JP6947024B2 - 溶銑脱硫方法 - Google Patents

溶銑脱硫方法 Download PDF

Info

Publication number
JP6947024B2
JP6947024B2 JP2017254217A JP2017254217A JP6947024B2 JP 6947024 B2 JP6947024 B2 JP 6947024B2 JP 2017254217 A JP2017254217 A JP 2017254217A JP 2017254217 A JP2017254217 A JP 2017254217A JP 6947024 B2 JP6947024 B2 JP 6947024B2
Authority
JP
Japan
Prior art keywords
hot metal
slag
mass
concentration
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017254217A
Other languages
English (en)
Other versions
JP2019119904A (ja
Inventor
健夫 井本
健夫 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017254217A priority Critical patent/JP6947024B2/ja
Publication of JP2019119904A publication Critical patent/JP2019119904A/ja
Application granted granted Critical
Publication of JP6947024B2 publication Critical patent/JP6947024B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、環境規制上使用が困難なCaF2を用いずに、溶銑段階で行う溶銑脱硫方法に関する。
鋼製品中の硫黄分は、偏析による強度劣化やHIC脆性による遅れ破壊などの起因となる。このため、溶鉄段階で目的別鋼種に適応したレベル以下に脱硫処理を実施して鋳造工程にて連続鋳片などの鋼塊半製品にする必要がある。溶鉄中の硫黄分は、高炉工程にてコークスで鉄鉱石を還元する際に、コークス原料である石炭中に含有される硫黄分が溶銑へ混入したり、固体還元法であるRHF還元ペレット製造中の炭材中の硫黄分が混入したり、溶鉄の熱裕度を確保するために昇熱燃料として用いる炭材やタイヤ屑、重油などに含有される硫黄分が混入したりすることによって含有される。
ここで、溶銑段階では溶銑中に炭素を多く含有し、炭素は溶存硫黄の活量を高め、酸素活量を低下させる作用を有する。したがって、脱硫処理を実施する場合、溶銑段階で実施する溶銑脱硫が効率の良い方法として広く実施されている。このとき、脱硫フラックスには、下記(1)式の反応が有効であることから、CaOを多く含むものを用いることが一般的である。
(CaO)+[S]→(CaS)+[O] ・・・・・(1)式
なお、(1)式中の括弧()は、フラックス(または精錬スラグ)中の物質を示し、括弧[]は、溶鉄中の溶存物質を示す。また、CaF2は、CaOの活量を低下させること無く、滓化性を高めると共に低粘性化に効果が大きい。そこで、この脱硫反応を有利に進行させるために、CaF2の添加が極めて有効であることが知られている。ところが、脱硫処理後に発生するスラグ中にCaF2起因のフッ素が含有されることから、土木用材料などとしての副産物販売に際して環境基準を満たさない極めて付加価値の低いスラグができてしまう。このため、CaF2を用いないフラックスによる溶銑脱硫処理を行う技術が多く開発されてきた。
特許文献1においては、溶銑脱硫処理に対して添加するフラックスをCaOにアルミナと金属Alとの混合物を添加する手段が示されており、その実施形態の説明には金属Al源として安価なアルミ灰の利用方法も記載されている。この方法においては、高価な金属Alを用いるか、必要に応じて安価な金属Al源としてアルミ灰を用いるが、ショットAlなどの金属Alは極めて高価であるという問題がある。また、アルミ灰を用いる際にはAlN窒化物による窒素ピックアップ対策を施したり、アルミ灰含有物スラグを副産物とする場合に留意する必要があるアンモニア臭発生の回避策を施したりする必要がある等の課題を伴う。
特許文献2には、塩基度(CaO/SiO2)が3.5以上の高塩基度で、フラックス中のCaO分に対して2−7質量%のFeOを添加した溶銑脱硫方法が記載されており、その中で、アルミナ分を2〜20質量%含有させる手段の有効性なども記載されている。しかしながら、SiO2は、フラックスの粘性を網目構造作用で高め、スラグ中物質移動速度を低下させるが、このSiO2分のフラックス全量中の上限が特許文献2には規定されておらず、一方で、粘性低減と滓化促進作用とがある酸化鉄(FeO)濃度が全CaO濃度の7質量%以下に限定されており、CaF2代替作用としての粘性低減、滓化促進効果には、なお改善の余地が残るものであった。
更に、特許文献3には、電気炉内の溶鉄に対して炭化水素ガスを供給する手段が記載されている。炭化水素ガスを供給して得られた処理後の溶鉄は、炭化水素ガスを用いない比較例よりも硫黄分が著しく低いとしている。これは、天然ガスなどの炭化水素ガス中の水素分が高温で作用してH2S分子として気化脱硫された効果であるものと推察できる。しかしながら、高価な炭化水素ガスを多量に使用する必要性がある。
特開2008−50659号公報 特開2003−253315号公報 特開2016−108575号公報
前述した特許文献1〜3に記載の手段を用いた脱硫処理ではCaF2を用いていないが、金属Alや炭化水素ガスなど高価なものが必要であったり、スラグの後処理面で課題が発生したり、CaF2代替作用としては効果が不十分であったりするという課題がある。
本発明は前述の問題点を鑑み、溶銑段階の処理で、CaF2を用いることなく、低コストでかつ後処理の考慮を不要にした反応効率の高い溶銑脱硫方法を提供することを目的とする。
即ち、本発明の要旨とするところは以下のとおりである。
(1)精錬スラグの組成を、CaO濃度が35〜60質量%、Al23/CaO(質量濃度比)が0.5〜0.8、酸化鉄濃度が6質量%以上、SiO2濃度が1.2質量%以上5質量%以下とし、溶銑温度を1360℃以上として脱硫処理を行うことを特徴とする溶銑脱硫方法。
(2)前記脱硫処理後の溶銑中のSi濃度が0.2質量%以上であることを特徴とする上記(1)に記載の溶銑脱硫方法。
(3)前記脱硫処理は直流電気炉で行う処理であり、
前記直流電気炉の中空形状の上部電極から、前記精錬スラグを形成するためのフラックスをアークに向けて添加することを特徴とする上記(1)又は(2)に記載の溶銑脱硫方法。
本発明によれば、溶銑段階の処理で、CaF2を用いることなく、低コストでかつ後処理の考慮を不要にした反応効率の高い溶銑脱硫方法を提供することが可能となる。
本発明の実施形態として、直流電気炉を用いて実施する様態を模式的に示した図である。 本発明の効果を検証する実験結果において、精錬スラグの組成の影響を示した図である。
以下、本発明の実施形態について、図1を参照して説明する。
図1は、本実施様態に係る溶銑脱硫方法の例を説明するための図である。まず、図1に示す直流電気炉中に直接還元鉄(固体炭素と鉄鉱石を主成分に混合したブリケットの加熱によって製造:還元率:75−80%,粒度:10−30mm,主な脈石:SiO2,Al23など)を主原料とし、炭材を配合し、直流電流で加熱溶融して還元溶解処理を行い、溶銑を製造する。
ブリケット中には未還元の酸化鉄と共に、脈石にはSiO2が含有されており、ブリケットが溶解して酸化鉄とSiO2の一部とが、アーク4によって極めて高温となり、比較的容易に炭素還元されて、酸化鉄は溶鉄分として、また、SiO2の一部は溶銑中Siとして還元溶解される。
この還元溶解処理を終えた後には、未還元のまま残留した酸化鉄や脈石分のまま残留したAl23、SiO2、前チャージの残留物や耐火物溶損などによって混入するマグネシア質などからなるスラグが存在する。この還元溶解処理によって生成されたスラグは、その後の脱硫処理に重要となる精錬スラグの成分調整に悪影響を及ぼすことから、本実施形態での操業においては、精錬用フラックスを添加する前に、不図示の傾動機構により炉体1を傾動し、炉壁上部に設けた除滓孔9から除滓樋10を通してスラグパン11に適宜排滓を実施している。
次に、本発明に係る溶銑脱硫方法の詳細について説明する。
図1に示すように、直流電気炉は炉体1と上部電極2と下部水冷電極3とによって構成されており、溶銑脱硫処理では、この直流電気炉には、前記直接還元鉄と炭材との配合物にアーク4を照射溶解して製造された溶銑5が収容され、その上部に精錬スラグ6が浮遊し、アーク4によって加熱及び撹拌されながら脱硫反応が進行する。精錬用フラックスはホッパー7から供給されるが、切り替え装置8の制御によって、溶銑5上へ直接フラックスを添加、もしくは、中空電極である上部電極2(黒鉛製外形150mm、40mm中空形状)を通してアーク4中にフラックスを添加できる。
なお、本発明において、溶銑5と精錬スラグ6とを混合攪拌するために不図示の底吹き羽口から底吹きガスを吹き込んでもよい。本発明においてアーク4は必須ではないが、アーク4による加熱を行わない間は、底吹きガスの吹き込みが必須である。
精錬スラグ6の主原料としては、生石灰や市販のアルミナを用いることで、高い反応効率を得ることができるが、製鋼工場のLF処理等で造滓剤として用いられたカルシウムアルミネートを主成分とするFレス造塊滓などをベースとして、必要に応じて脱炭滓や生石灰、アルミナ系煉瓦屑などを添加することで、安価でかつスラグ量を抑えた処理を実施することができる。
本発明においては、CaF2を用いない溶銑脱硫処理を行う。(1)式の脱硫反応に必須な脱硫剤中のCaO活量を充分確保するために、精錬スラグ中のCaO濃度を35質量%以上とする。また、滓化不良による反応不良を回避するために、精錬スラグ中のCaO濃度を60質量%以下に規定する。
更に、Al23の存在によってCaOの滓化を確保するために、精錬スラグ中のAl23/CaO(質量濃度比)を0.5以上とする。一方、Al23/CaO(質量濃度比)が大きすぎると、相対的にCaOの比率が小さくなってCaOの活量が低下してしまうことから、精錬スラグ中のAl23/CaO(質量濃度比)を0.8以下としている。
また、CaO及びAl23によって生成されるカルシウムアルミネートは、溶鋼脱硫温度である1600〜1700℃程度の範囲では多量の液相率を有する滓化状態が確保できる。そのため、炭素濃度の低い溶鋼の2次精錬などでは、そのままカルシウムアルミネートを用いることが有効であるが、主に1450℃以下の範囲で実施される溶銑脱硫処理では、そのままカルシウムアルミネートのみを用いると、複合酸化物の固体が殆どで未滓化による脱硫不良が生じてしまう。そこで本発明では、滓化を促進させるために、精錬スラグ中の酸化鉄濃度を6質量%以上含有させる必要がある。ここでいう酸化鉄濃度は、スラグ中の二価の酸化鉄濃度と三価の酸化鉄濃度との合計で規定したものである。また、酸化鉄はサルファイドキャパシティーを増加させる効果もあり、反応促進効果を有する。酸化鉄濃度に上限は規定しないが、処理温度や、溶銑中炭素、ケイ素濃度などによっては、酸化鉄の濃度が高くなると、スラグメタル界面の酸素ポテンシャルを上げて(1)式中の界面酸素の活量が増大することによって界面化学反応抵抗が大きくなり、脱硫反応に悪影響を及ぼす場合がある。そのため、酸化鉄濃度は25質量%以下とすることが好ましい。
一方、滓化を促進させるためには、SiO2の添加が有効であることが知られている。ところが、本発明者らの実験調査の結果、精錬スラグ中のSiO2濃度が5質量%を超える範囲では、脱硫効率を低下させることを知見した。これは、網目構造を有するSiO2が精錬剤の粘性を高めてスラグ中境膜相の物質移動を妨げる可能性があると考えている。従って、本発明では精錬スラグ中のSiO2濃度を5質量%以下と規定している。上記の溶銑脱硫に良好なスラグを用いることによって、本発明者による実験研究の結果、1360℃以上の現実的な溶銑脱硫温度において良好な処理が実施できることを知見した。なお、1360℃未満では、本発明に係るスラグ組成に調整しても添加したフラックスの滓化が不十分で、所望する脱硫結果を得られない場合が発生する。
また、図2には、処理温度1380±20℃、処理後の精錬スラグ中のAl23/CaO(質量濃度比)が0.57〜0.63の範囲の条件で、精錬スラグ中の酸化鉄濃度を変化させた一連の実験で得られた到達硫黄濃度の結果を示す。本実験において、酸化鉄濃度は、採取したスラグサンプルを粉砕したものを湿式の化学分析によって求めた。酸化鉄濃度は、メタリックFe分以外のものとして、二価のFeはFeOとして換算し、三価のFeはFe23として換算したFeOとFe23との合計である。また、サンプル中のFe34(マグネタイト)として存在するものは、FeOとFe23との複合酸化物であるため、上記換算によって酸化鉄濃度として含まれる。
図2に示した結果より、酸化鉄濃度が6質量%以上の範囲で優れた脱硫濃度が得られるといえる。また、SiO2濃度が5質量%を超えると本発明の効果が得られないことが分かる。
以上のように本実施形態では、直流電気炉で溶銑脱硫処理を行う例について説明した。一方、本発明は、直流電気炉以外にも、トーピードカーや溶銑鍋を用いた機械攪拌、三相交流や高周波型各種電気炉等を用いても実施可能であり、対象とする溶銑も、高炉溶銑や、溶融還元法、各種スクラップ溶解法などによって製造された溶鉄やそれらの混合物で、一般的には炭素を2質量%以上含有する溶鉄を対象にして実施することができる。本発明では、溶銑温度を1360℃以上で脱硫処理を行うため、電気炉で直接還元鉄を溶解・還元した後の溶銑を対象とすることが好適な実施態様と言える。
また、高炉から出銑される溶銑にはSiが多く含まれていることが良く知られているが、電気炉で直接還元鉄が溶解された場合にも、前述のように脈石成分として直接還元鉄にSiO2が多く含まれており、酸化鉄と共に還元されるため、不可避的に溶銑にはSiが多く混入する。精錬スラグ中に酸化鉄が多く含まれると、スラグメタル界面の酸素活量を高め、脱硫反応に影響を及ぼす。(1)式の反応を促進させるためには、溶銑中の炭素による酸素活量低減能に加えて、溶銑中のSiにより界面の酸素活量を低減する作用があることが好ましい。このような作用は溶銑中のSiが0.2質量%以上であると特に顕著である。したがって、Siが0.2質量%以上含まれている溶銑を対象とするか、または、脱硫処理前もしくは脱硫処理中にフェロシリコンなどの金属源を添加して、処理後の溶銑中のSi濃度を0.2質量%以上に制御することが好ましい。
また、図1に示すような中空の上部電極2を有する直流電気炉では、フラックスを上部電極2の中から添加することによって、一般的には2000℃超のアーク4の位置へフラックスを添加することができる。これにより、フラックスの滓化促進、粘性低下により良好な脱硫スラグを早期に形成させる効果が大きいため、好ましいといえる。
次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
前述の直接還元鉄と安価な炭材としてタイヤ屑とを用い、3MVAの直流電気炉で溶解して溶銑4t/chの溶銑を製造した。その後、直流電気炉を傾動させてスラグを除滓し、フラックスを添加して精錬スラグを生成させて、脱硫処理を行った。フラックスはLF造塊滓を主成分に酸化鉄として鉄鉱石を用い、比較例も含めた実験水準毎に必要なフラックスの組成を調整することで、精錬スラグの組成を調整した。フラックスの組成を調整する際には、必要に応じてアルミナ煉瓦屑、生石灰、硅石、蛍石を用いた。また、フラックスの組成を調整する際に予め3mmアンダーに粉砕した混合品を実験水準毎に使用した。フラックス添加前の溶銑の成分は、質量%で[C]:3.5〜4.0%、[Si]<0.1%(高Si水準では金属Si添加で調整)、[Mn]<0.05%、[P]:0.07〜0.11%で、[S]:0.20%±0.02%であった。
添加したフラックスの量は60kg/chで、フラックス添加後の処理時間は12分であり、処理前後と処理開始後6分とで溶銑温度を消耗型熱電対で測定した。予め目標温度に一定となるようにアークの出力を制御していたことから、目標温度に対しておおむね±20℃で安定した。処理後に溶銑サンプルとスラグサンプルとを汲み上げ式ステンレスサンプラーで採取して実験後結果として整理した。また、フラックスを添加してから2分後にも精錬スラグのサンプルを採取し、一部の条件を除いて各実験において2分間で滓化進行が完了していることが確認できた。主な実験結果の一覧を表1に示す。なお、実施例4では、脱硫処理中は常に溶銑中[Si]が0.2質量%以上となるように金属Siを添加した。
Figure 0006947024
まず、比較例8は、CaF2を使用した例であり、処理後の溶銑中[S]が0.0072質量%で、処理の目標値である0.01質量%以下を満足するものが得られた。しかしながら、処理後の精錬スラグは高濃度のFを含有するために、一般土木用やセメントには適用できない埋め立て処分相当品であり、コスト的には不利な操業であったといえる。
本発明の基本条件である実施例1では、処理後の溶銑中[S]が0.0076質量%であり、処理の目標値である0.01質量%以下を満足するものが得られた。また、比較例8と比べても、CaF2を用いた場合と同等に脱硫効果が得られた。
また、実施例2は精錬スラグのCaO濃度が上限値付近の例であり、実施例3は精錬スラグのCaO濃度が下限値付近の例である。いずれにおいても、処理後の溶銑中[S]が処理の目標値である0.01質量%以下を満足するものが得られたことを確認できた。
実施例4は脱硫処理中に溶銑中[Si]を0.2質量%以上に制御した例であり、処理後の溶銑中[S]は0.005質量%を下回る非常に良好な結果が得られた。
実施例5はフラックスを添加する際に、直流電気炉の特性を活かして上部電極の中空からフラックスを添加して処理した例であり、処理後の溶銑中[S]は極めて良好な結果が得られた。
一方、比較例1〜7はそれぞれ、前記規定範囲を外れた条件における実験結果である。
比較例1は、精錬スラグの酸化鉄濃度が本発明の規定範囲より低い条件であったが、低粘性での滓化促進作用が不足していたため、処理後の溶銑中[S]が0.01質量%よりも大きくなり、目標とするS濃度が得られなかった。
比較例2は、精錬スラグのSiO2濃度が本発明の規定範囲より高い条件であったが、精錬スラグの粘性が高かったことから反応速度が低下し、所定時間では目標とするS濃度に到達しなかった。
比較例3は、精錬スラグのAl23/CaO(質量濃度比)が本発明の規定範囲より高い条件であったが、相対的にCaO活量が低下して脱硫駆動力が不足したため、目標とするS濃度の溶銑が得られなかった。
比較例4は、精錬スラグのAl23/CaO(質量濃度比)が本発明の規定範囲より低い条件であったが、アルミナによるCaO滓化作用が不十分で、未滓化石灰の残留が見られた。したがって、滓化したスラグボリュームが得られなかったことから目標とするS濃度の溶銑が得られなかった。
比較例5は、精錬スラグのCaO濃度が本発明の規定範囲より高い条件であったが、滓化不良が要因となり目標とするS濃度の溶銑が得られなかった。
比較例6は、精錬スラグのCaO濃度が本発明の規定範囲より低い条件であったが、CaO濃度が低いことからCaO活量が不足し、目標とするS濃度の溶銑が得られなかった。
比較例7は、本発明の規定温度よりも低温で脱硫処理を行った結果であるが、低温処理によって添加したフラックスの滓化が十分に進行せず、かつ、(1)式で規定する吸熱反応の進行が妨げられたため、目標とするS濃度の溶銑が得られなかった。
本発明によって、高価な副剤の使用を伴わず、従来技術よりも反応効率の高い溶銑脱硫処理を実施することが可能となり、副剤(精錬剤)コストの低減、それに伴うスラグ排出量の削減、生産性の向上など工業的利用価値の高い操業が実施できるなど工業的利用価値の高い操業が実施できる。
1 炉体
2 上部電極
3 下部水冷電極
4 アーク
5 溶銑
6 精錬スラグ
7 ホッパー
8 切り替え装置
9 除滓孔
10 除滓樋
11 スラグパン

Claims (3)

  1. 精錬スラグの組成を、CaO濃度が35〜60質量%、Al23/CaO(質量濃度比)が0.5〜0.8、酸化鉄濃度が6質量%以上、SiO2濃度が1.2質量%以上5質量%以下とし、溶銑温度を1360℃以上として脱硫処理を行うことを特徴とする溶銑脱硫方法。
  2. 前記脱硫処理後の溶銑中のSi濃度が0.2質量%以上であることを特徴とする請求項1に記載の溶銑脱硫方法。
  3. 前記脱硫処理は直流電気炉で行う処理であり、
    前記直流電気炉の中空形状の上部電極から前記精錬スラグを形成するためのフラックスをアークに向けて添加することを特徴とする請求項1又は2に記載の溶銑脱硫方法。
JP2017254217A 2017-12-28 2017-12-28 溶銑脱硫方法 Active JP6947024B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017254217A JP6947024B2 (ja) 2017-12-28 2017-12-28 溶銑脱硫方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017254217A JP6947024B2 (ja) 2017-12-28 2017-12-28 溶銑脱硫方法

Publications (2)

Publication Number Publication Date
JP2019119904A JP2019119904A (ja) 2019-07-22
JP6947024B2 true JP6947024B2 (ja) 2021-10-13

Family

ID=67307699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017254217A Active JP6947024B2 (ja) 2017-12-28 2017-12-28 溶銑脱硫方法

Country Status (1)

Country Link
JP (1) JP6947024B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150194B2 (ja) * 2002-03-05 2008-09-17 新日本製鐵株式会社 溶銑の機械攪拌による脱硫方法
JP4453532B2 (ja) * 2004-12-06 2010-04-21 住友金属工業株式会社 溶銑の脱硫方法
JP5605337B2 (ja) * 2010-09-15 2014-10-15 新日鐵住金株式会社 溶銑の脱硫剤及び脱硫方法

Also Published As

Publication number Publication date
JP2019119904A (ja) 2019-07-22

Similar Documents

Publication Publication Date Title
JP5408369B2 (ja) 溶銑の予備処理方法
JP5326475B2 (ja) クロム含有スラグからのクロム回収方法
JP6164151B2 (ja) 転炉型精錬炉による溶鉄の精錬方法
JP4734167B2 (ja) 製鋼スラグの処理方法
JP6230531B2 (ja) 金属クロムの製造方法
JP4249417B2 (ja) 鉄浴でのスラグ又はスラグ混合物の処理方法
JP2009102697A (ja) 溶鋼の製造方法
JP2006206957A (ja) マンガン系合金鉄製造時に発生するスラグからのマンガン回収方法
JP2003520899A5 (ja)
JP5589688B2 (ja) 溶銑の製造方法
JP7364899B2 (ja) スラグ還元を伴った冷鉄源の溶解方法
JP5408379B2 (ja) 溶銑の予備処理方法
JP6947024B2 (ja) 溶銑脱硫方法
JP2004520478A (ja) フェロアロイの製造
JP2006009146A (ja) 溶銑の精錬方法
JP2004143492A (ja) 極低燐ステンレス鋼の溶製方法
JP4714655B2 (ja) 含クロム溶鉄の脱硫方法
JP7531274B2 (ja) 副生成物の処理方法
JP7167704B2 (ja) 溶銑脱硫方法
JP4329724B2 (ja) 転炉スクラップ増配方法
KR20210079354A (ko) 가탄재 및 그것을 사용한 가탄 방법
JP4639943B2 (ja) 溶銑の脱硫方法
JP5447554B2 (ja) 溶銑の脱りん処理方法
JP4224197B2 (ja) 反応効率の高い溶銑脱燐方法
JP5481899B2 (ja) 溶銑の脱硫剤及び脱硫処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210830

R151 Written notification of patent or utility model registration

Ref document number: 6947024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151