JP6946557B2 - 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック - Google Patents

電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック Download PDF

Info

Publication number
JP6946557B2
JP6946557B2 JP2020519886A JP2020519886A JP6946557B2 JP 6946557 B2 JP6946557 B2 JP 6946557B2 JP 2020519886 A JP2020519886 A JP 2020519886A JP 2020519886 A JP2020519886 A JP 2020519886A JP 6946557 B2 JP6946557 B2 JP 6946557B2
Authority
JP
Japan
Prior art keywords
catalyst
core
electrode
carrier
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020519886A
Other languages
English (en)
Other versions
JPWO2019221168A1 (ja
Inventor
聖崇 永森
聖崇 永森
中村 葉子
葉子 中村
智照 水崎
智照 水崎
安宏 関
安宏 関
五十嵐 寛
寛 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Publication of JPWO2019221168A1 publication Critical patent/JPWO2019221168A1/ja
Application granted granted Critical
Publication of JP6946557B2 publication Critical patent/JP6946557B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Description

本発明は、コアシェル構造を有する電極用触媒に関する。より詳しくは、ガス拡散電極に好適に使用される電極用触媒に関し、燃料電池のガス拡散電極により好適に使用される電極用触媒に関する。
また本発明は、上記電極用触媒粒子を含む、ガス拡散電極形成用組成物、膜・電極接合体、及び、燃料電池スタックに関する。
固体高分子形燃料電池(Polymer Electrolyte Fuel Cell:以下、必要に応じて「PEFC」という)は、燃料電池自動車、家庭用コジェネレーションシステムの電源としての研究開発が行われている。
PEFCのガス拡散電極に使用される触媒には、白金(Pt)等の白金族元素の貴金属粒子からなる貴金属触媒が用いられている。
例えば、典型的な従来の触媒としては、導電性カーボン粉末上にPt微粒子を担持させた触媒粒子の粉体である「Pt担持カーボン触媒」(以下、必要に応じ「Pt/C触媒」という)が知られている。
PEFCの製造コストの中でPt等の貴金属触媒が占めるコストの割合は大きく、PEFCの低コスト化、PEFCの普及に向けた課題になっている。
これらの研究開発の中で、白金の使用量を低減するため、従来、非白金元素からなるコア部とPtからなるシェル部から形成されるコアシェル構造を有する触媒粒子(以下、必要に応じ「コアシェル触媒粒子」という)の粉体(以下、必要に応じ「コアシェル触媒」という)が検討されており、多数の報告がなされている。
例えば、特許文献1には、パラジウム(Pd)又はPd合金(コア部に相当)がPt原子の原子的薄層(シェル部に相当)によって被覆された構成を有する粒子複合材(コアシェル触媒粒子に相当)が開示されている。更に、この特許文献1には、実施例としてコア部がPd粒子で、シェル部がPtからなる層の構成を有するコアシェル触媒粒子が記載されている。
一方、電極用触媒の担体としては、内部に細孔を多く有する中空カーボン、当該中空カーボンと比較して内部の細孔が少ない中実カーボンがあり、それぞれの特徴を活かした性能向上のための検討がなされている。
例えば、特許文献2には、担体として中空カーボンを採用した検討例が開示されている。また、特許文献3には、担体として中実カーボンを採用した検討例が開示されている。例えば、特許文献2では、図11に示すように、平均粒子径が20〜100nmである多孔質担体(中空カーボン)220の空孔直径4〜20nmの空孔(一次空孔、メソ孔)P220の空孔容積と空孔分布のモード径とが所定範囲に制御され、当該担体220の一次空孔(メソ孔)P220内に触媒粒子230が担持された電極用触媒200の構成が開示されている。
特許文献2では、これにより、一次空孔(メソ孔)P220内に存在する触媒粒子230表面への高分子電解質の吸着が防止され、触媒の有効反応表面積の低下を防止しつつ、ガス輸送性を十分に確保することが可能となることが言及されている。更にその結果、触媒重量あたりの活性が向上し、触媒量を低減した場合であっても、優れた発電性能を示す燃料電池用触媒層が提供されうると言及されている。
また、例えば、特許文献3では、図12に示すように、中実カーボン担体222と、当該担体222に担持された白金とコバルトとの合金とを含む触媒粒子232とを有する燃料電池向けの電極用触媒が開示されている。この電極用触媒は合金における白金とコバルトとのモル比が4〜11:1であり、70〜90℃で酸処理されている。
特許文献3では、中空カーボン担体にPtCo合金を担持すると、一部のPtCo合金が中空カーボン担体の内部に包含されることになり、Coの溶出を抑制するための酸処理を行っても、担体内部に存在するPtCo合金を十分に処理することは困難とり、その結果、担体内部に存在するPtCo合金からCoが溶出しやすくなることが課題視されている。
そこで、特許文献3では、中空カーボン担体の代わりに中実カーボン担体を使用することにより、担体内部にPtCo合金が包含されることを回避できることに言及されている。更に。これにより、PtCo合金を十分に酸処理することが可能となり、Coの溶出を抑制することができることが開示されている。その結果、燃料電池の初期性能及び耐久性能を両立することが可能となるということが言及されている。
ここで、特許文献3では、中実カーボンを以下のように定義している。
即ち、特許文献3においては、中実カーボンとは、中空カーボンと比較して、カーボン内部の空隙が少ないカーボンであり、具体的は、N吸着によって求められるBET表面積とt−Pot(粒子サイズから粒子外部の表面積を算出した)による外表面積との比率(t−Pot表面積/BET表面積)が40%以上あるカーボンであるということが言及されている。
なお、特許文献3に記載の「t−Pot表面積」とは、例えば、「MCエバテック社」が2019年2月1日付けでインターネット上に公開している技術レポート「t-plot法によるミクロ細孔表面積の解析」に記載されている「tープロット(t-plot)表面積」を示すものと解される。t-plot法によるミクロ細孔表面積の解析は、窒素の吸着等温線(吸着温度:77K)から解析する方法の一つである。この方法は、吸着等温線のデータを標準等温線と比較・変換して、吸着層の厚みtと吸着量の関係をグラフにする方法である。比表面積を細孔の内部と外部に分離して数値化できることに加えて、グラフの形状から細孔の傾向を知ることができる。
また、中実カーボンの例としては、例えば、特許第4362116号に記載のカーボンを挙げることができ、具体的には、電気化学工業株式会社製のデンカブラック(登録商標)等を挙げることができることが開示されている。
なお、本件特許出願人は、上記文献公知発明が記載された刊行物として、以下の刊行物を提示する。
米国特許出願公開第2007/31722号公報 特開2013−109856号公報 WO2016/063968号公報
PEFCの普及に向けて、コアシェル触媒は、Pt使用量の低減を図ることのできる有力な触媒であるが、触媒活性の更なる向上が求められている。
特に、コアシェル構造を有する触媒粒子が、中空カーボンのメソ孔の外部よりも内部に多く担持された構成の高活性なコアシェル触媒について具体的に合成した報告はこれまでになく、コアシェル触媒については未だ改善の余地があることを本発明者らは見出した。
本発明は、かかる技術的事情に鑑みてなされたものであって、PEFCの低コスト化に寄与できる優れた触媒活性を有する電極用触媒(コアシェル触媒)を提供することを目的とする。
また、本発明は、上記電極用触媒を含む、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体(MEA)、及び、燃料電池スタックを提供することを目的とする。
本件発明者等は、コアシェル構造を有する触媒粒子が中空カーボンのメソ孔内に数多く担持された電極用触媒の構成について、触媒活性の更なる向上を実現する構成について鋭意検討を行った。
その結果、コアシェル構造を有する触媒粒子が下記の条件を満たすように担体に担持されていることが触媒活性の向上に有効であることを見出し、本発明を完成するに至った。
より具体的には、本発明は、以下の技術的事項から構成される。
即ち、本発明は、
細孔径が2〜50nmのメソ孔を有する中空カーボン担体と、前記担体上に担持される触媒粒子と、を含んでおり、
前記触媒粒子が、前記担体上に形成されるコア部と、前記コア部の表面の少なくとも一部を覆うように形成されるシェル部と、を有しており、
前記コア部にはPd(0価)が含まれており、
前記シェル部にはPt(0価)が含まれており、
前記触媒粒子は、前記担体の前記メソ孔の内部と前記メソ孔の外部の両方に担持されており、
STEM(走査型透過電子顕微鏡)を用いた電子線トモグラフィ計測により得られる三次元再構成画像を利用した前記触媒粒子の粒子径分布の解析を実施した場合に、前記メソ孔の内部に担持された前記触媒粒子の割合が50%以上である、電極用触媒を提供する。
上記のようにメソ孔の内部に担持された触媒粒子の割合が50%以上であるという条件を満たすように中空カーボン担体へコアシェル触媒の触媒粒子を担持することにより、本発明の電極用触媒はPEFCの低コスト化に寄与できる優れた触媒活性を発揮することができる。
本発明の電極用触媒が優れた触媒活性を有することについて詳細な理由は十分に解明されていない。
しかし、本発明者らは、以下のように考えている。即ち、メソ孔の内部に担持された触媒粒子の割合が50%以上であるコアシェル触媒は、従来の電極用触媒に比較して、担体のメソ孔の内部に活性の高いコアシェル構造を有する触媒粒子が比較的小さな粒子径で数多く存在することになる。
このような担体のメソ孔の内部に担持された触媒粒子は、触媒層内に存在する高分子電解質に直接接触しにくい状態で担体に担持されている。そのため、本発明の電極用触媒はPt成分の被毒による触媒活性の低下が低減され、従来の電極用触媒に比較して電極化された際に優れた触媒活性を発揮できる。また本発明の電極用触媒はPt成分の溶解も低減される。
更に、本発明の電極用触媒においては、本発明の効果をより確実に得る観点から、STEM(走査型透過電子顕微鏡)を用いた電子線トモグラフィ計測により得られる三次元再構成画像を利用した前記触媒粒子の粒子径分布の解析を実施した場合に、前記メソ孔の内部に担持された前記触媒粒子の割合が80%以上であることが好ましい。
更に、本発明の電極用触媒においては、本発明の効果を更に確実に得る観点から、STEM(走査型透過電子顕微鏡)を用いた電子線トモグラフィ計測により得られる三次元再構成画像を利用した前記触媒粒子の粒子径分布の解析を実施した場合に、下記式(1)及び(2)の条件を同時に満たしている、ことが好ましい。
D1<D2・・・(1)
(N1/N2)>1.0・・・(2)
ここで、前記式(1)及び前記式(2)中、D1は前記担体の前記メソ孔の内部に担持された前記触媒粒子のうち最大頻度を示す粒子の球相当径を示す。前記式(1)及び前記式(2)中、D2は前記担体の前記メソ孔の外部に担持された前記触媒粒子のうち最大頻度を示す粒子球相当径を示す。
また、前記式(1)及び前記式(2)中、N1は前記担体の前記メソ孔の内部に担持された前記触媒粒子のうち最大頻度を示す粒子の頻度を示す。前記式(1)及び前記式(2)中、N2は前記担体の前記メソ孔の外部に担持された前記触媒粒子のうち最大頻度を示す粒子の頻度を示す。
上述の式(1)及び式(2)の条件を同時に満たすように中空カーボン担体へコアシェル触媒の触媒粒子を担持することにより、本発明の電極用触媒はPEFCの低コスト化に寄与できる優れた触媒活性をより確実に発揮することができる。
ここで、本発明において「中空カーボン」とは、先に述べた中実カーボンと比較してカーボンの内部の空隙が多いカーボンであり、IUPACで定義されている細孔径が2〜50nmのメソ孔を有する導電性カーボンを示す。
更に、本発明の電極用触媒においては、優れた触媒活性をより確実に得る観点から、触媒粒子は、コア部がPd(0価)からなり、シェル部がPt(0)からなることが好ましい。なお、この場合、触媒粒子が優れた触媒活性を発揮しうる範囲で、コア部にはPd酸化物が含まれていてもよく、シェル部にはPt酸化物が含まれていてもよい。
また、本発明の効果をより確実に得る観点から、本発明の電極用触媒においては、中空カーボン担体がケッチェンブラックEC300Jであることが好ましい。
更に、本発明においては、この場合、中空カーボン担体(ケッチェンブラックEC300J)のBET比表面積(窒素吸着比表面積)が750〜800m/gであることが好ましい。
更に、本発明は、上述の本発明の電極用触媒が含有されている、ガス拡散電極形成用組成物を提供する。
本発明のガス拡散電極形成用組成物は、本発明の電極用触媒を含んでいるため、PEFCの低コスト化に寄与できる優れた触媒活性(分極特性)を有するガス拡散電極を容易に製造することができる。
また、本発明は上述の本発明の電極用触媒が含有されているガス拡散電極を提供する。
本発明のガス拡散電極は、本発明の電極用触媒を含んで構成されている。そのため、PEFCの低コスト化に寄与できる優れた触媒活性(分極特性)を有する構成とすることが容易となる。
更に、本発明は、上述の本発明のガス拡散電極が含まれている、膜・電極接合体(MEA)を提供する。
本発明の膜・電極接合体(MEA)は、本発明のガス拡散電極を含んでいるため、PEFCの低コスト化に寄与できる電池特性を有する構成とすることが容易となる。
また、本発明は、上述の本発明の膜・電極接合体(MEA)が含まれていることを特徴とする燃料電池スタックを提供する。
本発明の燃料電池スタックによれば、本発明の膜・電極接合体(MEA)を含んでいることから、PEFCの低コスト化に寄与できる電池特性を有する構成とすることが容易となる。
本発明によれば、PEFCの低コスト化に寄与できる優れた触媒活性を有する電極用触媒が提供される。
また、本発明によれば、かかる電極用触媒を含む、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体(MEA)、燃料電池スタックが提供される。
本発明のMEAの好適な一形態を示す模式断面図である。 図1に示したMEAのカソード触媒層及びアノード触媒層のうちの少なくとも一方に含まれるコアシェル触媒の好適な一形態を示す模式断面図である。 図2に示したコアシェル触媒の概略構成を示す拡大模式断面図である。 図3に示したコアシェル触媒の別の好適な一形態を示す模式断面図である。 本発明のMEAの別の好適な一形態を示す模式断面図である。 本発明のCCMの好適な一形態を示す模式断面図である。 本発明のCCMの別の好適な一形態を示す模式断面図である。 本発明のGDEの好適な一形態を示す模式断面図である。 本発明のGDEの別の好適な一形態を示す模式断面図である。 本発明の燃料電池スタックの好適な一実施形態を示す模式図である。 従来の電極用触媒を示す模式断面図である。 従来の電極用触媒を示す模式断面図である。 比較例1の電極用触媒を示す模式断面図である。 実施例1の電極用触媒のSTEMを用いた3D−電子線トモグラフィ計測条件(ボリュームサイズ)を示すSTEM像である。 実施例1の触媒の3D-STEM像(三次元再構成像)である。 図15に示した実施例1の触媒の3D-STEM像の画像解析により得られた触媒粒子のうちの内部粒子の粒径分布を示すグラフである。 図15に示した実施例1の触媒の3D-STEM像の画像解析により得られた触媒粒子のうちの外部粒子の粒径分布を示すグラフである。 実施例2の触媒のSTEMを用いた3D−電子線トモグラフィ計測条件(ボリュームサイズ)を示すSTEM像である。 実施例2の触媒の3D-STEM像(三次元再構成像)である。 比較例1の触媒のSTEMを用いた3D−電子線トモグラフィ計測条件(ボリュームサイズ)を示すSTEM像である。 比較例1の触媒の3D-STEM像(三次元再構成像)である。 図21に示した比較例1の触媒の3D-STEM像の画像解析により得られた触媒粒子のうちの内部粒子の粒径分布を示すグラフである。 図21に示した比較例1の触媒の3D-STEM像の画像解析により得られた触媒粒子のうちの外部粒子の粒径分布を示すグラフである。 実施例1と実施例2の触媒の粒子径分布の比較結果を示すグラフである。 実施例2の触媒のSTEM像(明視野)である。
以下、適宜図面を参照しながら、本発明の好適な実施形態について詳細に説明する。
<膜・電極接合体(MEA)>
図1は、本発明のMEAの好適な一形態を示す模式断面図である。
図1に示すMEA10は、互いに対向した状態で配置された平板状の2つのガス拡散電極(カソード1及びアノード2)と、カソード1とアノード2との間に配置された高分子電解質膜(Polymer Electrolyte Membrane、以下、必要に応じて「PEM」という)3とを備えた構成を有している。
このMEA10の場合、カソード1及びアノード2のうちのすくなくとも一方に後述するコアシェル触媒が含有された構成を有している。
MEA10は、カソード1、アノード2、及び、PEM3を図1に示すように積層させた後、圧着することにより製造することができる。
<ガス拡散電極(GDE)>
ガス拡散電極であるカソード1は、ガス拡散層1gdと、ガス拡散層1gdのPEM3側の面に形成された触媒層1cと、を備えた構成を有している。更に、カソード1はガス拡散層1gdと触媒層1cとの間に配置された撥水層(Micro Porous Layer、以下、必要に応じて「MPL」という)1mを有している。
ガス拡散電極であるアノード2もカソード1と同様に、ガス拡散層2gdと、ガス拡散層2gdのPEM3側の面に形成された触媒層2cと、ガス拡散層2gdと触媒層2cとの間に配置されたMPL2mを備えた構成を有している。
(触媒層(CL))
カソード1において、触媒層1cは、ガス拡散層1gdから送られる空気(酸素ガス)と、アノード2からPEM3中を移動してくる水素イオンとから水が生成する反応が進行する層である。
また、アノード2において、触媒層2cは、ガス拡散層2gdから送られる水素ガスから水素イオンと電子を生成する反応が進行する層である。
カソード1の触媒層1c及びアノード2の触媒層2cのうちの少なくとも一方には本発明の電極用触媒に係るコアシェル触媒が含まれている。
(本発明の電極用触媒に係るコアシェル触媒)
以下、図2〜図4用いて、コアシェル触媒について説明する。
図2は、図1に示したMEA10のカソード触媒層1c及びアノード触媒層2cのうちの少なくとも一方に含まれるコアシェル触媒の好適な一形態を示す模式断面図である。また、図3は、図2に示したコアシェル触媒20の概略構成を示す拡大模式断面図である。
図2及び図3に示すように、コアシェル触媒20は、中空カーボン担体である担体22と、担体22上に担持された、いわゆる「コアシェル構造」を有する触媒粒子23とを含んでいる。
更に、触媒粒子23は、コア部24と、コア部24の表面の少なくとも一部を被覆するように形成されたシェル部26とを有している。
このようにコアシェル触媒20は、担体22に担持された触媒粒子23を有しており、この触媒粒子23は、コア部24を核(コア)とし、シェル部26がシェルとなってコア部24の表面の少なくとも一部を被覆している構造(コアシェル構造)を有している。
また、コアシェル触媒20は、コア部の構成元素(化学組成)と、シェル部の構成元素(化学組成)は異なる構成となっている。
コアシェル触媒20の構成は、触媒粒子23のコア部24の表面の少なくとも一部の上にシェル部26が形成されていればよく、特に限定されるものではない。
例えば、優れた触媒活性と耐久性とをより確実に得る観点からは、図3に示すように、コアシェル触媒20は、シェル部26によってコア部24の表面の略全域が被覆された状態であることが好ましい。
図4は、図3に示したMEA10のカソード触媒層1c及びアノード触媒層2cのうちの少なくとも一方に含まれるコアシェル触媒の別の好適な一形態20Aを示す模式断面図である。
図4に示したコアシェル触媒20Aは、コア部24と、コア部24の表面の一部を被覆するシェル部26とから構成される触媒粒子23aとを有している。
このように、本発明の効果を得られる範囲において、コアシェル触媒20Aは、シェル部26によってコア部23の表面の一部が被覆され、コア部23の表面の一部(コア部露出面24s)が露出した状態であってもよい。
即ち、本発明の効果を得られる範囲において、コアシェル触媒20Aは、コア部24の表面の少なくとも一部にシェル部26が形成されていればよい。
また、本発明の効果を得られる範囲において、コアシェル触媒は、担体上に、「シェル部によってコア部の表面の略全域が被覆された状態のコア部及びシェル部の複合体」と、「シェル部によってコア部の表面の一部が被覆された状態のコア部及びシェル部の複合体」とが混在した状態であってもよい。
例えば、図3及び図4に示したコアシェル触媒20A及び20Bが混在した状態であってもよい。
また、本発明の効果を得られる範囲において、図2〜図4に示したコアシェル触媒20、20Aには、担体22上に、図2〜図4に示した触媒粒子23、23aのうちの少なくとも1種に加えて、「コア部がシェル部によって被覆されていないコア部のみからなる粒子」が担持された状態が含まれていてもよい(図示せず)。
更に、本発明の効果を得られる範囲において、図2〜図4に示したコアシェル触媒20、20Aには、担体22上に、図2〜図4に示した触媒粒子23、23aのうちの少なくとも1種に加えて、「シェル部の構成元素のみからなる粒子」がコア部に接触しない状態で担体に担持された状態が含まれていてもよい(図示せず)。
また、本発明の効果を得られる範囲において、図2〜図4に示したコアシェル触媒20、20Aには、担体22上に、図2〜図4に示した触媒粒子23、23aのうちの少なくとも1種に加えて、「シェル部に被覆されていないコア部のみの粒子」と、「シェル部の構成元素のみからなる粒子」とが、それぞれ独立に担体22に担持された状態が含まれていてもよい(図示せず)。
また、図2〜図4に示したコアシェル触媒20、20Aは、本発明の効果をより確実に得る観点から以下の条件を満たしていることが好ましい。
即ち、先に述べたように、図2〜図4に示したコアシェル触媒20、20A、20B、及び、20Cは、粉末X線回折(XRD)により測定される結晶子サイズの平均値が好ましくは3〜16.0nmとされている。
図2〜図4に示したコアシェル触媒20及び20Aにおいて、コア部24はPd(0価)が含まれていることが好ましい。また、本発明の効果をより確実に得る観点、製造容易性などの観点から、コア部24は、Pd(0価)を主成分(50wt%以上)として構成されていることが好ましく、Pd(0価)から構成されていることがより好ましい。
図2〜図4に示したコアシェル触媒20及び20Aにおいて、シェル部26及び26a(26b)はPt(0価)が含まれていることが好ましい。また、本発明の効果をより確実に得る観点、製造容易性などの観点から、シェル部26及び26aは、Pt(0価)を主成分(50wt%以上)として構成されていることが好ましく、Pt単体から構成されていることがより好ましい。
また、図2〜図4に示したコアシェル触媒20、20Aは、Pt担持率が好ましくは0.6〜33.0wt%とされており、Pd担持率が好ましくは4.7〜47.0wt%とされている。
更に、図2〜図4に示したコアシェル触媒20、20Aは、PtとPdとを合わせた貴金属の担持率が好ましくは5.6〜66.5wt%とされている。
図2〜図4に示したコアシェル触媒20、20Aの図2〜図4に示した触媒粒子23、23aは、優れた触媒活性を発揮するため、各々の最も外側にあるシェル部26、26aの
厚さはコア部24のいわゆる下地効果(リガンド効果)を発揮できる水準の十分に薄い厚さを有している。
即ち、図2〜図4に示したコアシェル触媒20、20Aのシェル部(シェル部26、26a)の平均厚さは、0.2〜1.0nmであり、好ましくは0.2〜0.9nm、より好ましくは0.2〜0.7nm、更に好ましくは0.2〜0.5nmである。
例えば、シェル部(シェル部26、26a)がPtからなる層の場合、上記の平均厚さの範囲であればPt原子層で4層以下の厚さ、好ましくは3層以下、より好ましくは2層以下の厚さとできる。その理由は、Ptの金属結合半径は0.139nmであるため、Pt原子1層の平均厚さは0.21nm〜0.23nm程度となるからである。または、Pt単体の格子定数(K)をK=0.39231nmとした場合、白金の面間隔(d111)は0.2265nm(=k/√3)となるからである。
シェル部(シェル部26、26a)の平均厚さが0.2nm未満となると、コア部24の表面がシェル部(シェル部26、26a)により十分に被覆されずコア部24の構成材料の溶出が発生しコアシェル構造の維持が困難になる。そのため、コアシェル触媒としての十分な触媒活性が得られなくなる傾向が大きくなる。また、耐久性、信頼性も不十分となる傾向が大きくなる。
また、シェル部(シェル部26、26a)の平均厚さが1.0nmを超えると、PEFCの低コスト化(低白金化)に寄与できなくなる傾向が大きくなる。また、この場合、コア部24のいわゆる下地効果(リガンド効果)を発揮することが困難となる傾向が大きくなり、従来のPt/C触媒を超える触媒活性を得ることが困難となる傾向が大きくなる。
更に、シェル部(シェル部26、26a)の平均厚さは、例えば、触媒粒子の平均粒子径とコア部の平均粒子径とをそれぞれSEM像(Scanning Electron Microscopy image)又はTEM像(Transmission Electron Microscopy image)を評価することにより求めることができる。即ち、触媒粒子(23、23a)の平均粒子径とコア部24の平均粒子径との差により求めることができる。
また、シェル部(シェル部26、26a)の平均厚さは、例えば、触媒粒子の粒径方向にTEM−EDX(Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy:透過型電子顕微鏡エネルギー分散型X線分析法)、又は、TEM−EDX(Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy:透過型電子顕微鏡エネルギー分散型X線分析法)によるライン分析によって、触媒粒子(23、23a)の平均粒子径とコア部24の平均粒子径を求めることにより得ることもできる。
担体22は、細孔径が2〜50nmのメソ孔(IUPACで定義されたメソ孔)を有し、コア部24とシェル部26(又はシェル部26a)とからなる複合体を担持することができ、かつ表面積が比較的大きい中空カーボン担体であれば特に制限されない。
更に、担体22は、コアシェル触媒20(又は、20A)を含んだガス拡散電極形成用組成物中で良好な分散性を有し、優れた導電性を有する中空カーボン担体であることが好ましい。
中空カーボン担体としては、ケッチェンブラックEC300J、ケッチェンブラックEC600JDを例示することができる。例えば、これらの市販品としては、商品名「カーボンEPC」、「カーボンEPC600JD」等(ライオン化学株式会社製のものなど)を例示することができる。ケッチェンブラックEC300J、ケッチェンブラックEC600JDについては、例えば、「機能性カーボンフィラー研究会」がインターネット上で公開している文献[導電性カーボンブラック「ケッチェンブラックEC」の特徴および用途展開]に詳細な特徴が記載されている。
他の中空カーボン担体としては、商品名「MCND(Mesoporous Carbon Nano-Dendrite)」(新日鉄住金化学社製)、商品名「クノーベル(CNovel)」(東洋炭素社製)、商品名「Black pearls 2000」(Cabot社製)を例示することができる。
ここで、本発明の効果をより確実に得る観点からは、中空カーボン担体はケッチェンブラックEC300Jであることが好ましい。そして、この場合、同様の観点から中空カーボン担体(ケッチェンブラックEC300J)の窒素を用いて測定したBET比表面積(窒素吸着比表面積)は750〜800m/gであることが好ましい
ここで、図2に示すように、触媒粒子23(及び23a)は,担体22のメソ孔P22
の内部とメソ孔P22の外部の両方に担持されている。
そして、コアシェル触媒20(及び20a)は、3D-STEMによる電子線トモグラフィの測定を実施した場合に、下記式(1)及び(2)の条件を同時に満たしている、電極用触媒。
D1<D2・・・(1)
(N1/N2)>1.0・・・(2)
ここで、式(1)及び式(2)中、D1は担体22のメソ孔P22の内部に担持された触媒粒子23(又は23a)のうち最大頻度を示す粒子の球相当径(nm)を示す。
また、式(1)及び式(2)中、D2は担体22のメソ孔P22の外部に担持された触媒粒子23(又は23a)のうち最大頻度を示す粒子球相当径を示す。
更に、式(1)及び式(2)中、N1は担体22のメソ孔P22の内部に担持された触媒粒子23(又は23a)のうち最大頻度を示す粒子の頻度(粒子数)を示す。
また、式(1)及び式(2)中、N2は担体22のメソ孔P22の外部に担持された触媒粒子23(又は23a)のうち最大頻度を示す粒子の頻度頻度(粒子数)を示す。
式(1)及び式(2)の条件を同時に満たすコアシェル触媒20(及び20a)は、従来の電極用触媒に比較して、担体22のメソ孔P22の内部に活性の高いコアシェル構造を有する触媒粒子23(又は23a)が比較的小さな粒子径で数多く存在することになる。このような担体22のメソ孔P22の内部に担持されたコアシェル構造を有する触媒粒子23(又は23a)は、従来の電極用触媒に比較して電極化された際に優れた触媒活性を発揮する。また、触媒内に含まれるNafionのような高分子電解質に直接接触しにくい状態で担体22に担持されることになりPt成分の溶解も低減される。
コアシェル触媒20、20Aの製造方法としては、式(1)及び式(2)の条件を満たすようにするための「担体前処理工程」を含むこと以外は、特に限定されず公知の方法で製造することができる。
担体前処理工程では、担体22を超純水に分散した分散液を撹拌しながら温度を80〜99℃、好ましくは90〜99℃で所定時間保持(ただし、沸騰させない状態を保持)する。
これにより、担体22のメソ孔P22の内部のガスが除去されメソ孔P22の内部へ超純水が十分に侵入できるようになる。そして、この後のコア部形成工程おいて、担体22のメソ孔P22内にコア部24の原料が担体22のメソ孔P22の内部に十分に保持されることになる。これにより、担体22のメソ孔P22の内部にコア部24の前駆体となるコア粒子が数多く担持されることとなる。
なお、この担体前処理工程において使用される「超純水」は、以下の式(3)で表される比抵抗R(JIS規格試験法(JIS K0552)により測定される電気伝導率の逆数)が3.0MΩ・cm以上である水である。また、「超純水」はJISK0557「用水・排水の試験に用いる水」に規定されている「A3」のに相当する水質又はそれ以上の清浄な水質を有していることが好ましい。
この超純水は、下記式(3)で表される関係を満たす電気伝導率を有している水であれば、特に限定されない。例えば、上記超純水として、超純水製造装置「Milli-Qシリーズ」(メルク株式会社製)、「Elix UVシリーズ」(日本ミリポア株式会社製)を使用して製造される超純水を挙げることができる。
R=1/ρ ・・・(3)
上記式(3)において、Rは比抵抗を表し、ρはJIS規格試験法(JIS K0552)により測定される電気伝導率を表す。
「担体前処理工程」の後は、例えば、Pd単体を含むコア粒子が導電性炭素材料を構成成分として含む担体上に担持されたPd/C粒子(粉体)を形成する「コア部形成工程」と、コア部形成工程を経て得られるPd/C粒子(粉体)のコア粒子の表面の少なくとも一部を覆うように、Pt単体を含むシェル部を形成する「シェル部形成工程」とを含む構成を有する製造方法が挙げられる。
コアシェル触媒20及び20Aは、触媒粒子23、23aを構成する、コア部24、シェル部26、26aを担体22に順次担持させることより製造することができる。
例えば、担体22に触媒成分を含有する溶液を接触させ、担体22に触媒成分を含浸させる含浸法、触媒成分を含有する溶液に還元剤を投入して行う液相還元法、アンダーポテンシャル析出(UPD)法等の電気化学的析出法、化学還元法、吸着水素による還元析出法、合金触媒の表面浸出法、置換めっき法、スパッタリング法、真空蒸着法等を採用した製造方法を例示することができる。
触媒層1c、触媒層2cに含有される高分子電解質は、水素イオン伝導性を有していれば特に限定されず、公知のものを使用することができる。例えば、高分子電解質は、公知のスルホン酸基、カルボン酸基を有するパーフルオロカーボン樹脂を例示することができる。容易に入手可能な水素イオン伝導性を有する高分子電解質としては、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)を好ましく例示することができる。
そして、図1に示したカソード1の触媒層1c及びアノード2の触媒層2cのうちの少なくとも一方は、担体22の質量Cと高分子電解質の質量Nとの質量比N/Cが0.5〜1.2とされており、より好ましくは質量比N/Cが0.7〜1.0とされている。
(ガス拡散層(GDL))
図1に示すカソード1に備えられるガス拡散層1gdは、触媒層1cへ酸化剤ガス(例えば、酸素ガス、空気)を供給するために設けられている層である。また、ガス拡散層1gdは、触媒層1cを支持する役割を有している。
また、アノード2に備えられるガス拡散層2gdは、触媒層2cへ還元剤ガス(例えば、水素ガス)を供給するために設けられている層である。また、ガス拡散層2gdは、触媒層2cを支持する役割を有している。
図1に示すガス拡散層(1gd)は、水素ガス又は空気(酸素ガス)を良好に通過させて触媒層に到達させる機能・構造を有している。このため、ガス拡散層は撥水性を有していることが好ましい。例えば、ガス拡散層は、ポリエチレンテレフタレート(PTFE)等の撥水成分を有している。
ガス拡散層(1gd)に用いることができる部材は、特に制限されるものではなく、公知の部材を使用することができる。例えば、カーボンペーパー、カーボンペーパーを主原料とし、その任意成分としてカーボン粉末、イオン交換水、バインダーとしてポリエチレンテレフタレートディスパージョンからなる副原料をカーボンペーパーに塗布したものが好ましく挙げられる。
(撥水層(MPL))
図1に示すように、カソード1には、ガス拡散層1gdと触媒層1cとの間に撥水層(MPL)1mが配置されている。撥水層1mは電子電導性、撥水性、ガス拡散性を有し、触媒層1gdへの酸化剤ガスの拡散と触媒層1gdで発生する反応生成水の排出とを促進するために設けられているものである。撥水層1mの構成は特に限定されず公知の構成を採用することができる。
(高分子電解質膜(PEM))
図1に示す高分子電解質膜(PEM)3は、水素イオン伝導性を有していれば特に限定されず、従来からPEFCに使用されている公知のものを採用することができる。例えば、先に述べた触媒層1c、触媒層2cに含有される高分子電解質として例示されたものを構成成分として含む膜であってもよい。
<MEAの変形態様>
以上、本発明のMEA(及び、本発明の触媒層、本発明のガス拡散電極)の好適な実施形態について説明したが、本発明のMEAは図1に示したMEA10の構成に限定されない。
例えば、本発明のMEAは、図5に示すMEA11の構成を有していてもよい。
図5は本発明のMEAの別の好適な一形態を示す模式断面図である。図5に示したMEA11は高分子電解質膜(PEM)3の片面のみに、図1に示したMEA10におけるカソード1と同様の構成を有するガス拡散電極(GDE)1Aを配置した構成を有する。ただし、ガス拡散電極(GDE)1Aの触媒層1cは本発明の触媒層の構成を有している。即ち、GDE1Aの触媒層1cはコアシェル触媒の担体の質量Cと高分子電解質の質量Nとの質量比N/Cが0.5〜1.2、より好ましくは0.7〜1.0とされている。
<膜・触媒層接合体(CCM)>
次に、本発明の膜・触媒層接合体(CCM)の好適な実施形態について説明する。
図6は本発明のCCMの好適な一形態を示す模式断面図である。図6に示すCCM12は、カソード触媒層1cと、アノード触媒層2cとの間に高分子電解質膜(PEM)3が配置された構成を有している。そして、カソード触媒層1c及びアノード触媒層2cのうちの少なくとも一方は、本発明の触媒層の構成を有する。すなわち、カソード触媒層1c及びアノード触媒層2cのうちの少なくとも一方は、コアシェル触媒の担体の質量Cと高分子電解質の質量Nとの質量比N/Cが0.5〜1.2、より好ましくは0.7〜1.0とされている。
<膜・触媒層接合体(CCM)の変形態様>
以上、本発明のCCMの好適な実施形態について説明したが、本発明のCCMは図6に示したCCM12の構成に限定されない。
例えば、本発明のCCMは、図7に示すCCM13の構成を有していてもよい。
図7は本発明のCCMの別の好適な一形態を示す模式断面図である。図7に示したCCM13は高分子電解質膜(PEM)3の片面のみに、図6に示したCCM12におけるカソード1と同様の構成を有する触媒層1cを配置した構成を有する。ただし、ガス拡散電極(GDE)1Aの触媒層1cは本発明の触媒層の構成を有している。すなわち、CCM13の触媒層1cはコアシェル触媒の担体の質量Cと高分子電解質の質量Nとの質量比N/Cが0.5〜1.2、より好ましくは0.7〜1.0とされている。

<ガス拡散電極(GDE)>
次に、本発明のガス拡散電極(GDE)の好適な実施形態について説明する。
図8は、本発明のGDEの好適な一形態を示す模式断面図である。図8に示すガス拡散電極(GDE)1Bは、図1に示したMEA10に搭載されたカソード1と同様の構成を有する。ただし、ただし、ガス拡散電極(GDE)1Bの触媒層1cは本発明の触媒層の構成を有している。即ち、ガス拡散電極(GDE)1Bの触媒層1cはコアシェル触媒の担体の質量Cと高分子電解質の質量Nとの質量比N/Cが0.5〜1.2、より好ましくは0.7〜1.0とされている。
<ガス拡散電極(GDE)の変形態様>
以上、本発明のGDEの好適な実施形態について説明したが、本発明のGDEは図8に示したGDE1Bの構成に限定されない。
例えば、本発明のGDEは、図9に示すGDE1Cの構成を有していてもよい。
図9は本発明のGDEの別の好適な一形態を示す模式断面図である。図9に示したGDE1Cは、図8に示したGDE1Bと比較して触媒層1cとガス拡散層1gdとの間に撥水層(MPL)が配置されていない構成となってきる。
<触媒層形成用組成物>
次に、本発明の触媒層形成用組成物の好適な実施形態について説明する。
本実施形態の触媒層形成用組成物は、コアシェル触媒と、高分子電解質と、主成分を含んでおり、コアシェル触媒の担体の質量Cと高分子電解質の質量Nとの質量比N/Cが0.5〜1.2、より好ましくは0.7〜1.0とされている。
ここで、高分子電解質を含む液の組成は特に限定されない。例えば、高分子電解質を含む液には、先に述べた水素イオン伝導性を有する高分子電解質と水とアルコールとが含有されていてもよい。
触媒層形成用組成物に含まれるコアシェル触媒、高分子電解質、その他の成分(水、アルコールなど)の組成比は、得られる触媒層内におけるコアシェル触媒の分散状態が良好となり、当該触媒層を含むMEAの発電性能を向上させることができるように適宜設定される。
触媒層形成用組成物は、コアシェル触媒、高分子電解質を含む液を混合し、撹拌することにより調製することができる。塗工性を調整する観点からグリセリンなどの多価アルコール及び/又は水を含有させてもよい。コアシェル触媒、高分子電解質を含む液を混合する場合、ボールミル、超音波分散機等の粉砕混合機を使用してもよい。
図1に示したカソード1の触媒層1c及びアノード2の触媒層2cのうちの少なくとも一方は、本発明の触媒層形成用組成物の好適な実施形態を用いて形成することができる。
(ガス拡散電極の製造方法)
次に、本発明のガス拡散電極の製造方法の一例について説明する。ガス拡散電極は本発明の触媒層を含むように形成されていればよく、その製造方法は公知の方法を採用することができる。本発明の触媒層形成用組成物を用いればより確実に製造することができる。
例えば、触媒層形成用組成物をガス拡散層(又はガス拡散層上に撥水層を形成した積層体の当該撥水層)上に塗布し、乾燥させることにより製造してもよい。
<燃料電池スタック>
図10は本発明の燃料電池スタックの好適な一実施形態を示す模式図である。
図10に示された燃料電池スタック30は、図1に示したMEA10を一単位セルとし、この一単位セルを複数積み重ねた構成を有している。また、燃料電池スタック30は、セパレータ4とセパレータ5との間にMEA10が配置された構成を有している。セパレータ4とセパレータ5とにはそれぞれガス流路が形成されている。
以下、実施例により本発明を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
(I)MEAのカソードの触媒層に使用する電極触媒の準備
(1)実施例1のMEAのカソードに使用するコアシェル触媒の製造
[Pd/C上にPtからなるシェル部を形成した「Pt/Pd/C」粉末]
下記の「Pd/C」粉末の粒子のPd上にPtからなるシェル部が形成された「Pt/Pd/C」粉末{Pt担持率18.4wt%(ICP分析結果),商品名「NE−K10218−BC」、N.E.CHEMCAT社製)}をコアシェル触媒(以下、「コアシェル触媒A」という)として用意した。
このPt/Pd/C粉末は、下記のPd/C粉末を用い、一般的なCu−UPD法により、Pd/CのPdからなるコア粒子の表面にCuからなる被膜を形成し、その後、塩化白金酸カリウムを用いて、CuとPtとのガルバニ置換反応進行させることにより調製した。
[コア粒子担持カーボン「Pd/C」粉末]
Pdからなるコア粒子がカーボンブラック粉末上に担持されたPd/C粉末{Pd担持率30wt%,商品名「NE−K00230−C」、N.E.CHEMCAT社製)}を用意した。
このPd/C粉末は以下の手順にて調整した。
(第1工程(担体前処理工程))
市販の中空カーボン担体{ライオン株式会社製、商品名「カーボンECP」(登録商標)(ケッチェンブラックEC300J)、比表面積750〜800m/g}を超純水に分散した分散液を撹拌しながら温度を90〜99℃で1.5時間保持(ただし、沸騰させない状態を保持)した。
なお、この第1工程(担体前処理工程)において使用した「超純水」は、以下の式(3)で表される比抵抗R(JIS規格試験法(JIS K0552)により測定される電気伝導率の逆数)が3.0MΩ・cm以上である水を使用した。また、この「超純水」はJISK0557「用水・排水の試験に用いる水」に規定されている「A3」のに相当する水質又はそれ以上の清浄な水質を有している。
この超純水は超純水製造装置「Milli-Qシリーズ」(メルク株式会社製)、「Elix UVシリーズ」(日本ミリポア株式会社製)を使用して製造した。
R=1/ρ (3)
上記一般式(3)において、Rは比抵抗を表し、ρはJIS規格試験法(JIS K0552)により測定される電気伝導率を表す。
(第2工程)
第1工程後の分散液にテトラクロロパラジウム(II)酸ナトリウムを加えた混合液を調製し、pHを10〜12に調整し、所定時間、所定温度を保持して撹拌した。
(第3工程)
第2工程後の混合液に水溶性の還元剤を添加し混合液中のパラジウムイオンを還元処理しコア粒子担持カーボン「Pd/C」粉末を得た。
<担持率の測定(ICP分析)>
このコアシェル触媒Aについて、Pt担持率(wt%)と、Pd担持率(wt%)を以下の方法で測定した。
コアシェル触媒Aを王水に浸し、金属を溶解させた。次に、王水から不溶成分のカーボンを除去した。次に、カーボンを除いた王水をICP分析した。
ICP分析の結果、このコアシェル触媒については、Pt担持率が18.4wt%と、Pd担持率が24.2wt%であった。
<電極用触媒の表面観察・構造観察>
このコアシェル触媒Aについて、STEM−HAADF 像、EDS elemental mapping 像を確認した。その結果、Pdからなるコア部の粒子の表面の少なくとも一部に、Ptからなるシェル部の層が形成されたコアシェル構造を有する触媒粒子がカーボン担体に担持されている構成を有していることが確認できた。
コアシェル触媒Aの3次元構造を観察するため、STEMによる電子戦トモグラフィの測定を以下の条件で実施した。
・STEM装置:日本電子社製 JEM-ARM200F 原子分解能分析電子顕微鏡
・データ解析ソフト: システムインフロンティア製 3D 再構成ソフトComposer、3D データ可視化ソフトVisualizer-kai、画像解析ソフトColorist
・測定条件
加速電圧:60 kV
観察倍率 800,000 〜1,000,000 倍
測定試料の傾斜角:-80 ° 〜 +80 °
測定試料の傾斜ステップ角 2 °
画素数 512 ×512 pixels 512 × 512 pixels
画素サイズ:0.350 nm/pixel 〜 0.500 nm/pixel
ボリュームサイズ:図14に示した。
コアシェル触媒Aについて、STEM(走査型透過電子顕微鏡)を用いた電子線トモグラフィ計測により得られた三次元再構成像(3D−STEM像)の画像解析により、カーボン担体内部に存在するPt/Pd触媒粒子( 以下、内部粒子)及びカーボン担体表面部に存在するPt/Pd触媒粒子( 以下、外部粒子)を分離し、それぞれの領域におけるPt/Pd 触媒
粒子の粒子径分布を算出した。
コアシェル触媒Aの三次元再構成像(3D−STEM像)を図15に示す。
画像解析により求めた内部粒子および外部粒子の粒径解析結果を図16、図17に示す。3D−STEM像は上記の測定条件で試料ステージなお、を段階的に傾斜して得られた複数の2次元のSTEM像を再構成することにより得た。
また、三次元再構成像(3D−STEM像)の画像解析(粒子径解析)は以下の手順で行った。はじめに三次元再構成像より触媒粒子の領域を選択し、それぞれの触媒粒子をラベル化した(図示せず)。次に、ラベル化したPt粒子の体積より球相当径を算出し、粒子径分布(図16、図17)を求めた。
ここで、球相当径は、単位をnmとし小数点以下の数値(1nm未満の数値)は四捨五入することで算出した。
コアシェル触媒Aについて、担体のメソ孔の内部に担持された触媒粒子の割合と、担体のメソ孔外部に担持された触媒粒子の割合とを求めた。また、D1,D2,N1、N2の値も求めた。結果を表1及び表2に示す。
更に、STEM像から測定したコアシェル触媒Aの触媒粒子の粒子径の平均値は5.5nmであった。
(2)実施例2のMEAのカソードに使用するコアシェル触媒の製造
[Pd/C上にPtからなるシェル部を形成した「Pt/Pd/C」粉末]
下記の「Pd/C」粉末の粒子のPd上にPtからなるシェル部が形成された「Pt/Pd/C」粉末{Pt担持率18.4wt%(ICP分析結果),商品名「NE−K10218−BC」、N.E.CHEMCAT社製)}をコアシェル触媒(以下、「コアシェル
触媒B」という)として用意した。
このPt/Pd/C粉末は、下記のPd/C粉末を用い、一般的なCu−UPD法により、Pd/CのPdからなるコア粒子の表面にCuからなる被膜を形成し、その後、塩化白金酸カリウムを用いて、CuとPtとのガルバニ置換反応進行させることにより調製した。
[コア粒子担持カーボン「Pd/C」粉末]
Pdからなるコア粒子がカーボンブラック粉末上に担持されたPd/C粉末{Pd担持率30wt%,商品名「NE−K00230−C」、N.E.CHEMCAT社製)}を用意した。
このPd/C粉末は以下の手順にて調整した。
(第1工程(担体前処理工程))
市販の中空カーボン担体{ライオン株式会社製、商品名「カーボンECP」(登録商標)(ケッチェンブラックEC300J)、比表面積750〜800m/g}を超純水に分散した分散液を撹拌しながら温度を90〜99℃で1.5時間保持(ただし、沸騰させない状態を保持)した。
なお、この第1工程(担体前処理工程)において使用した「超純水」は、以下の式(3)で表される比抵抗R(JIS規格試験法(JIS K0552)により測定される電気伝導率の逆数)が3.0MΩ・cm以上である水を使用した。また、この「超純水」はJISK0557「用水・排水の試験に用いる水」に規定されている「A3」のに相当する水質又はそれ以上の清浄な水質を有している。
この超純水は超純水製造装置「Milli-Qシリーズ」(メルク株式会社製)、「Elix UVシリーズ」(日本ミリポア株式会社製)を使用して製造した。
R=1/ρ (3)
上記一般式(3)において、Rは比抵抗を表し、ρはJIS規格試験法(JIS K0552)により測定される電気伝導率を表す。
(第2工程)
第1工程後の分散液にテトラクロロパラジウム(II)酸ナトリウムを加えた混合液を調製し、pHを3〜4に調整し所定温度を保持して撹拌した。
(第3工程)
第2工程後の混合液を12時間放置した後、当該混合液のpHを8〜9に調整した。ついで水溶性の還元剤を添加し混合液中のパラジウムイオンを還元処理しコア粒子担持カーボン「Pd/C」粉末を得た。
<担持率の測定(ICP分析)>
このコアシェル触媒Bについて、Pt担持率(wt%)と、Pd担持率(wt%)を以下の方法で測定した。
コアシェル触媒Bを王水に浸し、金属を溶解させた。次に、王水から不溶成分のカーボンを除去した。次に、カーボンを除いた王水をICP分析した。
ICP分析の結果、このコアシェル触媒については、Pt担持率が18.4wt%と、Pd担持率が24.2wt%であった。
<電極用触媒の表面観察・構造観察>
このコアシェル触媒Bについて、STEM−HAADF 像、EDS elemental mapping 像を確認した。その結果、Pdからなるコア部の粒子の表面の少なくとも一部に、Ptからなるシェル部の層が形成されたコアシェル構造を有する触媒粒子がカーボン担体に担持されている構成を有していることが確認できた。
コアシェル触媒Bの3次元構造を観察するため、STEMによる電子戦トモグラフィの測定を以下の条件で実施した。
・STEM装置:日本電子社製 JEM-ARM200F 原子分解能分析電子顕微鏡
・データ解析ソフト: システムインフロンティア製 3D 再構成ソフトComposer、3D データ可視化ソフトVisualizer-kai、画像解析ソフトColorist
・測定条件
加速電圧:60 kV
観察倍率 800,000 〜1,000,000 倍
測定試料の傾斜角:-80 ° 〜 +80 °
測定試料の傾斜ステップ角 2 °
画素数 512 ×512 pixels 512 × 512 pixels
画素サイズ:0.350 nm/pixel 〜 0.500 nm/pixel
ボリュームサイズ:図18に示した。
コアシェル触媒Bについて、STEM(走査型透過電子顕微鏡)を用いた電子線トモグラフィ計測により得られた三次元再構成像(3D−STEM像)の画像解析により、カーボン担体内部に存在するPt/Pd触媒粒子(以下、内部粒子)及びカーボン担体表面部に存在するPt/Pd触媒粒子(以下、外部粒子)を分離し、それぞれの領域におけるPt/Pd触媒粒子の粒子径分布を算出した。
コアシェル触媒Bの三次元再構成像(3D−STEM像)を図19に示す。
画像解析により実施例1と同様にして内部粒子および外部粒子の粒径解析結果を得た(図示せず)に示す。3D−STEM像は上記の測定条件で試料ステージなお、を段階的に傾斜して得られた複数の2次元のSTEM像を再構成することにより得た。
また、三次元再構成像(3D−STEM像)の画像解析(粒子径解析)は以下の手順で行った。はじめに三次元再構成像より触媒粒子の領域を選択し、それぞれの触媒粒子をラベル化した(図示せず)。次に、ラベル化したPt粒子の体積より球相当径を算出し、粒子径分布(図示せず)を求めた。
ここで、球相当径は、単位をnmとし小数点以下の数値(1nm未満の数値)は四捨五入することで算出した。
コアシェル触媒Bについて、担体のメソ孔の内部に担持された触媒粒子の割合と、担体のメソ孔外部に担持された触媒粒子の割合とを求めた。また、D1、D2、N1、N2の値も求めた。結果を表1及び表2に示す。
更に、STEM像から測定したコアシェル触媒Bの触媒粒子の粒子径の平均値は4.2nmであった。
(3)比較例1のMEAのカソードに使用するコアシェル触媒の製造
[Pd/C上にPtからなるシェル部を形成した「Pt/Pd/C」粉末]
下記の「Pd/C」粉末の粒子のPd上にPtからなるシェル部が形成された「Pt/Pd/C」粉末{Pt担持率16.1wt%(ICP分析結果),商品名「NE−F10216−BC」、N.E.CHEMCAT社製)}をコアシェル触媒(以下、「コアシェル触媒C」という)として用意した。
このPt/Pd/C粉末は、下記のPd/C粉末を用い、一般的なCu−UPD法により、Pd/CのPdからなるコア粒子の表面にCuからなる被膜を形成し、その後、塩化白金酸カリウムを用いて、CuとPtとのガルバニ置換反応進行させることにより調製した。
[コア粒子担持カーボン「Pd/C」粉末]
Pdからなるコア粒子がカーボンブラック粉末上に担持されたPd/C粉末{Pd担持率30wt%,商品名「NE−F00230−C」、N.E.CHEMCAT社製)}を用意した。
このPd/C粉末は、先に述べた実施例1に使用したPd/C粉末の調製に採用した第1工程(担体前処理工程)のプロセスは実施しなかった。
即ち、市販の中実カーボン担体(電気化学工業株式会社製、商品名「デンカブラック(登録商標)」、比表面積750〜800m/g)と、テトラクロロパラジウム(II)酸ナトリウムと、超純水との混合液を調製し、これに還元剤を添加して得られる液中でパラジウムイオンを還元処理することにより調製した。超純水は実施例1のPd/C粉末の調製に採用したものと同様の水質の水を使用した。
<担持率の測定(ICP分析)>
このコアシェル触媒Cについて、Pt担持率(wt%)と、Pd担持率(wt%)を以下の方法で測定した。
コアシェル触媒Cを王水に浸し、金属を溶解させた。次に、王水から不溶成分のカーボンを除去した。次に、カーボンを除いた王水をICP分析した。
ICP分析の結果、このコアシェル触媒については、Pt担持率が16.8wt%と、Pd担持率が25.0wt%であった。
<電極用触媒の表面観察・構造観察>
このコアシェル触媒Cについて、STEM−HAADF 像、EDS elemental mapping 像を確認した。その結果、Pdからなるコア部の粒子の表面の少なくとも一部に、Ptからなるシェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成を有していることが確認できた。
また、コアシェル触媒Cの3次元構造を観察するため、STEMによる電子戦トモグラフィの測定を以下の条件で実施した。
・STEM装置:日本電子社製 JEM-ARM200F 原子分解能分析電子顕微鏡
・データ解析ソフト: システムインフロンティア製 3D 再構成ソフトComposer、3D データ可視化ソフトVisualizer-kai、画像解析ソフトColorist
・測定条件
加速電圧:60 kV
観察倍率 800,000 〜1,000,000 倍
測定試料の傾斜角:-80 ° 〜 +80 °
測定試料の傾斜ステップ角 2 °
画素数 512 ×512 pixels 512 × 512 pixels
画素サイズ:0.350 nm/pixel 〜 0.500 nm/pixel
ボリュームサイズ:図20に示した。
コアシェル触媒Cについて、STEM(走査型透過電子顕微鏡)を用いた電子線トモグラフィ計測により得られた三次元再構成像(3D−STEM像)の画像解析により、カーボン担体内部に存在するPt/Pd触媒粒子(以下、内部粒子)及びカーボン担体表面部に存在するPt/Pd触媒粒子(以下、外部粒子)を分離し、それぞれの領域におけるPt/Pd触媒粒
子の粒子径分布を算出した。
コアシェル触媒Cの三次元再構成像(3D−STEM像)を図21に示す。
画像解析により求めた内部粒子および外部粒子の粒径解析結果を図22、図23に示す。3D−STEM像は上記の測定条件で試料ステージなお、を段階的に傾斜して得られた複数の2次元のSTEM像を再構成することにより得た。
また、三次元再構成像(3D−STEM像)の画像解析(粒子径解析)は以下の手順で行った。はじめに三次元再構成像より触媒粒子の領域を選択し、それぞれの触媒粒子をラベル化した(図示せず)。次に、ラベル化したPt粒子の体積より球相当径を算出し、粒子径分布(図22、図23)を求めた。
ここで、球相当径は、単位をnmとし小数点以下の数値(1nm未満の数値)は四捨五入することで算出した。
コアシェル触媒Cについて、担体のメソ孔の内部に担持された触媒粒子の割合と、担体のメソ孔外部に担持された触媒粒子の割合とを求めた。また、D1,D2,N1、N2の値も求めた。結果を表1及び表2に示す。
更に、STEM像から測定したコアシェル触媒Cの触媒粒子の粒子径の平均値は6.0nmであった。
STEMの観察結果から、比較例1の電極用触媒は図13に示した構成を有していると本発明者らは推察している。図13は比較例1の電極用触媒(コアシェル触媒C)を示す模式断面図である。電極用触媒(コアシェル触媒C)204は、メソ孔の少ない中実カーボン担体224の表面に触媒粒子234が担持された構造を有している。
(4)比較例2のMEAのカソードに使用するPt/C触媒の準備
Pt/C触媒として、N.E.CHEMCAT社製のPt担持率50wt%のPt/C触媒(商品名:「SA50BK」)を用意した。なお、このPt/C触媒の担体には、市販の中空カーボン担体{ライオン株式会社製、商品名「カーボンECP」(登録商標)(ケッチェンブラックEC300J)、比表面積750〜800m/g}を使用した。
このPt/C触媒について、上述のコアシェル触媒とXRD分析を実施した。その結果、結晶子サイズの平均値は、2.6nmであった。
(II)実施例1〜2、比較例1〜2のMEAのアノードに使用するP/C触媒の準備
比較例2のMEAのカソードに使用したPt/C触媒と同一のPt/C触媒を実施例1〜2、比較例1〜2のMEAのアノードに使用するP/C触媒とした。
<実施例1>
以下の手順で、図1に示したMEA10と同様の構成を有するMEAを作成した。
(1)カソードの作成
カソードのGDL
GDLとして、カーボンペーパー(東レ株式会社製 商品名「TGP−H−60」)を準備した。
カソードのMPL形成用インク
テフロン(登録商標)製ボールを入れたテフロン(登録商標)製のボールミル容器に、カーボン粉末(電気化学工業株式会社製 商品名「デンカブラック」)1.5gと、イオン交換水1.1gと、界面活性剤(ダウ・ケミカル社製 商品名「トライトン」(35wt%水溶液))6.0gとを入れて混合した。
次に、ボールミル容器に、ポリテトラフルオロエチレン(PTFE)ディスパージョン(三井・デュポン フロロケミカル社製 商品名「31−JR」)1.75gを入れて混合した。これにより、カソードのMPL形成用インクを作成した。
カソードのMPL
GDLの片面にカソードのMPL形成用インクをバーコーダーを使用して塗布し塗工膜を形成した。その後、塗工膜を乾燥器中で十分に乾燥させ、更に加熱圧着処理を行い、GDL上にMPLが形成された積層体を作成した。
カソードの触媒層形成用インク
テフロン(登録商標)製ボールを入れたテフロン(登録商標)製のボールミル容器に、上述のコアシェル触媒Aと、イオン交換水と、10wt%ナフィオン水分散液(デュポン社製 商品名「DE1021CS」)と、グリセリンと、を入れて混合し、カソードの触媒層形成用インクを作成した。なお、このインクについて、N/C=0.7とした。また、コアシェル触媒A中のカーボン:イオン交換水:グリセリン=1:10:0.8(質量比)とした。
カソードの触媒層(CL)
上述のGDL上にMPLにMPLが形成された積層体のMPLの表面に上述のカソードの触媒層形成用インクをバーコート法にて塗布し、塗布膜を形成した。この塗布膜を室温にて30分乾燥させた後、60℃にて1.0時間乾燥することにより、触媒層とした。このようにして、ガス拡散電極であるカソードを作成した。なお、カソードの触媒層のPt担持量は表1に示す数値となるようにした。
(2)アノードの作成
アノードのGDL
GDLとして、カソードと同一のカーボンペーパーを用意した。
アノードのMPL形成用インク
テフロン(登録商標)製ボールを入れたテフロン(登録商標)製のボールミル容器に、カーボン粉末(電気化学工業株式会社製 商品名「デンカブラック」)1.5gと、イオン交換水1.0gと、界面活性剤(ダウ・ケミカル社製 商品名「トライトン」(35wt%水溶液))6.0gとを入れて混合した。
次に、ボールミル容器に、ポリテトラフルオロエチレン(PTFE)ディスパージョン(三井・デュポン フロロケミカル社製 商品名「31−JR」)2.5gを入れて混合した。これにより、アノード用のMPL形成用インクを作成した。
アノードのMPL
GDLの片面にアノードのMPL形成用インクをバーコーダーを使用して塗布し塗工膜を形成した。その後、塗工膜を乾燥器中で十分に乾燥させ、更に加熱圧着処理を行い、GDL上にMPLが形成された積層体を作成した。
アノードの触媒層形成用インク
テフロン(登録商標)製ボールを入れたテフロン(登録商標)製のボールミル容器に、SA50BK(Pt担持率50wt%)と、イオン交換水と、5wt%ナフィオンアルコール分散液(SIGMA−ALDRICH社製 商品名「Nafion 5wt.% dispersion」、製品番号「274704」)と、グリセリンと、を入れて混合しアノードの触媒層形成用インクを作成した。なお、このインクについて、N/C=1.2とした。また、SA50BK中のカーボン:イオン交換水:グリセリン=1:6:4(質量比)とした。
アノードの触媒層(CL)
上述のGDL上にMPLにMPLが形成された積層体のMPLの表面に上述のアノードの触媒層形成用インクをバーコート法にて塗布し、塗布膜を形成した。この塗布膜を室温にて30分乾燥させた後、60℃にて1.0時間乾燥することにより、触媒層とした。このようにして、ガス拡散電極であるアノードを作成した。なお、アノードの触媒層のPt担持量は0.3mg/cmとした。
(3)MEAの作成
高分子電解質膜(デュポン社製 商品名「ナフィオンNR212」)を準備した。カソードとアノードとの間にこの高分子電解質膜を配置した積層体を作成し、ホットプレス機により加熱圧着させ、MEAを作成した。なお、加熱圧着の条件は、140℃、5KNにて5分間、更に140℃、25KNにて3分間プレスした。
<実施例2>
カソードの触媒層について、コアシェルAの代わりに先に述べたコアシェルBを使用し、Pt担持量が表1に示す数値となるようにカソードの触媒層形成インクの組成と、当該インクの塗工条件を調節したこと以外は、実施例1と同様の条件・手順にて各々のMEAを作成した。
<比較例1>
カソードの触媒層について、コアシェルAの代わりに先に述べたコアシェルCを使用し、Pt担持量が表1に示す数値となるようにカソードの触媒層形成インクの組成と、当該インクの塗工条件を調節したこと以外は、実施例1と同様の条件・手順にて各々のMEAを作成した。
<比較例2>
カソードの触媒層について以下の条件を変更したこと以外は、実施例1と同様の条件・手順にて各々のMEAを作成した。
即ち、カソードの触媒層形成用インクの作成において、
・コアシェル触媒Aの代わりに、先に述べたP/C触媒(商品名:「SA−50BK」)を使用した。
・10wt%ナフィオン水分散液の代わりに5wt%ナフィオンアルコール分散液(デュポン社製 商品名「DE520CS」;1-プロパノール48wt%含有)を使用した。
・Pt担持量と、N/Cとが表1に示す数値となるようにカソードの触媒層形成インクの組成と、当該インクの塗工条件を調節した。
・P/C触媒(商品名:「SA50BH」)中のカーボン:イオン交換水:グリセリン=1:10:1(質量比)とした。
<電池性能評価>
実施例1〜2及び比較例1〜3のMEAの電池性能を以下の電池性能評価方法で実施した。
実施例1〜2及び比較例1〜3のMEAを燃料電池単セル評価装置に設置した。
次に、以下の条件でMEA内での発電反応を進行させた。
単セル(MEA)温度を80℃とした。アノードには飽和水蒸気にて加湿した1.0気圧の純水素を利用率が70%となるように流量を調節して供給した。また、カソードには80℃の飽和水蒸気にて加湿した1.0気圧の純酸素を利用率が50%となるように流量を調節して供給した。
単セル(MEA)の評価は、燃料電池単セル評価装置付属の電子負荷装置により電流を制御して行い、電流値を0〜1.0A/cmまで走査して得られる電流−電圧曲線をデータとして取得した。
上記電流−電圧曲線のデータからX軸(電流密度)を対数目盛としてプロットしたグラフを作成し(図示せず)、電圧850mVでの電流密度値(電極の単位面積当たりの電流値)を得た。
このようにして得られた電流密度値をカソードの単位面積当たりの白金重量で除することにより、カソードに含有される白金についての単位重量当たり活性(Mass.Act.)として算出し、カソードに含有される触媒の酸素還元能の指標とした。その結果を表1に示す。なお、表1には、比較例1で得られたMass.Act.を基準(1.0)とした相対値(相対比)として他の実施例及び比較例で得られたMass.Act.を比較した結果を示す。
Figure 0006946557
Figure 0006946557
表1に示した結果から、実施例1〜2のMEAは、比較例1〜2のMEAと比較し、高いPt質量活性を有していることが明らかとなった。
特に、メソ孔の内部に担持された触媒粒子(内部粒子)の割合が80%以上である実施例2の電極用触媒(コアシェル触媒B)は実施例1の電極用触媒(コアシェル触媒A)と比較し、より優れた性能を示した。
図24に実施例1の電極用触媒(コアシェル触媒A)と実施例2の電極用触媒(コアシェル触媒B)の3D−STEM像の画像解析から得た粒子径分布の比較結果を示す。
図25に実施例2の電極用触媒(コアシェル触媒B)のSTEM像(明視野)を示す。
図24及び図25に示すように、実施例2の電極用触媒(コアシェル触媒B)は、実施例1の電極用触媒(コアシェル触媒Aに比較して、触媒粒子の粒径分布がシャープで、粒子サイズが全体的に小さく、触媒粒子の粒径バラつきが低減された状態となっていることが確認された。これにより、実施例2の電極用触媒(コアシェル触媒B)は、Pdコア粒子表面のPtシェル層の被覆状態がより良好となっており、このようなコアシェル構造を有する触媒粒子が担体の内部細孔中により選択的に担持されたことで優れた活性を有していると本発明者らは推察している。
本発明の電極用触媒は優れた触媒活性を発揮する。また、本発明の触媒層を含むGDE、CCM、MEA、及び、燃料電池スタックは、PEFCの低コスト化に寄与できる優れた電池特性を発揮する。
従って、本発明は、燃料電池、燃料電池自動車、携帯モバイル等の電機機器産業のみならず、エネファーム、コジェネレーションシステム等に適用することができ、エネルギー産業、環境技術関連の発達に寄与する。
1・・・カソード、
1A、1B、1C・・・ガス拡散電極(GDE)
1c・・・触媒層(CL)、
1m・・・撥水層(MPL)、
1gd・・・ガス拡散層(GDL)、
2・・・アノード、
2c・・・触媒層(CL)、
2m・・・撥水層(MPL)、
2gd・・・ガス拡散層(GDL)、
3・・・高分子電解質膜(PEM)、
4、5・・・セパレータ
10、11・・・膜・電極接合体(MEA)、
12、13・・・膜・触媒層接合体(CCM)
20、20A・・・コアシェル触媒、
22・・・担体、
23、23a・・・触媒粒子、
24・・・コア部、
24s・・・コア部露出面、
26、26a・・・シェル部、
30・・・燃料電池スタック、
P22・・・担体のメソ孔


Claims (10)

  1. 細孔径が2〜50nmのメソ孔を有する中空カーボン担体と、前記担体上に担持される触媒粒子と、を含んでおり、
    前記触媒粒子が、前記担体上に形成されるコア部と、前記コア部の表面の少なくとも一部を覆うように形成されるシェル部と、を有しており、
    前記コア部にはPd(0価)が含まれており、
    前記シェル部にはPt(0価)が含まれており、
    前記触媒粒子は、前記担体の前記メソ孔の内部と前記メソ孔の外部の両方に担持されており、
    STEM(走査型透過電子顕微鏡)を用いた電子線トモグラフィ計測により得られる三次元再構成画像を利用した前記触媒粒子の粒子径分布の解析を実施した場合に、前記メソ孔の内部に担持された前記触媒粒子の割合が50%以上である、
    電極用触媒。
  2. STEM(走査型透過電子顕微鏡)を用いた電子線トモグラフィ計測により得られる三次元再構成画像を利用した前記触媒粒子の粒子径分布の解析を実施した場合に、前記メソ孔の内部に担持された前記触媒粒子の割合が80%以上である、
    請求項1に記載の電極触媒。
  3. STEM(走査型透過電子顕微鏡)を用いた電子線トモグラフィ計測により得られる三次元再構成画像を利用した前記触媒粒子の粒子径分布の解析を実施した場合に、下記式(1)及び(2)の条件を同時に満たしている、請求項1又は2に記載の電極用触媒。
    D1<D2・・・(1)
    (N1/N2)>1.0・・・(2)
    [前記式(1)及び前記式(2)中、
    D1は前記担体の前記メソ孔の内部に担持された前記触媒粒子のうち最大頻度を示す粒子の球相当径を示し、
    D2は前記担体の前記メソ孔の外部に担持された前記触媒粒子のうち最大頻度を示す粒子球相当径を示し、
    N1は前記担体の前記メソ孔の内部に担持された前記触媒粒子のうち最大頻度を示す粒子の頻度を示し、
    N2は前記担体の前記メソ孔の外部に担持された前記触媒粒子のうち最大頻度を示す粒子の頻度を示す。]
  4. 前記コア部がPd(0価)からなり、前記シェル部がPt(0)からなる、
    請求項1〜3のうちの何れか1項に記載の電極用触媒。
  5. 前記中空カーボン担体がケッチェンブラックEC300Jである、
    請求項1〜4のうちの何れか1項に記載の電極用触媒。
  6. 前記中空カーボン担体のBET比表面積(窒素吸着比表面積)が750〜800m/gである、
    請求項5に記載の電極用触媒。
  7. 請求項1〜6のうちの何れか1項に記載の電極用触媒が含有されている、
    ガス拡散電極形成用組成物。
  8. 請求項1〜6のうちの何れか1項に記載の電極用触媒が含有されているガス拡散電極。
  9. 請求項8記載のガス拡散電極が含まれている、膜・電極接合体(MEA)。
  10. 請求項9記載の膜・電極接合体(MEA)が含まれている、燃料電池スタック。



JP2020519886A 2018-05-15 2019-05-15 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック Active JP6946557B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2018093537 2018-05-15
JP2018093537 2018-05-15
JP2018210970 2018-11-08
JP2018210970 2018-11-08
PCT/JP2019/019267 WO2019221168A1 (ja) 2018-05-15 2019-05-15 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック

Publications (2)

Publication Number Publication Date
JPWO2019221168A1 JPWO2019221168A1 (ja) 2021-05-27
JP6946557B2 true JP6946557B2 (ja) 2021-10-06

Family

ID=68539911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020519886A Active JP6946557B2 (ja) 2018-05-15 2019-05-15 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック

Country Status (7)

Country Link
US (1) US11271219B2 (ja)
EP (1) EP3796439A4 (ja)
JP (1) JP6946557B2 (ja)
KR (1) KR102613427B1 (ja)
CN (1) CN112189274A (ja)
CA (1) CA3099779C (ja)
WO (1) WO2019221168A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3167109A1 (en) * 2020-02-10 2021-08-19 Toshihiro Miyao Supported metal catalyst, method for producing same, and method for producing carrier
EP4131516A4 (en) 2020-03-23 2024-05-15 N E Chemcat Corp ELECTRODE CATALYST, GAS DIFFUSION ELECTRODE FORMING COMPOSITION, GAS DIFFUSION ELECTRODE, ELECTRODE-MEMBRANE ASSEMBLY AND FUEL CELL STACK
CN115336051A (zh) 2020-03-23 2022-11-11 恩亿凯嘉股份有限公司 电极用催化剂、气体扩散电极形成用组合物、气体扩散电极、膜电极接合体和燃料电池堆
US20230369608A1 (en) 2020-09-29 2023-11-16 N.E. Chemcat Corporation Catalyst for electrodes, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack
EP4223414A1 (en) 2020-09-29 2023-08-09 N.E. Chemcat Corporation Catalyst for electrodes, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack
EP4293757A1 (en) 2021-02-09 2023-12-20 N.E. Chemcat Corporation Method of producing electrode catalyst, method of producing gas diffusion electrode, and method of producing membrane/electrode assembly
KR20230145365A (ko) 2021-02-09 2023-10-17 엔.이. 켐캣 가부시키가이샤 전극용 촉매의 제조 방법, 가스 확산 전극의 제조 방법및 막-전극 접합체의 제조 방법
KR20230083433A (ko) 2021-12-03 2023-06-12 코오롱인더스트리 주식회사 연료전지용 촉매, 이의 제조방법 및 이를 포함하는 연료전지

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855021B2 (en) 2004-12-22 2010-12-21 Brookhaven Science Associates, Llc Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof
JP4362116B2 (ja) 2005-10-20 2009-11-11 電気化学工業株式会社 アセチレンブラックとその製造方法、及び燃料電池用触媒
JP5140672B2 (ja) 2006-08-30 2013-02-06 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 金属あるいはセラミックコア材料を含むコア/シェルタイプの触媒粒子およびそれらの製造方法
JP4637075B2 (ja) 2006-10-03 2011-02-23 宇部興産株式会社 変性ポリブタジエンの製造方法
JP5810860B2 (ja) 2011-11-17 2015-11-11 日産自動車株式会社 燃料電池用電極触媒層
EP2626131A1 (en) * 2012-02-08 2013-08-14 Studiengesellschaft Kohle mbH Highly sinter-stable metal nanoparticles supported on mesoporous graphitic particles and their use
JPWO2014175097A1 (ja) 2013-04-25 2017-02-23 日産自動車株式会社 触媒およびその製造方法ならびに当該触媒を用いる電極触媒層
US20160064744A1 (en) 2013-04-25 2016-03-03 Nissan Motor Co., Ltd. Catalyst and electrode catalyst layer for fuel cell having the catalyst
CN105229834B (zh) * 2013-05-16 2017-09-29 丰田自动车株式会社 燃料电池用电极及其制造方法
CN106030877B (zh) * 2014-03-19 2018-11-02 新日铁住金株式会社 固体高分子型燃料电池用的载体碳材料和担载有催化剂金属粒子的碳材料
CN105594034B (zh) * 2014-03-28 2018-05-08 恩亿凯嘉股份有限公司 电极用催化剂、气体扩散电极形成用组合物、气体扩散电极、膜/电极接合体以及燃料电池组
KR102097952B1 (ko) 2014-10-24 2020-04-07 가부시키가이샤 캬타라 연료 전지용 전극 촉매 및 그 제조 방법
US10103398B2 (en) 2015-03-26 2018-10-16 Nippon Steel & Sumitomo Metal Corporation Support carbon material and catalyst for solid polymer type fuel cell use
CN106537670B (zh) * 2015-03-31 2018-12-04 恩亿凯嘉股份有限公司 电极用催化剂及制造方法、气体扩散电极及形成用组合物、mea、燃料电池堆及复合颗粒
JP2017021991A (ja) 2015-07-10 2017-01-26 エヌ・イーケムキャット株式会社 ガス拡散電極の製造方法、膜・電極接合体(mea)の製造方法
KR102054609B1 (ko) 2016-03-11 2019-12-10 닛산 지도우샤 가부시키가이샤 연료 전지용 탄소 분말, 그리고 당해 연료 전지용 탄소 분말을 사용하는 촉매, 전극 촉매층, 막 전극 접합체 및 연료 전지

Also Published As

Publication number Publication date
US20210184228A1 (en) 2021-06-17
CA3099779C (en) 2023-07-04
US11271219B2 (en) 2022-03-08
KR102613427B1 (ko) 2023-12-14
JPWO2019221168A1 (ja) 2021-05-27
CN112189274A (zh) 2021-01-05
CA3099779A1 (en) 2019-11-21
EP3796439A4 (en) 2022-03-02
WO2019221168A1 (ja) 2019-11-21
EP3796439A1 (en) 2021-03-24
KR20210006991A (ko) 2021-01-19

Similar Documents

Publication Publication Date Title
JP6946557B2 (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック
JP2021150249A (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック
WO2016157897A1 (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック、電極用触媒の製造方法、及び、複合粒子
WO2021193257A1 (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック
WO2022071321A1 (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック
JP6668582B2 (ja) ガス拡散電極の製造方法、膜・電極接合体(mea)の製造方法
WO2021193256A1 (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック
JP2017021991A (ja) ガス拡散電極の製造方法、膜・電極接合体(mea)の製造方法
WO2022071320A1 (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック
WO2018123790A1 (ja) 触媒層、ガス拡散電極、膜・触媒層接合体、膜・電極接合体、燃料電池スタック、触媒層形成用組成物
WO2022172948A1 (ja) 電極用触媒の製造方法、ガス拡散電極の製造方法、及び、膜・電極接合体の製造方法
WO2016170774A1 (ja) 触媒層、ガス拡散電極、膜・触媒層接合体、膜・電極接合体、燃料電池スタック
KR20230145364A (ko) 전극용 촉매의 제조 방법, 가스 확산 전극의 제조 방법및 막-전극 접합체의 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210915

R150 Certificate of patent or registration of utility model

Ref document number: 6946557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150