JP5291084B2 - パンクロマティック画素を組み込むエッジマッピング - Google Patents

パンクロマティック画素を組み込むエッジマッピング Download PDF

Info

Publication number
JP5291084B2
JP5291084B2 JP2010500958A JP2010500958A JP5291084B2 JP 5291084 B2 JP5291084 B2 JP 5291084B2 JP 2010500958 A JP2010500958 A JP 2010500958A JP 2010500958 A JP2010500958 A JP 2010500958A JP 5291084 B2 JP5291084 B2 JP 5291084B2
Authority
JP
Japan
Prior art keywords
image
pixel
panchromatic
color
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010500958A
Other languages
English (en)
Other versions
JP2010524297A (ja
JP2010524297A5 (ja
Inventor
イー.,ジュニア アダムス,ジェイムズ
フランクリン,ジュニア ハミルトン,ジョン
オブライエン,ミシェル
Original Assignee
オムニビジョン テクノロジーズ, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムニビジョン テクノロジーズ, インコーポレイテッド filed Critical オムニビジョン テクノロジーズ, インコーポレイテッド
Publication of JP2010524297A publication Critical patent/JP2010524297A/ja
Publication of JP2010524297A5 publication Critical patent/JP2010524297A5/ja
Application granted granted Critical
Publication of JP5291084B2 publication Critical patent/JP5291084B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4015Image demosaicing, e.g. colour filter arrays [CFA] or Bayer patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/133Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing panchromatic light, e.g. filters passing white light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/135Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Image Processing (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Television Image Signal Generators (AREA)

Description

本発明は、パンクロマティック画像及びカラー画像から増強されたカラー画像を形成するためにエッジマップを使用することに関する。
ビデオカメラ及びデジタル・スチルカメラは一般に、シーンを記録するために、カラーフィルタ・アレイを有する単独の画像センサを採用する。このアプローチは、カラー情報がカラーフィルタ・アレイ・パターンによってコードされる疎い密度の単一チャネル画像で始まる。これに続く、近傍画素値の補間が、完全な3チャネル・フルカラー画像の再構成を可能にする。このフルカラー画像は、画像の外観を改善又は増強するために、ノイズ除去、鮮鋭化、又は色補正することができる。この画像増強は、画像をエッジ領域とフラット領域とに分類するために画像のエッジマップを計算することにより、大幅に容易にすることができる。このことは、エッジ領域とフラット領域とに対して異なる計算を実施するアルゴリズムを使用するのを可能にする。1つの一般的なアプローチは、輝度色チャネル、例えば「グリーン」を直接的に検出するか又は合成し、次いで、輝度画像からエッジマップを生成することである。米国特許第6,614,474号明細書(Malkin他)には、輝度チャネルを計算し、次いで方向性エッジ検出カーネル集合からエッジ情報を生成することが記載されている。このアプローチの問題点は、クロミナンスだけが変化して輝度は変化しないエッジが、検出されないリスクを負うことである。この問題に対処するために、米国特許第5,420,971号明細書(Westerink他)において、YUV輝度−クロミナンス画像を計算し、3つ全てのチャネル(Y、U、及びV)からエッジ情報を計算し、次いで、これらを輝度エッジ及びクロミナンス・エッジの両方を検出するためのL2−ノルムとして組み合わせることが教示されている。このアプローチの問題点は、計算された輝度−クロミナンス画像のノイズが、元の色データ、例えばRGBのノイズによって定義されることである。元の色データのこのようなノイズレベルは、とりわけ、個々の色チャネルのスペクトル周波数応答の相対的な狭さによって決定される。捕捉されるシーンがよく照らされている場合、例えば太陽が照っている景色の場合、スペクトル周波数応答の狭さは通常、問題ではない。シーンがよく照らされていない場合、例えば屋内の場合、又はスポーツ・イベントのときに動作のぶれを低減するために必然的に露光時間が短い場合、個々の色チャネルのスペクトル周波数応答の相対的な狭さは、ノイズの多い画像を生成するおそれがある。
低光量イメージング状況下では、画素のうちの1つ又は2つ以上を、カラーフィルタ・アレイでフィルタリングされない状態で、すなわちスペクトル感光性がホワイト又はパンクロマティックである状態で有することが有利である。これらのパンクロマティック画素は、キャプチャ・システムの最大感光性能力を有する。パンクロマティック画素を採用することは、キャプチャ・システムにおいて、感光性と色空間解像度との間で妥協することを意味する。これを目的として、多くの4色カラーフィルタ・アレイ・システムが記載されている。米国特許第6,529,239号明細書(Dyck他)には、センサ表面全体にわたってモザイク状に形成された2×2ブロックとして配列されたグリーン−シアン−イエロー−ホワイト・パターンが教示されている。米国特許第6,757,012号明細書(Hubina他)には、レッド−グリーン−ブルー−ホワイト・パターン、及びイエロー−シアン−マゼンタ−ホワイト・パターンの両方が開示されている。両事例において、色は、イメージング装置の表面全体にわたってモザイク状に形成された2×2ブロックとして配列されている。このようなシステムの難しさは、カラーフィルタ・アレイにおける画素のうちの4分の1しか最大感光性を有さず、従って、キャプチャ装置の低光量性能全体を制限することである。
より多くの画素がカラーフィルタ・アレイにおいて最大感光性を有することの必要性に対処するために、米国特許出願公開第2003/0210332号明細書(Frame)には、画素のうちのほとんどがフィルタリングされない画素アレイが記載されている。そのシーンからのカラー情報を捕捉するのに割り当てられる画素は比較的僅かであり、これにより、色空間解像度の低いシステムが生成される。加えて、Frameは、画像内の高頻度色空間ディテールに対して応答しない、又はこれを保護しない、単純な線形補間技術を用いることも教示している。
本発明の目的は、パンクロマティック画素及びカラー画素を有するデジタル画像から、増強されたデジタルカラー画像を生成することである。
この目的は、
a.カラー画素及びパンクロマティック画素の両方を有する2次元センサ・アレイによって捕捉されたシーンの捕捉された画像を使用すること;
b.該パンクロマティック画素に応答してエッジマップを形成すること;
c.該捕捉されたカラー画素に応答して該フルカラー画像を形成すること;そして
d.該フルカラー画像を増強するために該エッジマップを使用すること
を含んで成る、シーンの増強されたフルカラー画像を提供する方法によって達成される。
本発明の特徴は、パンクロマティック画素及びカラー画素を有するセンサを用いて低光量条件下で画像を捕捉することができ、処理を施すことにより、パンクロマティック画素及びカラー画素から生成された増強されたデジタルカラー画像がもたらされることである。
本発明は、上記方法が改善された低光量感受性及び改善された色空間分解忠実度の両方を提供するのを可能にするように、パンクロマティック画素とカラー画素とが好適に複合されたカラーフィルタ・アレイを利用する。上記方法は、パンクロマティック空間ディテール及びカラー空間ディテールを維持・増強し、そして増強されたフルカラー画像を生成する。
図1は、本発明を実施するためのデジタルカメラを含むコンピュータシステムを示す斜視図である。 図2は、本発明の好ましい態様のブロック・ダイヤグラムである。 図3は、図2のブロック202をより詳細に示すブロック・ダイヤグラムである。 図4は、図3のブロック242における低周波数フィルタリングの実行中に使用される画素近傍を示す図である。 図5は、図2のブロック202の別の態様をより詳細に示すブロック・ダイヤグラムである。 図6は、図5のブロック256における非最大値抑制の実行中に使用される画素近傍を示す図である。 図7は、本発明の好ましい態様のブロック・ダイヤグラムである。 図8は、本発明の別の態様のブロック・ダイヤグラムである。 図9は、本発明の別の態様のブロック・ダイヤグラムである。 図10は、本発明の別の態様のブロック・ダイヤグラムである。 図11は、本発明の別の態様のブロック・ダイヤグラムである。
以下に、通常はソフトウェアプログラムとして実施される、本発明の好ましい態様を説明する。当業者には明らかなように、このようなソフトウェアの等価物をハードウェア内に構成することもできる。画像操作アルゴリズム及びシステムはよく知られているので、ここでは具体的には本発明によるシステム及び方法の一部を形成するアルゴリズム及びシステム、又は本発明によるシステム及び方法とより直接的に協働するアルゴリズム及びシステムに関して説明する。このようなアルゴリズム及びシステムの他の形態、及びこれに関与する画像信号を生成し、又はその他の形式で処理するためのハードウェア又はソフトウェアは、本明細書中では特に図示又は説明していないが、当業者に知られたこのようなシステム、アルゴリズム、成分及び要素から選択することができる。下記材料において本発明に基づいて説明されるシステムを考えると、本発明の実施に有用な、具体的には図示、示唆又は記載されていないソフトウェアはコンベンショナルなものであり、当業者の技術範囲に含まれる。
さらに、本明細書中に使用されるコンピュータプログラムは、コンピュータで読み出し可能な記憶媒体に記憶することができる。記憶媒体は例えば、磁気記憶媒体、例えば磁気ディスク(例えばハードドライブ又はフロッピー(登録商標)ディスク)、又は磁気テープ;光学記憶媒体、例えば光ディスク、光学テープ、又は機械で読み出し可能なバーコード;固体電子記憶デバイス、例えばランダム・アクセス・メモリー(RAM)、又は読み出し専用メモリ(ROM);又はコンピュータプログラムを記憶するために採用される任意のその他の物理的デバイス又は媒体を含むことができる。
本発明の説明の前に、本発明が好ましくは、任意のよく知られたコンピュータシステム、例えばパーソナルコンピュータ上で利用されることに留意すると、理解しやすくなる。従って、コンピュータシステムについてはここでは詳細には論じない。画像がコンピュータシステム内に(例えばデジタルカメラによって)直接的に入力されるか、又はコンピュータシステム内への入力前に(例えばオリジナルのフィルム、例えばハロゲン化銀塩フィルムを走査することによって)デジタル化されることに留意するのも有益である。
図1を参照すると、本発明の実施のためのコンピュータシステム110が示されている。コンピュータシステム110は好ましい態様を説明する目的で図示されているが、本発明は図示のコンピュータシステム110に限定されるものではなく、家庭用コンピュータ、キオスク、小売店、大規模現像所、又は任意の他のデジタル画像処理システムに見いだされるような任意の電子処理システムにおいて使用することができる。コンピュータシステム110は、ソフトウェアプログラムを受容して処理するための、そして他の処理機能を発揮するための、マイクロプロセッサをベースとするユニット112を含む。例えばグラフィカル・ユーザー・インターフェイスによって、ソフトウェアと連携するユーザー関連情報を表示するために、マイクロプロセッサをベースとするユニット112にはディスプレイ114が電気的に接続される。ユーザーがソフトウェアに情報を入力するのを可能にするために、マイクロプロセッサをベースとするユニット112にはキーボード116も接続される。入力のためのキーボード116の使用に代わるものとして、当業者によく知られているように、ディスプレイ114上でセレクタ120を動かすために、そしてセレクタ120が重なるアイテムを選択するためにマウス118を使用することもできる。
マイクロプロセッサをベースとするユニット112にソフトウェアプログラム及びその他の情報を入力する手段を提供するために、マイクロプロセッサをベースとするユニット内には、典型的にはソフトウェアプログラムを含むコンパクトディスク読み出し専用メモリ(CD−ROM)124が挿入される。加えて、フロッピー(登録商標)ディスク126がソフトウェアプログラムを含んでもよく、これはソフトウェアプログラムを入力するために、マイクロプロセッサをベースとするユニット112内に挿入される。コンパクトディスク読み出し専用メモリ(CD−ROM)124又はフロッピー(登録商標)ディスク126は、或いは、マイクロプロセッサをベースとするユニット112に接続された外部配置型ディスク・ドライブ・ユニット122内に挿入することもできる。さらに、マイクロプロセッサをベースとするユニット112は、ソフトウェアプログラムを内部に記憶するために、当業者によく知られているようにプログラミングすることができる。マイクロプロセッサをベースとするユニット112は、外部ネットワーク、例えばローカル区域ネットワーク又はインターネットとのネットワーク接続127、例えば電話線を有することもできる。コンピュータシステム110からの出力のハードコピーをプリントするために、マイクロプロセッサをベースとするユニット112にプリンタ128を接続することもできる。
ディスプレイ114上には、パーソナルコンピュータ・カード(PCカード)130、例えば以前から知られている、PCカード130内に電子的に具体化されたデジタル化画像を含有するPCMCIAカード(Personal Computer Memory Card International Associationの仕様に基づく)を介して、画像を表示することもできる。PCカード130は最終的には、ディスプレイ114上の画像の視覚的な表示を可能にするために、マイクロプロセッサをベースとするユニット112内に挿入される。或いは、PCカード130は、マイクロプロセッサをベースとするユニット112に接続された外部配置型PCカードリーダ132内に挿入することもできる。コンパクトディスク124、フロッピー(登録商標)ディスク126、又はネットワーク接続127を介して、画像を入力することもできる。PCカード130、フロッピー(登録商標)ディスク126又はコンパクトディスク124内に記憶された、又はネットワーク接続127を介して入力された任意の画像は、種々の源、例えばデジタルカメラ(図示せず)又はスキャナ(図示せず)から得られたものであってよい。画像は、マイクロプロセッサをベースとするユニット112に接続されたカメラ・ドッキング・ポート136を介してデジタルカメラ134から直接的に、又はマイクロプロセッサをベースとするユニット112とのケーブル接続138を介して、又はマイクロプロセッサをベースとするユニット112とのワイヤレス接続140を介して、デジタルカメラ134から直接的に入力することもできる。
本発明によれば、アルゴリズムを前述の記憶デバイスのうちのいずれかに記憶し、そして画像を鮮鋭化するために画像に適用することができる。
図2は、本発明の好ましい態様の高レベル・ダイヤグラムである。デジタルカメラ134(図1)は、デジタルRGBP CFA画像又はRGBP CFA画像とも呼ばれる元のデジタル・レッド−グリーン−ブルー−パンクロマティック(RGBP)カラーフィルタ・アレイ(CFA)画像200を形成することに関与する。なおここで注意すべきなのは、下記説明におけるレッド−グリーン−ブルー−パンクロマティックの代わりに、他のカラーチャネルの組み合わせ、例えばシアン−マゼンタ−イエロー−パンクロマティックを使用できることである。重要なことは、パンクロマティック・チャネルを含んでいることである。この画像は、スパース・サンプリングされた画像であると考えられる。なぜならば画像内の各画素はレッド、グリーン、ブルー、又はパンクロマティック・データの画素値を1つしか含有していないからである。エッジマップ生成ブロック202が、RGBP CFA画像200からエッジマップ204を生成する。RGB CFA画像補間ブロック206が、RGBP CFA画像200からフルカラー画像208を生成する。フルカラー画像増強ブロック212が、フルカラー画像208及びエッジマップ204から、増強されたフルカラー画像210を生成する。
図2において、RGB CFA画像補間ブロック206は、当業者に知られたいかなる好適な方法でも実施することができる。米国特許出願第2007/0024934号明細書(Adams他)に例を見いだすことができる。この参考文献には、フルカラー画像を生成するために捕捉されたカラー画素だけを使用する例、及び、フルカラー画像を生成するために捕捉されたカラー画素及び捕捉されたパンクロマティック画素を使用する例が含まれている。
図3は、好ましい態様のためのエッジマップ生成ブロック202(図2)の詳細なブロック・ダイヤグラムである。低周波数フィルタリング・ブロック242が、RGBP CFA画像200(図2)から低周波数フィルタリングされた画像244を生成する。高周波数フィルタリング・ブロック246が、低周波数フィルタリングされた画像244から高周波数画像248を生成する。最後に、閾値による数値化(thresholding)ブロック250が、高周波数画像248からエッジマップ204(図2)を生成する。
図3において、ブロック242の低周波数フィルタリングは、画素位置毎に各カラーチャネルに対する画素値を生成するために、RGBP CFA画像200(図2)とともに低周波数コンボリューション・カーネルを畳み込むことにより達成される。例として、図4に示されている典型的なRGBP CFA画像の一部について考察する。最大解像度パンクロマティック・チャネルを生成するために、下記低周波数コンボリューション・カーネルを使用することができる:
Figure 0005291084
他の好適な低周波数コンボリューション・カーネルをどのように作成するかは当業者によく知られている。このコンボリューションを実施するときには、既存のパンクロマティック画素値だけが使用されると想定する。明示するならば、画素B50(図4)のパンクロマティック画素を計算する場合、計算は加重平均である:
Figure 0005291084
既存のパンクロマティック画素値、例えばP49の場合、低周波数フィルタリング・バージョンが計算される:
Figure 0005291084
図4のカラー画素はパンクロマティック画素よりも密度が疎らなので、最大解像度カラーチャネルを生成するために、より大きい低周波数コンボリューション・カーネルが使用される:
Figure 0005291084
他の好適な低周波数コンボリューション・カーネルをどのように作成するかは当業者によく知られている。このコンボリューションを実施するときには、既存のカラー画素値だけが使用されると想定する。明示するならば、画素B50(図4)のレッド画素を計算する場合、計算は:
Figure 0005291084
である。
50の低周波数フィルタリング・バージョンを計算すると、この計算は
Figure 0005291084
である。
RGBP CFA画像200(図2)における各画素に対する残りの低周波数フィルタリングされたカラー画素値も同様に計算される。
図3に戻ると、高周波数フィルタリング・ブロック248は一般に、2つの方法のうちの一方によって、すなわち直接コンボリューション法によって又はアンシャープ・マスキングの一部として実施される。直接コンボリューションの場合、低周波数フィルタリングされた画像244のパンクロマティック・チャネルは、高周波数カーネルと一緒に畳み込まれ、結果の絶対値は高周波数画像248である。好適な高周波数カーネルの例は、
Figure 0005291084
である。
他の好適な高周波数コンボリューション・カーネルをどのように作成するかは当業者によく知られている。アンシャープ・マスキングの場合、低周波数フィルタリングされた画像244のパンクロマティック・チャネルは、低周波数カーネルと一緒に畳み込まれ、結果としての低周波数画像は、低周波数フィルタリングされた画像244のパンクロマティック・チャネルから差し引かれる。この減算の絶対値は、高周波数画像248である。好適な高周波数カーネルの例は、
Figure 0005291084
となる。
他の好適な低周波数カーネルをどのように作成するかは当業者によく知られている。今挙げた例は、パンクロマティック・チャネル上でだけでなく、全てのカラーチャネル上でも動作し、次いで結果を合計することにより増強することができる:
Figure 0005291084
この場合、高周波数画像248は、それぞれ高周波数フィルタリング・ブロック246によって生成されたパンクロマティック(HP)、レッド(HR)、グリーン(HG)、及びブルー(HB)チャネルの高周波数画像の和(HALL)を含む。
図3において、閾値による数値化ブロック250は、高周波数画像248からエッジマップ204(図2)を生成した。ブロック250の閾値による数値化は一般に、高周波数画像248の各画素値を所与の閾値に対してテストすることにより実施される。高周波数画像248の画素値が所与の閾値以上である場合、エッジマップにおける対応画素値は、エッジ画素としてマーキングされ、そしてエッジの存在を示す値、例えば1に設定される。高周波数画像248の画素値が所与の閾値未満である場合、エッジマップにおける対応画素値は、フラット画素としてマーキングされ、そしてエッジの不在を示す値、例えば0に設定される。複数の閾値を使用することもできる。一例としては、比較的大きい第1閾値を使用して第1エッジマップを生成した後、より小さい第2閾値を使用して、第1エッジマップ及び高周波数画像248から第2エッジマップを生成する。この事例では、エッジ画素としてマーキングされた第1エッジマップにおける各画素位置は、対応位置の第2エッジマップにおけるエッジ画素として自動的にマーキングされる。第1エッジマップにおける或る画素位置がフラット画素としてマーキングされ、そして隣接画素位置のうちの少なくとも1つがエッジ画素としてマーキングされた場合、対応高周波数画像248の画素値は、第2閾値と比較される。高周波数画像248の画素値が第2閾値以上である場合、第2エッジマップにおける対応画素値は、エッジ画素としてマーキングされる。高周波数画像248の画素値が第2閾値未満である場合、第2エッジマップにおける対応画素値は、フラット画素としてマーキングされる。追加の閾値を使用してこの過程を続行できることは当業者には明らかである。
図5は、別の態様に対応するエッジマップ生成ブロック202(図2)の詳細なブロック・ダイヤグラムである。低周波数フィルタリング・ブロック242が、RGBP CFA画像200(図2)から低周波数フィルタリングされた画像244を生成する。高周波数フィルタリング・ブロック252が、低周波数フィルタリングされた画像244から高周波数画像254を生成する。非最大値抑制ブロック256が、高周波数画像254からエッジ薄化された高周波数画像258を生成する。最後に、閾値による数値化ブロック250は、エッジ薄化された高周波数画像258からエッジマップ204(図2)を生成する。
図5において、低周波数フィルタリング・ブロック242は、図3に記載されている通りである。高周波数フィルタリング・ブロック252は、低周波数フィルタリングされた画像244のパンクロマティック・チャネルから高周波数画像254を生成する。高周波数画像254は3つのチャネルを有している。第1チャネルはエッジ規模値を含み、このエッジ規模値は、高周波数フィルタリング・ブロック246(図3)によって実施されるのと同じ計算によって生成された結果である。第2チャネルは、水平勾配カーネルとのコンボリューションの絶対値を求めることにより生成された水平勾配値を含む。このようなカーネルの例は
Figure 0005291084
である。
第3チャネルは、垂直勾配カーネルとのコンボリューションの絶対値を求めることにより生成された垂直勾配値を含む。このようなカーネルの例は
Figure 0005291084
である。
ブロック256における非最大値抑制は一般に、各エッジ規模画素位置に対して水平勾配値を垂直勾配値と比較することにより実施される。水平勾配値が垂直勾配値以上である場合には、非最大値抑制方向は水平方向である。垂直勾配値が水平勾配値を上回る場合には、非最大値抑制方向は垂直方向である。図6は、エッジ規模値の画素近傍の一例であり、この場合エッジ規模値E3が操作される。非最大値抑制方向が水平方向である場合、E3はE2及びE4双方以上であれば、変わらないままにされる。そうでなければ、E3はゼロに設定される。非最大値抑制方向が垂直方向である場合、E3はE1及びE5双方以上であれば、変わらないままにされる。そうでなければ、E3はゼロに設定される。図5において、閾値による数値化ブロック250は、図3に基づいて前述したのと同じ操作である。
あらゆる方法で、例えば形態学的処理によって、エッジマップ204(図2)を増強することにより、ノイズの影響を軽減し、又はエッジマップ204(図2)内部の特徴の厚さを、このエッジマップを続いて用いるのに伴って変化させ得ることは当業者に明らかである。
図2に戻って、フルカラー画像増強ブロック212のためにいくつかの例をここで示す。1つのこのようなフルカラー画像増強は、ノイズ低減である。以後中心画素と呼ぶフルカラー画像208内の各画素に対して、エッジマップ204内の対応値を、これがエッジ画素としてマーキングされるか又はフラット画素としてマーキングされるかを見るためにチェックする。中心画素がエッジ画素である場合、その画素値のノイズ低減は、エッジ・ディテールを維持するために省くことができる。中心画素がフラット画素である場合、中心画素から所与の半径(距離)以内の他のフラット画素の全てを、ノイズ低減された中心画素値を生成するために、一緒に平均する。
フルカラー画像増強の別の例は、鮮鋭化(エッジ増強)である。2007年1月9日付けで出願された米国特許出願第11/621,139号明細書に教示されているように、フルカラー画像208から、又はRGBP CFA画像200から生成された基準パンクロマティック・チャネルから、鮮鋭化チャネルを生成することができる。次に、以後中心画素と呼ぶフルカラー画像208内の各画素に対して、エッジマップ204内の対応値を、これがエッジ画素としてマーキングされるか又はフラット画素としてマーキングされるかを見るためにチェックする。中心画素がエッジ画素である場合、エッジ・ディテールを鮮鋭化するために、完全対応鮮鋭化チャネル値を中心画素値に加える。中心画素がフラット画素である場合、フルカラー画像内の望ましくないノイズ増幅を低減するために、中心画素値に対応鮮鋭化チャネル値を一部加えるか、又は全く加えない。
フルカラー画像増強の別の例は、色補正である。色補正は通常、増強されたフルカラー画像210を生成するために、フルカラー画像208のカラーチャネル値を3×3行列で掛け算することにより行われる。この計算は下記形態:
Figure 0005291084
を成す。
上記式中(R,G,B)は、フルカラー画像208のカラーチャネル値を意味し、そして(R’,G’,B’)は、増強されたフルカラー画像210を意味する。フルカラー画像208内の各画素に対して、エッジマップ204内の対応値を、これがエッジ画素としてマーキングされるか又はフラット画素としてマーキングされるかを見るためにチェックする。画素がエッジ画素である場合、完全対応色補正をフルカラー画像208の画素値に施す。画素がフラット画素である場合、ノイズ及び画像処理アーチファクトの可視性を低減するために、フルカラー画像208の画素値に色補正を一部施すか、又は全く施さない。
図7は、本発明の別の態様の高レベル・ダイヤグラムである。デジタルカメラ134(図1)は、デジタルRGBP CFA画像又はRGBP CFA画像とも呼ばれる元のデジタル・レッド−グリーン−ブルー−パンクロマティック(RGBP)カラーフィルタ・アレイ(CFA)画像200を形成することに関与する。なおここで注意すべきなのは、下記説明におけるレッド−グリーン−ブルー−パンクロマティックの代わりに、他のカラーチャネルの組み合わせ、例えばシアン−マゼンタ−イエロー−パンクロマティックを使用できることである。重要なことは、パンクロマティック・チャネルを含んでいることである。この画像は、スパース・サンプリングされた画像であると考えられる。なぜならば画像内の各画素はレッド、グリーン、ブルー、又はパンクロマティック・データの画素値を1つしか含有していないからである。エッジマップ生成ブロック202が、RGBP CFA画像200からエッジマップ204を生成する。RGB CFA画像補間ブロック206が、RGBP CFA画像200及びエッジマップ204からフルカラー画像208を生成する。フルカラー画像増強ブロック212が、フルカラー画像208及びエッジマップ204から、増強されたフルカラー画像210を生成する。
図7において、RGB CFA画像補間ブロック260は、当業者に知られているいかなる好適な方法でも実施することができる。一例として、2007年1月9日付けで出願された米国特許出願第11/621,139号明細書に教示されているように、先ずRGBP CFA画像200から、基準パンクロマティック・チャネルを形成することができる。この基準パンクロマティック・チャネルは、RGBP CFA画像200における画素毎にパンクロマティック値を提供する。ここで図4を参照して、各画素位置が関連パンクロマティック値PN及びエッジマップ値ENを有すると想定する。ここでNは画素のインデックスである。B61の見積もりを計算するために、エッジマップ値E61に注目することから始める。次いで、画素P61から8つのコンパス方位(N,NE,E,SE,S,SW,W及びNW)のそれぞれの方向に外側に、所与の最大半径まで連続して進め、途中の対応エッジマップ値をチェックする。E61とは異なるエッジマップ値に遭遇するか、又は最大半径に達したら、その所与のコンパス方位において処理を停止する。ストップ状態前に遭遇した全てのBN値をB61の計算の際に使用する。最大半径5及び下記ガウス重み付けの事例において、遭遇した全てのエッジマップ値がE61と同じであるならば、B61は下記のように計算される:
Figure 0005291084
対応コンパス方位のうちの1つ又は2つ以上が早くに終了されれば、この計算は短縮されることになる。全てのコンパス方位がB画素に達する前に終了される場合、早期EN終了戦略は手元の画素に対して放棄され、遭遇したB画素の全てが計算に含まれる。このアプローチは、RGBP CFA画像200内の全ての画素のR、G及びB画素値を計算するために用いられる。この例の必然的な結果として、パンクロマティック画素値の使用を省き、またB画素値だけを、
Figure 0005291084
を生成するために使用することもできる。
図7の他のブロックの詳細は、好ましい態様、すなわち図2その他と同じである。
図8は、本発明の別の態様の高レベル・ダイヤグラムである。デジタルカメラ134(図1)は、デジタルRGBP CFA画像又はRGBP CFA画像とも呼ばれる元のデジタル・レッド−グリーン−ブルー−パンクロマティック(RGBP)カラーフィルタ・アレイ(CFA)画像200を形成することに関与する。なおここで注意すべきなのは、下記説明におけるレッド−グリーン−ブルー−パンクロマティックの代わりに、他のカラーチャネルの組み合わせ、例えばシアン−マゼンタ−イエロー−パンクロマティックを使用できることである。重要なことは、パンクロマティック・チャネルを含んでいることである。この画像は、スパース・サンプリングされた画像であると考えられる。なぜならば画像内の各画素はレッド、グリーン、ブルー、又はパンクロマティック・データの画素値を1つしか含有していないからである。エッジマップ生成ブロック202が、RGBP CFA画像200からエッジマップ204を生成する。RGB CFA画像増強ブロック266が、RGBP CFA画像200及びエッジマップ204から増強されたRGB CFA画像268を生成する。RGB CFA画像補間ブロック206が、増強されたRGB CFA画像268から増強されたフルカラー画像270を生成する。
図8において、RGB CFA画像増強ブロック266は、当業者に知られているいかなる好適な方法でも実施することができる。一例として、RGB CFA画像増強ブロック266は、増強されたRGB CFA画像268としてノイズ低減されたRGB CFA画像を生成するためにノイズを低減することができる。以後中心画素と呼ぶRGBP CFA画像200内の各画素に対して、エッジマップ204内の対応値を、これがエッジ画素としてマーキングされるか又はフラット画素としてマーキングされるかを見るためにチェックする。中心画素がエッジ画素である場合、その画素値のノイズ低減は、エッジ・ディテールを維持するために省くことができる。中心画素がフラット画素である場合、中心画素から所与の半径(距離)以内の他のフラット画素の全てを、ノイズ低減された中心画素値を生成するために、一緒に平均する。
図8の他のブロックの詳細は、好ましい態様、すなわち図2その他と同じである。
図9は、本発明の別の態様の高レベル・ダイヤグラムである。デジタルカメラ134(図1)は、デジタルRGBP CFA画像又はRGBP CFA画像とも呼ばれる元のデジタル・レッド−グリーン−ブルー−パンクロマティック(RGBP)カラーフィルタ・アレイ(CFA)画像200を形成することに関与する。なおここで注意すべきなのは、下記説明におけるレッド−グリーン−ブルー−パンクロマティックの代わりに、他のカラーチャネルの組み合わせ、例えばシアン−マゼンタ−イエロー−パンクロマティックを使用できることである。重要なことは、パンクロマティック・チャネルを含んでいることである。この画像は、スパース・サンプリングされた画像であると考えられる。なぜならば画像内の各画素はレッド、グリーン、ブルー、又はパンクロマティック・データの画素値を1つしか含有していないからである。エッジマップ生成ブロック202が、RGBP CFA画像200からエッジマップ204を生成する。RGB CFA画像増強ブロック266が、RGBP CFA画像200及びエッジマップ204から増強されたRGB CFA画像268を生成する。RGB CFA画像補間ブロック272が、増強されたRGB CFA画像268及びエッジマップ204から増強されたフルカラー画像274を生成する。
図9において、エッジマップ生成ブロック202は、図2に記載されたものと同じである。RGB CFA画像増強ブロック266は、図8に記載されたものと同じである。RGB CFA画像補間ブロック272は、図7に記載されたRGB CFA画像補間ブロック260と同じである。
図10は、本発明の別の態様の高レベル・ダイヤグラムである。デジタルカメラ134(図1)は、デジタルRGBP CFA画像又はRGBP CFA画像とも呼ばれる元のデジタル・レッド−グリーン−ブルー−パンクロマティック(RGBP)カラーフィルタ・アレイ(CFA)画像200を形成することに関与する。なおここで注意すべきなのは、下記説明におけるレッド−グリーン−ブルー−パンクロマティックの代わりに、他のカラーチャネルの組み合わせ、例えばシアン−マゼンタ−イエロー−パンクロマティックを使用できることである。重要なことは、パンクロマティック・チャネルを含んでいることである。この画像は、スパース・サンプリングされた画像であると考えられる。なぜならば画像内の各画素はレッド、グリーン、ブルー、又はパンクロマティック・データの画素値を1つしか含有していないからである。エッジマップ生成ブロック202が、RGBP CFA画像200からエッジマップ204を生成する。RGB CFA画像増強ブロック266が、RGBP CFA画像200及びエッジマップ204から増強されたRGB CFA画像268を生成する。RGB CFA画像補間ブロック206が、増強されたRGB CFA画像268から第1の増強されたフルカラー画像276を生成する。フルカラー画像増強ブロック212は、第1の増強されたフルカラー画像276及びエッジマップ204から第2の増強されたフルカラー画像278を生成する。
図10において、エッジマップ生成ブロック202は、図2に記載されたものと同じである。RGB CFA画像増強ブロック266は、図8に記載されたものと同じである。RGB CFA画像補間ブロック206は、図2に記載されたものと同じである。フルカラー画像増強ブロック212は、図2に記載されたものと同じである。
図11は、本発明の別の態様の高レベル・ダイヤグラムである。デジタルカメラ134(図1)は、デジタルRGBP CFA画像又はRGBP CFA画像とも呼ばれる元のデジタル・レッド−グリーン−ブルー−パンクロマティック(RGBP)カラーフィルタ・アレイ(CFA)画像200を形成することに関与する。なおここで注意すべきなのは、下記説明におけるレッド−グリーン−ブルー−パンクロマティックの代わりに、他のカラーチャネルの組み合わせ、例えばシアン−マゼンタ−イエロー−パンクロマティックを使用できることである。重要なことは、パンクロマティック・チャネルを含んでいることである。この画像は、スパース・サンプリングされた画像であると考えられる。なぜならば画像内の各画素はレッド、グリーン、ブルー、又はパンクロマティック・データの画素値を1つしか含有していないからである。エッジマップ生成ブロック202が、RGBP CFA画像200からエッジマップ204を生成する。RGB CFA画像増強ブロック266が、RGBP CFA画像200及びエッジマップ204から増強されたRGB CFA画像268を生成する。RGB CFA画像補間ブロック272が、増強されたRGB CFA画像268及びエッジマップ204から第1の増強されたフルカラー画像280を生成する。フルカラー画像増強ブロック212は、第1の増強されたフルカラー画像280及びエッジマップ204から第2の増強されたフルカラー画像282を生成する。
図11において、エッジマップ生成ブロック202は、図2に記載されたものと同じである。RGB CFA画像増強ブロック266は、図8に記載されたものと同じである。RGB CFA画像補間ブロック272は、図9に記載されたものと同じである。フルカラー画像増強ブロック212は、図2に記載されたものと同じである。
本発明の好ましい態様に開示されたエッジマップに基づくアルゴリズムは、種々様々なユーザー状況及び環境において採用することができる。状況及び環境は、一例として、卸売業用デジタル写真仕上げ(例えば、フィルムの受け入れ、デジタル処理、プリントアウトのようなプロセス・ステップ又は段に関与する)、小売業用デジタル写真仕上げ(例えば、フィルムの受け入れ、デジタル処理、プリントアウト)、家庭内印刷(家庭内で走査されたフィルム又はデジタル画像、デジタル処理、プリントアウト)、デスクトップ・ソフトウェア(デジタルプリントをより良くするか、又はただこれらを変化させるだけのために、アルゴリズムをデジタルプリントに適用するソフトウェア)、デジタル・フルフィルメント(媒体からの、又はウェブを介したデジタル画像の受け入れ、デジタル処理、そして媒体上のデジタル形態の画像、又はウェブを介したデジタル形態の画像、又はハードコピー・プリント上に印刷された画像の納品を伴う)、キオスク(デジタル又は走査入力、デジタル処理、デジタル又は走査出力)、携帯デバイス(例えばPDA、又は処理ユニット、ディスプレイ・ユニット、又は処理指示を与えるためのユニットとして使用することができる携帯電話機)、及びワールド・ワイド・ウェブを介して提供されるサービスを含む。
それぞれの事例において、エッジマップに基づくアルゴリズムは、独立していてよく、或いは、より大型のシステム手段の構成部分であってもよい。さらに、アルゴリズムを有するインターフェイス、例えば走査又は入力、デジタル処理、(必要な場合には)ユーザーに対する表示、(必要な場合には)ユーザー要求又は処理指示の入力、出力がそれぞれ、同じか又は異なるデバイス、及び物理的場所上で行われてよく、そしてデバイス及び場所の間の通信は、公的又は私的なネットワーク接続、又は媒体に基づく通信を介して行うことができる。本発明の前記開示内容と一致する場合には、アルゴリズム自体は、完全自動であってよく、ユーザー入力を有することができ(完全又は部分手動)、結果を受諾/拒絶するためのユーザー又は操作者の検閲を有することができ、或いはメタデータ(ユーザーによって供給するか、(例えばカメラ内の)測定デバイスによって供給するか、又はアルゴリズムによって決定することができるメタデータ)によって支援することができる。さらに、アルゴリズムは、種々のワークフロー・ユーザー・インターフェイス・スキームとインターフェイス接続することができる。
本発明による本明細書中に開示されたエッジマップに基づくアルゴリズムは、種々のデータ検出・整理技術(例えば顔検出、眼検出、皮膚検出、フラッシュ検出)を利用する内部成分を有することができる。
110 コンピュータシステム
112 マイクロプロセッサをベースとするユニット
114 ディスプレイ
116 キーボード
118 マウス
120 ディスプレイ上のセレクタ
122 ディスク・ドライブ・ユニット
124 コンパクトディスク読み出し専用メモリ(CD−ROM)
126 フロッピー(登録商標)ディスク
127 ネットワーク接続
128 プリンタ
130 パーソナルコンピュータ・カード(PCカード)
132 PCカードリーダ
134 デジタルカメラ
136 カメラ・ドッキング・ポート
138 ケーブル接続
140 ワイヤレス接続
200 RGBP CFA画像
202 エッジマップ生成
204 エッジマップ
206 RGB CFA画像補間
208 フルカラー画像
210 増強されたフルカラー画像
212 フルカラー画像増強
242 低周波数フィルタリング
244 低周波数フィルタリングされた画像
246 高周波数フィルタリング
248 高周波数画像
250 閾値による数値化
252 高周波数フィルタリング
254 高周波数画像
256 非最大値抑制
258 エッジ薄化された高周波数画像
260 RGB CFA画像補間
266 RGB CFA画像増強
268 増強されたRGB CFA画像
270 増強されたフルカラー画像
272 RGB CFA画像補間
274 増強されたフルカラー画像
276 第1の増強されたフルカラー画像
278 第2の増強されたフルカラー画像
280 第1の増強されたフルカラー画像
282 第2の増強されたフルカラー画像

Claims (3)

  1. ンピュータを使用して実行される、シーンの増強されたフルカラー画像を提供する方法であって、
    a.少なくとも3つの光応答に対応するカラー画素及びパンクロマティック画素の両方を有する2次元センサ・アレイによって捕捉されたシーンの捕捉された画像を使用する工程と、
    b.該捕捉された画像から高周波数画像を形成し、そして該高周波数画像中の高周波数画素値を閾値により数値化する工程と、
    c.閾値により数値化された該高周波数画像中の該パンクロマティック画素に応答してエッジマップを形成する工程と、
    d.該捕捉されたカラー画素に応答して該フルカラー画像を形成する工程と、
    e.該フルカラー画像の各画素を、該画素がエッジ画素であるかどうかに応じて増強する工程と
    を含む方法
  2. 工程cが、該エッジマップを形成するために、該捕捉されたカラー画素及び該捕捉されたパンクロマティック画素の両方を使用することを含む請求項1に記載の方法。
  3. 該フルカラー画像を形成するために該エッジマップを使用することをさらに含む請求項2に記載の方法。
JP2010500958A 2007-03-30 2008-03-25 パンクロマティック画素を組み込むエッジマッピング Active JP5291084B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/694,074 2007-03-30
US11/694,074 US8594451B2 (en) 2007-03-30 2007-03-30 Edge mapping incorporating panchromatic pixels
PCT/US2008/003885 WO2008121272A2 (en) 2007-03-30 2008-03-25 Edge mapping incorporating panchromatic pixels

Publications (3)

Publication Number Publication Date
JP2010524297A JP2010524297A (ja) 2010-07-15
JP2010524297A5 JP2010524297A5 (ja) 2011-05-12
JP5291084B2 true JP5291084B2 (ja) 2013-09-18

Family

ID=39794493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010500958A Active JP5291084B2 (ja) 2007-03-30 2008-03-25 パンクロマティック画素を組み込むエッジマッピング

Country Status (6)

Country Link
US (1) US8594451B2 (ja)
EP (1) EP2130175B1 (ja)
JP (1) JP5291084B2 (ja)
CN (1) CN101675454B (ja)
TW (1) TWI430184B (ja)
WO (1) WO2008121272A2 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7844127B2 (en) * 2007-03-30 2010-11-30 Eastman Kodak Company Edge mapping using panchromatic pixels
US8594451B2 (en) * 2007-03-30 2013-11-26 Omnivision Technologies, Inc. Edge mapping incorporating panchromatic pixels
US8254718B2 (en) * 2008-05-15 2012-08-28 Microsoft Corporation Multi-channel edge-aware chrominance noise reduction
US8224082B2 (en) * 2009-03-10 2012-07-17 Omnivision Technologies, Inc. CFA image with synthetic panchromatic image
US8068153B2 (en) * 2009-03-27 2011-11-29 Omnivision Technologies, Inc. Producing full-color image using CFA image
US8045024B2 (en) * 2009-04-15 2011-10-25 Omnivision Technologies, Inc. Producing full-color image with reduced motion blur
US8203633B2 (en) * 2009-05-27 2012-06-19 Omnivision Technologies, Inc. Four-channel color filter array pattern
US8237831B2 (en) 2009-05-28 2012-08-07 Omnivision Technologies, Inc. Four-channel color filter array interpolation
US8125546B2 (en) * 2009-06-05 2012-02-28 Omnivision Technologies, Inc. Color filter array pattern having four-channels
US8253832B2 (en) * 2009-06-09 2012-08-28 Omnivision Technologies, Inc. Interpolation for four-channel color filter array
US8724928B2 (en) * 2009-08-31 2014-05-13 Intellectual Ventures Fund 83 Llc Using captured high and low resolution images
US8755625B2 (en) 2010-11-19 2014-06-17 Analog Devices, Inc. Component filtering for low-light noise reduction
US8699813B2 (en) 2010-11-19 2014-04-15 Analog Devices, Inc Adaptive filter for low-light noise reduction
EP2778635B1 (en) 2011-04-25 2023-11-29 Planet Labs PBC Systems and methods for overhead imaging and video
US9324170B2 (en) * 2011-08-18 2016-04-26 Hewlett-Packard Development Company, L.P. Creating a blended image
WO2015192056A1 (en) 2014-06-13 2015-12-17 Urthecast Corp. Systems and methods for processing and providing terrestrial and/or space-based earth observation video
US10871561B2 (en) 2015-03-25 2020-12-22 Urthecast Corp. Apparatus and methods for synthetic aperture radar with digital beamforming
CN108432049B (zh) 2015-06-16 2020-12-29 阿卜杜拉阿齐兹国王科技城 有效平面相控阵列天线组件
EP3380864A4 (en) 2015-11-25 2019-07-03 Urthecast Corp. APPARATUS AND METHODS FOR OPEN SYNTHESIS RADAR IMAGING
CA3064735C (en) 2017-05-23 2022-06-21 Urthecast Corp. Synthetic aperture radar imaging apparatus and methods
US11378682B2 (en) 2017-05-23 2022-07-05 Spacealpha Insights Corp. Synthetic aperture radar imaging apparatus and methods for moving targets
EP3698167A4 (en) 2017-11-22 2021-11-17 Urthecast Corp. SYNTHETIC OPENING RADAR FORMING APPARATUS AND ASSOCIATED PROCESSES
EP3704668A4 (en) * 2018-12-17 2021-04-07 SZ DJI Technology Co., Ltd. IMAGE PROCESSING METHOD AND APPARATUS
US20220385841A1 (en) * 2021-05-28 2022-12-01 Samsung Electronics Co., Ltd. Image sensor including image signal processor and operating method of the image sensor

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971065A (en) 1975-03-05 1976-07-20 Eastman Kodak Company Color imaging array
US4630307A (en) * 1984-09-10 1986-12-16 Eastman Kodak Company Signal processing method and apparatus for sampled image signals
US4618990A (en) * 1984-11-15 1986-10-21 General Electric Company Edge enhancement filtering for digital fluorography images
JP2543567B2 (ja) 1988-04-07 1996-10-16 株式会社日立製作所 ダイナミックノイズリダクション回路及びこれを用いたテレビジョン受信機
US5038388A (en) 1989-05-15 1991-08-06 Polaroid Corporation Method for adaptively sharpening electronic images
US5237402A (en) 1991-07-30 1993-08-17 Polaroid Corporation Digital image processing circuitry
US5420971A (en) 1994-01-07 1995-05-30 Panasonic Technologies, Inc. Image edge finder which operates over multiple picture element ranges
US5506619A (en) 1995-03-17 1996-04-09 Eastman Kodak Company Adaptive color plan interpolation in single sensor color electronic camera
US5629734A (en) 1995-03-17 1997-05-13 Eastman Kodak Company Adaptive color plan interpolation in single sensor color electronic camera
US5708729A (en) 1995-04-12 1998-01-13 Eastman Kodak Company Method and system for the reduction of memory capacity required for digital representation of an image
GB9605527D0 (en) 1996-03-15 1996-05-15 Vlsi Vision Ltd Image restoration
US5949914A (en) 1997-03-17 1999-09-07 Space Imaging Lp Enhancing the resolution of multi-spectral image data with panchromatic image data using super resolution pan-sharpening
US6097835A (en) 1997-07-23 2000-08-01 Lockheed Martin Corporation Projective pan sharpening methods and apparatus
US6130960A (en) 1997-11-03 2000-10-10 Intel Corporation Block-matching algorithm for color interpolation
US6882364B1 (en) 1997-12-02 2005-04-19 Fuji Photo Film Co., Ltd Solid-state imaging apparatus and signal processing method for transforming image signals output from a honeycomb arrangement to high quality video signals
US6011875A (en) 1998-04-29 2000-01-04 Eastman Kodak Company Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening
US6529239B1 (en) 1998-06-01 2003-03-04 Fairchild Imaging, Inc. Image sensor with stripes of cyan filter material perpendicular to stripes of yellow filter material
US6075889A (en) 1998-06-12 2000-06-13 Eastman Kodak Company Computing color specification (luminance and chrominance) values for images
US6614474B1 (en) 1998-08-27 2003-09-02 Polycom, Inc. Electronic pan tilt zoom video camera with adaptive edge sharpening filter
US6173085B1 (en) 1998-09-18 2001-01-09 Eastman Kodak Company Edge enhancement using modified edge boost function
US6356672B1 (en) 1999-03-08 2002-03-12 Sharp Laboratories Of America, Inc. Method and apparatus for reducing the color registration artifact of image capture devices
AUPQ289099A0 (en) 1999-09-16 1999-10-07 Silverbrook Research Pty Ltd Method and apparatus for manipulating a bayer image
JP4361991B2 (ja) 1999-08-20 2009-11-11 メディア・テック・ユーエスエイ・インコーポレーテッド 画像処理装置
US6757012B1 (en) 2000-01-13 2004-06-29 Biomorphic Vlsi, Inc. Color selection for sparse color image reconstruction
US6937774B1 (en) 2000-10-24 2005-08-30 Lockheed Martin Corporation Apparatus and method for efficiently increasing the spatial resolution of images
US6813046B1 (en) 2000-11-07 2004-11-02 Eastman Kodak Company Method and apparatus for exposure control for a sparsely sampled extended dynamic range image sensing device
US6646246B1 (en) * 2000-11-21 2003-11-11 Eastman Kodak Company Method and system of noise removal for a sparsely sampled extended dynamic range image sensing device
US20030222998A1 (en) 2000-12-20 2003-12-04 Satoru Yamauchi Digital still camera system and method
US6476865B1 (en) 2001-03-07 2002-11-05 Eastman Kodak Company Sparsely sampled image sensing device with color and luminance photosites
US6816197B2 (en) 2001-03-21 2004-11-09 Hewlett-Packard Development Company, L.P. Bilateral filtering in a demosaicing process
US6801672B1 (en) * 2001-06-01 2004-10-05 Bruce A. Thomas Removing noise from a color image using wavelets
US7003173B2 (en) * 2001-06-12 2006-02-21 Sharp Laboratories Of America, Inc. Filter for combined de-ringing and edge sharpening
KR100403601B1 (ko) * 2001-12-21 2003-10-30 삼성전자주식회사 영상의 윤곽선 보정 장치 및 방법
US7012643B2 (en) 2002-05-08 2006-03-14 Ball Aerospace & Technologies Corp. One chip, low light level color camera
US7099518B2 (en) * 2002-07-18 2006-08-29 Tektronix, Inc. Measurement of blurring in video sequences
US7340099B2 (en) 2003-01-17 2008-03-04 University Of New Brunswick System and method for image fusion
US7379590B2 (en) 2003-01-17 2008-05-27 University Of New Brunswick Method for generating natural colour satellite images
US7305103B2 (en) * 2003-06-30 2007-12-04 The Boeing Company System and method for generating pan sharpened multispectral imagery
KR100548611B1 (ko) * 2003-08-07 2006-01-31 삼성전기주식회사 영상 처리에 있어서의 에지 강조를 위한 장치 및 방법
US20050094887A1 (en) 2003-11-05 2005-05-05 Cakir Halil I. Methods, systems and computer program products for fusion of high spatial resolution imagery with lower spatial resolution imagery using correspondence analysis
JP4665422B2 (ja) 2004-04-02 2011-04-06 ソニー株式会社 撮像装置
EP1594321A3 (en) 2004-05-07 2006-01-25 Dialog Semiconductor GmbH Extended dynamic range in color imagers
US7298922B1 (en) * 2004-07-07 2007-11-20 Lockheed Martin Corporation Synthetic panchromatic imagery method and system
US20060152596A1 (en) 2005-01-11 2006-07-13 Eastman Kodak Company Noise cleaning sparsely populated color digital images
US7577311B2 (en) * 2005-05-03 2009-08-18 Eastman Kodak Company Color fringe desaturation for electronic imagers
US8139130B2 (en) * 2005-07-28 2012-03-20 Omnivision Technologies, Inc. Image sensor with improved light sensitivity
US7830430B2 (en) * 2005-07-28 2010-11-09 Eastman Kodak Company Interpolation of panchromatic and color pixels
US8274715B2 (en) * 2005-07-28 2012-09-25 Omnivision Technologies, Inc. Processing color and panchromatic pixels
US7688368B2 (en) * 2006-01-27 2010-03-30 Eastman Kodak Company Image sensor with improved light sensitivity
US7916362B2 (en) * 2006-05-22 2011-03-29 Eastman Kodak Company Image sensor with improved light sensitivity
US7667762B2 (en) 2006-08-01 2010-02-23 Lifesize Communications, Inc. Dual sensor video camera
US7876956B2 (en) * 2006-11-10 2011-01-25 Eastman Kodak Company Noise reduction of panchromatic and color image
US20080123997A1 (en) * 2006-11-29 2008-05-29 Adams James E Providing a desired resolution color image
US7769229B2 (en) * 2006-11-30 2010-08-03 Eastman Kodak Company Processing images having color and panchromatic pixels
US7769230B2 (en) * 2006-11-30 2010-08-03 Eastman Kodak Company Producing low resolution images
US7893976B2 (en) * 2006-12-01 2011-02-22 Eastman Kodak Company Light sensitivity in image sensors
US7769241B2 (en) * 2007-01-09 2010-08-03 Eastman Kodak Company Method of sharpening using panchromatic pixels
US7844127B2 (en) * 2007-03-30 2010-11-30 Eastman Kodak Company Edge mapping using panchromatic pixels
US8594451B2 (en) * 2007-03-30 2013-11-26 Omnivision Technologies, Inc. Edge mapping incorporating panchromatic pixels
US7889921B2 (en) * 2007-05-23 2011-02-15 Eastman Kodak Company Noise reduced color image using panchromatic image
US20090051984A1 (en) * 2007-08-23 2009-02-26 O'brien Michele Image sensor having checkerboard pattern
US8164651B2 (en) * 2008-04-29 2012-04-24 Omnivision Technologies, Inc. Concentric exposure sequence for image sensor

Also Published As

Publication number Publication date
WO2008121272A3 (en) 2009-05-22
US8594451B2 (en) 2013-11-26
US20080240602A1 (en) 2008-10-02
TW200903348A (en) 2009-01-16
JP2010524297A (ja) 2010-07-15
CN101675454A (zh) 2010-03-17
EP2130175B1 (en) 2017-05-03
CN101675454B (zh) 2016-04-13
EP2130175A2 (en) 2009-12-09
WO2008121272A2 (en) 2008-10-09
TWI430184B (zh) 2014-03-11

Similar Documents

Publication Publication Date Title
JP5291084B2 (ja) パンクロマティック画素を組み込むエッジマッピング
JP5395053B2 (ja) パンクロマティック画素を使用するエッジマッピング
JP5260552B2 (ja) パンクロマティック画素を使用した鮮鋭化方法
JP5260635B2 (ja) パンクロマチック画像を用いたノイズ低減されたカラーの画像
JP5156022B2 (ja) パンクロマチックおよびカラーの画像のノイズ低減
JP5123212B2 (ja) パンクロマチック画素及びカラー画素の補間
JP2010511350A (ja) 所望の解像度を有するカラー画像の提供
JP2004214756A (ja) 画像ノイズの低減
JP2008527852A (ja) ディジタル・カメラの画像のホワイト・バランス補正
JP2002281316A (ja) ノイズ成分識別方法、画像処理方法、画像処理装置およびプログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130606

R150 Certificate of patent or registration of utility model

Ref document number: 5291084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250