JP6959502B2 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
JP6959502B2
JP6959502B2 JP2017094746A JP2017094746A JP6959502B2 JP 6959502 B2 JP6959502 B2 JP 6959502B2 JP 2017094746 A JP2017094746 A JP 2017094746A JP 2017094746 A JP2017094746 A JP 2017094746A JP 6959502 B2 JP6959502 B2 JP 6959502B2
Authority
JP
Japan
Prior art keywords
light emitting
light
phosphor
emitting device
reflective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017094746A
Other languages
English (en)
Other versions
JP2018107418A (ja
JP2018107418A5 (ja
Inventor
泰気 湯浅
楠瀬 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to US15/831,392 priority Critical patent/US10243124B2/en
Publication of JP2018107418A publication Critical patent/JP2018107418A/ja
Publication of JP2018107418A5 publication Critical patent/JP2018107418A5/ja
Application granted granted Critical
Publication of JP6959502B2 publication Critical patent/JP6959502B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、発光装置に関する。
発光ダイオード(Light emitting diode:LED)を使用した発光装置は、ディスプレイ、警告灯、表示灯、照明灯として広く使用されている。
例えば、青色に発光する青色発光ダイオードと、青色発光ダイオードからの光を赤色に変換する蛍光体と、によって赤色に発光する自動車のテールランプ及びブレーキランプを形成する照明が知られている(例えば、特許文献1,2参照)。
特開2015−88220号公報 特開2015−88483号公報
しかしながら、特許文献1及び2に開示された発光装置は、発光装置を視認する角度によっては赤色光の色ずれを生じるおそれがある。
そこで、本実施形態に係る発光装置は、視認する角度による色ずれを抑制できる発光装置を提供することを目的とする。
本実施形態に係る発光装置は、380nm以上430nm以下に発光ピーク波長を持つ第1の光を発光する、発光面を持つ発光素子と、前記発光素子の発光面上に配置され、前記第1の光によって励起されて前記第1の光より長波長の第2の光を発光する蛍光体を含有する蛍光体層と、前記蛍光体層上に設けられ、前記第1の光を反射し、かつ前記第2の光を透過する反射膜と、を有し、前記反射膜の反射スペクトルにおいて、前記反射膜は、前記反射膜に対する前記第1の光の入射角が0°から85°における380nm以上430nm以下の光の反射率が40%以上である。
また、別の観点における本実施形態に係る発光装置は、380nm以上430nm以下に発光ピーク波長を持つ第1の光を発光する、第1半導体層、活性層、第2半導体層の順に積層された発光素子と、前記発光素子上に配置され、前記第1の光によって励起されて前記第1の光より長波長の第2の光を発光する蛍光体を含有する蛍光体層と、前記蛍光体層上に設けられ、前記第1の光を反射し、かつ前記第2の光を透過する反射膜と、を有し、前記発光素子の平面視において前記活性層の中心を基準として、前記反射膜方向に−85°から+85°の範囲における380nm以上430nm以下の光の反射率が40%以上である。
これにより視認する角度による色ずれを抑制できる発光装置を提供することができる。
実施形態に係る発光装置の一例を示す概略断面図である。 実施形態1に係る発光装置が発する光の色度座標(CIE1931)を示す色度図である。 実施例1に係る発光装置における、光が垂直入射(入射角0°)した場合の、反射膜の波長に対する反射率を示す図である。 実施例1及び実施例2、比較例1の発光装置における指向角による色度座標xのずれを示す図である。 実施例1及び実施例2、比較例1の発光装置における指向角による色度座標yのずれを示す図である。 実施例1及び実施例2、比較例1に係る発光装置の発光スペクトルを示す図である。 実施例1及び実施例2,比較例1に係る発光装置の発光スペクトルを示す図である。 反射膜に対する発光素子が発する第1の光の入射角における反射率を示す図である。 反射膜に対する発光素子が発する第1の光の入射角における反射率を示す図である。 (Sr,Ca)AlSiN:Eu蛍光体と、CaAlSiN:Eu蛍光体の粉体反射率を示すスペクトル図である。
以下、実施形態に係る発光装置を、実施の形態及び実施例を用いて説明する。但し、本発明は、この実施の形態及び実施例に限定されない。以下に示す実施の形態は、本発明の技術思想を具体化するための発光装置を例示するものであって、本発明は発光装置を以下のものに特定されない。
色名と色度座標との関係、光の波長範囲と単色光の色名との関係等は、JIS Z8110に従う。具体的には、380nm〜410nmが紫色、410nm〜455nmが青紫色、455nm〜485nmが青色、485nm〜495nmが青緑色、495nm〜548nmが緑色、548nm〜573nmが黄緑色、573nm〜584nmが黄色、584nm〜610nmが黄赤色、610nm〜780nmが赤色である。
また、実施形態に係る発光装置及びその製造方法において、「上」、「下」、「左」及び「右」などは、状況に応じて入れ替わるものである。本明細書において、「上」、「下」などは、説明のために参照する図面において構成要素間の相対的な位置を示すものであって、特に断らない限り絶対的な位置を示すことを意図したものではない。
本明細書において、発光素子「上」や蛍光体層「上」、反射膜「上」などにおける「上」は接触している形態に限定されず、接触せずに間に他の部材が配置される形態であってもよい。例えば、「発光素子20の発光面上に配置され」のように「A部材上に配置され」というときには、A部材に接して設けられている場合と、A部材の上に他の層を介して設けられている場合とを含む。
本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
以下、本実施形態1に係る発光装置について図面を用いて説明する。図1は、実施形態に係る発光装置の一例を示す概略断面図である。図2は、実施形態1に係る発光装置が発する光の色度座標(CIE1931)を示す色度図である。反射膜に対する第1の光の入射角Aは図1に示す入射角Aを指す。特に断りのない限り、発光素子の平面視において活性層の中心を基準とする。この活性層の中心からの第1の光が出射されると仮定し、入射角Aを規定している。
発光装置100は、基台10と、基台10に配置される発光素子20と、発光素子20上に配置される蛍光体層30と、蛍光体層30上に設けられる反射膜40と、を備える。発光装置100は、さらに、反射膜40上に設けられた透光性部材50を備える。基台10は、第1リード11、第2リード12、第1リード11と第2リード12との間に配置される固定部13、及び、第1リード11と第2リード12上に設けられる側壁14を有している。基台10は凹部15が形成されており、凹部15の内底面16は第1リード11と第2リード12と固定部13が配置され、凹部15の内側面17は側壁14が配置されている。基台10の凹部15の内底面16上に発光素子20が配置され、透光性部材50と接するように基台10の凹部15内に樹脂70が配置されている。発光素子20は金や半田などの金属やエポキシ樹脂などの樹脂等のダイボンド材を用いて凹部15の内底面16上に配置してもよい。基台10の凹部15の内底面16を基準として、基台10の凹部15の最上面は、透光性部材50の表面よりも高い位置にあることが好ましい。これにより透光性部材50の脱落を防止することができる。
発光素子20は、380nm以上430nm以下に発光ピーク波長を持つ第1の光を発光する。発光素子20は、半導体積層体21と基板22とを備える。半導体積層体21は第1半導体層21a、活性層21b、第2半導体層21cの順に積層されている。発光素子20は基板22側若しくは半導体積層体21側のいずれかに発光面を持つ。
発光素子20は、発光ピーク波長の最大強度を1とした場合に、450nmの相対強度が0.3以下であることが好ましく、450nmの相対強度が0.1以下であることがより好ましい。これにより450nm付近の光を外部に放出するのを低減することができる。
蛍光体層30は、第1の光によって励起されて第1の光より長波長の第2の光を発光する蛍光体を含有する。蛍光体層30は、蛍光体のみから形成されていてもよく、蛍光体を樹脂などの有機物やセラミックスなどの無機物により固形化されていてもよい。蛍光体層30は、蛍光体の粒子が焼き固められたものである場合、耐熱性に優れる。蛍光体の粒子がエポキシ樹脂やシリコーン樹脂などに分散されたものである場合、簡易に蛍光体層30を形成することができる。また、蛍光体の粒子とセラミックスの粒子とを焼き固めたものも耐熱性に優れる。これらは使用目的や用途に応じて適宜選択する。
蛍光体層30に含有される蛍光体は、550nm以上780nm以下に発光ピーク波長を持つことが好ましく、584nm以上680nm以下に発光ピーク波長を持つことがより好ましい。この範囲に発光ピーク波長を持つことにより発光輝度を高くすることができるからである。また、赤色発光を視認し易いからである。
反射膜40は、第1の光を反射し、かつ第2の光を透過する性質を有する。反射膜40の反射スペクトルにおいて、反射膜40は、反射膜40に対する第1の光の入射角Aが0°から85°における380nm以上430nm以下の光の反射率が40%以上であり、より好ましくは45%以上である。反射膜40に対する第1の光の入射角Aが0°から45°における380nm以上430nm以下の光の反射率が90%以上であることが好ましく、反射率が95%以上であることがより好ましい。第1の光と反射膜40との入射角Aが0°において、反射膜は、380nm以上530nm以下の反射率が90%以上であることが好ましく、反射率が95%以上であることがより好ましい。
これにより、第1の光と反射膜40との入射角Aが垂直(0°)でない場合でも、第1の光の透過を抑えることができ、視認する角度による色ずれを抑制できる発光装置100を提供できる。
発光素子20の平面視において活性層21bの中心を基準として、反射膜40方向に−85°から+85°の範囲における380nm以上430nm以下の光の反射率が40%以上である。この角度は、入射角Aと同じ角度である。
透光性部材50は主に第2の光を透過する。透光性部材50はセラミックスやガラスなどの無機物や樹脂などの有機物を用いることができる。例えば、反射膜40が接する面が平坦な透明なガラス板からなるものを使用できる。
発光素子20上に配置される蛍光体層30は接着剤層60を介して配置してもよい。接着剤層60は透光性であることが好ましい。接着剤層60を用いることで簡易に発光素子20に蛍光体層30を配置することができる。また、発光素子20上に配置される蛍光体層30を、接着剤を介さずに直接接合してもよい。発光素子20と蛍光体層30とを直接接合することにより蛍光体層30で発生した熱を、発光素子20を介して放熱することができる。
反射膜40は単独で用いることができるが、印刷や塗布などで透光性部材50に反射膜40を形成することもできる。透光性部材50に強度の高い部材を用いることで反射膜40を簡易に設けることができる。また、印刷や塗布などで蛍光体層30に反射膜40を形成することもできる。
凹部15の内底面16上に配置される樹脂70は、透光性部材50の上面を除いて、透光性部材50の側面に配置してもよい。また、透光性部材50の側面だけでなく、樹脂70は、発光素子20、蛍光体層30、反射膜40を覆うように配置してもよい。これにより樹脂70は、発光素子20からの第1の光及び蛍光体層30からの第2の光のいずれも反射する。
樹脂70には、酸化ジルコニウム、酸化イットリウム、酸化アルミニウム、水酸化アルミニウム、炭酸バリウム、硫酸バリウム、酸化マグネシウム及び炭酸マグネシウムからなる群から選択される光拡散材を少なくとも一種は含まれることが好ましい。これにより発光素子20からの第1の光が、光拡散材が含有された樹脂70に照射され蛍光体層30側に戻すことができ、蛍光体層30からの第2の光の発光効率を高めることができる。また、樹脂70には、酸化チタンを含有してもよい。酸化チタンは420nmよりも短波長側の光は反射せず吸収されてしまうが、420nmよりも長波長側の光は効率良く反射するため、420nm〜430nmに発光ピーク波長を持つ発光素子20を使用する場合は、樹脂70に酸化チタンを含有させることもできる。
これにより、発光装置100が発する光は蛍光体層30が発する第2の光の発光スペクトルと実質的に等しい発光スペクトルを有する光が出射される。
発光素子20は、同一面側に正負一対の電極を有しており、フェイスダウン実装され、発光素子20と第1リード11及び第2リード12は導電性接合部材により電気的に接続されている。なお、フェイスダウン実装に代えて、フェイスアップ実装することもできる。フェイスアップ実装の場合は、導電性接合部材に代えて、ワイヤを用いて第1リード11、第2リード12と接続させてもよい。
反射膜40は、蛍光体層30上に設けられ、発光素子20が発光する第1の光を反射し、蛍光体層30が発光する第2の光を透過する。反射膜40は、例えば、互いに屈折率が異なる第1誘電体層41と第2誘電体層42とが交互に積層された誘電体多層膜により構成することができる。誘電体多層膜は、第1誘電体層41の第1屈折率及び第2誘電体層42の第2屈折率に基づいて第1誘電体層41の膜厚及び第2誘電体層42の膜厚を設定することにより、発光素子20が発光する第1の光を反射し、蛍光体層30が発光する第2の光を透過するように構成することができる。
また、発光装置100は、発光素子20及び蛍光体層30が、樹脂70と反射膜40とによって覆われているので、蛍光体層30が発光する第2の光は反射膜40を介して出射されるが、発光素子20が発光する第1の光は樹脂70及び反射膜40によって反射されて蛍光体層30側に戻され、蛍光体を励起することができ、発光効率を高くできる。これにより、発光装置100から外部へ放出される第1の光の放出が抑制され、発光装置100から外部に放出される光を実質的に蛍光体層30の第2の光のみとすることができ、半導体積層体21に対して垂直方向の色ずれを防止することができる。しかしながら、第1の光と反射膜40との入射が垂直でない場合、第1の光の一部は透過する。
発光装置100において、反射膜40として誘電体多層膜を用いた場合、誘電体多層膜に対して垂直(0°)に入射した光はほぼ全て反射されるが、垂直入射でない光の一部は透過する。この垂直入射でない光の外部への出射を減らすためには蛍光体層30の厚さを厚くして、発光素子20からの第1の光の誘電体多層膜への入射量を減らす、すなわち、発光素子20からの第1の光の多くが誘電体多層膜に到達する前に蛍光体に吸収されて蛍光体を励起するようにすることが効果的である。しかしながら、蛍光体層30の厚さを厚くすると発光強度が低下するため、発光素子20が発光する第1の光の外部への出射が許容できる範囲まで蛍光体層30を薄くして発光強度を高くすることが好ましい。具体的には、発光装置100の発光スペクトルにおいて、最大強度を1とした場合に、450nmの相対強度が0.3以下とすることが好ましい。
発光装置100は、CIE1931色度図のxy色度座標系において、(x=0.645、y=0.335)、(x=0.665、y=0.335)、(x=0.735、y=0.265)、(x=0.721、y=0.259)の4点を結んでできる四角形で囲まれる範囲内にある光を発する。このような構成にすることにより、所定の赤色に発光し、角度による色ずれを抑制する発光装置を提供することができる。
蛍光体層30に含まれる蛍光体は、(Sr,Ca)AlSiN:Eu蛍光体、CaAlSiN:Eu蛍光体、KSiF:Mn蛍光体、から選択される少なくとも1種であることが好ましい。また、その組み合わせとしてもよい。これにより、所定の赤色に発光し、角度による色ずれを抑制する発光装置を提供することができる。
発光装置100は、透光性部材50の最上面を除いて樹脂70に覆われていれば、例えば、砲弾型、表面実装型、チップタイプ等であってもよい。一般に砲弾型とは、外面を構成する樹脂の形状を砲弾型に形成したものを指す。例えば一方にカップを有するリードフレームと、カップ内に配置される発光素子と、発光素子及びリードフレームの一部を覆う封止樹脂と、を有する。また表面実装型とは、凹状の収納部内に発光素子を載置し、発光素子を樹脂にて充填して形成されたものを示す。収容部の材質として熱可塑性樹脂、熱硬化性樹脂、セラミックス、金属等で作成したものがある。さらにチップタイプとしては、表面実装型のように凹状の収容部を持たず、発光素子に蛍光体を直接形成して発光素子の側面等を樹脂で固定したものである。チップタイプは蛍光体を含む層を平板状とできる他、レンズ形状としてもよい。
ここでは表面実装型を例にとって詳細を説明する。
[基台]
基台10の固定部13及び側壁14は熱可塑性樹脂や熱硬化性樹脂などの樹脂や、セラミックスやガラスなどの無機物や、絶縁処理等を施した金属などを使用することができる。
表面実装型の基台10は、絶縁性を有し、光を透過しにくいことが好ましい。基台10の材料としては、例えば、アルミナや窒化アルミニウム等のセラミックス、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、BTレジン、ポリフタルアミド等の樹脂を挙げることができる。なお、樹脂を用いる場合には、必要に応じて、ガラス繊維、酸化ケイ素、酸化チタン、アルミナ等の無機フィラーを樹脂に混合してもよい。これらの中でも、セラミックスは放熱効果が高いためより好ましい。
また、基台10は第1リード11と第2リード12と固定部13とを有している。基台10は実装面に対して略垂直方向に光を放出するトップビュー型、実装面に対して略平行方向に光を放出するサイドビュー型が主にあるが、いずれにも本件を使用することができる。第1リード11、第2リード12は板状の金属で形成される。ここでは凹部15の開口方向から見て第1リード11、第2リード12は固定部13から外側に突出していないが、固定部13から外側に突出した構成もとることができる。
第1リード11、第2リード12を構成する材料は、例えば、金属で、200W/(m・K)程度以上の熱伝導率を有しているもの、比較的大きい機械的強度を有するもの、あるいは打ち抜きプレス加工又はエッチング加工等が容易な材料が好ましい。具体的には、銅、アルミニウム、金、銀、タングステン、鉄、ニッケル等の金属又は鉄−ニッケル合金、燐青銅等の合金等が挙げられる。また、第1リード11、第2リード12の母材の表面に母材よりも光反射率の高い銀、アルミニウム、金などが被覆されていてもよい。
[発光素子]
発光素子20は、蛍光体層30に含まれる蛍光体を励起するためのものである。発光素子20としては、例えば、発光ダイオード(LED)チップ又はレーザダイオード(LD)チップを用いることができ、なかでもLEDチップを用いることが好ましい。発光素子20を発光ダイオードチップとすることにより、発光素子20からの光が広がりやすくなるため、蛍光体を効率良く励起できる。発光素子20として、例えば、窒化物半導体を含む青色発光の発光ダイオードチップを用いられる。ここで、青色発光の発光ダイオードチップとは、380nm〜430nmの範囲に発光ピーク波長を有するものを指す。発光素子20は半導体積層体21と基板22とを有する。半導体積層体21は基板上に積層されたものでもよく、成長基板とは異なる基板に半導体積層体21を貼り付けたものでもよい。
ここでいう窒化物半導体は、一般式:InAlGa1−X−YN(0≦X、0≦Y、X+Y≦1)で表される半導体であり、半導体層の組成やその混晶度によって発光波長を種々選択することができる。窒化物半導体を用いた発光素子20は、例えば、サファイア等の窒化物半導体の成長が可能な基板22と該基板22の上に設けられた半導体積層体21とを含む。
発光素子20において、半導体積層体21には第1半導体層21a、活性層21b、第2半導体層21cが設けられている。第1半導体層21aと第2半導体層21cとは極性が異なる。例えば、第1半導体層21aにp型半導体層、第2半導体層21cにn型半導体層を用い、p型半導体層にはp電極が接続されており、n型半導体層にはn電極が接続されている。p電極及びn電極は発光素子20の同じ側の面に形成されており、第1リード11、第2リード12にフリップチップ実装されていることが好ましい。これにより、発光素子20の上面が平坦な面となり、発光素子20の上方に蛍光体層30を近接して配置することができる。なお、発光素子20は基板22を有するが、基板22は実装時又は実装後に除去され、半導体積層体21上に蛍光体層30が直接若しくは接着剤層60を介して接合されてもよい。
[蛍光体層]
蛍光体層30は、発光素子20からの第1の光を吸収して異なる波長の光を発生する。蛍光体層30は、例えば、蛍光体粒子を含む透光性樹脂ペーストを、透光性部材の表面に反射膜40を介して印刷することにより形成される。蛍光体層30は、1又は2以上の層により構成してもよい。蛍光体層30は、必要に応じて拡散剤を含んでいても良い。
ここでは、380nm以上430nm以下に発光ピーク波長を持つ発光素子20からの光を吸収し、550nm以上780nm以下に発光ピーク波長を持つ蛍光体を少なくとも1種、またはその組み合わせを使用する。ここで、蛍光体の発光色として、主に赤色を発光する。蛍光体は550nm以上780nm以下に発光ピーク波長を持つに過ぎず、550nm以上780nm以下に発光スペクトルを持つものに限定されない。特に610nm以上680nm以下に発光ピーク波長を持つものが好ましく、610nm以上650nm以下に発光ピーク波長を持つものが更に好ましい。視感度は約555nmをピークに555nmより長波長側にいくに従って視感度が低下するため、赤色領域のうち比較的視感度の高い610nm以上650nmに発光ピーク波長を持つ蛍光体を使用することが輝度向上に好ましいからである。
蛍光体の平均粒径は、特に制限されず、目的等に応じて適宜選択することができる。蛍光体の平均粒径は、発光効率の観点から、1μm以上20μm以下であることが好ましく、5μm以上15μm以下であることがより好ましい。
樹脂中に含有される蛍光体粒子全体の体積が同じである場合、粒径が小さくなると粒子表面積が増え、蛍光体粒子が発光した光が他の蛍光体粒子によって散乱されやすくなり、光取り出し効率が低下する。一方、粒径が大きくなると散乱は少なくなって光の取り出し効率は高くなるが、粒子表面積が小さくなり、蛍光体が発光する光の量が少なくなって波長変換されない光の量が増える。波長変換されずに蛍光体層30に到達した光は反射膜40によって再度蛍光体層30側へ戻されるため、蛍光体粒子の粒径を大きくすることによって、粒子表面での散乱を抑制しつつ発光素子20からの第1の光を効率よく波長変換を行うことができる。したがって、発光装置100では、蛍光体粒子の粒径を大きくすることによって、発光素子20の第1の光を効率よく波長変換を行うことができ、かつ光取り出し効率を向上させることができる。
なお、本明細書でいう蛍光体粒子の平均粒径は、一次粒子が凝集して形成された二次粒子の平均粒径のことをいうものとする。二次粒子の平均粒径(メジアン径)は、例えばレーザー回折式粒度分布測定装置(MALVERN(マルバーン)社製、製品名:MASTER SIZER(マスターサイザー)3000)により測定することができる。
蛍光体層30の厚さは30μm〜150μmが好ましく、50μm〜120μmがより好ましい。これにより蛍光体層30内の散乱で失われる第2の光の量を減らし、蛍光体層30から出射される第2の光の量を増やすことができる。
蛍光体として、窒化物蛍光体や酸化物蛍光体、フッ化物蛍光体、硫化物蛍光体などを使用することができる。
窒化物系蛍光体は、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Luからなる群から選ばれる少なくとも1種以上の希土類元素により賦活される、Be、Mg、Ca、Sr、Ba、Znからなる群から選ばれる少なくとも1種以上の第II族元素と、C、Si、Ge、Sn、Ti、Zr、Hfからなる群から選ばれる少なくとも1種以上の第IV族元素と、Nと、を含む蛍光体である。この窒化物蛍光体の組成中に、Oが含まれていてもよい。
窒化物系蛍光体の具体例としては、一般式、L((2/3)X+(4/3)Y):R若しくはL((2/3)X+(4/3)Y−(2/3)Z):R(Lは、Be、Mg、Ca、Sr、Ba、Znからなる群から選ばれる少なくとも1種以上の第II族元素である。Mは、C、Si、Ge、Sn、Ti、Zr、Hfからなる群から選ばれる少なくとも1種以上の第IV族元素である。Rは、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Luからなる群から選ばれる少なくとも1種以上の希土類元素である。X、Y、Zは、0.5≦X≦3、1.5≦Y≦8、0<Z≦3である。)で表されるものを挙げることができる。
窒化物系蛍光体のより具体的な例としては、(Sr,Ca)AlSiN:Euに代表されるSCASN系の蛍光体及びCaAlSiN:Euに代表されるCASN系の蛍光体を挙げることができる。
また、窒化物系蛍光体以外では、KSF(KSiF:Mn)系蛍光体、硫化物系蛍光体などを用いることができる。
以上では、蛍光体粒子を含む透光性樹脂ペーストを印刷することにより蛍光体層30を形成する例を示した。しかしながら、蛍光体層30は、蛍光体を含むように、ガラス、無機物等の透光性材料を成膜することにより形成するようにしてもよい。また、蛍光体層30が反射膜40の表面に直接接している形態を示しているが、蛍光体層30は必ずしも反射膜40の表面に直接接している必要はなく、接着剤等の他の部材を介して接合されていてもよい。例えば、板状の蛍光体板を、圧着、融着、焼結、有機系接着剤による接着、低融点ガラス等の無機系接着剤による接着することにより形成するようにしてもよい。
[反射膜]
反射膜40としては、選択性が高い誘電体多層膜を用いることが好ましい。ここで、選択性が高いとは、反射波長帯域における反射率が高く、透過波長帯域における透過率が高く、かつ反射波長帯域と透過波長帯域間において反射率又は透過率の変化が急峻であることをいう。
誘電体多層膜は、屈折率の異なる2つの第1誘電体層41と第2誘電体層42とを、それぞれλ/4の膜厚で交互に周期的に形成した反射膜である。ここで、λは、反射させたい波長領域のピーク波長であり、各誘電体材料における媒質内波長である。この誘電体多層膜は、理論的には、2つの第1誘電体層41と第2誘電体層42の屈折率差が大きいほど、また、交互に形成する周期数が多いほど高い反射率が得られることが知られている。しかしながら、2つの第1誘電体層41と第2誘電体層42の屈折率差が大き過ぎたり、周期数が大き過ぎると、反射ピーク波長λの両側で反射率が急激に減少したり(波長依存性が急峻になる)、反射率の波長依存性が大きくなったりして、所望の波長範囲で所望の反射率を安定して得ることが難しくなる。そこで、誘電体多層膜では、屈折率の高い誘電体材料からなる第1誘電体層41と屈折率の低い誘電体材料からなる第2誘電体層42の各屈折率及び屈折率差、交互に形成する周期数は、所望の波長範囲で所望の反射率が安定して得られるように、適宜設定される。
具体的には、屈折率の高い第1誘電体層41の第1屈折率は、例えば、1.5〜3.0の範囲に設定され、好ましくは、2.0〜2.6の範囲に設定される。また、屈折率の低い第2誘電体層42の第2屈折率は、例えば、1.0〜1.8の範囲に設定され、好ましくは、1.2〜1.6の範囲に設定される。さらに、第1誘電体層41と第2誘電体層42とを交互に形成する周期数は、例えば、1〜20の範囲に設定され、好ましくは、1〜5の範囲に設定される。第1屈折率と第2屈折率との差は0.3以上が好ましく0.5以上がより好ましく、0.7以上がさらに好ましい。
第1誘電体層41を構成する誘電体材料は、例えば、TiO、Nb、Ta及びZrから選択することができる。第2誘電体層42を構成する誘電体材料は、例えば、SiO、Al及びSiONから選択された材料により構成することができる。
[透光性部材]
透光性部材50は、一方の面に反射膜40と蛍光体層30とが設けられ、その反射膜40及び蛍光体層30を支持する。透光性部材50には、ガラスや樹脂のような透光性材料からなる板状体を用いることができる。ガラスとして、例えば、ホウ珪酸ガラスや石英ガラスから選択することができる。また、樹脂として、例えば、シリコーン樹脂やエポキシ樹脂から選択することができる。透光性部材50の厚さは、製造工程における機械的強度が低下せず、蛍光体層30に十分な機械強度を付与することができる厚さであればよい。また、透光性部材50には、拡散剤を含有させてもよい。拡散剤には、酸化チタン、チタン酸バリウム、酸化アルミニウム、酸化ケイ素等を用いることができる。また、発光面となる透光性部材50の上面、つまり反射膜40と蛍光体層30とが設けられた面の反対の面は、平坦な面に限定されず、微細な凹凸を有していてもよい。発光面に凹凸を有していると、発光面からの出射光が散乱されて輝度むらや色むらを抑制することが可能となる。
[接着剤層]
接着剤層60は、発光素子20と蛍光体層30とを接着する。接着剤層60は、発光素子20からの出射光を極力減衰させることなく蛍光体層30へと導光できる材料が好ましい。具体例としてはエポキシ樹脂、シリコーン樹脂、フェノール樹脂、およびポリイミド樹脂等の有機樹脂を挙げることができるが、シリコーン樹脂が好ましい。接着剤層60の厚さは、薄ければ薄いほど好ましい。接着剤層が薄いと、接着剤層を透過する光の損失を少なくでき、かつ放熱性を向上させることができ、発光装置から出射される光の強度を高くできるからである。
接着剤層60は、発光素子20と蛍光体層30の間のみならず、発光素子20の側面にも存在してもよい。また、蛍光体層30のバインダーにシリコーン樹脂を用いる場合には、接着剤層60の接着剤にもシリコーン樹脂を用いることが好ましい。蛍光体層30と接着剤層60の屈折率差を小さくすることができるので、接着剤層60から蛍光体層30への入射光を増加させることが可能となる。
[樹脂]
樹脂70の材料としては、絶縁材料を用いることが好ましい。ある程度の強度を確保するために、例えば熱硬化性樹脂、熱可塑性樹脂等を用いることができる。より具体的には、フェノール樹脂、エポキシ樹脂、BTレジンや、PPAやシリコーン樹脂などが挙げられる。また、これらの母体となる樹脂に、発光素子20からの光を吸収しにくく、かつ母体となる樹脂に対する屈折率差の大きい反射部材を用いることができる。具体的には、酸化ジルコニウム、酸化イットリウム、酸化アルミニウム、水酸化アルミニウム、炭酸バリウム、硫酸バリウム、酸化マグネシウム及び炭酸マグネシウムからなる群から選択される光拡散材を少なくとも一種を分散することで、効率よく光を反射させることができる。
<実施形態2>
実施形態2に係る発光装置について、図面を用いて説明する。図1は、実施形態に係る発光装置の一例を示す概略断面図である。図10は、(Sr,Ca)AlSiN3:Eu蛍光体と、CaAlSiN3:Eu蛍光体の粉体反射率を示すスペクトル図である。実施形態2は蛍光体層30の形態が、蛍光体層が複数積層されている以外は実施形態1とほぼ同じである。実施形態1と重複する箇所については説明を省略することもある。
蛍光体層30は発光素子20に近い側にCaAlSiN:Eu蛍光体層、遠い側に(Sr,Ca)AlSiN:Eu蛍光体層を配置している。この順番に配置することにより、CaAlSiN:Eu蛍光体と(Sr,Ca)AlSiN:Eu蛍光体とを分散させたものに比べ、発光効率を高め、明るい発光装置を提供することができる。これは例えば440nm〜480nmの発光素子20の発光波長付近において、CaAlSiN:Eu蛍光体の方が(Sr,Ca)AlSiN3:Eu蛍光体よりも反射率が高いため、CaAlSiN:Eu蛍光体層と(Sr,Ca)AlSiN:Eu蛍光体層との界面で反射された発光素子20からの青色光を再びCaAlSiN:Eu蛍光体層に戻すことができ、CaAlSiN:Eu蛍光体の発光を増幅させているからと思われる。発光素子20の発光波長付近においてCaAlSiN:Eu蛍光体よりも反射率が低く光吸収の高い(Sr,Ca)AlSiN:Eu蛍光体を上層に配置することで(Sr,Ca)AlSiN:Eu蛍光体層を透過してしまう青色光を減らすことができる。
発光装置100の製造方法としては、透光性部材50に、異なる屈折率を有する誘電体層を交互に含む誘電体多層膜である反射層40を形成、その反射膜40上に、(Sr,Ca)AlSiN:Eu蛍光体層、CaAlSiN:Eu蛍光体層の順番に蛍光体層30を形成する。CaAlSiN:Eu蛍光体層と(Sr,Ca)AlSiN:Eu蛍光体層との膜厚は特に限定されないが、例えば約100μmである。
発光素子20は予め基台10に配置しておく。接着剤層60は発光素子20の上面に塗布し、発光素子20の発光面が、蛍光体層30と対向するように、蛍光体層30を発光素子20上に配置する。
以上により、発光装置100を簡易に製造することができる。
以下、実施例は図面を用いて具体的に説明するが、本実施形態はこれらの実施例に限定されるものではない。図3は、実施例1に係る発光装置における、光が垂直入射(入射角0°)した場合の、反射膜の波長に対する反射率を示す図である。図3はシミュレーションである。図4は、実施例1及び実施例2、比較例1の発光装置における指向角による色度座標xのずれを示す図である。図5は、実施例1及び実施例2、比較例1の発光装置における指向角による色度座標yのずれを示す図である。図6は、実施例1及び実施例2、比較例1に係る発光装置の発光スペクトルを示す図である。図7は、実施例1及び実施例2,比較例1に係る発光装置の発光スペクトルを示す図である。図8は、反射膜に対する発光素子が発する第1の光の入射角における反射率を示す図である。図9は、反射膜に対する発光素子が発する第1の光の入射角における反射率を示す図である。図8は図9の一部抜粋である。
実施例1及び実施例2、比較例1の発光装置を作製する。実施形態と重複する箇所については説明を省略することもある。
実施例1及び実施例2、比較例1の発光装置に使用する発光素子20として、約403nm、約420nm、約447nmにそれぞれ発光ピーク波長λpを持つ窒化物系半導体発光素子を用いる。透光性部材50は厚さが150μmのガラス板を用い、そのガラス板の上に、550nmより短波長側の光を反射し、550nmより長波長側の光を透過するように設計した誘電体多層膜(DBR反射膜)を用いた反射膜40を形成した。具体的には、誘電体多層膜は、Nbからなる第1誘電体層41とSiOからなる第2誘電体層42を、透光性部材50の上に第2誘電体層42、第1誘電体層41、第2誘電体層42、第1誘電体層41の順に交互に、スパッタ法により、15.5周期(合計31層)積層することにより形成した。
蛍光体層30は、シリコーン樹脂(信越化学工業社製KJR−9201)にCaAlSiN:Euで表されるCASN系蛍光体粒子を所定の重量%になるように混合して、反射膜40の上に印刷法により、所定の厚さに形成した。実施例1及び実施例2、比較例1に用いられる蛍光体層30の蛍光体は、発光ピーク波長が約660nmであり、また、平均粒径が6.5μmである。
そして、反射膜40及び蛍光体層30が形成された透光性部材50を個片化し、基台10(日亜化学工業社製NJSW172A)上に実装した発光素子20上にシリコーン樹脂(信越化学工業社製KJR−9200)により接合する。さらに、透光性部材50の上面を除いて透光性部材50の側面、蛍光体層30、発光素子20、基台10の凹部15の内底面16及び内側面17を樹脂70にて覆う。樹脂70は光拡散材を含有したシリコーン樹脂(信越化学工業社製KJR−9023N)を用いる。凹部15の内側面17と発光素子20等との間に樹脂70を注入し、約150℃で4時間加熱することで樹脂組成物を硬化させる。
以上のようにして作製した実施例1及び実施例2、比較例1の発光装置の発光特性を表1に示す。
Figure 0006959502
実施例1及び実施例2、比較例1の発光装置において、いずれも所定の赤色に発光する。ほぼ同一の色度点における実施例1及び実施例2、比較例1の配光色度Δxを図4に、配向色度Δyを図5に示す。ここで、配光色度Δx、Δyとは、正面方向の色度座標を基準として、発光装置の指向角による色度座標のずれを表す。比較例1において指向角60°〜85°において配向色度Δx、Δyのいずれもがマイナス側に0.01以上ずれており、色度座標においては青色が強くなる方向にシフトしている。比較例1に比べ、実施例1及び2は指向角60°〜85°において、色度座標のずれが小さくなっており、配光色度は改善している。また、比較例1に比べて、実施例2及び実施例1の方が視感度は低いため、より一層色ずれを感じ難くなっている。
また、図8に示すように、各波長における反射率は、入射角60°付近では約半分に低下するが、入射角80°付近においては、波長450nmのみ急激に低下する。これにより、実施例1及び2は指向角による配光色度のずれを小さいまま維持するが、比較例1は、入射角が大きくなるにつれて配光色度のずれが大きくなる。また、発光スペクトルにおいて、比較例1に比べて、実施例1及び2は、発光素子によるピーク波長の強度が弱くなっている。このことから、実施例1及び2は、入射角によるDBR反射膜の反射率が維持され、発光素子の発する光が反射されていることがわかる。
本実施形態の発光装置は、一般照明、車載照明、観賞用照明、警告灯、表示灯等の幅広い分野で用いることができる。例えば、近紫外乃至青色光を発光する発光ダイオードと組み合わせて、車のリアランプやブレーキランプ等に用いられる発光装置を構成する場合には、例えば、窒化物系蛍光体を用いることができる。
10 基台
11 第1リード
12 第2リード
13 固定部
14 側壁
15 凹部
16 内底面
17 内側面
20 発光素子
21 半導体積層体
21a 第1半導体層
21b 活性層
21c 第2半導体層
22 基板
30 蛍光体層
40 反射膜
41 第1誘電体層
42 第2誘電体層
50 透光性部材
60 接着剤層
70 樹脂
100 発光装置
A 入射角

Claims (13)

  1. 380nm以上430nm以下に発光ピーク波長を持ち、かつ前記発光ピーク波長の最大強度を1とした場合に、450nmの相対強度が0.3以下である第1の光を発光する、発光面を持つ発光素子と、
    前記発光素子の発光面上に配置され、前記第1の光によって励起されて前記第1の光より長波長の第2の光を発光する蛍光体を含有する蛍光体層と、
    前記蛍光体層の上面に設けられ、前記第1の光を反射し、かつ前記第2の光を透過する反射膜と、を有し、
    前記反射膜の反射スペクトルにおいて、前記反射膜は、前記反射膜に対する前記第1の光の入射角が0°から85°における380nm以上430nm以下の光の反射率が40%以上であり、
    CIE1931色度図のxy色度座標系において、
    (x=0.645、y=0.335)、(x=0.665、y=0.335)、(x=0.735、y=0.265)、(x=0.721、y=0.259)の4点を結んでできる四角形で囲まれる範囲内の色度の光を発する発光装置。
  2. 前記反射膜に対する第1の光の入射角が0°から45°における380nm以上430nm以下の光の反射率が90%以上である請求項1に記載の発光装置。
  3. 前記第1の光と前記反射膜との入射角が0°において、前記反射膜は、380nm以上530nm以下の反射率が90%以上である請求項1又は2に記載の発光装置。
  4. 前記蛍光体は、550nm以上780nm以下に発光ピーク波長を持つ請求項1乃至のいずれか一項に記載の発光装置。
  5. 前記発光装置は、さらに前記反射膜上に設けられた透光性部材を備えている請求項1乃至のいずれか一項に記載の発光装置。
  6. 前記発光装置は、さらに基台を備えており、前記発光素子は、前記基台に配置されている請求項1乃至のいずれか一項に記載の発光装置。
  7. 前記発光装置は、さらに基台を備えており、
    前記基台は内底面と内側面を持つ凹部を形成しており、
    前記発光素子は、前記基台の凹部の内底面に配置されており、
    前記基台の母材は、セラミックであり、前記発光素子及び前記透光性部材と接するように前記基台の凹部内に樹脂が配置されている請求項に記載の発光装置。
  8. 前記基台の凹部の内底面に対して、前記基台の凹部の最上面は、前記透光性部材の表面よりも高い位置にある請求項に記載の発光装置。
  9. 前記樹脂は、酸化ジルコニウム、酸化イットリウム、酸化アルミニウム、水酸化アルミニウム、炭酸バリウム、硫酸バリウム、酸化マグネシウム及び炭酸マグネシウムからなる群から選択される光拡散材を少なくとも一種含む請求項又はに記載の発光装置。
  10. 前記蛍光体は、(Sr,Ca)AlSiN:Eu蛍光体、CaAlSiN:Eu蛍光体、KSiF:Mn蛍光体、から選択される少なくとも1種、またはその組み合わせである請求項1乃至のいずれか一項に記載の発光装置。
  11. 前記蛍光体層は複数積層されており、前記発光素子に近い側にCaAlSiN:Eu蛍光体層、遠い側に(Sr,Ca)AlSiN:Eu蛍光体層を配置している請求項1乃至のいずれ一項に記載の発光装置。
  12. 前記反射膜は、誘電体多層膜である請求項1乃至11のいずれか一項に記載の発光装置。
  13. 380nm以上430nm以下に発光ピーク波長を持ち、かつ前記発光ピーク波長の最大強度を1とした場合に、450nmの相対強度が0.3以下である第1の光を発光する、第1半導体層、活性層、第2半導体層の順に積層された発光素子と、
    前記発光素子上に配置され、前記第1の光によって励起されて前記第1の光より長波長の第2の光を発光する蛍光体を含有する蛍光体層と、
    前記蛍光体層の上面に設けられ、前記第1の光を反射し、かつ前記第2の光を透過する反射膜と、を有し、
    前記発光素子の平面視において前記活性層の中心を基準として、前記反射膜方向に−85°から+85°の範囲における380nm以上430nm以下の光の反射率が40%以上であり、
    CIE1931色度図のxy色度座標系において、
    (x=0.645、y=0.335)、(x=0.665、y=0.335)、(x=0.735、y=0.265)、(x=0.721、y=0.259)の4点を結んでできる四角形で囲まれる範囲内の色度の光を発する発光装置。
JP2017094746A 2016-12-26 2017-05-11 発光装置 Active JP6959502B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/831,392 US10243124B2 (en) 2016-12-26 2017-12-05 Light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016250611 2016-12-26
JP2016250611 2016-12-26

Publications (3)

Publication Number Publication Date
JP2018107418A JP2018107418A (ja) 2018-07-05
JP2018107418A5 JP2018107418A5 (ja) 2020-06-18
JP6959502B2 true JP6959502B2 (ja) 2021-11-02

Family

ID=62784658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017094746A Active JP6959502B2 (ja) 2016-12-26 2017-05-11 発光装置

Country Status (1)

Country Link
JP (1) JP6959502B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107417A (ja) * 2016-12-27 2018-07-05 日亜化学工業株式会社 発光装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7057508B2 (ja) * 2019-03-28 2022-04-20 日亜化学工業株式会社 発光装置
CN111755584A (zh) 2019-03-29 2020-10-09 日亚化学工业株式会社 发光装置
JP6849139B1 (ja) * 2019-08-02 2021-03-24 日亜化学工業株式会社 発光装置および面発光光源
JP7428869B2 (ja) * 2019-09-27 2024-02-07 日亜化学工業株式会社 発光装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5813753A (en) * 1997-05-27 1998-09-29 Philips Electronics North America Corporation UV/blue led-phosphor device with efficient conversion of UV/blues light to visible light
JP3654836B2 (ja) * 1998-02-19 2005-06-02 マサチューセッツ インスティテュート オブ テクノロジー 光子結晶の全方向反射体
JP4222017B2 (ja) * 2001-12-18 2009-02-12 日亜化学工業株式会社 発光装置
US7367691B2 (en) * 2003-06-16 2008-05-06 Industrial Technology Research Institute Omnidirectional one-dimensional photonic crystal and light emitting device made from the same
TWI239671B (en) * 2004-12-30 2005-09-11 Ind Tech Res Inst LED applied with omnidirectional reflector
JP2006261540A (ja) * 2005-03-18 2006-09-28 Stanley Electric Co Ltd 発光デバイス
JP2007088348A (ja) * 2005-09-26 2007-04-05 Sharp Corp 照明装置及びバックライト装置、液晶表示装置
JP4976974B2 (ja) * 2007-03-28 2012-07-18 パナソニック株式会社 発光装置
JP2010157666A (ja) * 2009-01-05 2010-07-15 Olympus Corp 発光装置
TW201041190A (en) * 2009-05-01 2010-11-16 Univ Nat Taiwan Science Tech Polarized white light emitting diode (LED)
TWI384654B (zh) * 2009-07-31 2013-02-01 Univ Nat Taiwan Science Tech 色溫可調之白光發光裝置
US8575642B1 (en) * 2009-10-30 2013-11-05 Soraa, Inc. Optical devices having reflection mode wavelength material
KR101490233B1 (ko) * 2010-04-15 2015-02-06 피에스아이 주식회사 장파장 투과필터를 포함하는 형광체 전환 단색 led
JP5864851B2 (ja) * 2010-12-09 2016-02-17 シャープ株式会社 発光装置
CN102437275B (zh) * 2011-12-27 2014-12-24 杭州浙大三色仪器有限公司 一种半导体发光器件
JP2013229593A (ja) * 2012-03-30 2013-11-07 Mitsubishi Chemicals Corp 半導体発光装置、及び照明装置
JP6163754B2 (ja) * 2012-12-28 2017-07-19 日亜化学工業株式会社 発光装置に用いるバンドパスフィルタおよびこれを用いた発光装置
JP2014143344A (ja) * 2013-01-25 2014-08-07 Mitsubishi Chemicals Corp 波長変換部材及びこれを用いた半導体発光装置
JP6045470B2 (ja) * 2013-03-04 2016-12-14 信越化学工業株式会社 赤色ランプ及び車両用灯火装置
KR102075982B1 (ko) * 2013-03-15 2020-02-12 삼성전자주식회사 반도체 발광소자 패키지
JP2014222705A (ja) * 2013-05-13 2014-11-27 シチズン電子株式会社 Led発光装置
JP6320057B2 (ja) * 2014-01-29 2018-05-09 キヤノン株式会社 光学フィルタおよび光学装置
JP6405738B2 (ja) * 2014-06-19 2018-10-17 三菱ケミカル株式会社 発光装置
JP2016095947A (ja) * 2014-11-12 2016-05-26 シャープ株式会社 発光装置、バックライト装置及び表示装置
KR20180032063A (ko) * 2016-09-21 2018-03-29 서울반도체 주식회사 발광 다이오드 패키지 및 발광 다이오드 모듈

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107417A (ja) * 2016-12-27 2018-07-05 日亜化学工業株式会社 発光装置
JP7108171B2 (ja) 2016-12-27 2022-07-28 日亜化学工業株式会社 発光装置

Also Published As

Publication number Publication date
JP2018107418A (ja) 2018-07-05

Similar Documents

Publication Publication Date Title
US10333030B2 (en) Light-emitting device including reflective film and method for manufacturing light-emitting device
JP6959502B2 (ja) 発光装置
JP7277804B2 (ja) 発光装置及び光源
US10734556B2 (en) Manufacturing method for light emitting device
US20200194635A1 (en) Method of manufacturing light-emitting device
JP2017117858A (ja) 発光装置
US10797203B2 (en) Light-emitting device and method for manufacturing the light-emitting device having a first dielectric multilayer film arranged on the side surface of the light emitting element
JP5082427B2 (ja) 発光装置
JP2008270781A (ja) 発光装置
JP7108171B2 (ja) 発光装置
US20170067620A1 (en) Optical component and light emitting device
JP5194675B2 (ja) 発光装置
US10319889B2 (en) Light emitting device
JP6337919B2 (ja) 光学部品及び発光装置
JP2021057480A (ja) 発光装置
JP6835000B2 (ja) 発光装置及び光源
JP7428869B2 (ja) 発光装置
US10243124B2 (en) Light emitting device
JP2011014697A (ja) 白色発光装置
JP2019165237A (ja) 発光装置
JP2019135756A (ja) 発光装置とその製造方法
JP7348521B2 (ja) 発光装置
JP2020170862A (ja) 発光装置
JP7260793B2 (ja) 発光装置
JP6244857B2 (ja) 発光装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210725

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R150 Certificate of patent or registration of utility model

Ref document number: 6959502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150