JP6951236B2 - GaN基板およびその製造方法 - Google Patents

GaN基板およびその製造方法 Download PDF

Info

Publication number
JP6951236B2
JP6951236B2 JP2017248172A JP2017248172A JP6951236B2 JP 6951236 B2 JP6951236 B2 JP 6951236B2 JP 2017248172 A JP2017248172 A JP 2017248172A JP 2017248172 A JP2017248172 A JP 2017248172A JP 6951236 B2 JP6951236 B2 JP 6951236B2
Authority
JP
Japan
Prior art keywords
gan
substrate
polar
main surface
polar region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017248172A
Other languages
English (en)
Other versions
JP2019112268A (ja
Inventor
丈洋 吉田
丈洋 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Sciocs Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Sciocs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, Sciocs Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2017248172A priority Critical patent/JP6951236B2/ja
Publication of JP2019112268A publication Critical patent/JP2019112268A/ja
Application granted granted Critical
Publication of JP6951236B2 publication Critical patent/JP6951236B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、GaN基板およびその製造方法に関する。
窒化物半導体自立基板を作製する際や、発光素子や高速トランジスタ等の半導体デバイスを作製する際、例えば、窒化ガリウム(GaN)の結晶からなる基板(GaN基板)を用意し、この基板の表面上に、結晶をエピタキシャル成長させる処理が行われる場合がある(例えば特許文献1参照)。
特開2011−016680号公報
上述の結晶成長処理を例えば1200℃以上の温度条件下で行うと、GaN基板がサーマルエッチングにより消失することがある。
本発明の目的は、例えば1200℃以上の温度条件下で行う結晶成長処理に用いられた場合であっても、サーマルエッチングされにくいGaN基板を提供することにある。
本発明の一態様によれば、
表面および裏面のそれぞれがGaN単結晶で構成されており、1〜105kPaの圧力の不活性ガス雰囲気下で1200〜1400℃の温度に加熱した際の、前記表面および前記裏面のそれぞれのエッチングレートが20μm/hr未満であるGaN基板が提供される。
本発明によれば、例えば1200℃以上の温度条件下で行う結晶成長処理に用いられた場合であっても、サーマルエッチングされにくいGaN基板を提供することが可能となる。
本発明の実施形態にかかるGaN基板の断面構成図である。 結晶を成長させる際に用いられる気相成長装置の概略図である。 実施形態にかかるGaN基板の製造工程を示す断面構成図である。 実施形態にかかるGaN基板の製造工程を示す断面構成図である。 実施形態にかかるGaN基板の製造工程を示す断面構成図である。
<一実施形態>
以下、本発明の一実施形態によるGaN基板10について説明する。また、GaN基板10を種結晶基板として用いてGaN結晶を成長させる技術について説明する。
(1)GaN基板の構成
GaN基板10の構成について説明する。図1は、GaN基板10の構成を概略的に示す断面図である。GaN基板10は、下地GaN基板20と、GaN層30と、GaN層40とを有する。以下、GaN基板10を「基板10」、下地GaN基板20を「下地基板20」、GaN層30を「層30」、GaN層40を「層40」ともいう。
基板10を種結晶基板として成長させたGaN結晶層を、本格成長膜と称することがある。図1に示すGaN膜100は、本格成長膜の一例である。以下、GaN膜100を「膜100」ともいう。
下地基板20は、ウルツ鉱構造、つまり六方晶のGaN単結晶で構成され、ガリウム(Ga)面である主面21と、窒素(N)面である主面22とを有する。ただし、下地基板20を構成するGaN単結晶は、所定の極性を有する基材部23に対して極性が反転した部分であるインバージョンドメイン(ID)24を含み、ID24は、下地基板20を厚さ方向に貫通している。本明細書における「単結晶」とは、IDを含まない結晶に限らず、IDを複数有する結晶をも含む。下地基板20は、例えば、直径2〜6インチの円板形状である。下地基板20の厚さは、下地基板20を自立可能とする厚さ、例えば0.4〜1.0mmの厚さとするのが好ましい。
主面21は、Ga極性面(+c面、(0001)面)で構成された領域であるGa極性領域21gと、N極性面(−c面、(000−1)面)で構成された領域であるN極性領域21nとを含む。Ga極性領域21gは、基材部23が主面21に露出した領域であり、N極性領域21nは、ID24が主面21に露出した領域である。主面22は、N極性面で構成された領域であるN極性領域22nと、Ga極性面で構成された領域であるGa極性領域22gとを含む。N極性領域22nは、基材部23が主面22に露出した領域であり、Ga極性領域22gは、ID24が主面22に露出した領域である。
主面21は、Ga極性領域21gに加えN極性領域21nを含み、主面21におけるN極性領域21nの割合は、つまり、主面21の全面積に対するN極性領域21nの面積の割合は、50%未満である。このような主面21を、「Ga面」と呼ぶこととする。主面22は、N極性領域22nに加えGa極性領域22gを含み、主面22におけるN極性領域22nの割合は、つまり、主面22の全面積に対するN極性領域22nの面積の割合は、50%超である。このような主面22を、「N面」と呼ぶこととする。
下地基板20は、IDを含むGaN結晶を成長させる公知技術を適宜用いることで作製される。例えば、ハイドライド気相成長(HVPE)における原料ガスのV/III比の調整により、IDを生成しやすくする技術が知られている。また例えば、マスクパターンを用いることで、所定領域にIDを生成させる技術が知られている。主面21のN極性領域21n、および、主面22のGa極性領域22gは、所定の形状、配置等となるように形成することができ、換言すると、主面21のGa極性領域21g、および、主面22のN極性領域22nは、所定の形状、配置等となるように形成することができる。なお、IDの形状、配置はランダムであってもよい。
本実施形態で例示する下地基板20は、主面21および主面22に複数のID24が分散して配置されており、主面21は、海状のGa極性領域21gと、島状の複数のN極性領域21nとで構成され、主面22は、海状のN極性領域22nと、島状の複数のGa極性領域22gとで構成されている。
ID24は、例えば、主面21内および主面22内で一様に分布している。主面21におけるN極性領域21nの個数密度(ID個数密度)の分布の中央値は、例えば3000個/cm程度である。このとき、ID個数密度の標準偏差は、例えば、好ましくは1000個/cm以下、より好ましくは300個/cm以下である。これを一般化すると、ID24が一様に分布していることの目安としては、主面21におけるID個数密度の標準偏差が中央値に対して、好ましくは1/3以下であること、より好ましくは1/10以下であることが挙げられる。
層30は、主面21のN極性領域21nからN極性方向に、つまり−c軸方向にエピタキシャル成長したGaN結晶で構成され、主面21の全面を覆っている。層30の、主面21と反対側の面が、基板10の一方の主面11を構成し、主面11は、全面がN極性面で構成されている。主面21のGa極性領域21gと、層30との間に、GaN結晶が形成されていない空間である空隙13が存在してもよい。
層40は、主面22のN極性領域22nからN極性方向にエピタキシャル成長したGaN結晶で構成され、主面22の全面を覆っている。層40の、主面22と反対側の面が、基板10の他方の主面12を構成し、主面12は、全面がN極性面で構成されている。主面22のGa極性領域22gと、層40との間に、GaN結晶が形成されていない空間である空隙14が存在してもよい。
このように、基板10は、主面11および主面12の両面が、N極性面で構成されている。GaN結晶のN極性面は、Ga極性面に比べて熱分解耐性が高く、サーマルエッチングされにくいという特性がある。
GaN結晶のGa極性面のサーマルエッチングレート(以下、単にエッチングレートとも称する)は、例えば、1〜105kPaの圧力の窒素ガス(Nガス)雰囲気、1200〜1400℃の温度の条件下では、20μm/hr以上、条件によっては1000μm/hr以上、場合によっては2000μm/hr程度の大きさに達する場合がある。雰囲気を構成する不活性ガスが、アルゴン(Ar)等の希ガスからなる場合や、Nガスと希ガスとの混合ガスからなる場合にも、Ga極性面のサーマルエッチングレートは、Nガスを雰囲気ガスとする場合におけるそれと同様となる。また、GaN結晶の雰囲気が、後述する結晶成長雰囲気、すなわち、三塩化ガリウム(GaCl)等のハロゲン化物や、アンモニア(NH)等の窒化水素や、水素(H)等を含む場合、Ga極性面のサーマルエッチングレートは、上述のエッチングレートよりもさらに大きくなる場合がある。
これに対し、GaN結晶のN極性面のエッチングレートは、Ga極性面のそれよりも小さく、例えば、1〜105kPaの圧力のNガス雰囲気、1200〜1400℃の温度の条件下では、20μm/hr未満、好ましくは10μm/hr未満の大きさとなる。1〜105kPaの圧力のNガス雰囲気下において、GaN結晶のN極性面のエッチングレートは、1200℃以上1300℃未満の温度下では0.5μm/hr未満、1300℃以上1350℃以下の温度下では4μm/hr未満、1350℃超1400℃以下の温度下では10μm/hr未満の大きさとなることを確認済である。雰囲気を構成する不活性ガスが、Ar等の希ガスからなる場合や、Nガスと希ガスとの混合ガスからなる場合にも、N極性面のサーマルエッチングレートは、Nガスを雰囲気ガスとする場合におけるそれと同様となる。また、GaN結晶の雰囲気が、後述する結晶成長雰囲気(ハロゲン化物、窒化水素、H等を含む雰囲気)である場合であっても、N極性面のサーマルエッチングレートは、例えば40μm/hr未満、好ましくは20μm/hr未満の大きさとなる等、Ga極性面のサーマルエッチングレートよりも遥かに小さくなることを確認済である。
基板10を上述の構成とすることで、後述のように種結晶基板として用いた場合の結晶成長処理において、基板10を1〜105kPaの圧力の不活性ガス雰囲気下で1200〜1400℃の温度に加熱した際の、主面11および主面12のそれぞれのエッチングレートを、例えば20μm/hr未満、好ましくは10μm/hr未満の大きさとすることができる。また、基板10を、後述する結晶成長雰囲気(ハロゲン化物、窒化水素、H等を含む雰囲気)下で上述の温度条件に加熱した際の、主面11および主面12のそれぞれのエッチングレートを、例えば40μm/hr未満、好ましくは20μm/hr未満の大きさとすることができる。
(2)GaN基板の製造方法
基板10の製造方法について説明する。図2は、GaN結晶の気相成長処理に用いられる成長装置200の概略図である。図3〜図5は、基板10の製造工程を概略的に示す断面図である。
図2を参照して、成長装置200と、成長装置200を用いてGaN結晶をN極性方向に成長させる結晶成長処理とについて説明する。成長装置200は、石英等の耐熱性材料により構成され、成長室201が内部に構成された気密容器203を備えている。成長室201内には、成長基板150を保持する支持部材としてのサセプタ208が設けられている。サセプタ208は、回転機構216が有する回転軸215に接続されており、回転自在に構成されている。
成長基板150は、結晶成長の下地として、GaN結晶のN極性面を含む下地面151を有する。成長基板150は、個々の結晶成長処理に応じて異なった構造のものであってよい。詳細は後述するように、成長基板150は、層30の成長時には、下地基板20であり、層40の成長時には、下地基板20および層30の積層体15であり、膜100の成長時には、下地基板20、層30および層40の積層体10、すなわち基板10である。
気密容器203の一端には、GaClガスを供給するガス供給管232a、NHガスを供給するガス供給管232b、Nガスを供給するガス供給管232cがそれぞれ接続されている。ガス供給管232cには、Hガスを供給するガス供給管232dが接続されている。ガス供給管232a〜232cの下流側には、これらのガス供給管から供給された各種ガスをサセプタ208上に保持された成長基板150に向けて供給するノズル249a〜249cが、それぞれ接続されている。
ガス供給管232aには、ガス流の上流側から順に、ガス生成器233a、バルブ243aが設けられている。ガス生成器233aの内部には、常温で固体である固体原料(固体のGaCl)が収容される。ガス生成器233aの外部には、固体原料を加熱して気化ガス(GaClガス)を得るためのヒータ207aが設けられている。ガス生成器233aには、キャリアガスとしてのNガスを供給するガス供給管232eが接続されている。ガス生成器233a内で発生させたGaClガスは、ガス供給管232eから供給されたキャリアガスによって成長室201内へ運ばれる。ガス供給管232a,232eには、GaClガスの液化や固化を防ぐための配管ヒータ(不図示)が設けられている。
ガス供給管232b〜232eには、ガス流の上流側から順に、流量制御器241b〜241e、バルブ243b〜243eがそれぞれ設けられている。ガス供給管232eのバルブ243eよりも上流側と、ガス供給管243aのバルブ243aよりも下流側との間には、バイパス管232fが接続されている。バイパス管232fにはバルブ243fが設けられている。バルブ243e,243aを閉じた状態で、バルブ243fを開くことで、ガス生成器233aをバイパスして成長室201内へNガスを供給することが可能となっている。
気密容器203の他端には、成長室201内を排気する排気管230が設けられている。排気管230にはポンプ231が設けられている。気密容器203の外周には、サセプタ208上に保持された成長基板150を所望の温度に加熱するゾーンヒータ207が設けられている。気密容器203内には、成長室201内の温度を測定する温度センサ209が設けられている。成長装置200が備える各部材は、コンピュータとして構成されたコントローラ280に接続されており、コントローラ280上で実行されるプログラムによって、後述する処理手順や処理条件が制御されるように構成されている。
例えば以下の処理手順を実行することで、成長装置200による結晶成長処理が実施される。まず、成長基板150を気密容器203内へ投入(搬入)し、サセプタ208上に保持する。また、ガス生成器233a内に収容された固体原料を、ヒータ207aにより加熱して気化させることで、GaClガスを発生させる。また、ガス供給管232a,232eを所望の温度となるように加熱する。そして、成長室201内の加熱および排気を実施しながら、バルブ243a,243e,243bを閉じた状態で、バルブ243c,243d,243fを適宜開き、成長室201内へHガス、或いは、HガスとNガスとの混合ガスを供給する。そして、成長室201内が所望の処理温度、処理圧力に到達し、また、成長室201内の雰囲気が所望の雰囲気となった状態で、バルブ243fを閉じ、バルブ243a,243e,243bを開いて、成長基板150の下地面151に対しGaClガスとNHガスとを供給する。これにより、成長基板150の下地面151上に、GaN結晶が、N極性方向に成長する。NHガスの供給は、GaClガスの供給よりも先に開始してもよい。なお、下地面151上に成長させるGaN結晶の面内均一性を高めるために、結晶成長処理は、サセプタ208を回転させた状態で実施するのが好ましい。結晶成長が完了したら、バルブ243e,243a,243bを閉じ、バルブ243fを開いて、成長室201内へのGaClガス、NHガスの供給を停止する。その後、成長室201内へのNガスの供給を継続しながら成長室201内を降温させ、処理後の成長基板150を気密容器203内から搬出し、結晶成長処理を終了する。
処理条件としては、以下が例示される。
ガス生成器233aの温度:90〜110℃
ガス供給管232a,232eの温度:200〜210℃
キャリアガスの流量:80〜120sccm
成長室201内におけるNHガスの分圧/GaClガスの分圧:18〜22
処理温度(成長基板150の温度):1200〜1400℃、好ましくは、1250〜1300℃
処理圧力(成長室201内の圧力):90〜105kPa、好ましくは、90〜95kPa
ここで行う結晶成長は、上述したように、N極性方向への成長である。N極性方向への成長は、Ga極性方向への成長、つまり+c軸方向への成長で採用される温度条件、すなわち、900〜1100℃の温度条件下では、進行させることが困難である。そこで、本実施形態では、温度条件を上述のように高く設定することにより、N極性方向への成長を、実用的なレートで、例えば、80〜90μm/hrのレートで進行させるようにしている。
上述のような結晶成長処理において、下地面151に含まれるN極性面から、GaN結晶がN極性方向にエピタキシャル成長する。下地面151がGa極性面を含む場合であっても、上述のような高温での結晶成長処理において、N極性面からN極性方向への成長速度は、Ga極性面からGa極性方向への成長速度と比べて十分に速い。そして、N極性方向に成長するGaN結晶は、面内方向にも成長する。これにより、GaN結晶層がある程度厚く成長した時点で、下地面151に含まれるGa極性面は覆われる。このようにして、下地面151の全面がN極性面で構成されている場合のみならず、下地面151がGa極性面を含む場合であっても、N極性方向に成長し下地面151の全面を覆うGaN結晶層が得られる。
図3〜図5を参照して、基板10の製造工程について説明する。図3を参照する。下地基板20を準備し、下地基板20を成長基板150として成長装置200の気密容器203内へ投入する。主面21つまりGa面が下地面151となるように、下地基板20をサセプタ208上に保持する。
図4を参照する。下地基板20に対し上述の結晶成長処理を行うことにより、主面21上に、N極性領域21nから、N極性方向にGaN結晶を成長させて、層30を形成する。層30は、少なくとも、Ga極性領域21gが覆われて主面21の全面が覆われる厚さに成長させる。層30の成長時に、Ga極性領域21g上にはGaN結晶が成長しにくいことに起因して、主面21のGa極性領域21gと、層30との間に、空隙13が形成されてもよい。
層30を成長させたら、処理後の成長基板150、つまり、下地基板20および層30の積層体15を、気密容器203内から搬出する。このようにして、全面がGaN単結晶のN極性面で構成された主面11を有する積層体15が得られる。なお、必要に応じ、成長させた層30の最表層を研磨することで、主面11を得てもよい。
図5を参照する。下地基板20および層30の積層体15を成長基板150として成長装置200の気密容器203内へ投入する。下地基板20の主面22つまりN面が下地面151となるように、積層体15をサセプタ208上に保持する。換言すると、層30の成長時に対し、下地基板20を裏返してサセプタ208上に保持する。
そして、積層体15に対し上述の結晶成長処理を行うことにより、主面22上に、N極性領域22nから、N極性方向にGaN結晶を成長させて、層40を形成する。層40は、少なくとも、Ga極性領域22gが覆われて主面22の全面が覆われる厚さに成長させる。層40の成長時に、Ga極性領域22g上にはGaN結晶が成長しにくいことに起因して、主面22のGa極性領域22gと、層40との間に、空隙14が形成されてもよい。
層40を成長させたら、処理後の成長基板150、つまり、下地基板20、層30および層40の積層体、すなわち基板10を、気密容器203内から搬出する。このようにして、全面がGaN単結晶のN極性面で構成された主面12を有する基板10が得られる。なお、必要に応じ、成長させた層40の最表層を研磨することで、主面12を得てもよい。
このように、下地基板20の主面21および主面22に、それぞれ、N極性領域21nおよびn極性領域22nから、GaN結晶をN極性方向に成長させることにより、主面11および主面12のそれぞれがN極性面で構成された基板10を製造することができる。
なお、上述の説明では、まず主面21上に層30を成長させ、次に主面22面上に層40を成長させる態様を例示したが、まず主面22上に層40を成長させ、次に主面21面上に層30を成長させる態様であってもよい。これらの態様のうち、どちらかと言えば、先に層30を成長させる態様の方が、例えば以下のような理由で好ましい。
本実施形態の結晶成長処理における高温条件下で、Ga極性面は、N極性面と比べてサーマルエッチングされやすい。したがって、Ga面である主面21の方が、N面である主面22と比べて、基材部23が、つまり広いGa極性領域21gが、エッチングされやすい。層30を先に成長させることで、後の層40の成長において、主面21が層30に保護されて、主面21のエッチングを抑制できる。これに対し、層40を先に成長させる態様では、層40の成長において、主面21が露出したままなので、広いGa極性領域21gがエッチングされやすく、エッチングによる分解物が多く発生する可能性がある。そして、この分解物がN極性領域21nを覆うことで、後の層30の成長に悪影響を与える可能性がある。
主面21のGa極性領域21gは、主面22のGa極性領域22gと比べて広い。これに起因して、層30によりGa極性領域21gを覆って主面21の全面を覆うことは、層40によりGa極性領域22gを覆って主面22の全面を覆うことと比べて、容易ではない。主面21の全面が覆われる確実性を向上させるために、層30は、層40と比べて厚く形成されてよい。また、Ga極性領域21gがGa極性領域22gと比べて広いことに対応して、主面21上に形成される空隙13は、主面22上に形成される空隙14と比べて、広い空隙であってよい。なお、Ga極性領域21gが広いので、N極性領域21nからの層30の成長において、面内方向への成長の寄与が大きくなる。これにより、層30において、層40と比べて、欠陥密度の低減が期待される。
(3)GaN基板上への結晶成長処理
基板10を種結晶基板として用い、基板10上にGaN結晶を成長させることで膜100を形成する結晶成長処理について説明する。この処理は、例えば、成長装置200を用いて行うことができる。以下、種結晶基板の下地面151となる主面を「表(おもて)面」と称し、その反対側、つまりサセプタ208側の主面を「裏面」と称することがある。
再び図1を参照する。基板10を成長基板150として成長装置200の気密容器203内へ投入する。例えば、主面11が下地面151となるように、つまり主面11が表面11となるように、基板10をサセプタ208上に保持する。
そして、基板10に対し上述の結晶成長処理を行うことで、表面11上に膜100を成長させる。表面11は全面がN極性面で構成されているので、膜100は、表面11の全面からN極性方向にエピタキシャル成長する。膜100を所定の厚さまで成長させたら、処理後の成長基板150、つまり、種結晶基板である基板10、および、本格成長膜である膜100の積層体を、気密容器203内から搬出する。成長後、膜100を基板10から分離しスライスすることで、膜100から新たなGaN基板が得られる。なお、膜100を分離した後の基板10は、再び種結晶基板として用いてもよい。
ここで比較形態として、表面の全面がN極性面で構成され裏面の全面がGa極性面で構成された通常のGaN基板を種結晶基板として用いる態様について考える。比較形態では、上述の温度条件下において、裏面のサーマルエッチングが過剰に進行し、種結晶基板の短時間での消失を招くことになる。一方、本実施形態の種結晶基板である基板10は、表面11および裏面12のそれぞれがN極性面で構成されていることで、優れたサーマルエッチング耐性を有する。これにより、本実施形態では、温度条件を上述のように高く設定したとしても、種結晶基板の短時間での消失を回避することが可能となる。つまり、本実施形態では、膜100の成長時間の長時間化を図ることができ、厚い膜100を得ることが可能となる。
N極性面で構成された表面11および裏面12のエッチングレートは、上述したように、1〜105kPaの圧力の不活性ガス雰囲気、1200〜1400℃の温度条件では、20μm/hr未満、好ましくは10μm/hr未満である。また、N極性面で構成された表面11および裏面12のエッチングレートは、上述したように、結晶成長雰囲気(ハロゲン化物、窒化水素、H等を含む雰囲気)、1200〜1400℃の温度条件では、40μm/hr未満、好ましくは20μm/hr未満である。
なお、上述の説明では、基板10の主面11を表面とする態様を例示したが、基板の主面12を表面とする態様であってもよい。これらの態様のうち、どちらかと言えば、主面11を表面とする態様、つまり主面12を裏面とする態様の方が、例えば以下のような理由で好ましい。
主面12を画定する層40は、主面22に積層されている。したがって、主面12を裏面とすることにより、膜100の成長中に層40の全厚さがエッチングされた場合でも、露出するのは下地基板20の主面22、つまりN面となるので、下地基板20のエッチングを抑制できる。これに対し、主面12を表面とする態様、つまり主面11を裏面とする態様では、膜100の成長中に層30の全厚さがエッチングされた場合、Ga面である主面21が露出するので、下地基板20がエッチングされやすい。下地基板20は、例えば0.4〜1.0mmの厚さを有する。したがって、主面12を裏面とすることで、層40の全厚さがエッチングされた場合であっても、その後、下地基板20は、基材部23が、上述の温度条件下において、少なくとも10時間、場合によっては20時間は消失しないことになる。なお、主面12を表面とする態様では、裏側に配置される層30を、膜100の成長中にその全厚さが(より詳しくは、空隙13を含まずにGa極性領域21gの全面を覆っている部分の全厚さが)エッチングされない程度に、厚く設けるとよい。
基板10は、空隙13または空隙14を有することが好ましい。空隙13または空隙14が存在することで、基板10により膜100が拘束される力が弱まり、膜100に発生する応力を緩和できるからである。より効果的に応力を緩和させるために、空隙13または空隙14は、下地基板20と膜100との間に存在することがより好ましい。また、応力を緩和させる効果は、空隙が広いほど大きい。したがって、下地基板20と膜100との間に空隙13が存在する方が、空隙14が存在する場合と比べてより好ましい。つまり、このような観点からは、主面11を表面として、下地基板20のGa面である主面21側に膜100を成長させることが、より好ましい。なお、上述のように、層30での欠陥密度低減が期待されるので、層40上にエピタキシャル成長させた膜100と比べて、層30上にエピタキシャル成長させた膜100の方が、結晶品質が高いことも期待される。このような観点からも、主面11を表面として用いるとよい。
ID24は、下地基板20の主面21内および主面22内で、一様に分布していることが好ましい。これにより、空隙13および空隙14の面内分布を一様にでき、空隙13および空隙14による膜100に対する応力緩和の効果を面内で均一化できる。また、ID24が一様に分布することにより、主面21上で層30がGa極性領域21gを覆う挙動、および、主面22上で層40がGa極性領域22gを覆う挙動を、面内で均一に近づけることができるので、主面21上の層30に覆われにくい部分、および、主面22上の層40に覆われにくい部分を、生じにくくできる。
(4)本実施形態により得られる効果
本実施形態によれば、以下に示す1つまたは複数の効果が得られる。
(a)基板10の主面11および主面12のそれぞれを、サーマルエッチングされにくいN極性面により構成することで、基板10を1〜105kPaの圧力の不活性ガス雰囲気下で1200〜1400℃の温度に加熱した際の、主面11および主面12のそれぞれのエッチングレートを、例えば20μm/hr未満、好ましくは10μm/hr未満の大きさとすることが可能となる。また、基板10を、上述の結晶成長雰囲気(ハロゲン化物、窒化水素、H等を含む雰囲気)下で上述の温度条件に加熱した際の、主面11および主面12のそれぞれのエッチングレートを、例えば40μm/hr未満、好ましくは20μm/hr未満の大きさとすることが可能となる。これらにより、本実施形態の基板10は、温度条件を上述のように高く設定する必要がある結晶成長処理、例えばGaN結晶のN極性方向への成長処理において、種結晶基板として好適に用いることが可能となる。つまり、基板10の一方の主面上でGaN結晶のN極性方向へのエピタキシャル成長を良好に行うことができるとともに、他方の主面のGaN結晶成長中におけるサーマルエッチングを抑制できる。
(b)このような基板10は、Ga極性領域21gおよびN極性領域21nを含む主面21(「表側の面」の一例)を有するとともに、Ga極性領域22gおよびN極性領域22nを含む主面22(「裏側の面」の一例)を有する下地基板20、つまりID24を有する下地基板20と、主面21のN極性領域21nから成長し、主面21を覆い、基板10の主面11(「表(おもて)面」の一例)をN極性面で構成する層30(「表側GaN層」の一例)と、主面22のN極性領域22nから成長し、主面22を覆い、基板10の主面12(「裏面」の一例)をN極性面で構成する層40(「裏側GaN層」の一例)と、を有する基板10として構成することができる。
主面21および主面22のそれぞれにN極性面およびGa極性面を含む下地基板20を用いることで、主面21および主面22のそれぞれにおいてN極性方向にGaN結晶を成長させて、層30および層40を得ることができる。これにより、主面11および主面12の両面がN極性面で構成された基板10を実現することができる。
(c)基板10は、下地基板20の主面21と層30との間に配置された空隙13、および、下地基板20の主面22と層40との間に配置された空隙14、の少なくとも一方を有することが好ましい。これにより、基板10を種結晶基板として用いて成長させた膜100に発生する応力を緩和することができる。
(d)ID24は、下地基板20の主面21内および主面22内で、一様に分布していることが好ましい。これにより、空隙13および空隙14による膜100に対する応力緩和の効果を面内で均一化でき、また、主面21上の層30に覆われにくい部分、および、主面22上の層40に覆われにくい部分を生じにくくできる。
<他の実施形態>
本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の変更を行ってもよい。また、種々の実施形態や変形例は、適宜組み合わせてよい。
上述の実施形態では、主面21内および主面22内に、海状につまり一体的、連続的に配置された基材部23と、島状に複数分散して配置されたID24とを有する下地基板20を例示したが、基材部23およびID24の形状や配置は、必要に応じて適宜変更してもよい。例えば、ID24は、基材部23を複数の部分に区分するように配置されてもよい。また例えば、ID24は、一体的、連続的であって主面内に広がった形状(例えば、格子形状、蛇行形状等)であってもよい。下地基板20は、少なくとも1つのGa極性領域21gおよび少なくとも1つのN極性領域21nで構成された主面21を有するとともに、少なくとも1つのGa極性領域22gおよび少なくとも1つのN極性領域22nで構成された主面22を有する。
上述の実施形態では、主面21におけるN極性領域21nの割合が、主面22におけるN極性領域21nの割合と比べて低い下地基板20を例示した。このような下地基板20を用いることにより、主面21側と主面22側とで、基板10の特性を異ならせることができる。具体的には例えば、N極性領域の割合が低い、つまりGa面である主面21側では、広い空隙13を形成しやすく、また層30の欠陥密度を低減させやすい。一方、N極性領域の割合が高い、つまりN面である主面22側では、層40により主面22の全面を覆うことが容易である。ただし、下地基板20は、両方の主面がN極性領域を含むものであればよく、一方の主面21におけるN極性領域21nの割合と、他方の主面22におけるN極性領域21nの割合とが等しいものであってもよい。
上述の実施形態で説明したように、層30、層40および膜100を形成するために、1200℃以上の高い温度条件で、GaN結晶のN極性方向への成長が行われる。このようなGaN結晶のN極性方向への成長手法は、上述の手法に限定されず、以下のような手法であってもよい。例えば、結晶成長が行われる成長室の内部でGa原料とClガス等を反応させてGaClガスを発生させるTri−HVPE法によってGaN結晶を成長させてもよい。また例えば、成長室内が1〜100kPa、1100〜1400℃の処理条件に到達し、成長室内の雰囲気が所望の雰囲気となった状態で、成長基板に対し、原料ガスとしてハロゲン元素非含有のGa蒸気とNHガスとを供給するノンハロゲンVPE法によりGaN結晶を成長させてもよい。また例えば、成長室内が1〜105kPa、1200〜1400℃の処理条件に到達し、成長室内の雰囲気が所望の雰囲気となった状態で、成長基板に対し、原料ガスとしてトリメチルガリウム(TMG)ガスとNHガスとを供給する高温MOCVD法によりGaN結晶を成長させてもよい。N極性面のエッチングレートは、これらの手法における結晶成長雰囲気、温度条件において、40μm/hr未満、好ましくは20μm/hr未満となる。
上述の実施形態では、種結晶基板として基板10を用いて、本格成長膜としてGaN結晶を成長させる態様を例示したが、本格成長膜として成長させる結晶は、GaN結晶に限定されない。例えば、窒化アルミニウム(AlN)、窒化アルミニウムガリウム(AlGaN)、窒化インジウム(InN)、窒化インジウムガリウム(InGaN)、窒化アルミニウムインジウムガリウム(AlInGaN)等の窒化物結晶、すなわち、AlInGa1−x−yN(0≦x+y≦1)の組成式で表されるIII族窒化物結晶を、本格成長膜として成長させてもよい。
<本発明の好ましい態様>
以下、本発明の好ましい態様について付記する。
(付記1)
表面および裏面のそれぞれがGaN単結晶で構成されており、1〜105kPaの圧力の不活性ガス雰囲気下で1200〜1400℃の温度に加熱した際の、前記表面および前記裏面のそれぞれのエッチングレートが20μm/hr未満であるGaN基板。
(付記2)
前記不活性ガスは、Nガス、或いは、希ガスのうち少なくともいずれかを含む、
付記1に記載のGaN基板。
(付記3)
Ga極性領域およびN極性領域を含む表側の面を有するとともに、Ga極性領域およびN極性領域を含む裏側の面を有する下地GaN基板と、
前記表側の面の前記N極性領域から成長し、前記表側の面を覆い、前記表面をN極性面で構成する表側GaN層と、
前記裏側の面の前記N極性領域から成長し、前記裏側の面を覆い、前記裏面をN極性面で構成する裏側GaN層と、
を有する付記1または2に記載のGaN基板。
(付記4)
前記表側の面と前記表側GaN層との間に配置された、GaN結晶が形成されていない空隙、および、
前記裏側の面と前記裏側GaN層との間に配置された、GaN結晶が形成されていない空隙、
の少なくとも一方を有する付記3に記載のGaN基板。
(付記5)
前記表側の面における前記N極性領域の割合は、前記裏側の面における前記N極性領域の割合と比べて低い、
付記3または4に記載のGaN基板。
(付記6)
前記表側GaN層の厚さは、前記裏側GaN層の厚さと比べて厚い、
付記5に記載のGaN基板。
(付記7)
前記表側の面において前記N極性領域が分散して配置されており、前記表側の面における前記N極性領域の個数密度の標準偏差が中央値に対して好ましくは1/3以下であり、より好ましくは1/10以下である、
付記5または6に記載のGaN基板。
(付記8)
前記表側の面における前記N極性領域の割合は、前記裏側の面における前記N極性領域の割合と等しい、
付記3または4に記載のGaN基板。
(付記9)
Ga極性領域およびN極性領域を含む表側の面を有するとともに、Ga極性領域およびN極性領域を含む裏側の面を有する下地GaN基板を準備する工程と、
前記表側の面の前記N極性領域から、前記表側の面を覆い、表面がN極性面で構成された表側GaN層を成長させる工程と、
前記裏側の面の前記N極性領域から、前記裏側の面を覆い、裏面をN極性面で構成された裏側GaN層を成長させる工程と、
を有するGaN基板の製造方法。
(付記10)
前記表側GaN層を成長させる工程において、前記表側の面と前記表側GaN層との間に配置された、GaN結晶が形成されていない空隙を形成すること、および、
前記裏側GaN層を成長させる工程において、前記裏側の面と前記裏側GaN層との間に配置された、GaN結晶が形成されていない空隙を形成すること、
の少なくとも一方を行う、
付記9に記載のGaN基板の製造方法。
(付記11)
前記表側GaN層を成長させる工程、および、前記裏側GaN層を成長させる工程のうち、前記表側の面と前記裏側の面とで前記N極性領域の割合が低い方の面に成長させる工程を、前記N極性領域の割合が高い方の面に成長させる工程よりも前に行う、
請求項9または10に記載のGaN基板の製造方法。
(付記12)
表面および裏面のそれぞれがGaN単結晶で構成されており、1〜105kPaの圧力の不活性ガス雰囲気下で1200〜1400℃の温度に加熱した際の、前記表面および前記裏面のそれぞれのエッチングレートが20μm/hr未満であり、
Ga極性領域およびN極性領域を含む表側の面を有するとともに、Ga極性領域およびN極性領域を含む裏側の面を有する下地GaN基板と、
前記表側の面の前記N極性領域から成長し、前記表側の面を覆い、前記表面をN極性面で構成する表側GaN層と、
前記裏側の面の前記N極性領域から成長し、前記裏側の面を覆い、前記裏面をN極性面で構成する裏側GaN層と、
を有するGaN基板を準備する工程と、
前記表面上に、GaN結晶をN極性方向に成長させる工程と、
を有するGaN結晶の製造方法。
(付記13)
前記表面は、前記表面および前記裏面のうち、前記表側の面と前記裏側の面とで前記N極性領域の割合が低い方の面側に配置された面である、
付記12に記載のGaN結晶の製造方法。
10 GaN基板(種結晶基板)
20 下地GaN基板
30、40 GaN層
11、12、21、22 主面
13、14 空隙
21g、22g Ga極性領域
21n、22n N極性領域
100 GaN膜(本格成長膜)

Claims (7)

  1. Ga極性領域およびN極性領域を含む表側の面を有するとともに、Ga極性領域およびN極性領域を含む裏側の面を有する下地GaN基板と、
    前記表側の面の前記N極性領域から成長し、前記表側の面を覆い、表N極性面で構成された表側GaN層と、
    前記裏側の面の前記N極性領域から成長し、前記裏側の面を覆い、裏N極性面で構成された裏側GaN層と、
    を有するGaN基板。
  2. 前記表側の面と前記表側GaN層との間に配置された、GaN結晶が形成されていない空隙、および、
    前記裏側の面と前記裏側GaN層との間に配置された、GaN結晶が形成されていない空隙、
    の少なくとも一方を有する請求項に記載のGaN基板。
  3. 前記表側の面における前記N極性領域の割合は、前記裏側の面における前記N極性領域の割合と比べて低い、
    請求項またはに記載のGaN基板。
  4. 前記表側GaN層の厚さは、前記裏側GaN層の厚さと比べて厚い、
    請求項に記載のGaN基板。
  5. 前記表側の面における前記N極性領域の割合は、前記裏側の面における前記N極性領域の割合と等しい、
    請求項またはに記載のGaN基板。
  6. Ga極性領域およびN極性領域を含む表側の面を有するとともに、Ga極性領域およびN極性領域を含む裏側の面を有する下地GaN基板を準備する工程と、
    前記表側の面の前記N極性領域から、前記表側の面を覆い、表面がN極性面で構成された表側GaN層を成長させる工程と、
    前記裏側の面の前記N極性領域から、前記裏側の面を覆い、裏面N極性面で構成された裏側GaN層を成長させる工程と、
    を有するGaN基板の製造方法。
  7. 前記表側GaN層を成長させる工程において、前記表側の面と前記表側GaN層との間に配置された、GaN結晶が形成されていない空隙を形成すること、および、
    前記裏側GaN層を成長させる工程において、前記裏側の面と前記裏側GaN層との間に配置された、GaN結晶が形成されていない空隙を形成すること、
    の少なくとも一方を行う、
    請求項に記載のGaN基板の製造方法。
JP2017248172A 2017-12-25 2017-12-25 GaN基板およびその製造方法 Active JP6951236B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017248172A JP6951236B2 (ja) 2017-12-25 2017-12-25 GaN基板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017248172A JP6951236B2 (ja) 2017-12-25 2017-12-25 GaN基板およびその製造方法

Publications (2)

Publication Number Publication Date
JP2019112268A JP2019112268A (ja) 2019-07-11
JP6951236B2 true JP6951236B2 (ja) 2021-10-20

Family

ID=67222248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017248172A Active JP6951236B2 (ja) 2017-12-25 2017-12-25 GaN基板およびその製造方法

Country Status (1)

Country Link
JP (1) JP6951236B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6737489B1 (ja) * 2019-06-17 2020-08-12 株式会社エクサウィザーズ 情報処理装置、情報処理方法及びプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4633962B2 (ja) * 2001-05-18 2011-02-16 日亜化学工業株式会社 窒化物半導体基板の製造方法
JP4720125B2 (ja) * 2004-08-10 2011-07-13 日立電線株式会社 Iii−v族窒化物系半導体基板及びその製造方法並びにiii−v族窒化物系半導体
JP4556983B2 (ja) * 2007-10-03 2010-10-06 日立電線株式会社 GaN単結晶基板
JP4888377B2 (ja) * 2007-12-22 2012-02-29 日立電線株式会社 窒化物半導体自立基板
KR100982993B1 (ko) * 2008-10-14 2010-09-17 삼성엘이디 주식회사 Ⅲ족 질화물 반도체의 표면 처리 방법, ⅲ족 질화물 반도체및 그의 제조 방법 및 ⅲ족 질화물 반도체 구조물
JP6026188B2 (ja) * 2011-09-12 2016-11-16 住友化学株式会社 窒化物半導体結晶の製造方法
JP5587848B2 (ja) * 2011-10-11 2014-09-10 日本電信電話株式会社 半導体積層構造の製造方法
JP6510413B2 (ja) * 2013-09-11 2019-05-08 国立大学法人東京農工大学 窒化物半導体結晶、製造方法および製造装置

Also Published As

Publication number Publication date
JP2019112268A (ja) 2019-07-11

Similar Documents

Publication Publication Date Title
JP6810406B2 (ja) 窒化物半導体テンプレートの製造方法
US10978294B2 (en) Semi-insulating crystal, N-type semiconductor crystal and P-type semiconductor crystal
TW201202489A (en) Manufacturing method of nitride-based compound semiconductor substrate and nitride-based compound semiconductor free-standing substrate
JP2007119325A (ja) Iii族窒化物結晶およびその成長方法
WO2018159646A1 (ja) 窒化物半導体基板の製造方法および窒化物半導体基板
JP6951236B2 (ja) GaN基板およびその製造方法
JP2018070440A5 (ja)
JP5045955B2 (ja) Iii族窒化物半導体自立基板
JP5294290B2 (ja) 窒化ガリウム単結晶厚膜の製造方法
JP7044309B2 (ja) 窒化物半導体テンプレートおよび窒化物半導体デバイス
JP6998798B2 (ja) GaN積層体およびその製造方法
WO2019225112A1 (ja) Iii族窒化物半導体基板及びその製造方法
KR100589536B1 (ko) GaN계 화합물 반도체 결정의 제조 방법
JP2005183524A (ja) エピタキシャル基板、エピタキシャル基板の製造方法および転位低減方法
JP2002293697A (ja) GaNエピタキシャル層の成長方法
TW201833369A (zh) 氮化鋁(AlN)的成長方法
JP6978241B2 (ja) GaN基板
JP2019073425A (ja) GaN基板
JP7401182B2 (ja) GaN積層体およびその製造方法
KR101006701B1 (ko) 금속실리사이드 시드층에 의한 단결정 박막 및 그 제조방법
JP6781058B2 (ja) 窒化物半導体基板の製造方法
JP2010150109A (ja) 窒化物単結晶およびその製造方法
KR20080065347A (ko) 단결정 질화물 막의 성장 방법
TW575898B (en) Growth method of epitaxy layer
JP2009147395A (ja) Iii族窒化物薄膜の形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210924

R150 Certificate of patent or registration of utility model

Ref document number: 6951236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350