象の画像を複数の領域に分割して、領域ごとの空間周波数スペクトル分布を生成し、画像処理対象領域決定部は、解析部を用いて生成された領域ごとの空間周波数スペクトル分布に基づいて定められた高画質の領域を仮画像処理対象領域として決定する構成としてもよい。
第9態様によれば、領域ごとの空間周波数のスペクトル分布に基づいて定められた高画質の領域を仮画像処理対象領域として決定し得る。
第10態様は、第2態様から第9態様のいずれか一態様の画像処理システムにおいて、解析部は、解析対象の画像を複数の領域に分割して、領域ごとの階調値のヒストグラムを生成し、画像処理対象領域決定部は、解析部を用いて生成された階調値のヒストグラムに基づいて定められた高画質の領域を仮画像処理対象領域として決定する構成としてもよい。
第10態様によれば、領域ごとの階調値のヒストグラムに基づいて定められた高画質の領域を仮画像処理対象領域として決定し得る。
第11態様は、第1態様から第10態様のいずれか一態様の画像処理システムにおいて、画質判断情報取得部を用いて取得される画質判断情報と仮画像処理対象領域との関係を対応付けて記憶した記憶部を備え、画像処理対象領域決定部は、画質判断情報取得部を用いて取得した画質判断情報を用いて、画質判断情報に対応する仮画像処理対象領域を記憶部から取得する構成としてもよい。
第11態様によれば、画質判断情報を用いて、画質判断情報に対応する仮画像処理対象領域を記憶部から取得し得る。
第12態様は、第1態様から第11態様のいずれか一態様の画像処理システムにおいて、画像処理部を用いて画像処理が施された画像を表示する画像表示部を備え、画像表示部は、画像処理部を用いた画像処理の対象外とされた画像処理対象外領域を表示させる構成としてもよい。
第12態様によれば、画像処理対象領域、及び画像処理対象外領域を把握し得る。
第13態様は、第1態様から第12態様のいずれか一態様の画像処理システムにおいて、画像処理対象領域決定部を用いて決定した画像処理対象領域を変更する画像処理対象領域変更部を備えた構成としてもよい。
第13態様によれば、予め決められた画像処理対象領を変更することが可能である。これにより、画像処理対象領域の再決定が可能である。
第14態様は、第1態様から第13態様のいずれか一態様の画像処理システムにおいて、画像処理部は、検出対象として、コンクリート部材のひび割れ、チョーク線、遊離石灰、漏水、剥離、鉄筋露出、浮き、鋼部材の亀裂、及び腐食の少なくともいずれか一つを検出する処理を実行する構成としてもよい。
第14態様によれば、被写体を撮像した画像を用いて、コンクリート部材のひび割れ、チョーク線、遊離石灰、漏水、剥離、鉄筋露出、浮き、鋼部材の亀裂、及び腐食の少なくともいずれか一つの検出が可能である。
第15態様は、第1態様から第14態様のいずれか一態様の画像処理システムにおいて、サーバ装置と、サーバ装置とネットワークを介して通信可能に接続されたクライアント装置と、を備え、サーバ装置は、画像取得部、画質判断情報取得部、画像処理対象領域決定部、及び画像処理部を備えた構成としてもよい。
第15態様によれば、クライアントサーバ型ネットワークシステムにおけるサーバ装置を用いて、第1態様と同様の作用効果を得ることが可能である。
第16態様は、第15態様の画像処理システムにおいて、クライアント装置は、画像を表す画像データをサーバ装置へ送信する画像データ送信部を備えた構成としてもよい。
第16態様によれば、クライアントサーバ型ネットワークシステムにおけるクライアント装置を用いて、サーバ装置へ画像データを送信し得る。
第17態様に係るサーバ装置は、画像に含まれる検出対象を検出する検出処理、及び複数の画像の対応関係を算出して対応関係に基づいて複数の画像を合成する合成処理の少なくともいずれか一方を実行する画像処理システムに具備されるサーバ装置であって、被写体を撮像した画像を取得する画像取得部と、画像取得部を用いて取得した画像における画質の判断結果を表す画質判断情報を取得する画質判断情報取得部と、画質判断情報取得部を用いて取得した画質判断情報を用いて、画像取得部を用いて取得した画像における画像処理対象領域を決定する画像処理対象領域決定部と、画像処理対象領域決定部を用いて決定した画像処理対象領域に対して、検出処理、及び合成処理の少なくともいずれか一方を実行する画像処理部と、を備え、画像処理対象領域決定部は、二以上の画質判断情報のそれぞれに対応する二以上の仮画像処理対象領域を導出し、二以上の仮画像処理対象領域の論理積として表される領域を画像処理対象領域として決定するサーバ装置である。
第17態様によれば、第1態様と同様の作用効果を得ることが可能である。
第17態様において、第2態様から第16態様で特定した事項と同様の事項を適宜組み合わせることができる。その場合、画像処理システムにおいて特定される処理や機能を担う構成要素は、これに対応する処理や機能を担うサーバ装置の構成要素として把握することができる。
第18態様に係る画像処理方法は、画像に含まれる検出対象を検出する検出処理、及び複数の画像の対応関係を算出して対応関係に基づいて複数の画像を合成する合成処理の少なくともいずれか一方を実行する画像処理方法であって、被写体を撮像した画像を取得する画像取得工程と、画像取得工程において取得した画像における画質の判断結果を表す画質判断情報を取得する画質判断情報取得工程と、画質判断情報取得工程において取得した画質判断情報を用いて、画像取得工程において取得した画像における画像処理対象領域を決定する画像処理対象領域決定工程と、画像処理対象領域決定工程において決定した画像処理対象領域に対して、検出処理、及び合成処理の少なくともいずれか一方を実行する画像処理工程と、を含み、画像処理対象領域決定工程は、二以上の画質判断情報のそれぞれに対応する二以上の仮画像処理対象領域を導出し、二以上の仮画像処理対象領域の論理積として表される領域を画像処理対象領域として決定する画像処理方法である。
第18態様によれば、第1態様と同様の作用効果を得ることが可能である。
第18態様において、第2態様から第16態様で特定した事項と同様の事項を適宜組み合わせることができる。その場合、画像処理システムにおいて特定される処理や機能を担う構成要素は、これに対応する処理や機能を担う画像処理方法の構成要素として把握することができる。
第19態様は、第18態様の画像処理方法において、画質判断情報取得工程は、画像の撮像における撮像条件を取得する撮像条件取得工程、及び画像を解析する解析工程を含み、画像処理対象領域決定工程は、撮像条件取得工程において取得した撮像条件情報を用いて決められた仮画像処理対象領域について、解析工程において解析処理を実行して画像処理対象領域を決定する構成としてもよい。
第19態様によれば、解析処理の対象を画質判断情報に基づく仮画像処理対象領域に限定し得る。これにより、解析処理の負荷の低減化が可能である。
解析処理の負荷の低減化の例として、解析処理の高速化、解析工程を担う解析処理部の構成の簡素化が挙げられる。
第20態様に係る画像処理プログラムは、画像に含まれる検出対象を検出する検出処理、及び複数の画像の対応関係を算出して対応関係に基づいて複数の画像を合成する合成処理の少なくともいずれか一方を実行する画像処理プログラムであって、コンピュータに、被写体を撮像した画像を取得する画像取得機能、画像取得機能を用いて取得した画像における画質の判断結果を表す画質判断情報を取得する画質判断情報取得機能、画質判断情報取得機能を用いて取得した画質判断情報を用いて、画像取得機能を用いて取得した画像における画像処理対象領域を決定する画像処理対象領域決定機能、及び画像処理対象領域決定機能を用いて決定した画像処理対象領域に対して、検出処理、及び合成処理の少なくともいずれか一方を実行する画像処理機能を実現させ、画像処理対象領域決定機能は、二以上の画質判断情報のそれぞれに対応する二以上の仮画像処理対象領域を導出し、二以上の仮画像処理対象領域の論理積として表される領域を画像処理対象領域として決定する画像処理プログラムである。
第20態様において、第2態様から第8態様で特定した事項と同様の事項を適宜組み合わせることができる。その場合、画像処理システムにおいて特定される処理や機能を担う構成要素は、これに対応する処理や機能を担う画像処理プログラムの構成要素として把握することができる。
第20態様は、少なくとも一つ以上のプロセッサと、少なくとも一つ以上のメモリとを有する画像処理装置であって、プロセッサは、被写体を撮像した画像を取得し、取得した画像における画質の判断結果を表す画質判断情報を取得し、画質判断情報を用いて、画像における画像処理対象領域を決定し、画像処理対象領域に対して、検出処理、及び合成処理の少なくともいずれか一方を実行し、画像処理対象領域を決定する際に、二以上の画質判断情報のそれぞれに対応する二以上の仮画像処理対象領域を導出し、二以上の画質判断情報のそれぞれに対応する二以上の仮画像処理対象領域の論理積として表される領域を画像処理対象領域として決定する画像処理装置として構成し得る。
メモリは、取得した画像、画質判断情報、仮画像処理対象領域、画像処理対象領域、及び検出処理、及び合成処理の少なくともいずれかを実行して得られた処理結果のうち、少なくともいずれか一つを記憶し得る。
本発明によれば、二以上の画質判断情報のそれぞれに基づいて生成される、二以上の仮画像処理対象領域の論理積として表される領域を画像処理対象領域として決定する。これにより、複数の画質低下の原因が考慮された画像処理対象領域を決定することが可能である。
図1は実施形態に係る画像処理システムのブロック図である。 図2は画像処理の具体例の説明図である。 図3は図1に示した画像処理システムにおいて、撮像条件を用いて画像処理対象領域を決定する場合のブロック図である。 図4は図1に示した画像処理システムにおいて、画質解析結果を用いて画像処理対象領域を決定する場合のブロック図である。 図5は解析領域の一例を示す図である。 図6は合焦領域における空間周波数スペクトル分布画像の模式図である。 図7は解析領域が正常画像の場合の空間周波数スペクトル分布画像の一例を示す図である。 図8は解析領域がぼけ画像の場合、又はぶれ画像の場合の空間周波数スペクトル分布画像の一例を示す図である。 図9は高周波数成分判定領域の一例を示す図である。 図10は濃度ヒストグラム一例を示す図である。 図11は被写体の撮像の模式図である。 図12はフォーカスエリアが撮像範囲の中心の場合における仮画像処理対象領域の一例を示す図である。 図13はフォーカスエリアが撮像範囲の中心よりも下の位置の場合における仮画像処理対象領域の一例を示す図である。 図14は焦点ずれ量と被写界深度との関係を示す模式図である。 図15はフォーカスエリアが撮像範囲の中心の場合における被写界深度内領域の一例を示す図である。 図16はフォーカスエリアが撮像範囲の中心よりも下の位置の場合における被写界深度内領域の一例を示す図である。 図17はフォーカスエリアが撮像範囲の中心の場合における像面湾曲の影響の一例を示す図である。 図18はフォーカスエリアが撮像範囲の周辺部の場合における像面湾曲の影響の一例を示す図である。 図19はフォーカスエリアが撮像範囲の中心の場合における像面湾曲の影響を考慮したピンぼけしていない領域の一例を示す図である。 図20はフォーカスエリアが撮像範囲の周辺部の場合における像面湾曲の影響を考慮したピンぼけしていない領域の一例を示す図である。 図21はフォーカスエリアが撮像範囲の中心の場合における像面湾曲の影響を考慮したピンぼけしていない領域の他の例を示す図である。 図22はストロボ発光の際の明るい領域、及び暗い領域の一例を示す図である。 図23は二つの仮画像処理対象領域の論理積に基づく画像処理対象領域の一例を示す図である。 図24は画像合成処理の一例の説明である。 図25は画像処理結果の表示例の説明である。 図26はクライアントサーバ型ネットワークシステムへの適用例を示すブロック図である。 図27は実施形態に係る画像処理方法の手順の流れを示すフローチャートである。 図28は図27に示した画像処理対象領域決定工程の手順の流れを示すフローチャートである。
以下、添付図面に従って本発明の好ましい実施の形態について詳説する。本明細書では、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
[画像処理システムの概要]
図1は実施形態に係る画像処理システムのブロック図である。図1に示した画像処理システム10は、画像取得部12、画質判断情報取得部14、画像処理対象領域決定部16、及び画像処理部18を備えている。画像処理システム10は、図示しない画像表示部を備えてもよい。
〈画像取得部〉
画像取得部12は、画像処理部18を用いた画像処理の対象とされる画像データを取得する。画像データの例として、撮像装置を用いて被写体を撮像して得られた画像データが挙げられる。撮像装置の例として、カラー画像の撮像が可能な電子カメラが挙げられる。本明細書における撮像という概念は、撮影が含まれる。
電子カメラに具備される撮像デバイスの例として、カラーCCDリニアイメージセンサが挙げられる。CCDは、Charge−Coupled Deviceの省略語であり、電荷結合素子を指す。
カラーCCDリニアイメージセンサはR、G、及びB各色のカラーフィルタを備えた受光素子が直線状に配列したイメージセンサである。上記のRは赤を表す。上記のGは緑を表す。上記のBは青を表す。
カラーCCDリニアイメージセンサに代えて、カラーCMOSリニアイメージセンサを用いることもできる。CMOSは、Complementary Metal Oxide Semiconductorの省略語であり、相補型金属酸化膜半導体を指す。
〈画質判断情報取得部〉
画質判断情報取得部14は、画像取得部12を用いて取得した画像データ20を取得する。画質判断情報取得部14は、撮像条件の情報として、図1に示した画像データ20のEXIF情報22を取得してもよい。EXIFは、Exchangeable Image File Formatの省略語である。
画質判断情報取得部14は、撮像条件として、ユーザが指定するユーザ指定情報24、ユーザが選択するユーザ選択情報26、及びセンサから取得するセンサ情報28の少なくともいずれか一つを取得してもよい。
すなわち、画像処理システム10は、EXIF情報22を取得するEXIF情報取得部を備えてもよい。画像処理システム10は、ユーザ指定情報24を取得するユーザ指定情報取得部を備えてもよい。画像処理システム10は、ユーザ選択情報26を取得するユーザ選択情報取得部を備えてもよい。画像処理システム10は、センサ情報28を取得するセンサ情報取得部を備えてもよい。
画像処理システム10は、EXIF情報取得部、ユーザ指定情報取得部、ユーザ選択情報取得部、及びセンサ情報取得部の少なくともいずれか一つとして機能する撮像条件取得部を備えてもよい。なお、EXIF情報取得部、ユーザ指定情報取得部、ユーザ選択情報取得部、及びセンサ情報取得部の図示を省略する。撮像条件取得部は符号40を付して図3に図示する。
画質判断情報取得部14は、取得した画像データ20に対して画質解析処理を施し、画質解析結果30を取得する。または、画質判断情報取得部14は撮像条件を取得する。画質判断情報取得部14は、画質解析結果30、及び撮像条件の両者を取得してもよい。
画質判断情報取得部14は、画質解析結果30、及び撮像条件の少なくともいずれか一方を用いて、画像データ20が表す画像の画質を判断する。画質解析結果30は、解析部を用いた画像の解析の解析結果の一例である。
画質判断情報取得部14は、画像データ20が表す画像の画質の判断結果として、二種類の異なる画質判断情報である、第一画質判断情報32A、及び第二画質判断情報32Bを生成する。なお、二種類の異なる画質判断情報は、二つの異なる画質判断情報と読み替えてもよい。
第一画質判断情報32A、及び第二画質判断情報32Bは、二種類の異なる画質解析結果30を用いて生成されてもよい。第一画質判断情報32A、及び第二画質判断情報32Bは、二種類の異なる撮像条件を用いて生成されてもよい。なお、二種類の異なる撮像条は、二つの異なる撮像条件と読み替えてもよい。
第一画質判断情報32Aは画質解析結果30を用いて生成され、第二画質判断情報32Bは撮像条件を用いて生成されてもよい。第一画質判断情報32Aは撮像条件を用いて生成され、第二画質判断情報32Bは画質解析結果30を用いて生成されてもよい。
本実施形態では、二種類の画質判断情報が生成される態様を例示したが、二種類以上の画質判断情報が生成されればよく、三種類以上の画質判断情報が生成されてもよい。画質判断情報取得部14を用いた画質判断の詳細は後述する。
〈画像処理対象領域決定部〉
画像処理対象領域決定部16は、第一画質判断情報32A、及び第二画質判断情報32Bに基づいて、画像データ20における画像処理対象領域を決定する。画像処理対象領域決定部16は、第一画質判断情報32Aに基づいて第一仮画像処理対象領域を決定する。また、画像処理対象領域決定部16は、第二画質判断情報32Bに基づいて第二仮画像処理対象領域を決定する。すなわち、画像処理対象領域決定部16は、二種類の画質判断情報のそれぞれに対応する二以上の仮画像処理対象領域を導出する。
二以上の異なる仮画像処理対象領域の例として、撮像角度に起因するピンぼけ領域を除いた領域、レンズの特性に起因するピンぼけ領域を除いた領域、ストロボ発光に起因して暗くなった領域を除いた領域、明るすぎる領域を除いた領域、暗すぎる領域を除いた領域、及び階調が潰れている領域を除いた領域が挙げられる。
画像処理対象領域決定部16は、二以上の仮画像処理対象領域を統合する。統合の例として、二以上の仮画像処理対象領域の論理積として表される領域を画像処理対象領域として決定する例が挙げられる。画像処理対象領域決定部16は、画像処理対象領域を表す画像処理対象領域情報34を生成する。
〈画像処理部〉
画像処理部18は、画像データ20、及び画像処理対象領域情報34を取得する。画像処理部18は、画像データ20における画像処理対象領域について画像処理を施し、画像処理結果36を生成する。
画像処理部18を用いた画像処理の例として、画像データ20が表す画像に含まれる検出対象を検出する検出処理が挙げられる。画像処理部18を用いた画像処理の他の例として、被写体を分割して撮像して得られた分割画像を合成する合成処理が挙げられる。
〈画像処理の具体例〉
図2は画像処理の具体例の説明図である。図2に示した画像処理は、建築物のコンクリート製の壁を三分割して撮像して得られた三つの分割画像である、分割画像100、分割画像102、及び分割画像104を合成する合成処理である。
図2に示した分割画像100、分割画像102、及び分割画像104は、被写体である壁の中心を通る法線上に撮像装置を配置し、撮像装置をパン動作させ、壁における撮像領域を変更して撮像して得られた画像である。ここでいう壁の中心は、厳密な中心位置でなくてもよく、おおよその中心位置であってもよい。
分割画像100において符号108、及び符号110を付して図示した領域は、ピンぼけ領域である。分割画像104において符号112、及び符号114を付して図示した領域は、ピンぼけ領域である。ピンぼけ領域とは、ピントが合わずにぼけてしまった領域である。ピンぼけ領域を除いた領域は、ピントが合っている合焦領域である。
分割画像100は、分割画像100の横方向の両端部にピンぼけ領域108、及びピンぼけ領域110が存在する。分割画像104は、分割画像104の横方向の両端部にピンぼけ領域112、及びピンぼけ領域114が存在する。
換言すると、分割画像100の横方向の非端部、及び分割画像104の横方向の非端部は、合焦領域が存在する。非端部とは両端部を除いた領域である。上下方向についても、上下方向の両端部を除いた領域が上下方向の非端部である。
一方、分割画像102はピンぼけ領域が存在していない。換言すると、分割画像102は横方向の全範囲に渡って合焦領域が存在する。
分割画像の横方向とは、撮像装置をパン動作させた際に、被写体における撮像装置の光軸が移動する方向である。分割画像の縦方向とは、撮像装置をチルト動作させた際に、被写体における撮像装置の光軸が移動する方向である。なお、撮像装置の光軸は、撮像装置に具備される光学結像系の光軸を表す。
分割画像100と分割画像102とは、重複する領域が存在する。分割画像102と分割画像104とは、重複する領域が存在する。図2に示した合成画像106は、分割画像100、分割画像102、及び分割画像104を合成する合成処理が施されて生成された合成画像である。
合成画像106において、符号116を付した領域は分割画像100と分割画像102との重畳領域である。合成画像106において、符号118を付した領域は分割画像102と分割画像104との重畳領域である。
合成画像106の重畳領域116に分割画像100のピンぼけ領域110の画素が含まれる場合、分割画像100のピンぼけ領域110の画素に引っ張られて、合成画像106における重畳領域116がぼけてしまう。
同様に、合成画像106の重畳領域118に分割画像104のピンぼけ領域112の画素が含まれる場合、分割画像104のピンぼけ領域112の画素に引っ張られて、合成画像106における重畳領域118がぼけてしまう。
本実施形態に係る画像処理システムは、合成画像106の重畳領域116について、ピンぼけが発生していない分割画像102の画素を使用する。また、合成画像106の重畳領域118について、ピンぼけが発生していない分割画像102の画素を使用する。これにより、合成画像106の重畳領域116、及び重畳領域118におけるぼけの発生を回避し得る。
[撮像条件を用いた画像処理対象領域の決定の説明]
図3は図1に示した画像処理システムにおいて、撮像条件を用いて画像処理対象領域を決定する場合のブロック図である。図3に示した画像処理システム10は、図1に示した画質判断情報取得部14として、撮像条件取得部40を備えている。また、図3に示した画像処理システム10は、画像処理対象領域データベース42を備えている。
撮像条件取得部40は、撮像条件として、撮像角度、被写体距離、焦点距離、絞り値、許容錯乱円径、レンズの種類、カメラの機種、フォーカス位置、及びストロボ発光の有無などの少なくともいずれか一つの条件を取得し得る。
撮像条件取得部40は、撮像条件として、画像取得部12から送信されるEXIF情報22に含まれる撮像条件を取得してもよい。撮像条件取得部40は、撮像条件として、ユーザが指定した撮像条件、ユーザの選択した撮像条件、及びセンサを用いて得られた撮像条件を取得してもよい。撮像条件取得部40は、カメラの機種と紐付けされた撮像条件を取得してもよい。
撮像条件取得部40は、撮像条件を表す撮像条件情報44を画像処理対象領域決定部16へ送信する。撮像条件情報44は、図1に示した第一画質判断情報32A、または第二画質判断情報32Bの一例である。
画像処理対象領域データベース42は、撮像条件と仮画像処理対象領域との関係がデータベース化されて記憶されている。画像処理対象領域決定部16は、画像処理対象領域データベース42を用いて、撮像条件をインデックスとして、撮像条件に対応する仮画像処理対象領域の取得が可能である。
画像処理対象領域決定部16は、画像処理対象領域データベース42から取得した撮像条件に対応する仮画像処理対象領域を用いて、画像処理部18を用いた画像処理の対象とされる画像処理対象領域を決定する。画像処理対象領域データベース42は、画質判断情報と仮画像処理対象領域との関係を対応付けて記憶した記憶部の一例である。
すなわち、画像処理対象領域決定部16は、撮像条件を用いて、一以上の仮画像処理対象領域を決定する。
画像処理対象領域決定部16は、撮像条件に基づく仮画像処理対象領域と、図1に示した画質解析結果30に基づく仮画像処理対象領域との論理積で表される領域を画像処理対象領域と決定し得る。
画像処理対象領域決定部16は、二種類以上の異なる撮像条件を用いて、二以上の異なる仮画像処理対象領域を決定してもよい。画像処理対象領域決定部16は、二以上の異なる仮画像処理対象領域の論理積として表される領域を画像処理対象領域と決定し得る。
画像処理対象領域決定部16は、画像処理対象外領域を決定してもよい。画像処理対象外領域は、画像処理部18を用いた画像処理の対象外とされる領域である。図4に示す画像処理システム10における画像処理部18についても同様である。
画像処理対象領域決定部16は、画像処理対象領域情報34を画像処理部18へ送信する。画像処理部18は、画像データ20、及び画像処理対象領域情報34に基づいて画像処理を実行し、画像処理結果36を出力する。
[撮像条件の具体例]
図3に示した撮像条件取得部40を用いて取得される撮像情報の具体例について説明する。ユーザが指定する撮像情報、又はユーザが選択する撮像情報の具体例として、カメラの機種、レンズの種類、撮像位置の条件、及びカメラの設定が挙げられる。カメラの設定はレンズの設定としてもよい。
カメラの機種から、カメラごとの撮像素子のサイズを把握し得る。撮像素子のサイズは、許容錯乱円径として被写界深度の算出に用いることが可能である。レンズが交換式でないカメラの場合、カメラの機種から、カメラごとのレンズの特性を把握し得る。レンズの特性は、像面湾曲の有無の判断に用いることが可能である。
図3に示した画像処理対象領域データベース42は、カメラの機種と撮像素子のサイズとの関係がデータベース化されて記憶されてもよい。図3に示した画像処理対象領域データベース42は、レンズが交換式でないカメラについて、カメラの機種とレンズの特性との関係がデータベース化されて記憶されてもよい。
ユーザが、撮像素子のサイズ自体を指定、又は選択してもよい。ユーザが、レンズの特性自体を指定、又は選択してもよい。
レンズが交換式のカメラの場合、撮像条件としてレンズの種類を取得してもよい。レンズの種類から、レンズの特性を把握し得る。レンズの特性は、像面湾曲の有無の判断に用いることが可能である。
図3に示した画像処理対象領域データベース42は、レンズの種類とレンズの特性との関係がデータベース化されて記憶されてもよい。レンズの特性自体を指定、又は選択してもよい。
撮像位置の条件から、被写体距離、及び撮像角度の少なくともいずれか一方を把握し得る。被写体距離、及び撮像角度の詳細は後述する。
カメラの設定、又はレンズの設定から、フォーカス位置、焦点距離、絞り値、及びストロボ発光の有無の少なくともいずれか一つを把握し得る。
画像のメタデータから取得し得る撮像条件の具体例として、カメラの機種、レンズの種類、及びカメラの設定が挙げられる。カメラの設定はレンズの設定としてもよい。画像のメタデータとは、画像データ自体ではなく、画像データに関連する情報である。メタデータの例として、図1、及び図3に示したEXIF情報22が挙げられる。
カメラの機種、レンズの種類、並びにカメラの設定、又はレンズの設定については、既に説明したとおりである。ここでは、カメラの機種、レンズの種類、並びにカメラの設定、又はレンズの設定の詳細についての説明は省略する。
センサを用いて取得し得る撮像条件の具体例として、撮像位置、及び撮像角度が挙げられる。撮像位置の条件から被写体距離を把握し得る。ロボットを用いた撮像の場合、図3に示した撮像条件取得部40は、ロボットに備えられる各種センサから得られる情報を取得し得る。各種センサの例として、被写体距離を測定するセンサ、及び撮像角度を測定するセンサなどが挙げられる。被写体距離は撮像装置のレンズから被写体までの距離として測定される。被写体距離は、メジャー等の計測補助器具を用いて撮影者が測定してもよい。被写体距離は、レーザ測距計等の測定器を用いて測定してもよい。撮像角度は、角度計等の測定器を用いて測定してもよい。撮像角度は、水平方向における撮像装置と被写体との間の距離、及び撮像装置の光軸方向における撮像装置と被写体との間の距離から、三角関数を用いて導出してもよい。
[画質解析結果を用いた画像処理対象領域の決定の説明]
図4は図1に示した画像処理システムにおいて、画質解析結果を用いて画像処理対象領域を決定する場合のブロック図である。図4に示した画像処理システム10は、図1に示した画質判断情報取得部14として、画質解析結果取得部50を備えている。また、図4に示した画像処理システム10は、画像処理対象領域決定部16に対して閾値を入力する閾値入力部を備えている。なお、閾値入力部の図示は省略する。
図4に示した画質解析結果取得部50は、画像データ20に対して複数の解析領域を設定し、解析領域ごとに画質解析を実行し、画質解析結果30を取得する。画質解析の例として、空間周波数のスペクトル分布の生成、グレースケール画像における濃度値のヒストグラムである濃度ヒストグラムの生成が挙げられる。画質解析結果取得部50は解析部の一例である。
解析領域ごとの空間周波数のスペクトル分布からピンぼけ、及びぶれの判断情報を取得し得る。解析領域ごとのグレースケール画像における濃度ヒストグラムから暗すぎる領域、明るすぎる領域、及び階調が潰れている領域の判断情報を取得し得る。画質判断情報取得部14は、取得した画質解析結果30を画像処理対象領域決定部16へ送信する。
画像処理対象領域決定部16は、画質解析結果30に対して閾値54を設定して、一以上の仮画像処理対象領域を決定する。閾値54は、予め定められた既定値でもよいし、ユーザが指定する指定値でもよい。
画像処理対象領域決定部16は、画質解析結果30を用いて決定された仮画像処理対象領域と、撮像条件を用いて決定された仮画像処理対象領域との論理積をとして表される領域を画像処理対象領域と決定してもよい。
画像処理対象領域決定部16は、二種類以上の異なる画質解析結果を用いて、二以上の異なる仮画像処理対象領域を決定してもよい。画像処理対象領域決定部16は、二種類の異なる画質解析結果を用いて決定された二以上の異なる仮画像処理対象領域の論理積として表される領域を画像処理対象領域と決定してもよい。
画像処理対象領域決定部16は、画像処理対象領域情報34を画像処理部18へ送信する。画像処理部18は、画像データ20、及び画像処理対象領域情報34に基づいて画像処理を実行し、画像処理結果36を出力する。
図1から図4に示した各種処理部は、英語表記を用いてprocessing unitと表現されることがある。プロセッサは、英語表記を用いてprocessorと表現されることがある。ここでいう処理部には、処理部の名称が使用されていない構成要素であっても、何らかの処理を実行する実質的な処理部が含まれる。
各種のプロセッサには、プログラムを実行して各種処理部として機能する汎用的なプロセッサであるCPU、FPGAなどの製造後に回路構成を変更可能なプロセッサであるPLD、及びASICなどの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。プログラムは、ソフトウェアと同義である。
なお、FPGAは、Field Programmable Gate Arrayの省略語である。PLDは、Programmable Logic Deviceの省略語である。ASICは、Application Specific Integrated Circuitの省略語である。
一つの処理部は、これら各種のプロセッサのうちの一つで構成されていてもよいし、同種又は異種の二つ以上のプロセッサで構成されてもよい。例えば、一つの処理部は、複数のFPGA、或いは、CPUとFPGAとの組み合わせによって構成されてもよい。また、複数の処理部を一つのプロセッサで構成してもよい。
複数の処理部を一つのプロセッサで構成する例としては、第一に、クライアントやサーバなどのコンピュータに代表されるように、一つ以上のCPUとソフトウェアとの組み合わせで一つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。
第二に、SoCなどに代表されるように、複数の処理部を含むシステム全体の機能を一つのICチップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを一つ以上用いて構成される。更に、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路である。
なお、SoCは、システムオンチップの英語表記System On Chipの省略語である。ICは、集積回路を表す英語表記Integrated Circuitの省略語である。電気回路は英語表記を用いてcircuitryと表現されることがある。
[画質解析の詳細な説明]
次に、図4に示した画質解析結果取得部50を用いた画質解析について詳細に説明する。以下に、図2に示した分割画像100における画質解析について説明する。
図5は解析領域の一例を示す図である。図5に示した解析領域150は、画質解析の単位となる領域である。解析領域150は、分割画像100に設定される複数の解析領域の任意の一つを表す。以下、符号を付さずに解析領域と記載した場合は、図5に一例を示した解析領域を表すこととする。
本実施形態では、分割画像100に対して縦方向、及び横方向のそれぞれについて、複数の解析領域が設定される。分割画像の分割は直交する任意の二方向のそれぞれについて分割してもよい。
また、本実施形態は、正方形の解析領域150を例示したが、解析領域150の形状は、正方形以外の多角形、及び円などの任意の形状を適用してもよい。更に、解析領域150の画素数は、適宜定めることが可能である。
図4に示した画質解析結果取得部50は、複数の解析領域について、解析領域ごとに画質解析処理の結果を取得する。画質解析処理の結果の取得には、画質解析結果取得部50を用いて実行された画質解析処理の結果を取得する態様が含まれる。
〈画質解析処理の一例〉
次に、画質解析処理結果の一例として、解析領域ごとの空間周波数スペクトル分布の取得について説明する。空間周波数スペクトル分布の取得には、FFTが適用される。FFTは、高速フーリエ変換処理を表す英語表記fast Fourier transformの省略語である。
図6は解析領域が合焦領域の場合における空間周波数スペクトル分布画像の模式図である。空間周波数スペクトル分布画像160の中心162は空間周波数0を表す。空間周波数スペクトル分布画像160の隅164は最大空間周波数を表す。
空間周波数スペクトル分布画像160の中心162の近傍である中心部は、低周波数成分のスペクトル166が存在する領域を表す。空間周波数スペクトル分布画像160の隅164の近傍である周辺部は、高周波数成分のスペクトル168が存在する領域を表す。
ここで、空間周波数スペクトル分布画像160の中心162の近傍である中心部とは、空間周波数スペクトル分布画像160の中心162を含む領域である。中心部は低周波数成分に応じて定められる。
空間周波数スペクトル分布画像160の隅164の近傍である周辺部は、空間周波数スペクトル分布画像160の隅164を含む領域である。周辺部は高周波数成分に応じて定められる。
高周波数成分、及び低周波数成分は、画像の解像度に応じて適宜定められる。なお、高周波数成分、及び低周波数成分は相対的な周波数成分の関係が表現されればよい。空間周波数の単位は、長さの単位の逆数を用いて表される。長さの単位は、ミリメートルでもよいし、インチでもよい。
図7は解析領域が正常画像の場合の空間周波数スペクトル分布画像の一例を示す図である。正常画像とはピンぼけしていない画像を意味する。解析領域が正常画像の場合、空間周波数スペクトル分布画像160は、低周波数成分のスペクトル166、及び高周波数成分のスペクトル168が存在している。
図8は解析領域がぼけ画像の場合、又はぶれ画像の場合の空間周波数スペクトル分布画像の一例を示す図である。図8に示すように、解析領域がピンぼけしているぼけ画像の場合、又はぶれているぶれ画像の場合、空間周波数スペクトル分布画像160は、低周波数成分のスペクトル166が存在するが、高周波数成分のスペクトル168が存在しない。
したがって、各解析領域から導出された空間周波数スペクトル分布画像160の高周波数成分のスペクトル166の有無に応じて、解析領域を仮画像処理対象領域とするか、又は画像処理対象外領域とするかを判定し得る。
図7に示した空間周波数スペクトル分布画像160に対応する解析領域は、空間周波数スペクトル分布に基づいて定められた高画質の領域の一例である。図8に示した空間周波数スペクトル分布画像160に対応する解析領域は、空間周波数スペクトル分布に基づいて定められた低画質の領域の一例である。
図9は高周波数成分判定領域の一例を示す図である。図9に示すように、空間周波数スペクトル分布画像160の各隅164から半径がr画素の範囲を高周波数成分判定領域170とする。
高周波数成分判定領域170にスペクトルが存在する場合は、空間周波数スペクトル分布画像160に高周波数成分のスペクトルが存在すると判定し得る。空間周波数スペクトル分布画像160に高周波数成分のスペクトルが存在する場合は、解析領域はピンぼけしていない領域、又はぶれていない領域であると判定する。ピンぼけしていない解析領域、又はぶれていない解析領域は、仮画像処理対象領域として決定される。
一方、高周波数成分判定領域170にスペクトルが存在しない場合は、空間周波数スペクトル分布画像160に高周波数成分のスペクトルが存在しないと判定し得る。空間周波数スペクトル分布画像160に高周波数成分のスペクトルが存在しない場合は、解析領域はピンぼけしている領域、又はぶれている領域であると判定する。ピンぼけしている解析領域、又はぶれている解析領域は、画像処理対象外領域として決定される。空間周波数スペクトル分布画像160は空間周波数スペクトル分布の一例である。
高周波数成分判定領域170を決定するrは判定閾値である。判定閾値は、予め定められた既定値としてもよいし、ユーザが指定し得る指定値としてもよい。判定閾値の例として、解析領域における縦方向の画素数の四分の一の画素数、又は横方向の画素数の四分の一の画素数が挙げられる。例えば、解析領域の縦方向の画素数が100ピクセル、横方向の画素数が100ピクセルの場合、判定閾値rを25ピクセルとし得る。なお、ここでいう四分の一は例示であり、任意の割合を適用し得る。
図9には、画素数を用いて判定閾値を表す例を示したが、判定閾値はミリメートル等の長さを用いてもよい。なお、画素数はピクセルと表してもよい。
〈画質解析処理の他の一例〉
次に、画質解析処理結果の他の一例として、解析領域ごとの濃度ヒストグラムの取得について説明する。図10は濃度ヒストグラム一例を示す図である。図10に示した濃度ヒストグラム180は、解析領域を、R、G、及びBを用いて表されるカラー画像からグレースケール画像へ変換し、グレースケール画像の濃度ヒストグラムを計算して得られる。
グレースケール画像の各画素の濃度値は、R×0.30+G×0.59+B×0.1を用いて計算される。上記式のRは赤の濃度値を表す。Gは緑の濃度値を表す。Bは青の濃度値を表す。カラー画像からグレースケール画像へ変換はRGBからグレースケールへの色変換ルックアップテーブルを適用可能である。カラー画像からグレースケール画像へ変換は一例であり、濃度ヒストグラムを計算可能な画像への変換を行う他の変換式を用いてもよい。
図10に示した解析領域の濃度ヒストグラム180の横軸は濃度値を表す。濃度ヒストグラム180の縦軸は度数である。濃度値は0から255までの相対値を用いて表されている。濃度値0は最も暗いことを表す。濃度値255は最も明るいことを表す。
解析領域が暗すぎる場合、濃度ヒストグラム180の度数は、暗い側に偏る。解析領域が明るすぎる場合、濃度ヒストグラム180の度数は、明るい側に偏る。
各解析領域の濃度ヒストグラムを用いて、解析領域ごとに明るすぎる領域であるか、暗すぎる領域であるかの判定が可能である。G(i)を各濃度値のヒストグラムとする。iは濃度値を表す。本実施形態では、iは0以上255以下の整数が用いられる。
明るすぎる領域の濃度値閾値をkとし、明るすぎる領域の画素閾値をhとする。下記の式1に示された条件を満足する解析領域は、明るすぎる領域と判定し得る。明るすぎる領域は、画像処理対象外領域に設定し得る。
Figure 0006960997
すなわち、解析領域の全画素数に対する濃度値がk以上の画素の数の割合がh以上の場合に、解析領域が明るすぎると判定される。明るすぎる領域の濃度値閾値k、及び明るすぎる領域の画素閾値hは予め定められた既定値としてもよいし、ユーザが指定し得る指定値としてもよい。
明るすぎる領域の濃度値閾値kの例として205が挙げられる。明るすぎる領域の画素閾値hの例として、0.5が挙げられる。かかる場合は、解析領域の全画素の50パーセントが205以上の濃度値を有する場合、その解析領域は明るすぎる領域と判定される。明るすぎる領域は画像処理対象外領域に設定される。
また、暗すぎる領域の濃度閾値をkとし、暗すぎる領域の画素閾値をhとする。下記の式2に示された条件を満足する解析領域は、暗すぎる領域と判定し得る。暗すぎる領域は、画像処理対象外領域に設定し得る。
Figure 0006960997
暗すぎる領域の濃度閾値kの例として50が挙げられる。暗すぎる領域の画素閾値hの例として、0.5が挙げられる。かかる場合は、解析領域の全画素の50パーセントが50以下の濃度値を有する場合、その解析領域は暗すぎる領域と判定される。暗すぎる領域は画像処理対象外領域に設定される。
一方、明るすぎる領域と判定されない領域、及び暗すぎる領域と判定されない領域は、仮画像処理対象領域に設定し得る。すなわち、上記式1に示した条件、及び上記式2に示した条件を満たしていない解析領域は、仮画像処理対象領域と設定され得る。
明るすぎる領域と判定されない領域、及び暗すぎる領域と判定されない領域は、階調値のヒストグラムに基づいて定められた高画質の領域の一例である。濃度ヒストグラム180は、階調値のヒストグラムの一例である。
シャドー側の階調に潰れがある解析領域は、濃度ヒストグラム180の濃度値0に度数が存在する。ハイライト側の階調に潰れがある解析領域は、濃度ヒストグラム180の濃度値255に度数が存在する。
すなわち、シャドー側の階調潰れの判定閾値をTとし、G(0)>Tを満たす解析領域は、シャドー側の階調潰れ領域であると判定し得る。シャドー側の階調潰れ領域は、画像処理対象外領域に設定し得る。
また、ハイライト側の階調潰れの判定閾値をTとし、G(255)>Tを満たす解析領域は、ハイライト側の階調潰れ領域であると判定し得る。ハイライト側の階調潰れ領域は、画像処理対象外領域に設定し得る。
一方、シャドー側の階調潰れ領域と判定されない領域、及びハイライト側の階調潰れ領域と判定されない領域は、仮画像処理対象領域に設定し得る。すなわち、G(0)>T、及びG(255)>Tを満たしていない解析領域は、仮画像処理対象領域と設定され得る。
G(0)>T、及びG(255)>Tを満たしていない解析領域は、階調値のヒストグラムに基づいて定められた高画質の領域の一例である。
[撮像条件を用いた仮画像処理対象領域の決定の説明]
〈撮像角度、及びフォーカス位置を用いる例〉
次に、撮像条件を用いた仮画像処理対象領域の決定について説明する。先ず、撮像条件として、撮像角度、及びフォーカス位置を用いる例について説明する。
図11は被写体の撮像の模式図である。図11には、撮像装置200を用いた被写体202の撮像を模式的に図示した。分割画像204は、撮像装置200の光軸の方向を水平方向と平行な方向として、被写体202を撮像して得られた画像である。
分割画像206は、撮像装置200をチルト動作させ、撮像装置200の光軸を水平方向に対してα度だけ上方向へ向けて、被写体202を撮像して得られた画像である。分割画像208は、撮像装置200をチルト動作させ、撮像装置200の光軸を水平方向に対してβ度だけ上方向へ向けて、被写体202を撮像して得られた画像である。なお、角度α、角度βは、α<βの関係を有している。
図12はフォーカスエリアが撮像範囲の中心の場合における仮画像処理対象領域の一例を示す図である。図12には、橋脚210を主要被写体として撮像して得られた三枚の分割画像を図示する。図12に符号212を付して図示した破線の円は、分割画像204、分割画像206、及び分割画像208のフォーカスエリアを表している。フォーカスエリアの中心がフォーカス位置となる。
分割画像206、及び分割画像208に符号214を付した枠は、橋脚210に合焦しているピンぼけしていない領域と、橋脚210に合焦していないピンぼけしている領域との境界を表す。枠214の内側はピンぼけしていない領域であり、枠214の外側はピンぼけしている領域である。ピンぼけしていない領域は枠214が含まれる。
図12に示した分割画像206、及び分割画像208では、フォーカスエリア212から上下方向へ離れた領域が被写界深度から外れてピンぼけしている。分割画像206よりも上側の分割画像208であり、分割画像206よりも撮影角度が大きい分割画像208は、分割画像206よりもピンぼけ領域の面積が大きくなっている。
図13はフォーカスエリアが撮像範囲の中心よりも下の位置の場合における仮画像処理対象領域の一例を示す図である。図13に示した分割画像204Aのフォーカスエリア212は、図12に示した分割画像204のフォーカスエリア212よりも下の位置となっている。図13に示した分割画像206A、及び分割画像208Aについても同様である。
図13に示した分割画像206Aは、図12に示した分割画像206よりもピンぼけしている領域の面積が大きい、図13に示した分割画像208Aも同様である。
すなわち、フォーカス位置から被写体との角度が変化する方向に離れた領域は、被写界深度から外れてピンぼけする。撮像装置をチルト動作させて、撮像装置を基準として撮像装置の上下方向に撮像角度がついている場合、分割画像の上端部、及び下端部の少なくともいずれか一方がピンぼけする。
撮像装置をパン動作させて、撮像装置を基準として撮像装置の左右方向に撮像角度がついている場合、分割画像の右端部、及び左端部の少なくともいずれか一方がピンぼけする。ここでいう上下方向は、縦方向と読み替えてもよい。また、左右方向は、横方向と読み替えてもよい。
図12に示した分割画像204のピンぼけしていない領域204B、分割画像206の符号206Bを付したピンぼけしていない領域、及び分割画像208の符号208Bを付したピンぼけしていない領域は、仮画像処理対象領域として決定し得る。
フォーカス位置、及び撮像角度と、ピンぼけしていない領域との関係を予めデータベース化して、図3に示した画像処理対象領域データベース42に記憶しておく。フォーカス位置、及び撮像角度を用いて、図3に示した画像処理対象領域データベース42から分割画像におけるピンぼけしていない領域の情報を取得し得る。
図12に示した分割画像204、分割画像206、及び分割画像208における背景等の非主要被写体は、現実にピンぼけしている領域である。しかし、主要被写体に注目して処理が行われて最終成果物が生成されるので、主要被写体のぼけ、又はぶれに注目して仮画像処理対象領域を決めればよい。仮画像処理対象領域に非主要被写体が含まれていてもよい。
換言すると、分割画像の全体を同一の平面として取り扱うことが可能であり、主要被写体のぼけ、又はぶれに基づいて分割画像における仮画像処理対象領域を決めることが可能である。
〈被写界深度、及び焦点ずれ量を算出する例〉
次に、撮像条件を用いて仮画像処理対象領域を決定する他の例について説明する。以下に、撮像条件として、撮像角度、フォーカス位置、被写界深度、焦点距離、絞り値、及び許容錯乱円形を用いる例について説明する。
具体的には、被写界深度、及び撮像範囲における焦点ずれの距離を表す焦点ずれ量を算出して、焦点ずれ量が被写界深度に収まる領域229を仮画像処理対象領域として決定する。焦点ずれ量が被写界深度に収まらない領域を画像処理対象外領域として決定する。なお、焦点ずれ量が被写界深度に収まらない領域の図示は省略する。
図14は焦点ずれ量と被写界深度との関係を示す模式図である。図14に図示した符号Dは前方被写界深度を表す。符号Dは後方被写界深度を表す。前方被写界深度Dは、以下の式3を用いて表される。後方被写界深度Dは、以下の式4を用いて表される。被写界深度は、以下の式5を用いて表される。
Figure 0006960997
Figure 0006960997
Figure 0006960997
上記の式3における前方被写界深度D、上記の式4における後方被写界深度D、上記の式5における被写界深度の単位がミリメートルの場合、上記の式3、及び式4における許容錯乱円径、被写体距離、焦点距離の単位はミリメートルである。
許容錯乱円径は、許容錯乱円の直径を意味する。許容錯乱円径は、撮像装置200に具備される撮像素子のサイズが適用される。
図14の符号220は撮像装置200の合焦面を表す。符号220Aを付した実線は、撮像装置200の撮像範囲を表す。縦方向の撮像範囲は、被写体距離に縦方向のセンササイズを乗算した値を焦点距離で除算して算出される。縦方向の撮像範囲は長さを表す単位が用いられる。
縦方向は、図14に図示した合焦面220を表す破線が向く方向を表す。縦方向のセンササイズは、撮像装置200に具備される撮像素子の縦方向におけるサイズである。
また、横方向の撮像範囲は、被写体距離に横方向のセンササイズを乗算した値を焦点距離で除算して算出される。横方向の撮像範囲は長さを表す単位が用いられる。
横方向は、縦方向と直交する方向であり、図14の紙面を貫く方向を表す。横方向のセンササイズは、図14に示した撮像装置200に具備される撮像素子の横方向におけるサイズである。撮像角度θは、被写体面202Aの法線の方向である被写体面垂直方向222と、撮像装置200の光軸の方向224とのなす角度である。
図14に図示した符号226は、被写界深度の前端を表す。符号228は、被写界深度の後端を表す。符号230は、合焦面220の前方の焦点ずれ量を表す。符号232は、合焦面220の後方の焦点ずれ量を表す。焦点ずれ量は、被写体面202Aから合焦面220までの距離として、幾何学計算を用いて計算することが可能である。
図3に示した撮像条件取得部40は、被写界深度算出部、及び焦点ずれ量算出部が具備される。なお、被写界深度算出部、及び焦点ずれ量算出部の図示は省略する。
図15はフォーカスエリアが撮像範囲の中心の場合における被写界深度内領域の一例を示す図である。図15には、図12に示した分割画像206において、被写界深度、及び焦点ずれ量に基づいて決められた仮画像処理対象領域240を示す。
図16はフォーカスエリアが撮像範囲の中心よりも下の位置の場合における被写界深度内領域の一例を示す図である。図16には、図13に示した分割画像206Aにおいて、被写界深度、及び焦点ずれ量に基づいて決められた仮画像処理対象領域240Aを示す。
〈レンズの種類、及びフォーカス位置を用いる例〉
次に、撮像条件を用いて仮画像処理対象領域を決定する他の例について説明する。以下に、撮像条件として、レンズの種類、及びフォーカス位置を用いる例について説明する。撮像装置がレンズ固定式の場合、カメラの種類を用いてレンズの種類を特定し得る。
図17はフォーカスエリアが撮像範囲の中心の場合における像面湾曲の影響の一例を示す図である。レンズの特性に起因する像面湾曲が発生する場合、撮像範囲250の中心252、又は中心252の近傍の位置において合焦し、撮像範囲250の周辺部254にピンぼけが発生する。
図18はフォーカスエリアが撮像範囲の周辺部の場合における像面湾曲の影響の一例を示す図である。レンズの特性に起因する像面湾曲が発生する場合、撮像範囲250の周辺部254において合焦する場合、撮像範囲250の中心252、又は撮像範囲250の中心252の近傍にピンぼけが発生する。なお、撮像範囲250の中心252の近傍は、撮像範囲250の中心252を含む範囲である。撮像範囲250の中心252の近傍は、レンズの種類に応じて決められる。
図19はフォーカスエリアが撮像範囲の中心の場合における像面湾曲の影響を考慮したピンぼけしていない領域の一例を示す図である。図20はフォーカスエリアが撮像範囲の周辺部の場合における像面湾曲の影響を考慮したピンぼけしていない領域の一例を示す図である。
図19、及び図20は、図2に図示した分割画像102において、像面湾曲の影響を考慮したピンぼけしていない領域260の一例を示す。図19、及び図20に図示した符号262は、フォーカスエリアを表している。
図21はフォーカスエリアが撮像範囲の中心の場合における像面湾曲の影響を考慮したピンぼけしていない領域の他の例を示す図である。レンズの特性によっては、図21に示したようなピンぼけしていない領域260が決定される場合があり得る。
レンズの種類、及びフォーカス位置と、ピンぼけしていない領域との関係を予めデータベース化して、図3に示した画像処理対象領域データベース42に記憶しておく。レンズの種類、及びフォーカス位置を用いて、図3に示した画像処理対象領域データベース42から分割画像におけるピンぼけしていない領域の情報を取得し得る。
図19、及び図21に示したピンボケしていない領域260は、中心部を含む領域であり、レンズの特性から定められる領域の一例である。図20に示したピンボケしていない領域260は、周辺部を含む領域であり、レンズの特性から定められる領域の一例である。
〈ストロボ発光の有無を用いる例〉
次に、撮像条件を用いて仮画像処理対象領域を決定する他の例について説明する。以下に、撮像条件として、ストロボ発光の有無を用いる例について説明する。具体的には、ストロボ発光の際に周辺部が暗くなるため、周辺部以外の明るい領域を仮画像処理対象領域とする。また、周辺部である暗い領域は画像処理対象外領域とする。
図22はストロボ発光の際の明るい領域、及び暗い領域の一例を示す図である。ストロボ発光の際に、ストロボから被写体へ照射されたストロボ光が届く領域である、ストロボ光到達領域270は、明るい領域となる。ストロボ発光の際にストロボ光が届かない領域であるストロボ光非到達領域272は、暗い領域となる。
また、撮像装置におけるストロボの位置に起因して、暗くなり易い領域が相違する。例えば、ストロボが撮像装置の上部に配置される場合、撮像された画像における下側が暗くなり易い。被写体距離が相対的に短くなる場合は、明るい領域は相対的に小さくなる。一方、被写体距離が相対的に長くなる場合は、明るい領域は相対的に大きくなる。
図22に図示した符号274は、ストロボ光到達領域270と、ストロボ光非到達領域272との境界を表す。被写体距離が相対的に短くなる場合は、境界274は符号276を付した矢印線の向く方向へ移動する。
すなわち、被写体距離が相対的に短くなる場合の境界274は、ストロボ光到達領域270の面積が相対的に小さくなり、ストロボ光非到達領域272の面積が相対的に大きくなる方向へ移動する。
一方、被写体距離が相対的に長くなる場合は、境界274は符号278を付した矢印線の向く方向へ移動する。すなわち、被写体距離が相対的に長くなる場合の境界274は、ストロボ光到達領域270の面積が相対的に大きくなり、ストロボ光非到達領域272の面積が相対的に小さくなる方向へ移動する。
被写体距離と、ストロボ光到達領域270、又はストロボ光非到達領域272との関係を予めデータベース化して、図3に示した画像処理対象領域データベース42に記憶しておく。被写体距離を用いて、図3に示した画像処理対象領域データベース42から分割画像におけるストロボ光到達領域270、又はストロボ光非到達領域272の情報を取得し得る。
[画像処理対象領域の決定の説明]
次に、画像処理対象領域の決定について説明する。図23は二つの仮画像処置領域の論理積に基づく画像処理対象領域の一例を示す図である。図23には、図12に示した分割画像206について、撮像角度を用いて決められた第一仮画像処理対象領域300、及びレンズ特性を用いて決められた第二仮画像処理対象領域302を統合して決められた画像処理対象領域304を示す。図23に図示した符号310は分割画像206におけるフォーカスエリアを表す。
図23に示した例では、分割画像206において、撮像角度に基づく第一仮画像処理対象領域300を1とし、画像処理対象外領域306Aを0とする。また、分割画像206において、レンズ特性に基づく第二仮画像処理対象領域302を1とし、画像処理対象外領域306Bを0とする。
それぞれの要因の影響に基づく第一仮画像処理対象領域300、及び第二仮画像処理対象領域302の論理積を用いて表される領域を、分割画像206の画像処理対象領域304とする。
換言すると、分割画像206において、撮像角度に基づく第一仮画像処理対象領域300を0とし、画像処理対象外領域306Aを1とする。また、分割画像206において、レンズ特性に基づく第二仮画像処理対象領域302を0とし、画像処理対象外領域306Bを1とする。
それぞれの要因の影響に基づく画像処理対象外領域306A、及び画像処理対象外領域306Bの論理和を用いて表される領域を、分割画像206の画像処理対象外領域306とする。
図23の下段に示した分割画像206における画像処理対象領域304は、撮像角度の影響、及びレンズ特性の影響を重ね合わせて決められる。図23には、二種類の異なる撮像条件を用いて決められた、二種類の異なる仮画像処理対象領域の論理積として画像処理対象領域が決められる例を例示した。
画像処理対象領域は、画質解析結果を用いて決められた仮画像処理対象領域、及び撮像条件を用いて決められた仮画像処理対象領域を用いて決めてもよい。二種類の異なる画質解析結果を用いて決められた、二種類の異なる仮画像処理対象領域の論理積として、画像処理対象領域が決められてもよい。
ここでいう論理積は、第一仮画像処理対象領域が決められた後に、第一仮画像処理対象領域に処理領域を限定して第二仮画像処理対象領域を決める態様を含み得る。例えば、分割画像について撮像条件に基づき第一仮画像処理対象領域を決定し、決定された第一仮画像処理対象領域を対象として画質解析結果を取得して、画像処理対象領域を決定してもよい。
[画像処理]
本実施形態に係る画像処理方法は、損傷検出のみ、画像合成のみ、及び損傷検出と画像合成との両者が適用される。損傷検出と画像合成との両者には、損傷検出結果の合成が含まれる。以下に、損傷検出、及び画像合成について詳細に説明する。
〈損傷検出処理〉
損傷検出処理は、撮像装置を用いて撮像して得られた画像における画像処理対象領域に対して、損傷の検出を実行する。損傷検出は、予め準備された損傷検出装置が適用される。損傷検出処理では、損傷検出装置を用いて画像処理対象領域について損傷検出が実行される。
損傷検出の対象とされる被写体の例として、建築物の壁、柱、天井、及び窓などの構造体、並びに道路、樹木、岩壁、海面、船舶、及び車両などが挙げられる。
建築物の壁、及び柱における損傷の例として、コンクリート部材のひび割れ、遊離石灰、漏水、剥離、鉄筋露出、浮き、鋼部材の亀裂、腐食、及び壁等に描かれたチョーク線などが挙げられる。損傷の他の例として、構造体における割れ、欠落、穴、変色、塗装の剥がれ、及び腐食などが挙げられる。
〈画像合成処理〉
画像合成処理は、画像対応付け工程、及び画像貼り合わせ工程が含まれる。画像対応付け処理工程は、特徴点抽出工程、対応点抽出工程、及び射影変換行列計算工程が含まれる。
画像対応付け処理は、分割画像の全体に対して実行される。画像貼り合わせ処理は、画像処理対象領域に限定して実行してもよいし、画像貼り合わせ処理は、画像処理対象領域を優先させて実行してもよい。
画像貼り合わせ処理において、二つの分割画像にまたがる重畳領域は、ブレンディング処理、又は上書き処理が実行される。ブレンディング処理、又は上書き処理は、画像処理対象領域に含まれる画素に限定して実行される。
ブレンディング処理は、予め定められたブレンディング処理規則に従って、重畳領域に含まれる二つの分割画像の画素をブレンドする処理である。上書き処理は、重畳領域を構成する二つの分割画像のいずれか一方の画素を用いて、重畳領域を上書きする処理である。換言すると、上書き処理は、重畳領域を構成する二つの分割画像のいずれか一方に置き替える処理である。
但し、重畳領域が画像処理対象領域を含んでいない場合は、重畳領域の処理において、画像処理対象外領域の画素を使用してもよい。重畳領域が画像処理対象領域を含んでいない場合は、重畳領域の画素値を予め定められた値としてもよい。
予め定められた値の例として、黒を表す画素値、及び白を表す画素値が挙げられる。黒を表す画素値の例として最小画素値が挙げられる。白を表す画素値の例として最大画素値が挙げられる。
重畳領域以外の領域である単独の分割画像を用いて構成される単独領域は、各分割画像の画素が用いられる。
図24は画像合成処理の一例の説明である。以下に、図12に示した分割画像204、分割画像206、及び分割画像208を合成する例について説明する。図24の符号209は、分割画像204、分割画像206、及び分割画像208を合成して得られた合成結果を表す合成画像を指し示す。
画像対応付け処理工程では、分割画像204、分割画像206、及び分割画像208と、合成画像209との対応付けが決められる。まず、特徴点抽出工程において、分割画像204、分割画像206、及び分割画像208のそれぞれの特徴点が抽出される。具体的には、特徴点の座標が抽出される。ここでいう座標とは、分割画像204、分割画像206、及び分割画像208に設定される座標である。例えば、二次元直交座標系における座標が挙げられる。
次に、対応点抽出工程において、分割画像204、分割画像206、及び分割画像208のそれぞれの特徴点に対応する、合成画像209における対応点が抽出される。そして、射影変行列計算工程では、分割画像204、分割画像206、及び分割画像208のそれぞれの特徴点の座標に対応する、合成画像209における対応点の座標が計算される。射影変換行列計算の詳細は、特開2004−72533号公報の段落0053の記載を参照されたい。
図24に示した合成画像209における領域320は、分割画像204に対応する領域である。合成画像209における領域322は、分割画像206の下側の画像処理対象外領域206Dに対応する領域である。
合成画像209における領域324は、分割画像206の画像処理対象領域206Bに対応する領域である。合成画像209における領域326は、分割画像206の上側の画像処理対象外領域206Cに対応する領域である。
合成画像209における領域328は、分割画像208の画像処理対象外領域208Cに対応する領域である。合成画像209における領域330は、分割画像208の画像処理対象領域208Bに対応する領域である。
このようにして、分割画像204、分割画像206、及び分割画像208と、合成画像209との対応関係が導出される。
画像貼り合わせ工程では、分割画像204、分割画像206、及び分割画像208を貼り合わせる、貼り合わせ処理が実行される。合成画像209における重畳領域352は、ブレンディング処理、又は上書き処理が実行される。
重畳領域352は、領域352A、及び領域352Bから構成される。領域352Aは、分割画像204と分割画像206の画像処理対象外領域とがまたがる領域である。領域352Aは、分割画像204の画素が採用される。領域352Bは、分割画像204と分割画像206の画像処理対象領域206Bとがまたがる領域である。領域352Bは、分割画像204の画素を用いてもよいし、分割画像206の画像処理対象領域206Bの画素を用いてもよい。領域352Bは、分割画像204の画素、及び分割画像206の画像処理対象領域206Bの画素をブレンドしてもよい。
重畳領域354は、領域354A、及び領域354Bから構成される。領域354Aは、分割画像206の画像処理対象領域206Bと分割画像208の画像処理対象外領域208Cとがまたがる領域である。領域354Aは、分割画像206の画像処理対象領域206Bの画素が用いられる。
領域354Bは、分割画像206の画像処理対象外領域206Cと、分割画像208の画像処理対象外領域208Cとがまたがる領域である。領域354Bは、分割画像206の画像処理対象外領域206Cの画素を用いてもよいし、分割画像208の画像処理対象外領域208Cの画素を用いてもよい。
領域354Bは、分割画像206の画像処理対象外領域206Cの画素と、分割画像208の画像処理対象外領域208Cの画素とをブレンドしてもよい。領域354Bは、白を表す画素値、又は黒を表す画素値など、予め定められた画素値を適用してもよい。
領域356Aは、分割画像208の画像処理対象外領域208Cに対応する領域である。領域356Aは、分割画像208の画像処理対象外領域208Cの画素を用いてもよいし、白を表す画素値、又は黒を表す画素値など、予め定められた画素値を適用してもよい。
合成画像209における画像処理対象外領域356は、領域354B、及び領域356Aから構成される。画像処理対象外領域356は、画像処理対象外領域の処理規則が用いられる。画像処理対象外領域の処理規則の例として、領域354Bに対する処理、及び領域356Aに対する処理が挙げられる。
画像貼り合わせ処理は、以下の処理規則が適用される。複数の画像処理対象領域が存在する場合は、ブレンディング処理、又は任意の一つの画像処理対象領域の画素を採用する。図24に示す合成画像209では、領域324が該当する。
一つの画像処理対象領域が存在する場合は、該当する画像処理対象領域の画素を採用する。図24に示す合成画像209では、領域340、領域344、及び領域350が該当する。
像処理対象領域が存在しない場合は、ブレンディング処理、任意の一つの画像処理対象外領域の画素、又は予め定められた画素値を採用する。図24に示す合成画像209では、領域346、及び領域348が該当する。
〈損傷検出処理、及び画像合成処理〉
損傷検出処理、及び画像合成処理が実行される場合には、損傷検出結果を合成する処理が実行されてもよい。損傷検出結果を合成する例として、図24に示した分割画像204、分割画像206、及び分割画像208のそれぞれについてひび割れの検出を実行し、ひび割れの検出がされた分割画像204、分割画像206、及び分割画像208を合成する例が挙げられる。
ひび割れの検出がされた分割画像204、分割画像206、及び分割画像208を合成して得られた合成画像は、図25に画像処理結果画像209Bとして図示する。
損傷検出結果の合成は、分割画像の対応関係に基づいて損傷検出結果を合成する。分割画像の対応関係の例として射影変換行列が挙げられる。重畳領域では、画像処理対象領域に含まれるいずれか分割画像の検出結果を採用して合成する。
損傷検出における画像処理対象領域は、画像合成処理における画像処理対象領域としてもよい。画像合成処理における画像処理対象領域は、損傷検出における画像処理対象領域とは別に導出してもよい。
[画像処理結果の表示]
図25は画像処理結果の表示例の説明である。図25には、分割画像204、分割画像206、及び分割画像208を合成した合成画像であり、画像処理対象外領域を他の領域と区別して表示した画像処理結果画像209Aを示す。
図25に示した画像処理結果画像209A、又は画像処理結果画像209Bは、図示しない画像表示部に表示される。
画像処理結果画像209Aは、画像処理対象外領域209Cを表す枠が表示される。図25に示す例では、画像処理対象外領域209Cは、分割画像206の画素、又は分割画像208の画素が採用されている。
図25に図示した画像処理結果画像209Bは、ひび割れの検出がされた分割画像204、分割画像206、及び分割画像208を合成して得られた合成画像である。画像処理結果画像209Bは、検出対象のひび割れ209Eがハイライト表示されている。画像処理結果画像209Bにおける画像処理対象外領域209Dは、ひび割れ209Eが表示されない。
画像処理結果表示において、画像処理結果画像に画像処理対象領域が存在する場合に、分割画像における画像処理対象領域を変更し、再度、画像処理を実行してもよい。例えば、図25に示した分割画像206の画像処理対象領域206Bを手動で変更してもよい。分割画像における画像処理対象領域の変更は、図示しない画像処理対象領域変更部を用いて実行される。
分割画像における画像処理対象領域の変更は、撮像装置を用いて撮像角度などの撮像条件を変えて撮像し、新たに得られた分割画像について画像処理対象領域を設定する態様を適用してもよい。
[作用効果]
上記の如く構成された画像処理システムによれば、二以上の画質判断情報のそれぞれに対応する二以上の仮画像処理対象領域である第一仮画像処理対象領域300、及び第二仮画像処理対象領域302の論理積として表される領域を画像処理対象領域304として決定する。これにより、複数の画質低下の原因が考慮された画像処理対象領域304を決定することが可能である。
仮画像処理対象領域は、撮像条件、及び画質解析結果の少なくともいずれか一方を用いて決定される。
画質解析として、解析対象領域ごとに空間周波数スペクトル分布を取得し、高周波数成分の有無の判定を適用し得る。高周波数成分が存在する領域を仮画像処理対象領域として決定し得る。
画質解析として、解析対象領域ごとに濃度値のヒストグラムを取得し、ヒストグラムの解析を適用し得る。ヒストグラムの度数の偏り、最小濃度値に度数が存在するか否か、最大濃度値に度数が存在するか否かに基づいて仮画像処理対象領域を決定し得る。
撮像条件として、撮像角度、及びフォーカス位置を適用して、仮画像処理対象領域を決定し得る。また、撮像条件として、撮像角度、フォーカス位置、被写体距離、焦点距離、絞り値、及び許容錯乱円径を適用して、焦点ずれ量が被写界深度の範囲に収まる領域を仮画像処理対象領域として決定し得る。
更に、撮像条件として、レンズの種類、及びフォーカス位置を適用して、レンズに像面湾曲がある場合の合焦領域を画像処理対象領域として決定し得る。レンズが固定式の撮像装置の場合、カメラの機種を用いてレンズの種類を特定してもよい。
更にまた、撮像条件として、ストロボ発光の有無を適用して、ストロボ光が届く範囲を画像処理対象領域として決定し得る。更に、撮像条件として撮像距離を適用して、撮像距離に応じてストロボ光が届く範囲を調整して、画像処理対象領域を決定し得る。
[クライアントサーバ型ネットワークシステムへの適用例]
図26はクライアントサーバ型ネットワークシステムへの適用例を示すブロック図である。図26に示した画像処理システム500は、サーバ装置502、及び一つ以上のクライアント装置を備えている。図26には、クライアント装置として、第一クライアント装置504、第二クライアント装置506、及び第三クライアント装置508を例示する。
サーバ装置502は、ネットワーク510を介して、第一クライアント装置504、第二クライアント装置506、及び第三クライアント装置508と通信可能に接続されている。
ネットワーク510は、公衆通信網、及びローカルエリアネットワークなど、任意の通信網を適用可能である。ローカルエリアネットワークは、英語表記Local Area Networkの省略語であるLANと表現されることがある。
サーバ装置502とネットワーク510との間のデータ通信は、有線方式のデータ通信を適用してもよいし、無線形式のデータ通信を適用してもよい。同様に、クライアント装置とネットワーク510との間のデータ通信は、有線方式のデータ通信を適用してもよいし、無線形式のデータ通信を適用してもよい。
クライアント装置とネットワーク510との間のデータ通信は、サーバ装置502とネットワーク510との間のデータ通信と同じ形式を適用してもよいし、異なる形式を適用してもよい。
なお、クライアント装置とは、図26に示した第一クライアント装置504、第二クライアント装置506、及び第三クライアント装置508の総称である。クライアント装置という用語は、第一クライアント装置504、第二クライアント装置506、及び第三クライアント装置508の任意のいずれかを表すことがある。
図26に示したサーバ装置502は、一つ以上のコンピュータを用いて構成される。サーバ装置502は、図1、図3、及び図4に示した画像処理システム10の機能を実現するハードウェアを適用し得る。サーバ装置502の構成例として、図1、図3、及び図4に示した機械学習データを取得する機能ブロック、及び画像処理を実行する機能ブロックを備える例が挙げられる。
サーバ装置502は、図3に示した画像処理対象領域データベース42の機能を実現するデータベースが記憶される記憶装置を備えてもよい。記憶装置は図26に示したサーバ装置502に内蔵されてもよいし、記憶装置はサーバ装置502に外付けされてもよい。
サーバ装置502は、通信インターフェースを備える。サーバ装置502は、通信インターフェースを用いてネットワーク510と接続される。サーバ装置502は、プログラム記憶部を備える。
クライアント装置は、サーバ装置502に対して画像データを送信する画像データ送信部を備える。クライアント装置は、通信インターフェースを備える。クライアント装置は、通信インターフェースを用いてネットワーク510と接続される。図26には、クライアント装置の例として、コンピュータを例示したが、クライアント装置は、携帯型端末装置を適用してもよい。
[画像処理方法]
図27は実施形態に係る画像処理方法の手順の流れを示すフローチャートである。本実施形態に係る画像処理方法は、画像取得工程S10、画質判断情報取得工程S12、画像処理対象領域決定工程S14、画像処理工程S16、及び画像出力工程S18を含んで構成される。
画像取得工程S10では、図1に示した画像取得部12を用いて、画像データ20が取得される。図27に示した画質判断情報取得工程S12では、図1に示した画質判断情報取得部14を用いて、二種類の異なる画質判断情報が生成され、取得される。図27に示した画質判断情報取得工程S12は、撮像条件を取得する撮像条件取得工程、及び画像を解析する解析工程の少なくともいずれか一方を含んでいてもよい。
画像処理対象領域決定工程S14では、図1に示した画像処理対象領域決定部16を用いて、二種類の異なる画質判断情報に基づく画像処理対象領域を決定する。
図27に示した画像処理工程S16では、図1に示した画像処理部18を用いて、画像処理を実行する。図27に示した画像出力工程S18では、画像処理結果を出力する。画像出力工程S18において画像処理結果が出力された後に、画像処理方法は終了される。
図28は図27に示した画像処理対象領域決定工程の手順の流れを示すフローチャートである。図27に示した画像処理対象領域決定工程S14は、図28に示した第一仮画像処理対象領域決定工程S100、第二仮画像処理対象領域決定工程S102、及び画像処理対象領域決定工程S104を含んで構成される。
第一仮画像処理対象領域決定工程S100では、図1に示した画像処理対象領域決定部16を用いて、画質解析結果30、又は撮像条件を用いて、画像処理対象の画像における第一仮画像処理対象領域を決定する。
図28に示した第二仮画像処理対象領域決定工程S102では、図1に示した画像処理対象領域決定部16を用いて、画質解析結果30、又は撮像条件を用いて、画像処理対象の画像における第二仮画像処理対象領域を決定する。
図28に示した画像処理対象領域決定工程S104では、図1に示した画像処理対象領域決定部16を用いて、第一仮画像処理対象領域と第二仮画像処理対象領域との論理積として表される画像処理対象領域を決定する。
図28に示した画像処理対象領域決定工程S104において、画像処理対象領域が決定された後に、図27に示した画像処理工程S16へ進む。画像処理工程S16では、画像処理対象の画像に対して、検出対象の検出処理、及び画像合成処理の少なくともいずれか一方の処理が実行される。
[画像処理プログラムへの適用例]
本実施形態に示した画像処理システム、及び画像処理方法に対応する画像処理プログラムを構成し得る。すなわち、コンピュータを、図1、図3、及び図4に示した画像処理システム10の各部の機能を実現させる画像処理プログラムを構成し得る。
例えば、1または複数のコンピュータ(プロセッサ)に、画像取得部に対応する画像取得機能、画質判断情報取得部に対応する画質判断情報取得機能、画像処理対象領域決定部に対応する画像処理対象領域決定機能、及び画像処理部に対応する画像処理機能を実現させる画像処プログラムを構成し得る。このプログラムを記録したコンピュータ読み取り可能な記録媒体も、本実施形態に含まれる。
[用語について]
本明細書における同一という用語は、厳密には相違する態様のうち、同一と概ね同様の作用効果が得られる実質的な同一とみなし得る態様が含まれる。
本明細書における上という用語は、重力方向と反対方向を指し示す。下という用語は、重力方向を指し示す。上、及び下は、二者の相対的な位置関係を表すことがあり得る。
本明細書における直交という用語は、交差する二方向のなす角度が厳密には90度未満の場合、及び厳密には90度を超える場合であるものの、交差する二方向のなす角度が90度の場合と同様の作用効果を得ることが可能な実質的に直交が含まれる。
本明細書における平行という用語は、二方向が厳密には非平行であるものの、二方向が厳密に平行である場合と同様の作用効果を得ることが可能な実質的に平行が含まれる。
[実施形態及び変形例等の組み合わせについて]
上述の実施形態で説明した構成や変形例で説明した事項は、適宜組み合わせて用いることができ、また、一部の構成要素を置き換えることもできる。
以上説明した本発明の実施形態は、本発明の趣旨を逸脱しない範囲で、適宜構成要件を変更、追加、削除することが可能である。本発明は以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で当該分野の通常の知識を有する者により、多くの変形が可能である。
10、500 画像処理システム
12 画像取得部
14 画質判断情報取得部
16 画像処理対象領域決定部
18 画像処理部
20 画像データ
22 EXIF情報
24 ユーザ指定情報
26 ユーザ選択情報
28 センサ情報
30 画質解析結果
32A 第一画質判断情報
32B 第二画質判断情報
34 画像処理対象領域情報
40 撮像条件取得部
42 画像処理対象領域データベース
44 撮像条件情報
50 画質解析結果取得部
54 閾値
100、102、104 分割画像
106 合成画像
108 ピンぼけ領域
110、112、114 ピンぼけ領域
116、118 重畳領域
150 解析領域
160 空間周波数スペクトル分布画像
162 空間周波数スペクトル分布画像の中心
164 空間周波数スペクトル分布画像の隅
166 低周波数成分スペクトル
168 高周波数成分スペクトル
170 高周波数成分判定領域
180 濃度ヒストグラム
200 撮像装置
202 被写体
202A 被写体面
204、204A 分割画像
204B ピンぼけしていない領域
206、206A 分割画像
206B、208B、304 画像処理対象領域
206C、206D、208C、209C、209D、306、306A、306B、356 画像処理対象外領域
208、208A 分割画像
209 合成画像
209A、209B 画像処理結果画像
210 橋脚
212、262、310 フォーカスエリア
214 枠
220 合焦面
220A 撮像範囲
222 被写体面垂直方向
224 撮像装置の光軸の方向
226 被写界深度の前端
228 被写界深度の後端
230 合焦面の前方の焦点ずれ量
232 合焦面の後方の焦点ずれ量
240、240A 仮画像処理対象領域
250 撮像範囲
252 撮像範囲の中心
254 撮像範囲の周辺部
260 ピンぼけしていない領域
270 ストロボ光到達領域
272 ストロボ光非到達領域
274 ストロボ光到達領域とストロボ光非到達領域との境界
276、278 境界の移動方向
300 第一仮画像処理対象領域
302 第二仮画像処理対象領域
320、322、324、326、328、330、340、342、344、346、348、350、352A、352B、354A、354B、356A 領域
352、354 重畳領域
500 画像処理システム
502 サーバ装置
504 第一クライアント装置
506 第二クライアント装置
508 第三クライアント装置
510 ネットワーク
S1からS18 画像処理方法の各工程
S100からS114 画像処理対象領域決定工程の各工程

Claims (21)

  1. 画像に含まれる検出対象である構造体の損傷を検出する検出処理、及び複数の画像の対応関係を算出して前記対応関係に基づいて前記複数の画像を合成する合成処理の少なくともいずれか一方を実行する画像処理システムであって、
    被写体を撮像した画像を取得する画像取得部と、
    前記画像取得部を用いて取得した画像における画質の判断結果を表す画質判断情報を取得する画質判断情報取得部と、
    前記画質判断情報取得部を用いて取得した画質判断情報を用いて、前記画像取得部を用いて取得した画像における画像処理対象領域を決定する画像処理対象領域決定部と、
    前記画像処理対象領域決定部を用いて決定した画像処理対象領域に対して、前記検出処理、及び前記合成処理の少なくともいずれか一方を実行する画像処理部と、を備え、
    前記画像処理対象領域決定部は、二以上の画質判断情報のそれぞれに対応する二以上の仮画像処理対象領域を導出し、前記二以上の前記仮画像処理対象領域の論理積として表される領域を前記画像処理対象領域として決定する画像処理システム。
  2. 前記画質判断情報取得部は、前記画像の撮像における撮像条件を取得する撮像条件取得部、及び前記画像を解析する解析部の少なくともいずれか一方を備え、
    前記画像処理対象領域決定部は、前記画像の撮像条件、及び前記解析部の解析結果の少なくともいずれか一方を用いて前記仮画像処理対象領域を決定する請求項1に記載の画像処理システム。
  3. 前記撮像条件取得部は、前記撮像条件として撮像角度、及びフォーカス位置を取得し、
    前記画像処理対象領域決定部は、前記撮像角度、及び前記フォーカス位置に基づいて定められた前記画像の非端部を前記仮画像処理対象領域として決定する請求項2に記載の画像処理システム。
  4. 前記撮像条件取得部は、前記撮像条件として撮像角度、フォーカス位置、被写体距離、焦点距離、絞り値、及び許容錯乱円径を取得し、
    前記画像処理対象領域決定部は、前記撮像角度、前記フォーカス位置、前記被写体距離、前記焦点距離、前記絞り値、及び前記許容錯乱円径に基づいて定められた前記画像の非端部を前記仮画像処理対象領域として決定する請求項2に記載の画像処理システム。
  5. 前記被写体距離、前記焦点距離、前記絞り値、及び前記許容錯乱円径を用いて、撮像範囲における被写界深度を算出する被写界深度算出部と、
    前記撮像角度、及び前記焦点距離を用いて、前記撮像範囲における焦点ずれの距離を表す焦点ずれ量を算出する焦点ずれ量算出部と、を備え、
    前記画像処理対象領域決定部は、前記焦点ずれ量算出部を用いて算出された焦点ずれ量が、前記被写界深度算出部を用いて算出された被写界深度の範囲に収まる領域を前記仮画像処理対象領域として決定する請求項4に記載の画像処理システム。
  6. 前記撮像条件取得部は、前記撮像条件としてレンズの種類、及びフォーカス位置を取得し、
    前記画像処理対象領域決定部は、前記レンズの種類、及び前記フォーカス位置に基づいて、前記フォーカス位置が撮像範囲の中心部の場合は前記中心部を含む領域であり、前記レンズの特性から定められる領域を前記仮画像処理対象領域として決定し、前記フォーカス位置が撮像範囲の周辺部の場合は前記周辺部を含む領域であり、前記レンズの特性から定められる領域を前記仮画像処理対象領域として決定する請求項2に記載の画像処理システム。
  7. 前記撮像条件取得部は、前記撮像条件としてストロボの発光の有無を取得し、
    前記画像処理対象領域決定部は、前記ストロボから被写体へ照射されたストロボ光が到達したストロボ光到達領域を前記仮画像処理対象領域として決定する請求項2から6のいずれか一項に記載の画像処理システム。
  8. 前記撮像条件取得部は、前記撮像条件として被写体距離を取得し、
    前記画像処理対象領域決定部は、前記被写体距離に応じて定められた前記ストロボ光到達領域を前記仮画像処理対象領域として決定する請求項7に記載の画像処理システム。
  9. 前記解析部は、解析対象の画像を複数の領域に分割して、前記領域ごとの空間周波数スペクトル分布を生成し、
    前記画像処理対象領域決定部は、前記解析部を用いて生成された前記領域ごとの空間周波数スペクトル分布に基づいて定められた高画質の領域を前記仮画像処理対象領域として決定する請求項2から8のいずれか一項に記載の画像処理システム。
  10. 前記解析部は、解析対象の画像を複数の領域に分割して、前記領域ごとの階調値のヒストグラムを生成し、
    前記画像処理対象領域決定部は、前記解析部を用いて生成された前記領域ごとの階調値のヒストグラムに基づいて定められた高画質の領域を前記仮画像処理対象領域として決定する請求項2から9のいずれか一項に記載の画像処理システム。
  11. 前記画質判断情報取得部を用いて取得される画質判断情報と前記仮画像処理対象領域との関係を対応付けて記憶した記憶部を備え、
    前記画像処理対象領域決定部は、前記画質判断情報取得部を用いて取得した画質判断情報を用いて、前記画質判断情報に対応する前記仮画像処理対象領域を前記記憶部から取得する請求項1から10のいずれか一項に記載の画像処理システム。
  12. 前記画像処理部を用いて画像処理が施された画像を表示する画像表示部を備え、
    前記画像表示部は、前記画像処理部を用いた画像処理の対象外とされた画像処理対象外領域を表示させる請求項1から11のいずれか一項に記載の画像処理システム。
  13. 前記画像処理対象領域決定部を用いて決定した前記画像処理対象領域を変更する画像処理対象領域変更部を備えた請求項1から12のいずれか一項に記載の画像処理システム。
  14. 前記画像処理部は、前記検出対象として、コンクリート部材のひび割れ、チョーク線、遊離石灰、漏水、剥離、鉄筋露出、浮き、鋼部材の亀裂、及び腐食の少なくともいずれか一つを検出する処理を実行する請求項1から13のいずれか一項に記載の画像処理システム。
  15. サーバ装置と、
    前記サーバ装置とネットワークを介して通信可能に接続されたクライアント装置と、を備え、
    前記サーバ装置は、前記画像取得部、前記画質判断情報取得部、前記画像処理対象領域決定部、及び画像処理部を備えた請求項1から14のいずれか一項に記載の画像処理システム。
  16. 前記クライアント装置は、前記画像を表す画像データを前記サーバ装置へ送信する画像データ送信部を備えた請求項15に記載の画像処理システム。
  17. 画像に含まれる検出対象である構造体の損傷を検出する検出処理、及び複数の画像の対応関係を算出して前記対応関係に基づいて前記複数の画像を合成する合成処理の少なくともいずれか一方を実行する画像処理システムに具備されるサーバ装置であって、
    被写体を撮像した画像を取得する画像取得部と、
    前記画像取得部を用いて取得した画像における画質の判断結果を表す画質判断情報を取得する画質判断情報取得部と、
    前記画質判断情報取得部を用いて取得した画質判断情報を用いて、前記画像取得部を用いて取得した画像における画像処理対象領域を決定する画像処理対象領域決定部と、
    前記画像処理対象領域決定部を用いて決定した画像処理対象領域に対して、前記検出処理、及び前記合成処理の少なくともいずれか一方を実行する画像処理部と、を備え、
    前記画像処理対象領域決定部は、二以上の画質判断情報のそれぞれに対応する二以上の仮画像処理対象領域を導出し、前記二以上の前記仮画像処理対象領域の論理積として表される領域を前記画像処理対象領域として決定するサーバ装置。
  18. 画像に含まれる検出対象である構造体の損傷を検出する検出処理、及び複数の画像の対応関係を算出して前記対応関係に基づいて前記複数の画像を合成する合成処理の少なくともいずれか一方を実行する画像処理方法であって、
    被写体を撮像した画像を取得する画像取得工程と、
    前記画像取得工程において取得した画像における画質の判断結果を表す画質判断情報を取得する画質判断情報取得工程と、
    前記画質判断情報取得工程において取得した画質判断情報を用いて、前記画像取得工程において取得した画像における画像処理対象領域を決定する画像処理対象領域決定工程と、
    前記画像処理対象領域決定工程において決定した画像処理対象領域に対して、前記検出処理、及び前記合成処理の少なくともいずれか一方を実行する画像処理工程と、を含み、
    前記画像処理対象領域決定工程は、二以上の画質判断情報のそれぞれに対応する二以上の仮画像処理対象領域を導出し、前記二以上の前記仮画像処理対象領域の論理積として表される領域を前記画像処理対象領域として決定する画像処理方法。
  19. 前記画質判断情報取得工程は、前記画像の撮像における撮像条件を取得する撮像条件取得工程、及び前記画像を解析する解析工程を含み、
    前記画像処理対象領域決定工程は、前記撮像条件取得工程において取得した前記撮像条件に基づく前記画質判断情報を用いて決められた前記仮画像処理対象領域について、前記解析工程において解析処理を実行して前記画像処理対象領域を決定する請求項18に記載の画像処理方法。
  20. 画像に含まれる検出対象である構造体の損傷を検出する検出処理、及び複数の画像の対応関係を算出して前記対応関係に基づいて前記複数の画像を合成する合成処理の少なくともいずれか一方を実行する画像処理プログラムであって、
    コンピュータに、
    被写体を撮像した画像を取得する画像取得機能、
    前記画像取得機能を用いて取得した画像における画質の判断結果を表す画質判断情報を取得する画質判断情報取得機能、
    前記画質判断情報取得機能を用いて取得した画質判断情報を用いて、前記画像取得機能を用いて取得した画像における画像処理対象領域を決定する画像処理対象領域決定機能、及び
    前記画像処理対象領域決定機能を用いて決定した画像処理対象領域に対して、前記検出処理、及び前記合成処理の少なくともいずれか一方を実行する画像処理機能を実現させ、
    前記画像処理対象領域決定機能は、二以上の画質判断情報のそれぞれに対応する二以上の仮画像処理対象領域を導出し、前記二以上の前記仮画像処理対象領域の論理積として表される領域を前記画像処理対象領域として決定する画像処理プログラム。
  21. 請求項20に記載の画像処理プログラムを記録したコンピュータ読み取り可能な記録媒体。
JP2019535016A 2017-08-09 2018-06-26 画像処理システム、サーバ装置、画像処理方法、及び画像処理プログラム Active JP6960997B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017154305 2017-08-09
JP2017154305 2017-08-09
PCT/JP2018/024200 WO2019031086A1 (ja) 2017-08-09 2018-06-26 画像処理システム、サーバ装置、画像処理方法、及び画像処理プログラム

Publications (2)

Publication Number Publication Date
JPWO2019031086A1 JPWO2019031086A1 (ja) 2020-09-17
JP6960997B2 true JP6960997B2 (ja) 2021-11-05

Family

ID=65271154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019535016A Active JP6960997B2 (ja) 2017-08-09 2018-06-26 画像処理システム、サーバ装置、画像処理方法、及び画像処理プログラム

Country Status (5)

Country Link
US (1) US11295426B2 (ja)
EP (1) EP3668077B1 (ja)
JP (1) JP6960997B2 (ja)
CN (1) CN110915193B (ja)
WO (1) WO2019031086A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3660786A4 (en) * 2017-07-25 2020-08-05 FUJIFILM Corporation METHOD FOR GENERATING A DAMAGE DIAGRAM, DEVICE FOR GENERATING A DAMAGE DIAGRAM, SYSTEM FOR GENERATING A DAMAGE DIAGRAM AND RECORDING MEDIUM
JP7050824B2 (ja) * 2018-02-02 2022-04-08 富士フイルム株式会社 画像処理装置及び画像処理方法
JP7292979B2 (ja) * 2019-05-31 2023-06-19 株式会社東芝 画像処理装置及び画像処理方法
JP7427381B2 (ja) * 2019-07-22 2024-02-05 キヤノン株式会社 情報処理装置、システム、情報処理方法及びプログラム
US20230051683A1 (en) * 2020-03-04 2023-02-16 Mitsubishi Electric Corporation Crack detection device, crack detection method and computer readable medium
JP7546369B2 (ja) * 2020-03-27 2024-09-06 キヤノン株式会社 画像処理装置、画像処理方法
JP7507034B2 (ja) 2020-08-12 2024-06-27 オルガノ株式会社 情報処理装置、水処理システム、情報処理方法およびプログラム
CN115037871A (zh) * 2021-03-05 2022-09-09 Oppo广东移动通信有限公司 控制对焦的方法、装置、电子设备及计算机可读存储介质
CN117593285A (zh) * 2023-12-14 2024-02-23 江苏恒兆电缆有限公司 一种柔性矿物绝缘柔性防火电缆的品质检测系统及方法

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232206A (ja) * 1997-02-19 1998-09-02 Hitachi Ltd 金属表面欠陥検出方法及び装置
EP1150252B1 (en) * 2000-04-28 2018-08-15 Panasonic Intellectual Property Management Co., Ltd. Synthesis of image from a plurality of camera views
US6975352B2 (en) * 2000-12-18 2005-12-13 Xerox Corporation Apparatus and method for capturing a composite digital image with regions of varied focus and magnification
BE1014222A3 (fr) * 2001-06-13 2003-06-03 Ct Rech Metallurgiques Asbl Procede de caracterisation en ligne d'une surface en mouvement et dispositif pour sa mise en oeuvre.
JP2003250047A (ja) * 2002-02-22 2003-09-05 Konica Corp 画像処理方法、記憶媒体、画像処理装置、及び画像記録装置
JP4037206B2 (ja) 2002-08-07 2008-01-23 株式会社リコー 画像入力装置及び画像入力方法
US6898331B2 (en) * 2002-08-28 2005-05-24 Bae Systems Aircraft Controls, Inc. Image fusion system and method
JP2004173010A (ja) * 2002-11-20 2004-06-17 Konica Minolta Holdings Inc 撮像装置、画像処理装置、画像記録装置、画像処理方法、プログラム及び記録媒体
JP2005020314A (ja) * 2003-06-25 2005-01-20 Olympus Corp 表示特性補正データの算出方法、表示特性補正データの算出プログラム、表示特性補正データの算出装置
US8199222B2 (en) * 2007-03-05 2012-06-12 DigitalOptics Corporation Europe Limited Low-light video frame enhancement
WO2005020143A2 (en) * 2003-08-22 2005-03-03 Meade Instruments Corporation Image processors and methods of image processing
US7394488B2 (en) * 2003-10-30 2008-07-01 Hewlett-Packard Development Company, L.P. System and method for dual white balance compensation of images
CN100440944C (zh) * 2003-11-11 2008-12-03 精工爱普生株式会社 图像处理装置以及图像处理方法
US7693304B2 (en) * 2005-05-12 2010-04-06 Hewlett-Packard Development Company, L.P. Method and system for image quality calculation
WO2007032082A1 (ja) * 2005-09-16 2007-03-22 Fujitsu Limited 画像処理方法及び画像処理装置
JP4297111B2 (ja) * 2005-12-14 2009-07-15 ソニー株式会社 撮像装置、画像処理方法及びそのプログラム
JP2007233113A (ja) * 2006-03-02 2007-09-13 Fujifilm Corp 測距装置及び方法
US7860343B2 (en) * 2006-04-10 2010-12-28 Nokia Corporation Constructing image panorama using frame selection
JP4789695B2 (ja) * 2006-05-15 2011-10-12 オリンパスイメージング株式会社 カメラ、合成画像撮影方法およびプログラム
JP5039786B2 (ja) * 2007-07-23 2012-10-03 パナソニック株式会社 撮像装置
US20090196489A1 (en) * 2008-01-30 2009-08-06 Le Tuan D High resolution edge inspection
US8724921B2 (en) * 2008-05-05 2014-05-13 Aptina Imaging Corporation Method of capturing high dynamic range images with objects in the scene
JP2009284394A (ja) * 2008-05-26 2009-12-03 Olympus Imaging Corp 撮像装置および撮像方法
JP2010258673A (ja) * 2009-04-23 2010-11-11 Olympus Imaging Corp 撮影装置
US8339508B2 (en) * 2010-02-22 2012-12-25 Csr Technology Inc. Method and apparatus for low-light imaging enhancement
US8396269B2 (en) * 2010-04-08 2013-03-12 Digital Pathco LLC Image quality assessment including comparison of overlapped margins
JP5367640B2 (ja) * 2010-05-31 2013-12-11 パナソニック株式会社 撮像装置および撮像方法
WO2011153500A2 (en) * 2010-06-04 2011-12-08 Aperio Technologies, Inc. System and method to determine slide quality of a digitized microscope slide
US8705801B2 (en) * 2010-06-17 2014-04-22 Panasonic Corporation Distance estimation device, distance estimation method, integrated circuit, and computer program
US9088714B2 (en) * 2011-05-17 2015-07-21 Apple Inc. Intelligent image blending for panoramic photography
SE1150505A1 (sv) * 2011-05-31 2012-12-01 Mobile Imaging In Sweden Ab Metod och anordning för tagning av bilder
JP5824297B2 (ja) * 2011-08-30 2015-11-25 キヤノン株式会社 画像処理装置及び方法、及び撮像装置
CN103874960B (zh) * 2011-09-13 2017-02-15 富士胶片株式会社 单眼立体摄影装置、摄影方法及程序
US8693797B2 (en) * 2011-12-01 2014-04-08 At&T Intellectual Property I, Lp Method and apparatus for evaluating quality estimators
US8941750B2 (en) * 2011-12-27 2015-01-27 Casio Computer Co., Ltd. Image processing device for generating reconstruction image, image generating method, and storage medium
US9373023B2 (en) * 2012-02-22 2016-06-21 Sri International Method and apparatus for robustly collecting facial, ocular, and iris images using a single sensor
US8736706B1 (en) * 2012-03-13 2014-05-27 Google Inc. Method and system for generating high resolution composite images
WO2013158456A1 (en) * 2012-04-17 2013-10-24 E-Vision Smart Optics, Inc. Systems, devices, and methods for managing camera focus
TWI462054B (zh) * 2012-05-15 2014-11-21 Nat Univ Chung Cheng Estimation Method of Image Vagueness and Evaluation Method of Image Quality
US9503645B2 (en) * 2012-05-24 2016-11-22 Mediatek Inc. Preview system for concurrently displaying multiple preview images generated based on input image generated by image capture apparatus and related preview method thereof
WO2014064690A1 (en) * 2012-10-23 2014-05-01 Sivan Ishay Real time assessment of picture quality
KR101660323B1 (ko) * 2012-11-09 2016-09-29 후지필름 가부시키가이샤 카메라 시스템, 이것에 사용되는 색변환 장치 및 방법 그리고 색변환 프로그램
US8902328B2 (en) * 2013-03-14 2014-12-02 Konica Minolta Laboratory U.S.A., Inc. Method of selecting a subset from an image set for generating high dynamic range image
DE102013109915B4 (de) * 2013-09-10 2015-04-02 Thyssenkrupp Steel Europe Ag Verfahren und Vorrichtung zur Überprüfung eines Inspektionssystems zur Erkennung von Oberflächendefekten
JP6027287B2 (ja) 2014-03-28 2016-11-16 富士フイルム株式会社 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
JP2016015567A (ja) * 2014-07-01 2016-01-28 株式会社東芝 電子機器、処理方法およびプログラム
TWI554106B (zh) * 2014-09-25 2016-10-11 聚晶半導體股份有限公司 產生影像散景效果的方法及影像擷取裝置
JP6467612B2 (ja) * 2014-11-21 2019-02-13 株式会社ソーシャル・キャピタル・デザイン 正置画像処理システムおよび構造物維持管理業務システム
JP6594039B2 (ja) 2015-05-20 2019-10-23 株式会社東芝 画像処理装置、方法及びプログラム
US9767387B2 (en) * 2015-09-09 2017-09-19 Accenture Global Services Limited Predicting accuracy of object recognition in a stitched image
KR102399017B1 (ko) * 2015-11-16 2022-05-17 삼성전자주식회사 이미지 생성 방법 및 장치
US9898812B1 (en) * 2015-12-09 2018-02-20 Amazon Technologies, Inc. Composite image quality assurance
US10200632B2 (en) * 2016-08-01 2019-02-05 Microsoft Technology Licensing, Llc Low-illumination photo capture with reduced noise and blur
US10165194B1 (en) * 2016-12-16 2018-12-25 Amazon Technologies, Inc. Multi-sensor camera system
JP6800797B2 (ja) * 2017-03-31 2020-12-16 キヤノン株式会社 撮像装置、画像処理装置、撮像装置の制御方法およびプログラム
JP7546369B2 (ja) * 2020-03-27 2024-09-06 キヤノン株式会社 画像処理装置、画像処理方法

Also Published As

Publication number Publication date
EP3668077A4 (en) 2020-07-29
CN110915193B (zh) 2022-06-24
US11295426B2 (en) 2022-04-05
EP3668077B1 (en) 2023-08-02
US20200175663A1 (en) 2020-06-04
WO2019031086A1 (ja) 2019-02-14
CN110915193A (zh) 2020-03-24
EP3668077A1 (en) 2020-06-17
JPWO2019031086A1 (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
JP6960997B2 (ja) 画像処理システム、サーバ装置、画像処理方法、及び画像処理プログラム
US8988317B1 (en) Depth determination for light field images
US9224193B2 (en) Focus stacking image processing apparatus, imaging system, and image processing system
JP5291084B2 (ja) パンクロマティック画素を組み込むエッジマッピング
JPWO2019150872A1 (ja) 画像処理装置及び画像処理方法
JP2008042482A (ja) カラーフィルタ、画像処理装置および画像処理方法、撮像装置および撮像方法、プログラム、並びに、記録媒体
KR20110124965A (ko) 아웃 포커싱 촬영에서 빛망울 효과를 생성하기 위한 장치 및 방법
WO2012029658A1 (ja) 撮像装置、画像処理装置、画像処理方法及び画像処理プログラム
JPWO2019003796A1 (ja) 画像合成方法、画像合成装置、及び記録媒体
US20190273845A1 (en) Vibration monitoring of an object using a video camera
JP2012022652A (ja) 画像処理装置、画像処理方法、およびプログラム
JP6624785B2 (ja) 画像処理方法、画像処理装置、撮像装置、プログラム、および、記憶媒体
JP2014206388A (ja) 撮像装置、画像処理装置及び画像処理方法
JP2014142832A (ja) 画像処理装置、画像処理装置の制御方法、およびプログラム
JP6153318B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム、および、記憶媒体
JP6682184B2 (ja) 画像処理方法、画像処理プログラム、画像処理装置および撮像装置
JP4452793B2 (ja) 不法投棄箇所検知装置、方法、およびプログラム
JP6671943B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP7228341B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP2016201771A (ja) 画像処理装置、画像処理方法及びプログラム
JP6762779B2 (ja) 画像処理装置、撮像装置、画像処理方法、及びプログラム
JP2004354234A (ja) 写真計測用カメラキャリブレーション方法
TW201921912A (zh) 影像處理裝置、影像處理方法及程式記錄媒體
KR102482532B1 (ko) 3차원 깊이데이터 업샘플링 장치 및 그 방법
JP6248662B2 (ja) 画像処理装置、撮像装置及び画像処理プログラム

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20200130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211012

R150 Certificate of patent or registration of utility model

Ref document number: 6960997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250