JP6951428B2 - 遠心ファン、成型用金型および流体送り装置 - Google Patents

遠心ファン、成型用金型および流体送り装置 Download PDF

Info

Publication number
JP6951428B2
JP6951428B2 JP2019512180A JP2019512180A JP6951428B2 JP 6951428 B2 JP6951428 B2 JP 6951428B2 JP 2019512180 A JP2019512180 A JP 2019512180A JP 2019512180 A JP2019512180 A JP 2019512180A JP 6951428 B2 JP6951428 B2 JP 6951428B2
Authority
JP
Japan
Prior art keywords
blade
pressure surface
diameter side
centrifugal fan
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019512180A
Other languages
English (en)
Other versions
JPWO2018189931A1 (ja
Inventor
ゆい 公文
ゆい 公文
大塚 雅生
大塚  雅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPWO2018189931A1 publication Critical patent/JPWO2018189931A1/ja
Application granted granted Critical
Publication of JP6951428B2 publication Critical patent/JP6951428B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing

Description

本明細書は、遠心ファン、成型用金型および流体送り装置に関する。本出願は、2017年4月10日に出願した日本特許出願である特願2017−077580号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
同一の大きさおよび同一の形状を有する複数の羽根体(翼)が、等間隔で、かつ同一の姿勢で直線状または円状に配列される場合がある。複数の羽根体がこのように構成されている態様は、翼列と呼ばれている。翼列には、大きく分けて減速翼列と増速翼列との2種類がある。
図34を参照して、減速翼列とは、流れを減速させて圧力を上昇させるものであり、圧縮機、ファン、ポンプなどに採用される。図34に示す減速翼列においては、複数の翼が間隔Dを空けて配列されている。流路の拡がりにより、速度WAから速度WBに減速され、運動エネルギーが圧力として有効に回復される(増圧作用)。転向角をθとし、流れの法線に対して翼列がなす角度をλとすると、減速翼列の増圧作用においては、たとえば、WA>WBであり、λ>θ/2である。
図35を参照して、一方で増速翼列とは、流れを増速させて圧力を低下させるものであり、タービン、風車などに採用される。図35に示す増速翼列においては、速度WAから速度WBに増速される。増速翼列の増速作用においては、たとえば、WA<WBであり、λ<θ/2である。これらの翼列においては、次の式(1)の関係が成立し、圧力損失が実質的に生じないとした場合には、圧力変化量が次の式(2)によって表される。
WB/WA=cosλ/cos(θ−λ) ・・・式(1)
P2−P1=ρ(WA−WB)/2 ・・・式(2)
下記特許文献1,2に開示されているように、遠心ファンが知られている。遠心ファンは一般的に、その作動原理から減速翼列となる。具体的には、遠心ファンにおいては複数の羽根体が等間隔で円状に並んで設けられる。ファンの回転に伴い、回転中心の近傍から流れが流入し、ファンの外周から流れが流出する。周方向の長さは、回転中心の位置から遠ざかるにつれて(直径が大きくなるにつれて)比例して長くなる。互いに隣り合う羽根体と羽根体との間(すなわち翼間)に形成される流路は、ファンの中心から径方向外側に向かうにつれて徐々に大きくなる。
流路が拡大すると、流路内を流通する流れの流速は、流路の拡大に反比例して減速する(質量保存の法則)。したがって、遠心ファンにおける複数の羽根体は、一般的には減速翼列となる。遠心ファンの羽根体として従来から一般的に用いられるものには、円弧翼、平板翼、翼型などが挙げられる。これら一般的な羽根体を翼列として用いた遠心ファンは上記の理由からいずれも減速翼列となる。
特許第5469635号公報 特開2005−016315号公報
遠心ファンの翼間を流れる流れの流速は、流れが径方向外側に向かうにつれて低下する。流れのもつ運動エネルギーは、流速低下の2乗に比例して低下する。羽根体に作用している負圧に対して、流れのもつ運動エネルギーが負けると、流れが羽根体から剥離して、羽根体としての性能が低下するとともに、騒音が増大する。遠心ファンに採用されている従来の羽根体は、主に高圧損に打ち勝つことを目的とした形状や大きさを有するものが多く、そのため、流れの剥離や騒音の増大を招きやすいという実情があった。
本明細書は、流れの羽根体からの剥離を抑制することで、性能の向上および騒音の低減を図ることが可能な遠心ファン、その遠心ファンの製造に用いられる成型用金型およびその遠心ファンを備える流体送り装置を開示する。
本開示の第1局面に基づく遠心ファンは、空気が流入する前縁部と、空気が流出する後縁部とを有し、周方向に互いに間隔を隔てて設けられる複数の羽根体を備え、複数の上記羽根体の各々には、上記前縁部と上記後縁部との間で延在し、上記羽根体における回転方向の側に位置する正圧面と、上記羽根体における上記回転方向の反対側に位置する負圧面とからなる翼面が形成され、複数の上記羽根体は、前側羽根体と、上記前側羽根体に上記間隔を空けて対向するとともに上記前側羽根体に対して回転方向の反対側に位置する後側羽根体と、を含み、上記前側羽根体の負圧面上における任意の箇所から上記後側羽根体の正圧面までの最短距離を、上記箇所における翼間距離と定義し、上記前側羽根体は、上記前側羽根体のうちの最大厚みを規定している最大厚み部分を有し、当該最大厚み部分における負圧面上の位置を、最大厚み位置と定義し、上記前側羽根体の負圧面のうちの上記最大厚み位置と上記前縁部との間の範囲を、内径側負圧面と定義し、上記前側羽根体の負圧面のうちの上記最大厚み位置と上記後縁部との間の範囲を、外径側負圧面と定義し、上記前側羽根体の負圧面における上記前縁部から上記後縁部までの長さを、負圧面長さと定義したとすると、上記内径側負圧面における上記翼間距離は、上記最大厚み位置における上記翼間距離よりも長く、上記外径側負圧面のうち、上記最大厚み位置と、上記最大厚み位置から上記負圧面長さの半分以上の長さだけ離れた位置との間の範囲における上記翼間距離は、略一定である。
本開示の第2局面に基づく遠心ファンは、空気が流入する前縁部と、空気が流出する後縁部とを有し、周方向に互いに間隔を隔てて設けられる複数の羽根体を備え、複数の上記羽根体の各々には、上記前縁部と上記後縁部との間で延在し、上記羽根体における回転方向の側に位置する正圧面と、上記羽根体における上記回転方向の反対側に位置する負圧面とからなる翼面が形成され、複数の上記羽根体の各々は、上記前縁部を含む内径側羽根部と、上記内径側羽根部の径方向外側に位置し、上記後縁部を含む外径側羽根部と、を有し、上記内径側羽根部は、上記内径側羽根部のうちの最大厚みを規定している最大厚み部分と、上記前縁部と上記最大厚み部分との間に位置し、上記前縁部の側から径方向外側に向かうにつれて翼厚が徐々に厚くなる拡大部分と、上記最大厚み部分よりも径方向外側に位置し、上記最大厚み部分の側から径方向外側に向かうにつれて翼厚が徐々に薄くなる縮小部分と、を含み、上記内径側羽根部の負圧面および上記内径側羽根部の正圧面は、いずれも回転方向の反対側に向けて凸状に湾曲する表面形状を有しており、上記内径側羽根部の負圧面の曲率は、上記内径側羽根部の正圧面の曲率よりも大きく、上記外径側羽根部は、上記後縁部の側から径方向内側に略同一の翼厚で延在する板状部を含み、上記板状部の負圧面の曲率および上記板状部の正圧面の曲率は、いずれも上記内径側羽根部の負圧面の曲率よりも小さい。
上記遠心ファンにおいては、上記内径側羽根部の正圧面と上記外径側羽根部の正圧面とは互いに正接しており、上記内径側羽根部の負圧面と上記外径側羽根部の負圧面とは互いに正接していてもよい。
上記遠心ファンにおいては、上記外径側羽根部の最大厚みは、上記内径側羽根部の最大厚みよりも小さく、上記外径側羽根部の反りは、上記内径側羽根部の反りよりも小さくてもよい。
上記遠心ファンにおいては、上記内径側羽根部には、回転軸に対して平行な方向に延びる貫通穴が設けられており、上記貫通穴は、上記最大厚み部分を含むように形成されているか、または、上記最大厚み部分の径方向内側と径方向外側とにそれぞれ1つずつ形成されていてもよい。
上記遠心ファンにおいては、上記内径側羽根部のうちの上記貫通穴を形成している内周面を上記回転軸に対して平行な方向から見た場合、当該内周面は三日月形状を呈していてもよい。
上記遠心ファンにおいては、上記前縁部と上記後縁部とを結ぶ直線を翼弦線と定義し、上記翼弦線の長さをCとし、上記羽根体の負圧面から上記翼弦線に対して下ろした垂線の長さが最大になる位置における上記垂線の長さをtとし、t/Cの値を反り比mと定義すると、複数の上記羽根体の各々は、上記反り比mが0.25以上となるように形成されていてもよい。
上記遠心ファンにおいては、複数の上記羽根体は、等速翼列をなすように構成されていてもよい。
上記遠心ファンは、樹脂により形成されてもよい。
本開示に基づく成型用金型は、本開示に基づく上記の遠心ファンを成型するために用いられる。
本開示に基づく流体送り装置は、本開示に基づく上記の遠心ファンと、上記遠心ファンに連結され、複数の上記羽根体を回転させる駆動モータとから構成される送風機を備える。
上記の構成を備えた遠心ファンによれば、回転方向に隣り合う羽根体の間の流路は、遠心ファンの中心側から径方向外側に向かうにつれて略一定の流路断面積で延在するように形成され、回転方向に隣り合う羽根体の間を流れる流れの流速は、流れが遠心ファンの中心側から径方向外側に進行したとしても、常に略一定とすることが可能となる。流れが径方向外側に進行したとしても流速が低下することを抑制でき、流れのもつ運動エネルギーが低下することも抑制可能となる。これにより、羽根体に作用している負圧に対して、流れのもつ運動エネルギーが負けるまでの時間的および距離的なマージンを大幅に長くすることが可能となる。流れが羽根体から剥離することも抑制され、結果として、羽根体としての性能が低下することも抑制でき、剥離が抑制されることで騒音が発生することも大幅に軽減することが可能となる。
実施の形態1における遠心ファン10を示す斜視図である。 実施の形態1における遠心ファン10を示す正面図である。 図2中のIII線に囲まれた領域を拡大して示す正面図である。 図3中に示す遠心ファン10の一部を拡大して示す正面図である。 実施の形態2における遠心ファン10Aを示す正面図である。 図5中のVI線に囲まれた領域を拡大して示す正面図である。 図6中に示す遠心ファン10Aの一部(羽根体21)を拡大して示す正面図である。 実施の形態3における遠心ファン10Bを示す斜視図である。 図8中に示す遠心ファン10Bの一部(羽根体21)を拡大して示す正面図である。 実施の形態3の変形例における遠心ファン10Cの一部(羽根体21)を拡大して示す正面図である。 実施の形態4における遠心ファン10Dの一部(羽根体21)を拡大して示す正面図である。 実施の形態4の第1変形例における遠心ファン10Eの一部(羽根体21)を拡大して示す正面図である。 実施の形態4の第2変形例における遠心ファン10Fの一部(羽根体21)を拡大して示す正面図である。 実施の形態5に関して、遠心ファン10の製造時に用いられる成型用金型110を示す断面図である。 実施の形態5に関して、遠心ファン10を用いた送風機120を示す断面図である。 図15中のXVI−XVI線上に沿った送風機120の断面形状を示す断面図である。 実施の形態5に関して、遠心ファン10を用いた空気清浄機140を示す断面図である。 実験例に関する遠心ファンの一部(羽根体21)を拡大して示す正面図である。 実験例に関する実験条件および実験結果を示す表である。 実験例1の遠心ファン10S1の一部(羽根体21)を拡大して示す正面図である。 実験例5の遠心ファン10S5の一部(羽根体21)を拡大して示す正面図である。 実験例9の遠心ファン10S9の一部(羽根体21)を拡大して示す正面図である。 実験例に関する実験結果として、反り比mと風量との関係を示すグラフである。 実験例に関する実験結果として、反り比mと騒音との関係を示すグラフである。 実験例に関する実験結果として、反り比mと消費電力との関係を示すグラフである。 実験例に関する実験結果として、最大翼厚と風量との関係を示すグラフである。 実験例に関する実験結果として、最大翼厚と騒音との関係を示すグラフである。 実験例に関する実験結果として、最大翼厚と消費電力との関係を示すグラフである。 実験例に関する実験結果として、翼厚比と風量との関係を示すグラフである。 実験例に関する実験結果として、翼厚比と騒音との関係を示すグラフである。 実験例に関する実験結果として、翼厚比と消費電力との関係を示すグラフである。 実験例7に基づく遠心ファン10S7の一部(羽根体21)を拡大して示す正面図である。 実験例7に関する遠心ファン10S7aの一部(羽根体21)を拡大して示す正面図である。 減速翼列をなすように構成された複数の羽根体を示す断面図である。 増速翼列をなすように構成された複数の羽根体を示す断面図である。
実施の形態について、以下、図面を参照しながら説明する。同一の部品および相当部品には同一の参照番号を付し、重複する説明は繰り返さない場合がある。
[実施の形態1]
図1〜図4を参照して、実施の形態1における遠心ファン10について説明する。図1および図2は、それぞれ、遠心ファン10を示す斜視図および正面図である。図1および図2を参照して、遠心ファン10は、複数の羽根体21を有する。遠心ファン10は全体として略円筒形の外観を有し、複数の羽根体21はその略円筒形の側面に配置されている。遠心ファン10は、樹脂によって一体に形成され、仮想上の回転軸101を中心として矢印103に示す方向に回転する。
遠心ファン10は、回転する複数の羽根体21によって、内周側から取り込んだ空気を外周側に送り出す。遠心ファン10は、遠心力を利用して、回転中心側から径方向外側に空気を送り出す。遠心ファン10は、シロッコファンとして機能し、家庭用の電気機器等に搭載され、低レイノズル数領域の回転数で使用されることができる。
遠心ファン10は、外周枠12,13をさらに有している。外周枠12,13は、回転軸101を中心とする環状に延在して形成されている。外周枠12,13は、回転軸101の軸方向において距離を隔てて配置されている。外周枠13には、遠心ファン10を駆動モータに連結するためのボス部16が一体に形成されている。ボス部16はたとえば、ゴム製部品と金属製部品とから構成され、インサート成形によって外周枠13と一体化されている。
複数の羽根体21は、回転軸101を中心とする周方向に互いに間隔を隔てて設けられている。複数の羽根体21は、回転軸101を中心とする周方向において等間隔に配置され、回転軸101の軸方向における両端において外周枠12および外周枠13によって支持されている。羽根体21は、外周枠13上に立設され、外周枠12に向けて回転軸101の軸方向に沿って延びるように形成されている。
図3は、図2中のIII線に囲まれた領域を拡大して示す正面図であり、図4は、図3中に示す遠心ファン10の一部を拡大して示す正面図である。図3および図4中には、遠心ファン10の回転軸101(図1,図2)に対して平行な方向から見た場合の羽根体21の形状が示されている。
図3および図4に示すように、複数の羽根体21は、互いに同一形状を有する。複数の羽根体21の各々は、回転軸101の軸方向におけるいずれの位置で切断されても同一の翼断面形状を有するように形成されている。
羽根体21は、羽根体21の内周側の端部に位置し、回転時に空気が流入する前縁部26と、羽根体21の外周側の端部に位置し、回転時に空気が流出する後縁部27とを有する。羽根体21は、前縁部26から後縁部27に向けて回転軸101を中心とする周方向に傾斜して形成されている。羽根体21は、前縁部26から後縁部27に向けて遠心ファン10の回転方向に傾斜して形成されている。
羽根体21には、正圧面25および負圧面24からなる翼面23が形成されている。正圧面25は、前縁部26と後縁部27との間で延在し、羽根体21における回転方向の側に位置している。負圧面24は、前縁部26と後縁部27との間で延在し、羽根体21における回転方向の反対側(正圧面25の裏側)に位置している。遠心ファン10の回転時、翼面23上で空気流れが発生するのに伴って、正圧面25で相対的に大きく、負圧面24で相対的に小さくなる圧力分布が生じる。
複数の羽根体21は、前側羽根体21Aおよび後側羽根体21Bを含む。前側羽根体21Aおよび後側羽根体21Bは、互いに同一の形状および大きさを有している。後側羽根体21Bは、前側羽根体21Aに間隔を空けて対向するとともに、前側羽根体21Aに対して回転方向(矢印103)の反対側に位置する。
前側羽根体21Aの負圧面24(図4中の点線24Rで囲まれる部分)上における任意の箇所から、後側羽根体21Bの正圧面25(図4中の点線25Rで囲まれる部分)までの最短距離を、この任意の箇所における翼間距離と定義する。たとえば、前側羽根体21Aの負圧面24上の箇所P1〜P6においては、それぞれ、翼間距離L1〜L6が規定される。
前側羽根体21Aは、前側羽根体21Aのうちの最大厚みを規定している最大厚み部分(矢印Hにて示される部分)を有している。最大厚み部分とは、負圧面24および正圧面25に内接する円のうちの最大の大きさを有する円を負圧面24と正圧面25との間に描いた場合に、その内接円と負圧面24との交点、および、その内接円と正圧面25との交点が規定され、これら2つの交点を含むように最大厚み部分が規定される。箇所P2は、当該最大厚み部分における負圧面24上の位置(以下、最大厚み位置P2という)に相当している。
前側羽根体21Aの負圧面24のうちの最大厚み位置P2と前縁部26との間の範囲を、内径側負圧面24Aと定義する。前側羽根体21Aの負圧面24のうちの最大厚み位置P2と後縁部27との間の範囲を、外径側負圧面24Bと定義する。さらに、前側羽根体21Aの負圧面24における前縁部26から後縁部27までの長さ(図4中の点線24Rで囲まれる部分の長さ)を、負圧面長さ24Lと定義する。負圧面長さ24Lとは、内径側負圧面24Aの長さと外径側負圧面24Bの長さとの合計値である。
本実施の形態の遠心ファン10においては、内径側負圧面24Aにおける翼間距離は、最大厚み位置P2における翼間距離L2よりも長くなるように構成される。最大厚み位置P2と前縁部26との間の任意の箇所P1における翼間距離L1は、最大厚み位置P2における翼間距離L2よりも長くなるように構成される。本実施の形態では、最大厚み位置P2から前縁部26に近づくにつれて、翼間距離が徐々に長くなるように構成される。
外径側負圧面24Bのうち、最大厚み位置P2と、最大厚み位置P2から負圧面長さ24Lの半分以上の長さだけ離れた位置との間の範囲における翼間距離は、略一定となるように構成される。略一定とは、翼間距離が、少なくとも最大厚み位置P2における翼間距離L2の±25%以内の範囲に含まれていることを意味し、より好適には翼間距離が、最大厚み位置P2における翼間距離L2の±15%以内の範囲に含まれていることを意味し、さらに好適には翼間距離が、最大厚み位置P2における翼間距離L2の±10%以内の範囲に含まれていることを意味する。
本実施の形態の遠心ファン10においては、最大厚み位置P2における翼間距離L2、箇所P3における翼間距離L3、および、箇所P4における翼間距離L4は、同一の値である。外径側負圧面24Bのうちの箇所P4と箇所P5との間の範囲では、箇所P4から箇所P5に近づくにつれて翼間距離が徐々に短くなる。箇所P5における翼間距離L5、および、箇所P6における翼間距離L6は、同一の値である。
具体例を挙げると、負圧面長さ24Lは28.3mmであり、最大厚み位置P2および箇所P3,P4における翼間距離(L2〜L4)は3.6mmであり、箇所P5,P6における翼間距離(L5,L6)は3.4mmである。最大厚み位置P2と、最大厚み位置P2から後縁部27の方に向かって21.4mmの長さ分だけ離れた位置との間の範囲における翼間距離は、略一定である。
(作用および効果)
遠心ファン10を回転させると、図1中の矢印102に示すように、前縁部26から流入し、翼面23上を通過して、後縁部27から流出する空気流れが発生する。本実施の形態の遠心ファン10は、上述のような翼間距離を満足する複数の羽根体21を備えている。回転方向に隣り合う羽根体21の間の流路は、遠心ファン10の中心側から径方向外側に向かうにつれて略一定の流路断面積で延在するように形成される。回転方向に隣り合う羽根体21の間を流れる流れの流速は、流れが遠心ファン10の中心側から径方向外側に進行したとしても、常に略一定とすることが可能となる。
本実施の形態における複数の羽根体21は、減速翼列や増速翼列とは異なる、等速翼列を構成することとなる。流れが径方向外側に進行したとしても流速が低下することを抑制でき、流れのもつ運動エネルギーが低下することも抑制可能となる。これにより、羽根体21に作用している負圧に対して、流れのもつ運動エネルギーが負けるまでの時間的および距離的なマージンを大幅に長くすることが可能となる。流れが羽根体21から剥離することも抑制され、結果として、羽根体21としての性能が低下することも抑制でき、剥離が抑制されることで騒音が発生することも大幅に軽減することが可能となる。
[実施の形態2]
図5〜図7を参照して、実施の形態2における遠心ファン10Aについて説明する。図5は、遠心ファン10Aを示す正面図である。図6は、図5中のVI線に囲まれた領域を拡大して示す正面図であり、図7は、図6中に示す遠心ファン10Aの一部(羽根体21)を拡大して示す正面図である。
図5に示すように、実施の形態2における遠心ファン10Aも、実施の形態1における遠心ファン10(図2)と同様に、全体として略円筒形の外観を有し、複数の羽根体21がその略円筒形の側面に配置されている。遠心ファン10Aは、樹脂によって一体に形成され、仮想上の回転軸101を中心として矢印103に示す方向に回転する。実施の形態1における遠心ファン10と実施の形態2における遠心ファン10Aとは、以下の点において相違している。
図6および図7に示すように、複数の羽根体21の各々は、前縁部26を含む内径側羽根部21Mと、後縁部27を含む外径側羽根部21Nとを有する。外径側羽根部21Nは、内径側羽根部21Mの径方向外側に位置する。本実施の形態の内径側羽根部21Mとは、羽根体21のうち、前縁部26および点P10〜P12によって囲まれる部分である。
内径側羽根部21Mは、最大厚み部分21Ma、拡大部分21Mb、および、縮小部分21Mcを含む。最大厚み部分21Maとは、内径側羽根部21Mのうちの最大厚みh2を規定している部分である。最大厚みh2は、たとえば3.6mmである。点P11は、最大厚み部分21Maにおける負圧面24上の位置を示している。
拡大部分21Mbは、内径側羽根部21Mのうちの最大厚み部分21Maよりも前縁部26の側に位置する部分である。拡大部分21Mbは、前縁部26と最大厚み部分21Maとの間に位置し、拡大部分21Mbの翼厚h1(図6)は、前縁部26の側から径方向外側に向かうにつれて徐々に厚くなるように構成されている。
縮小部分21Mcは、内径側羽根部21Mのうちの最大厚み部分21Maよりも径方向外側に位置する部分である。縮小部分21Mcは、最大厚み部分21Maと外径側羽根部21Nとの間に位置し、縮小部分21Mcの翼厚h3,h4は、最大厚み部分21Maの側から径方向外側に向かうにつれて徐々に薄くなるように構成されている。
内径側羽根部21Mの負圧面24Mおよび内径側羽根部21Mの正圧面25Mは、いずれも回転方向(図6に示す矢印103)の反対側に向けて凸状に湾曲する表面形状を有している。内径側羽根部21Mの負圧面24Mの曲率は、内径側羽根部21Mの正圧面25Mの曲率よりも大きい。
外径側羽根部21Nは、後縁部27の側から径方向内側に略同一の翼厚h6,h5(図6)で延在する板状部21Npを含んでいる。翼厚h6,h5は、たとえば1.0mmである。板状部21Npの負圧面24Npの曲率および板状部21Npの正圧面25Npの曲率は、いずれも、内径側羽根部21Mの負圧面24Mの曲率よりも小さい。
(作用および効果)
遠心ファン10Aを回転させると、前縁部26から流入し、翼面23上を通過して、後縁部27から流出する空気流れが発生する。本実施の形態の遠心ファン10Aは、上述のような翼厚および曲率を満足する複数の羽根体21を備えている。回転方向に隣り合う羽根体21の間の流路は、遠心ファン10Aの中心側から径方向外側に向かうにつれて略一定の流路断面積で延在するように形成される。回転方向に隣り合う羽根体21の間を流れる流れの流速は、流れが遠心ファン10Aの中心側から径方向外側に進行したとしても、常に略一定とすることが可能となる。
本実施の形態における複数の羽根体21も、減速翼列や増速翼列とは異なる、等速翼列を構成することとなる。流れが径方向外側に進行したとしても流速が低下することを抑制でき、流れのもつ運動エネルギーが低下することも抑制可能となる。これにより、羽根体21に作用している負圧に対して、流れのもつ運動エネルギーが負けるまでの時間的および距離的なマージンを大幅に長くすることが可能となる。流れが羽根体21から剥離することも抑制され、結果として、羽根体21としての性能が低下することも抑制でき、剥離が抑制されることで騒音が発生することも大幅に軽減することが可能となる。
[実施の形態2の第1変形例]
図7を参照して、好適な実施の形態として、内径側羽根部21Mの正圧面と外径側羽根部21Nの正圧面とは、点P10の位置において互いに正接し滑らかに繋がっており、内径側羽根部21Mの負圧面と外径側羽根部21Nの負圧面とは、点P12の位置において互いに正接し滑らかに繋がっているとよい。当該構成によると、回転方向において隣り合う羽根体21の間を空気が流れる際に、空気の流れに揚力が効果的に発生し、これにより羽根体21としての性能をさらに高めることが可能となる。
[実施の形態2の第2変形例]
図7を参照して、好適な実施の形態として、外径側羽根部21Nの最大厚みは、内径側羽根部21Mの最大厚みよりも小さいとよい。さらに、外径側羽根部21Nの反りt2は、内径側羽根部21Mの反りt1よりも小さいとよい。外径側羽根部21Nの反りt2、および内径側羽根部21Mの反りt1とは、次のように定義される値である。点P10は、羽根体21の正圧面25のうち、内径側羽根部21Mの正圧面と外径側羽根部21Nの正圧面との間に位置する。
内径側羽根部21Mにおける前縁部26と点P10とを結ぶ直線LN1を描き、内径側羽根部21Mにおける負圧面から直線LN1に対して下ろした垂線の長さが最大になる位置(点P11)における垂線W1の長さが、内径側羽根部21Mの反りt1として定義される。外径側羽根部21Nにおける点P10と後縁部27を結ぶ直線LN2を描き、外径側羽根部21Nにおける負圧面から直線LN2に対して下ろした垂線の長さが最大になる位置P13における垂線W2の長さが、外径側羽根部21Nの反りt2として定義される。
上記構成によると、回転方向において隣り合う羽根体21の間を空気が流れる際に、空気の流れに揚力が効果的に発生し、これにより羽根体21としての性能をさらに高めることが可能となる。流れが羽根体21から剥離することも抑制され、結果として、羽根体21としての性能が低下することも抑制でき、剥離が抑制されることで騒音が発生することも大幅に軽減することが可能となる。
[実施の形態3]
図8および図9を参照して、実施の形態3における遠心ファン10Bについて説明する。図8は、遠心ファン10Bを示す斜視図である。図9は、図8中に示す遠心ファン10Bの一部(羽根体21)を拡大して示す正面図である。
図8に示すように、実施の形態3における遠心ファン10Bも、実施の形態1,2における遠心ファン10(図2),10A(図5)と同様に、全体として略円筒形の外観を有し、複数の羽根体21がその略円筒形の側面に配置されている。遠心ファン10Bは、樹脂によって一体に形成され、仮想上の回転軸101(図8)を中心として矢印103に示す方向に回転する。実施の形態2における遠心ファン10A(図5)と実施の形態3における遠心ファン10B(図8,図9)とは、以下の点において相違している。
遠心ファン10Bにおいては、内径側羽根部21M(図9)に貫通穴29が設けられている。貫通穴29は、内径側羽根部21Mの最大厚み部分21Maを含むように形成されており、遠心ファン10Bの回転軸101に対して平行な方向に延びている。
上記構成によると、羽根体21の重量を低減することができるとともに、羽根体21の厚肉部(最大厚み部分21Maの近傍)に生じ得る成形時のひけを緩和ないし減少させることが可能となる。また、遠心ファン10Bの回転時に生ずるアンバランスを大幅に抑制することができ、さらには遠心ファン10Bの振動騒音を低減することも可能となる。
[実施の形態3の変形例]
図10は、実施の形態3の変形例における遠心ファン10Cの一部(羽根体21)を拡大して示す正面図である。遠心ファン10Cにおいては、計2つの貫通穴29A,29Bが内径側羽根部21Mに形成されている。貫通穴29A,29Bは、遠心ファン10Cの回転軸に対して平行な方向に延びている。貫通穴29A,29Bは、内径側羽根部21Mの最大厚み部分21Maの径方向内側と径方向外側とにそれぞれ1つずつ形成されている。
上記構成によれば、羽根体21の重量をさらに低減することができるとともに、羽根体21の厚肉部(最大厚み部分21Maの近傍)に生じ得る成形時のひけをより一層、緩和ないし減少させることが可能となる。また、遠心ファン10Cの回転時に生ずるアンバランスを大幅に抑制することができ、遠心ファン10Cの振動騒音をさらに低減することも可能となる。
[実施の形態1,3の他の構成]
上述の実施の形態3(図9)およびその変形例(図10)においては、内径側羽根部21Mのうちの貫通穴29,29A,29Bを形成している内周面を回転軸101に対して平行な方向から見た場合、当該内周面は円形状を呈している。
このような構成に限られず実施の形態1における図3,図4に示すように、内径側羽根部21Mのうちの貫通穴29を形成している内周面を回転軸101に対して平行な方向から見た場合、当該内周面は三日月形状を呈していてもよい。三日月形状の貫通穴29によっても、上記の実施の形態3およびその変形例の説明において述べたような作用および効果が得られるとともに、遠心ファンとしての美観向上を期待することも可能である。
[実施の形態4]
図11を参照して、実施の形態4における遠心ファン10Dについて説明する。図11は、遠心ファン10Dの一部(羽根体21)を拡大して示す正面図である。
実施の形態4における遠心ファン10Dと実施の形態1〜3における遠心ファンとは、遠心ファン10Dにおいては貫通穴29(貫通穴29A,29B)の代わりに凹状の切り欠き29Cが形成されている点で相違している。切り欠き29Cは、内径側羽根部21Mの正圧面25の長手方向における外径側羽根部21N寄りの部分から前縁部26に接近するように延在しているという点で、貫通穴29の構成と相違している。
上記構成によっても、羽根体21の重量をさらに低減することができるとともに、羽根体21の厚肉部(最大厚み部分21Maの近傍)に生じ得る成形時のひけをより一層、緩和ないし減少させることが可能となる。また、遠心ファン10Dの回転時に生ずるアンバランスを大幅に抑制することができ、遠心ファン10Dの振動騒音をさらに低減することも可能となる。
[実施の形態4の第1変形例]
図12を参照して、実施の形態4の第1変形例における遠心ファン10Eについて説明する。図12は、遠心ファン10Eの一部(羽根体21)を拡大して示す正面図である。
本実施の形態における遠心ファン10E(図12)と実施の形態4における遠心ファン10D(図11)とは、遠心ファン10Eにおける切り欠き29Cが、内径側羽根部21Mの正圧面25の長手方向における外径側羽根部21N寄りの部分から、前縁部26に接近するように延在する部分29C1と、前縁部26から遠ざかるように延在する部分29C2とを含んでいるという点で相違している。
上記構成によっても、羽根体21の重量をさらに低減することができるとともに、羽根体21の厚肉部(最大厚み部分21Maの近傍)に生じ得る成形時のひけをより一層、緩和ないし減少させることが可能となる。また、遠心ファン10Eの回転時に生ずるアンバランスを大幅に抑制することができ、遠心ファン10Eの振動騒音をさらに低減することも可能となる。
[実施の形態4の第2変形例]
図13を参照して、実施の形態4の第2変形例における遠心ファン10Fについて説明する。図13は、遠心ファン10Fの一部(羽根体21)を拡大して示す正面図である。
本実施の形態における遠心ファン10F(図13)と上述の各実施の形態における遠心ファンとは、遠心ファン10Fにおける内径側羽根部21Mと外径側羽根部21Nとが互いに離間して形成されているという点で相違している。
上記構成によっても、羽根体21の重量をさらに低減することができるとともに、羽根体21の厚肉部(最大厚み部分21Maの近傍)に生じ得る成形時のひけをより一層、緩和ないし減少させることが可能となる。また、遠心ファン10Fの回転時に生ずるアンバランスを大幅に抑制することができ、遠心ファン10Fの振動騒音をさらに低減することも可能となる。
[実施の形態5]
本実施の形態では、実施の形態1における遠心ファン10(図1)の製造時に用いられる成型用金型、遠心ファン10を用いた送風機および空気清浄機について説明を行なう。本実施の形態において以下に開示する内容は、上述の実施の形態2〜4およびこれらの変形例における遠心ファンにも適用可能である。
(成型用金型110)
図14は、遠心ファン10の製造時に用いられる成型用金型110を示す断面図である。成型用金型110は、固定側金型114および可動側金型112を有する。固定側金型114および可動側金型112により、遠心ファン10と略同一形状であって、流動性の樹脂が注入されるキャビティ116が規定される。
成型用金型110には、キャビティ116に注入された樹脂の流動性を高めるための図示しないヒータが設けられてもよい。このようなヒータの設置は、たとえば、ガラス繊維入りAS樹脂のような強度を増加させた合成樹脂を用いる場合に特に有効である。
(送風機120)
図15は、遠心ファン10を用いた送風機120を示す断面図である。図16は、図15中のXVI−XVI線上に沿った送風機120の断面形状を示す断面図である。送風機120は、外装ケーシング126内に、駆動モータ128(図16)と、遠心ファン10と、ケーシング129とを有する。
駆動モータ128の出力軸は、遠心ファン10のボス部16(図16)に連結されている。ケーシング129は、誘導壁129aを有する。誘導壁129aは、遠心ファン10の外周上に配置される略3/4円弧によって形成されている。誘導壁129aは、羽根体21の回転により発生する気流を羽根体21の回転方向に誘導しつつ、気流の速度を増大させるように形成されている。
ケーシング129には、吸い込み部130(図16)および吹き出し部127が形成されている。吸い込み部130は、回転軸101の延長上に位置して形成されている。吹き出し部127は、誘導壁129aの一部から誘導壁129aの接線方向の一方に開放されて形成されている。吹き出し部127は、誘導壁129aの一部から誘導壁129aの接線方向の一方に突出する角筒形状をなしている。
駆動モータ128(図16)の駆動により、遠心ファン10が矢印103(図15)に示す方向に回転する。このとき、空気が吸い込み部130からケーシング129内に取り込まれ、遠心ファン10の内周側空間131から外周側空間132へと送り出される。外周側空間132に送り出された空気は、矢印104に示す方向に沿って周方向に流れ、吹き出し部127を通じて外部に送風される。
(空気清浄機140)
図17は、遠心ファン10を用いた空気清浄機140を示す断面図である。空気清浄機140は、ハウジング144と、送風機150と、ダクト145と、(HEPA:High Efficiency Particulate Air Filter)フィルタ141とを有する。
ハウジング144は、後壁144aおよび天壁144bを有する。ハウジング144には、空気清浄機140が設置された室内の空気を吸い込むための吸い込み口142が形成されている。吸い込み口142は、後壁144aに形成されている。ハウジング144には、さらに、清浄空気を室内に向けて放出する吹き出し口143が形成されている。吹き出し口143は、天壁144bに形成されている。一般的に、空気清浄機140は、後壁144aを室内の壁に対向させるようにして壁際に設置される。
フィルタ141は、ハウジング144の内部において、吸い込み口142と向い合って配置されている。吸い込み口142を通じてハウジング144内部に導入された空気は、フィルタ141を通過することによって、異物が除去され、清浄空気とされる。
送風機150は、室内の空気をハウジング144内部に吸引し、フィルタ141により清浄された空気を、吹き出し口143を通じて室内に送り出す。送風機150は、遠心ファン10と、ケーシング152と、駆動モータ151とを有する。ケーシング152は、誘導壁152aを有する。ケーシング152には、吸い込み部153および吹き出し部154が形成されている。
ダクト145は、送風機150の上方に設けられ、清浄空気をケーシング152から吹き出し口143に導く導風路として設けられている。ダクト145は、その下端が吹き出し部154に連なり、その上端が開放された角筒形をなす形状を有する。ダクト145は、吹き出し部154から吹き出された清浄空気を、吹き出し口143に向けて層流に誘導するように構成されている。
このような構成を備える空気清浄機140においては、送風機150の駆動により、羽根体21が回転し、室内の空気が吸い込み口142からハウジング144内に吸い込まれる。このとき、吸い込み口142および吹き出し口143間に空気流れが発生し、吸い込まれた空気に含まれる塵埃等の異物は、フィルタ141により除去される。
フィルタ141を通過して得られた清浄空気は、ケーシング152内部に吸い込まれる。この際、ケーシング152内に吸い込まれた清浄空気は、羽根体21周りの誘導壁152aによって層流となる。層流とされた空気は、誘導壁152aに沿って吹き出し部154に誘導され、吹き出し部154からダクト145内に送風される。空気は、吹き出し口143から外部空間に向けて放出される。
このように構成された空気清浄機140によれば、送風能力に優れた遠心ファン10を用いることによって、駆動モータ151の消費電力を低減させることができる。これにより、省エネルギー化に貢献可能な空気清浄機140を実現することができる。本実施の形態では空気清浄機を例に挙げて説明したが、この他に、たとえば、空気調和機(エアーコンディショナ)や加湿機、冷却装置、換気装置などの流体を送り出す装置に、上述の各実施の形態における遠心ファンを適用することも可能である。
たとえば、天井から吊り下げられるタイプのエアコンなどに用いられるシロッコファンに上述の各実施の形態における遠心ファンを用いれば、能力アップや低騒音化が可能である。他にも、騒音を一定に、ファンのサイズダウン、ひいては本体のサイズダウンなどが可能となる。小型化の結果、壁掛けのエアコンとして設置することも可能となる。点状から吊り下げられるタイプのエアコンは大掛かりな工事が必要だが、壁掛けのルームエアコンは一般的な工事で済み、世の中の要請も大きい。また、上述の各実施の形態における遠心ファンは、壁掛けのルームエアコンに内蔵されるクロスフローファンにも応用可能である。
[実験例]
図18〜図33を参照して、上述の各実施の形態に関連して行った実験例について説明する。説明に当たって、図18に示すように、羽根体21の前縁部26と後縁部27とを結ぶ直線を、翼弦線LN3と定義する。翼弦線LN3の長さを、翼弦長Cとする。羽根体21の負圧面24から翼弦線LN3に対して下ろした垂線の長さが最大になる位置P15における垂線LN4の長さを、反りtとする。反りt/翼弦長Cの値を、反り比mと定義する。
図19に示すように、実験例1〜9として、計9種類の遠心ファンを準備した。実験例1〜9における遠心ファンに共通する条件として、いずれも、ファンの外形を236mmに設定し、高さを80mmに設定し、羽根体21の翼弦長Cを20mmに設定し、羽根体21の最小翼厚を1mmに設定した。
(実験例1)
図19および図20に示すように、実験例1の遠心ファン10S1においては、反りtを4.0mmに設定し、最大翼厚を1.0mmに設定した。反り比m(反りt/翼弦長C)は、0.2であり、最小翼厚と最大翼厚との比を表わす翼厚比は、1.0である。
(実験例2〜4)
図19に示すように、実験例2〜4の遠心ファンにおいてはそれぞれ、反りtを4.22mm、4.5mm、5.0mmに設定し、最大翼厚を1.55mm、2.8mm、3.15mmに設定した。反り比m(反りt/翼弦長C)はそれぞれ、0.211、0.225、0.25であり、翼厚比は、1.55、2.8、3.15である。
(実験例5)
図19および図21に示すように、実験例5の遠心ファン10S5においては、反りtを5.6mmに設定し、最大翼厚を3.3mmに設定した。反り比m(反りt/翼弦長C)は、0.28であり、翼厚比は、3.3である。
(実験例6〜8)
図19に示すように、実験例6〜8の遠心ファンにおいてはそれぞれ、反りtを6.6mm、7.2mm、8.0mmに設定し、最大翼厚を3.46mm、3.6mm、3.67mmに設定した。反り比m(反りt/翼弦長C)はそれぞれ、0.33、0.36、0.4であり、翼厚比は、3.46、3.6、3.67である。
(実験例9)
図19および図22に示すように、実験例9の遠心ファン10S9においては、反りtを8.2mmに設定し、最大翼厚を3.84mmに設定した。反り比m(反りt/翼弦長C)は、0.41であり、翼厚比は、3.84である。
(反り比mと風量との関係)
図19および図23を参照して、上記の各条件を有する実験例1〜9の遠心ファンを1250rpmで回転させ、風量を測定したところ、図19の表に示すような結果が得られた。図23は、図19に示す表をグラフ化したものである。反り比mが増加するにつれて、風量も増加していることがわかる。風量の増加率に鑑みると、反り比mは0.25以上であることが好ましいことがわかる。
(反り比mと騒音との関係)
図19および図24を参照して、上記の各条件を有する実験例1〜9の遠心ファンを風量が7.5m/minとなるように回転させ、騒音を測定したところ、図19の表に示すような結果が得られた。図24は、図19に示す表をグラフ化したものである。騒音の減少率に鑑みても、反り比mは0.25以上であることが好ましいことがわかる。
(反り比mと消費電力との関係)
図19および図25を参照して、上記の各条件を有する実験例1〜9の遠心ファンを風量が7.5m/minとなるように回転させ、消費電力を測定したところ、図19の表に示すような結果が得られた。図25は、図19に示す表をグラフ化したものである。消費電力の減少率に鑑みても、反り比mは0.25以上であることが好ましいことがわかる。
(最大翼厚と風量との関係)
図26は、上記の各条件を有する実験例1〜9の最大翼厚と、実験例1〜9の遠心ファンを1250rpmで回転させた時に得られる風量との関係を示すグラフである。最大翼厚が増加するにつれて、風量が概ね線形の関係で増加することがわかる。
(最大翼厚と騒音との関係)
図27は、上記の各条件を有する実験例1〜9の最大翼厚と、実験例1〜9の遠心ファンを風量が7.5m/minとなるように回転させた時に発生する騒音との関係を示すグラフである。最大翼厚が2.8mm(図19に示す実験例3)を超えると、騒音が急峻に減少することがわかる。最大翼厚が3.6mm(図19に示す実験例7)の場合に、騒音が最小となることがわかる。
(最大翼厚と消費電力との関係)
図28は、上記の各条件を有する実験例1〜9の最大翼厚と、実験例1〜9の遠心ファンを風量が7.5m/minとなるように回転させた時に消費する電力との関係を示すグラフである。最大翼厚が3.15mm(図19に示す実験例4)を超えると、消費電力が急峻に減少することがわかる。最大翼厚が3.6mm(図19に示す実験例7)の場合に、消費電力が最小となることがわかる。
(翼厚比と風量との関係)
図29は、上記の各条件を有する実験例1〜9の翼厚比と、実験例1〜9の遠心ファンを1250rpmで回転させた時に得られる風量(相対値)との関係を示すグラフである。翼厚比が増加するにつれて、風量が概ね線形の関係で増加することがわかる。
(翼厚比と騒音との関係)
図30は、上記の各条件を有する実験例1〜9の翼厚比と、実験例1〜9の遠心ファンを風量が7.5m/minとなるように回転させた時に発生する騒音(相対値)との関係を示すグラフである。翼厚比が2.8(図19に示す実験例3)を超えると、騒音が急峻に減少することがわかる。翼厚比が3.6(図19に示す実験例7)の場合に、騒音が最小となることがわかる。
(翼厚比と消費電力との関係)
図31は、上記の各条件を有する実験例1〜9の翼厚比と、実験例1〜9の遠心ファンを風量が7.5m/minとなるように回転させた時に消費する電力(相対値)との関係を示すグラフである。翼厚比が3.15(図19に示す実験例4)を超えると、消費電力が急峻に減少することがわかる。翼厚比が3.6(図19に示す実験例7)の場合に、消費電力が最小となることがわかる。
(まとめ)
以上の実験例1〜9の結果に基づけば、風量増大、騒音低減、および消費電力低減の観点からは、反り比mが0.25以上であると、より好ましい改善効果が得られることがわかる。
(他の実験例)
図32は、上記の実験例7に基づく遠心ファン10S7の一部を拡大して示す正面図である。実験例7の遠心ファン10S7においては(図19)、反りtを7.2mmに設定し、最大翼厚を3.6mmに設定した。反り比m(反りt/翼弦長C)は、0.36であり、翼厚比は、3.6である。このような遠心ファン10S7によれば、図19に示すように、風量が8%増加し、騒音が1.87dB低減し、消費電力が6%低減した。
図33に示す遠心ファン10S7aは、反りtを7.2mmに設定したという点では、図32に示す遠心ファン10S7と共通しているが、遠心ファン10S7aにおいては、最大翼厚を1.0mmに設定した。遠心ファン10S7aの反り比m(反りt/翼弦長C)は、遠心ファン10S7と同じで0.36であるが、遠心ファン10S7aの翼厚比は、1.0である。このような遠心ファン10S7aによれば、風量が4%増加し、騒音が1dB増加し、消費電力が1%低減した。
以上の遠心ファン10S7,10S7aの対比によれば、反り比mだけでなく、最大翼厚や、翼厚比も最適化することで、風量増大、騒音低減、および消費電力低減が図れることがわかる。
以上、実施の形態およびその変形例、ならびに実験例について説明したが、上記の開示内容はすべての点で例示であって制限的なものではない。本発明の技術的範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この明細書で開示した内容は、主に、空気清浄機や空気調和機などの送風機能を有する家庭用の電気機器に産業上利用可能である。
10,10A,10B,10C,10D,10E,10F,10S7a,10S1,10S5,10S9,10S7 遠心ファン、12,13 外周枠、16 ボス部、21 羽根体、21A 前側羽根体、21B 後側羽根体、21M 内径側羽根部、21Ma 最大厚み部分、21Mb 拡大部分、21Mc 縮小部分、21N 外径側羽根部、21Np 板状部、23 翼面、24,24A,24B,24M,24Np 負圧面、24L 長さ、24R,25R 線、25,25M,25Np 正圧面、26 前縁部、27 後縁部、29,29A,29B 貫通穴、29C 切り欠き、29C1,29C2 部分、101 回転軸、102,103,104,H 矢印、110 成型用金型、112 可動側金型、114 固定側金型、116 キャビティ、120,150 送風機、127,154 吹き出し部、128,151 駆動モータ、129,152 ケーシング、129a,152a 誘導壁、130,153 吸い込み部、131,132 空間、140 空気清浄機、141 フィルタ、142 吸い込み口、143 吹き出し口、144 ハウジング、144a 後壁、144b 天壁、145 ダクト、AS ガラス繊維入り、C 翼弦長、D 間隔、L1,L2,L3,L4,L5,L6 翼間距離、LN1,LN2 直線、LN3 翼弦線、LN4,W1,W2 垂線、P1,P3,P4,P5,P6 箇所、P2 箇所(最大厚み位置)、P10,P11,P12 点、P13,P15 位置、WA,WB 速度、h1,h3,h4,h5,h6 翼厚、h2 最大厚み、m 反り比、t,t1,t2 反り。

Claims (11)

  1. 空気が流入する前縁部と、空気が流出する後縁部とを有し、周方向に互いに間隔を隔てて設けられる複数の羽根体を備え、
    複数の前記羽根体の各々には、前記前縁部と前記後縁部との間で延在し、前記羽根体における回転方向の側に位置する正圧面と、前記羽根体における前記回転方向の反対側に位置する負圧面とからなる翼面が形成され、
    複数の前記羽根体は、前側羽根体と、前記前側羽根体に前記間隔を空けて対向するとともに前記前側羽根体に対して回転方向の反対側に位置する後側羽根体と、を含み、
    前記前側羽根体の負圧面上における任意の箇所から前記後側羽根体の正圧面までの最短距離を、前記箇所における翼間距離と定義し、
    前記前側羽根体は、前記前側羽根体のうちの最大厚みを規定している最大厚み部分を有し、当該最大厚み部分における負圧面上の位置を、最大厚み位置と定義し、
    前記前側羽根体の負圧面のうちの前記最大厚み位置と前記前縁部との間の範囲を、内径側負圧面と定義し、
    前記前側羽根体の負圧面のうちの前記最大厚み位置と前記後縁部との間の範囲を、外径側負圧面と定義し、
    前記前側羽根体の負圧面における前記前縁部から前記後縁部までの長さを、負圧面長さと定義したとすると、
    前記内径側負圧面における前記翼間距離は、前記最大厚み位置における前記翼間距離よりも長く、
    前記外径側負圧面のうち、前記最大厚み位置と、前記最大厚み位置から前記負圧面長さの半分以上の長さだけ離れた位置との間の範囲における前記翼間距離は、略一定であり、 複数の前記羽根体の各々において、前記最大厚み部分よりも径方向外側であり、外周枠と接して支持される前記後縁部よりも径方向内側の部分の最小翼厚と、前記最大厚み部分の厚さである最大翼厚との比を表わす翼厚比は、2.8よりも大きく、
    前記最大翼厚は、2.8mmよりも大きく、3.84mm以下である、遠心ファン。
  2. 空気が流入する前縁部と、空気が流出する後縁部とを有し、周方向に互いに間隔を隔てて設けられる複数の羽根体を備え、
    複数の前記羽根体の各々には、前記前縁部と前記後縁部との間で延在し、前記羽根体における回転方向の側に位置する正圧面と、前記羽根体における前記回転方向の反対側に位置する負圧面とからなる翼面が形成され、
    複数の前記羽根体の各々は、前記前縁部を含む内径側羽根部と、前記内径側羽根部の径方向外側に位置し、前記後縁部を含む外径側羽根部と、を有し、
    前記内径側羽根部は、
    前記内径側羽根部のうちの最大厚みを規定している最大厚み部分と、
    前記前縁部と前記最大厚み部分との間に位置し、前記前縁部の側から径方向外側に向かうにつれて翼厚が徐々に厚くなる拡大部分と、
    前記最大厚み部分よりも径方向外側に位置し、前記最大厚み部分の側から径方向外側に向かうにつれて翼厚が徐々に薄くなる縮小部分と、を含み、
    前記内径側羽根部の負圧面および前記内径側羽根部の正圧面は、いずれも回転方向の反対側に向けて凸状に湾曲する表面形状を有しており、
    前記内径側羽根部の負圧面の曲率は、前記内径側羽根部の正圧面の曲率よりも大きく、
    前記外径側羽根部は、前記後縁部の側から径方向内側に略同一の翼厚で延在する板状部を含み、
    前記板状部の負圧面の曲率および前記板状部の正圧面の曲率は、いずれも前記内径側羽根部の負圧面の曲率よりも小さく、
    複数の前記羽根体の各々において、前記最大厚み部分よりも径方向外側であり、外周枠と接して支持される前記後縁部よりも径方向内側の部分の最小翼厚と、前記最大厚み部分の厚さである最大翼厚との比を表わす翼厚比は、2.8よりも大きく、
    前記最大翼厚は、2.8mmよりも大きく、3.84mm以下である、遠心ファン。
  3. 前記内径側羽根部の正圧面と前記外径側羽根部の正圧面とは互いに正接しており、
    前記内径側羽根部の負圧面と前記外径側羽根部の負圧面とは互いに正接している、
    請求項2に記載の遠心ファン。
  4. 前記外径側羽根部の最大厚みは、前記内径側羽根部の最大厚みよりも小さく、
    前記外径側羽根部の反りは、前記内径側羽根部の反りよりも小さい、
    請求項2または3に記載の遠心ファン。
  5. 前記内径側羽根部には、回転軸に対して平行な方向に延びる貫通穴が設けられており、
    前記貫通穴は、前記最大厚み部分を含むように形成されているか、または、前記最大厚み部分の径方向内側と径方向外側とにそれぞれ1つずつ形成されている、
    請求項2から4のいずれか1項に記載の遠心ファン。
  6. 前記内径側羽根部のうちの前記貫通穴を形成している内周面を前記回転軸に対して平行な方向から見た場合、当該内周面は三日月形状を呈している、
    請求項5に記載の遠心ファン。
  7. 前記前縁部と前記後縁部とを結ぶ直線を翼弦線と定義し、
    前記翼弦線の長さをCとし、前記羽根体の負圧面から前記翼弦線に対して下ろした垂線の長さが最大になる位置における前記垂線の長さをtとし、t/Cの値を反り比mと定義すると、
    複数の前記羽根体の各々は、前記反り比mが0.25以上となるように形成されている、
    請求項1から6のいずれか1項に記載の遠心ファン。
  8. 複数の前記羽根体は、等速翼列をなすように構成されている、
    請求項1から7のいずれか1項に記載の遠心ファン。
  9. 樹脂により形成される、
    請求項1からのいずれか1項に記載の遠心ファン。
  10. 請求項に記載の遠心ファンを成型するために用いられる、
    成型用金型。
  11. 請求項1からのいずれか1項に記載の遠心ファンと、前記遠心ファンに連結され、複数の前記羽根体を回転させる駆動モータとから構成される送風機を備える、
    流体送り装置。
JP2019512180A 2017-04-10 2017-08-31 遠心ファン、成型用金型および流体送り装置 Active JP6951428B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017077580 2017-04-10
JP2017077580 2017-04-10
PCT/JP2017/031312 WO2018189931A1 (ja) 2017-04-10 2017-08-31 遠心ファン、成型用金型および流体送り装置

Publications (2)

Publication Number Publication Date
JPWO2018189931A1 JPWO2018189931A1 (ja) 2020-02-20
JP6951428B2 true JP6951428B2 (ja) 2021-10-20

Family

ID=63793210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019512180A Active JP6951428B2 (ja) 2017-04-10 2017-08-31 遠心ファン、成型用金型および流体送り装置

Country Status (4)

Country Link
JP (1) JP6951428B2 (ja)
CN (1) CN110494654B (ja)
TW (1) TWI661131B (ja)
WO (1) WO2018189931A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109973427B (zh) * 2019-05-10 2021-11-26 泛仕达机电股份有限公司 一种多翼离心风机叶片、叶轮和一种多翼离心风机
JP6852768B1 (ja) * 2019-09-30 2021-03-31 ダイキン工業株式会社 クロスフローファンの翼、クロスフローファン及び空調室内機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331206A (en) * 1976-09-06 1978-03-24 Hitachi Ltd Fan with forward blades
KR950007521B1 (ko) * 1992-08-14 1995-07-11 엘지전자주식회사 시로코우 팬
JP2002285996A (ja) * 2001-01-22 2002-10-03 Sanden Corp 多翼送風ファン
CN1237283C (zh) * 2001-01-22 2006-01-18 三电有限公司 用于汽车空调设备的多叶片风机
EP1741934B1 (de) * 2005-07-04 2015-06-10 MAHLE Behr GmbH & Co. KG Laufrad
CN101213373B (zh) * 2005-07-04 2012-05-09 贝洱两合公司 叶轮
JP4993792B2 (ja) * 2010-06-28 2012-08-08 シャープ株式会社 ファン、成型用金型および流体送り装置
JP5469635B2 (ja) * 2011-05-30 2014-04-16 シャープ株式会社 遠心ファン、成型用金型および流体送り装置
ITCO20130037A1 (it) * 2013-09-12 2015-03-13 Internat Consortium For Advanc Ed Design Girante resistente al liquido per compressori centrifughi/liquid tolerant impeller for centrifugal compressors
CN203627302U (zh) * 2013-11-20 2014-06-04 浙江双阳风机有限公司 一种离心风机叶轮

Also Published As

Publication number Publication date
TWI661131B (zh) 2019-06-01
JPWO2018189931A1 (ja) 2020-02-20
TW201837322A (zh) 2018-10-16
WO2018189931A1 (ja) 2018-10-18
CN110494654B (zh) 2021-09-14
CN110494654A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
KR102043068B1 (ko) 송풍팬 및 이를 포함하는 공기조화기
JP4993791B2 (ja) ファン、成型用金型および流体送り装置
JP6071394B2 (ja) 遠心式ファン
WO2011114925A1 (ja) ファン、成型用金型および流体送り装置
JP4993792B2 (ja) ファン、成型用金型および流体送り装置
KR101970245B1 (ko) 송풍팬 및 이를 포함하는 공기조화기
JP4867596B2 (ja) 電動送風機およびこれを用いた電気掃除機
JP2008121589A5 (ja)
JP3812537B2 (ja) 遠心式送風機
JP6951428B2 (ja) 遠心ファン、成型用金型および流体送り装置
JP2018132012A (ja) 電動送風機および電動掃除機、ならびにインペラの製造方法
JP2016121580A (ja) 遠心型送風機
JP4140236B2 (ja) 送風装置および空気調和機用室外機
US9388823B2 (en) Centrifugal fan, molding die, and fluid feeder
WO2020121484A1 (ja) 遠心ファン及び空気調和機
JP2013060916A (ja) 遠心ファン及びそれを用いた空気調和機
JP5345607B2 (ja) 遠心ファン、成型用金型および流体送り装置
JP5469635B2 (ja) 遠心ファン、成型用金型および流体送り装置
JP6980921B2 (ja) プロペラファンおよび送風装置
JP5179638B2 (ja) ファン、成型用金型および流体送り装置
JP4906011B2 (ja) ファン、成型用金型および流体送り装置
JP2022082157A (ja) 遠心ファン、金型、および送風装置
CN115726982A (zh) 一种高效离心式鼓风机
JP2020183740A (ja) プロペラファンおよび送風機
CN113137381A (zh) 用于无叶送风装置的离心风机

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210219

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210924

R150 Certificate of patent or registration of utility model

Ref document number: 6951428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150