JP6944472B2 - 逆走ドライバを検出するための方法、装置、およびシステム - Google Patents

逆走ドライバを検出するための方法、装置、およびシステム Download PDF

Info

Publication number
JP6944472B2
JP6944472B2 JP2018563797A JP2018563797A JP6944472B2 JP 6944472 B2 JP6944472 B2 JP 6944472B2 JP 2018563797 A JP2018563797 A JP 2018563797A JP 2018563797 A JP2018563797 A JP 2018563797A JP 6944472 B2 JP6944472 B2 JP 6944472B2
Authority
JP
Japan
Prior art keywords
particles
actual
reverse
vehicle
road sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018563797A
Other languages
English (en)
Other versions
JP2019519041A (ja
Inventor
ガイスラー,ジーモン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2019519041A publication Critical patent/JP2019519041A/ja
Application granted granted Critical
Publication of JP6944472B2 publication Critical patent/JP6944472B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3697Output of additional, non-guidance related information, e.g. low fuel level
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/056Detecting movement of traffic to be counted or controlled with provision for distinguishing direction of travel
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/164Centralised systems, e.g. external to vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Description

本発明は、独立請求項の前提部分に記載の装置または方法に関する。コンピュータプログラムも本発明の対象である。
逆走ドライバ(「幽霊ドライバ」)は事故発生時には少なくとも著しい物的損害を引き起こす。ナビゲーション機器のみに基づいた検出(道路区分および道路方向)では、多くの場合には手遅れである。すなわち、逆走ドライバは既に(高速走行しており、衝突の確率が高い状態で)誤った車道に入っている。
このような背景に基づいてここで説明するアプローチによれば、独立請求項に記載の逆走ドライバを検出するための方法、さらに装置、システム、および適切なコンピュータプログラムが得られる。従属請求項に記載の措置により、独立請求項に記載の装置の好ましい構成および改良が可能である。
例えば、クラウドに基づいた逆走ドライバ警告は、好ましくは、粒子フィルタを用いて特に用途に適合した検出を行うことよって実現することができる。
逆走ドライバを検出する方法は、
車両が通行可能な道路網の道路区画を表すマップデータを読み取るステップと、
測定された車両の実際の位置を使用して実際の複数の粒子を決定するステップであって、粒子は、仮定される車両の位置および仮定される位置に割り当てられた重みを表すステップと、
先立ってフィルタ処理された複数の粒子を読み取るステップであって、これらの粒子が、先行するフィルタ処理するステップで粒子フィルタを使用してフィルタ処理された粒子を表すステップと、
実際の複数の粒子および先立ってフィルタ処理された複数の粒子を使用して、多数のもっともらしい道路区画を決定するステップと、
フィルタ処理された複数の粒子を決定するために、粒子フィルタを使用して、多数のもっともらしい道路区画に基づいて実際の複数の粒子をフィルタ処理するステップと、
を含む。
車両は路上走行用車両であってもよい。逆走とは、車両が規定された走行方向とは反対に道路を走行することとして理解することができる。測定された位置は、車両内に配置されたセンサを使用して測定された位置であってもよい。複数の粒子は、既知の粒子フィルタを用いる方法を使用して決定することができる。この場合、粒子は仮定される様々な位置を取ることができ、これらの位置は、例えば測定された位置の周囲に配列されている。例えばデジタルマップからマップデータを読み取ることもできる。もっともらしい道路区画は、例えば、提供されたデータを評価した後に車両が位置していると仮定される道路区画として理解することができる。
実際の複数の粒子をフィルタ処理するステップでは、実際の複数の粒子のための新しい重みを決定することができる。このようにして、方法の結果を改善するためにもっともらしいと思われる粒子をより高く重み付することができる。
方法は、フィルタ処理された複数の粒子を使用して逆走信号を供給するステップを含んでいてもよい。この場合、逆走信号は、車両の逆走が生じているか、または生じてないかを示してもよい。例えば逆走信号は、逆走が仮定される場合にのみ供給することもできる。
多数のもっともらしい信号区画を決定するステップでは、先行する決定するステップで決定された多数のもっともらしい道路区画を表す先行する多数のもっともらしい道路区画を読み取ることができる。さらに、実際の複数の粒子を使用して不確かな多数の道路区画を決定することができる。最終的に、先行する多数のもっともらしい道路区画に接続する不確な道路区画を備える先行する多数のもっともらしい道路区画が多数のもっともらしい道路区画に補足される。このようにして、もっともらしい多数の道路区画を常に更新することができる。
方法は、多数のもっともらしい道路区画を使用して、車両が進んだ距離を決定するステップを含んでいてもよい。この場合、フィルタ処理するステップでは、進んだ距離に基づいて実際の複数の粒子をフィルタ処理することができる。この場合、進んだ距離を考慮することにより、例えば粒子の重みを適合させることができる。
方法は、クラウド・コンピューティング、いわゆる「クラウド」のインターフェイスを介して、測定された実際の位置を読み取るステップを含んでいてもよい。これにより、クラウドに基づいた解決が可能である。
対応する逆走ドライバ検出装置が、上記方法のステップを対応するユニットで実施するように構成されている。例えば、このような装置は、車両が通行可能な道路網の道路区画を表すマップデータを読み取るように構成されている読取り装置と、測定された実際の車両の位置を使用して、仮定された車両の位置および仮定された位置に割り当てられた重みを表す複数の粒子を決定するように構成された決定装置と、先行するフィルタ処理するステップで粒子フィルタを使用してフィルタ処理された粒子を表す、先立ってフィルタ処理された複数の粒子を読み取るように構成された読取り装置と、実際の複数の粒子および先行してフィルタ処理された複数の粒子を使用して多数のもっともらしい道路区画を決定するように構成された決定装置と、フィルタ処理された複数の粒子を決定するために、粒子フィルタを使用して、多数のもっともらしい道路区画に基づいて実際の複数の粒子をフィルタ処理するように構成されたフィルタ装置を備えていてもよい。対応して、装置は粒子フィルタを含んでいてもよい。
対応する逆走ドライバ検出システムは、車両内に配置可能であるか、または配置されており、車両の位置を表す位置データを送信するように構成された送信装置、および少なくとも1つの送信装置によって送信された位置データを、例えば無線接続を介して受信するように構成された逆走ドライバ検出装置を含む。
別の逆走ドライバ検出システムは、車両内に配置可能であるか、または配置されており、測定された車両の位置を表す位置データを送信するように構成された送信装置、および、車両内に配置可能であるか、または配置されており、ここで説明した逆走ドライバを検出するためのアプローチにしたがって、少なくとも1つの送信装置から送信された位置データを受信するように構成されている装置のデータを受信するように構成された少なくとも1つの受信装置を含む。
上記方法は、例えばソフトウェアまたはハードウェア、またはソフトウェアとハードウェアとの混合形式で、例えば装置で実施してもよい。
このために、装置は、信号またはデータを処理するための少なくとも1つの計算ユニット、信号またはデータを記憶するための少なくとも1つのメモリユニット、および/または通信プロトコルに埋め込まれたデータを読み取るかまたは出力するための少なくとも1つの通信インターフェイスを備えていてもよい。計算ユニットは、例えば信号プロセッサ、マイクロコントローラなどであってもよく、メモリユニットは、フラッシュメモリ、EPROM、または磁気メモリユニットであってもよい。通信インターフェイスは、無線および/または有線でデータを読み取るか、または出力するように構成されていてもよく、有線のデータを読み取るか、または出力することができる通信インターフェイスは、これらのデータを、例えば電気的または光学的にそれぞれのデータ伝送ラインから読み取るか、またはそれぞれのデータ伝送ラインに出力することができる。
本明細書では、装置はセンサ信号を処理し、センサ信号の関数として制御信号および/またはデータ信号を出力する電気機器として理解することができる。装置は、ハードウェアおよび/またはソフトウェアに関して構成されたインターフェイスを備えていてもよい。ハードウェアに関して構成されている場合、インターフェイスは、例えば、装置の種々異なる機能を含む、いわゆる「システムASIC」の一部であってもよい。しかしながら、インターフェイスは固有の集積回路であるか、または少なくとも部分的に個別の構成部材からなっていることも可能である。ソフトウェアに関して構成されている場合には、インターフェイスは、例えば、他のソフトウェアモジュールと共にマイクロコントローラに設けられているソフトウェアモジュールであってもよい。
機械読取り可能な担体またはメモリ媒体、例えば半導体メモリ、ハードディスクメモリ、または光学メモリなどに保存されていてもよいプログラムコードを備えるコンピュータプログラム製品またはコンピュータプログラムも有利であり、プログラム製品またはプログラムがコンピュータまたは装置で実施された場合に上記いずれかの実施形態にしたがって方法ステップを実施、変更および/または制御するために使用される場合には特に有利である。
ここで説明したアプローチの実施例を図面に示し以下に詳細に説明する。
一実施例による逆走ドライバ検出システムを示す図である。 一実施例による逆走ドライバを検出する方法のフロー図である。 隠れマルコフ連鎖モデルを示す図である。 一実施例による粒子フィルタ処理のフロー図である。 一実施例による逆走ドライバ検出システムを示す図である。 一実施例による車両を示す図である。 一実施例によるプログラムフロー図である。 一実施例による粒子フィルタのプログラムフロー図である。 一実施例による道路トポロジーの考慮を示す図である。 一実施例により逆走ドライバを検出する方法のフロー図である。 一実施例による道路トポロジーの考慮を示す図である。
以下に説明する本発明の好ましい実施例では、異なる図面に示した同様に作用する要素には同様または類似の符号を付し、これらの要素については繰返し説明しない。
図1は、一実施例による逆走ドライバ検出システムを示す。このシステムは、伝送装置102を備える車両100を含み、伝送装置102は、車両100の内部に配置された少なくとも1つのセンサ装置104を使用して、検出された測定データ106を逆走ドライバ検出装置110に無線式に送信するように構成されている。装置110は、測定データ106を処理済データの形に処理し、粒子フィルタを使用して処理済データをさらに加工し、逆走信号112を生成し、送信するように構成されている。一実施例によれば、逆走信号112は、測定データ106を加工した車両100が実際に逆走を行っていることを示す。この実施例によれば、この車両100の伝送装置102および別の車両100の伝送装置102は、逆走信号112を受信し、逆走信号112の受信に応答して、それぞれの車両100,114の警告装置を起動するように構成されており、警告装置は、例えばそれぞれの車両100,114のドライバに逆走しないよう警告するか、または一実施例によれば、それぞれの車両100,114の、例えばブレーキ装置または操舵装置の少なくとも部分自動制御に介入する。様々な実施例にしたがって、伝送装置102は送信装置としてのみ構成されていてもよいし、または送受信装置として構成されていてもよい。
一実施例によれば、測定データ106は、車両100の位置決定装置を使用して検出された、車両100の実際の位置を示す位置データを含む。別の一実施例によれば、さらに測定データ106は、例えば車両100の少なくとも1つの加速度センサを使用して検出された移動データ、および車両100の実際の移動に関する情報、例えば走行方向、縦方向加速度、横方向加速度、または車軸を中心とした車両の回転に関する情報を含む。
一実施例によれば、装置110は、車両100が通行可能な道路網を表すマップデータ116を読み取るように構成されている。一実施例によれば、マップデータ116は、例えば道路網の道路区画に関する情報を含む。一実施例によれば、さらにマップデータ116は、それぞれの道路区画に関して、例えばそれぞれの道路区画のための走行方向規定またはそれぞれの道路区画の延び方を定義する少なくとも1つのパラメータを含む。例えば、道路区画が真っ直ぐに延びているか、または曲線を描いているかについてのパラメータが定義されていてもよい。一実施形態によれば、装置110は、マップデータ116が記憶されているメモリ装置を備える。
一実施例によれば、装置110または装置110の機能ブロックはクラウド118に配置されているか、またはクラウド118で実現されている。
例えばビデオセンサ装置を使用して「進入禁止」標識の通過を検出する方法や、ナビゲーションと共にデジタルマップを使用して、一方向にしか通行可能ではない道路区分における逆走方向を検出する方法などの、逆走ドライバを検出する多様な方法に対して補足的または代替的に上記アプローチを使用することができる。さらに、例えば車道または車道縁部の交通標識などのインフラストラクチャを用いて逆走トライバを検出する無線式の方法を上記アプローチと組み合わせることもできる。
上記アプローチは、逆走ドライバの検出の他に、逆走ドライバに対処する多くの可能性を提供する。ディスプレイまたは音響的な示唆によって逆走ドライバ自身に警告することがこのような可能性の一例である。例えば車両と車両との通信または移動通信によって、逆走ドライバの近隣の他のドライバに警告するためにこの方法を使用してもよい。さらに、道路縁部に設置された道路情報表示装置を介して他の交通利用者に警告を行うことも可能である。逆走している車両100のエンジン制御部またはブレーキに介入することもできる。
上記アプローチにより、逆走ドライバを検出し、逆走ドライバの近傍の他の交通利用者に早期に警告を行うことが可能であるが、このためには極めて短い時間しか使用できない。
上記アプローチは、クライアント‐サーバ型の解決策によって逆走ドライバ検出(Wrong-Way-Driver-Detection)を行う。自動車に取り付けられているか、もしくは自動車内に設けられ、インターネット接続を有し、少なくとも位置座標へのアクセスを有する機器がクライアントとみなされる。例えば、この場合には伝送装置102であってもよい。伝送装置102は、例えばスマートフォンであってもよい。伝送装置102にはセンサ装置104が組み込まれていてもよい。逆走ドライバ特有のサーバ‐クライアント通信が、例示的なクライアントであるスマートフォンとの間で行われる場合もある。スマートフォンは、ゲートウェイ(PDN_GW)を備える移動通信網によってインターネットに接続されていてもよく、ゲートウェイには、例えばサーバの形式の装置110が配置されていてもよい。
クライアント‐サーバ型の解決策を用いて実施可能な逆走ドライバ警告の機能形式に基づいて、ここで説明するアプローチはこの技術のために以下の重要な課題に取り組む。
a)フォールスポジティブの低減
走行形式が正しい場合のフォールスポジティブ、すなわち誤検知は、内部警告の場合および/または能動的な介入の場合にできるだけ防止するか、もしくは完全に防止する必要がある。警告概念に応じてASIL‐Aまでの基準を満たす必要がある。
b)緊急を要する一連の作動の実施
逆走ドライバによって他の交通利用者に及ぼされる危険をできるだけ小さく抑えるためには、介入もしくは警告はできるだけ素早く行うことが望ましい。すなわち、危険な状況を検出してから逆走ドライバを検出し、介入もしくは警告に至るまでの全ての機能の流れをできるだけ短時間に実施することが望ましい。このような機能を包括的に使用する場合には、サーバ、例えば装置110の稼働率やこれに伴い要求される性能が極めて重要な役割を果たす。作動時間の他にコスト効率も重要な側面である。
c)通信量、データ効率、および電流消費
特に携帯機器においては、許容できる電池寿命を達成するために通信量および電流消費をできるだけ効率良くする、すなわち少なくする必要がある。移動通信機器電池または他の無線通信ユニットの過負荷をデータ効率のよい通信によって抑制する必要がある。データ量、ひいてはデータ量に伴うコストもできるだけ制限されるべきである。計算能力の理由でサーバ側においても通信効率は最も重要な要素である。
上記アプローチは、特に特定項目、特に(a)「フォールスポジティブの低減」および(b)「緊急を要する一連の作動の実施」に影響を及ぼすが、しかしながら、場合によっては、(c)「通信量、データ効率、および電流消費」にも影響を及ぼす。市販のスマートフォンおよびコネクティビティコントロールユニットのセンサ装置に基づいてクラウド118で逆走ドライバを検出することは、ささいな企てではない。
図2は、一実施例による逆走ドライバを検出する方法のフロー図を示す。この方法は、例えば図1に基づいて説明した逆走ドライバ検出装置の機構を使用して実施することができる。
方法は、車両が通行可能な道路網の道路区画を表すマップデータを読み取るステップ201を含む。ステップ203では、測定された車両の実際の位置を使用して実際の複数の粒子が決定される。この場合、1つの粒子は仮定される車両の位置および仮定される位置に割り当てられた重みを表す。ステップ205では、先立ってフィルタ処理された複数の粒子が読み取られる。ステップ207では、実際の複数の粒子および先立ってフィルタ処理された複数の粒子を使用して、多数のもっともらしい道路区画が決定される。ステップ209では、粒子フィルタを使用して、多数のもっともらしい道路区画に基づいて実際の複数の粒子がフィルタ処理される。この場合、フィルタ処理された複数の粒子が決定され、これらの粒子は、時間的に後続するステップ205で、先立ってフィルタ処理された複数の粒子として読み取ることができる。
逆走ドライバを検出するためには、逆走ドライバがどのルートを走行したかは重要ではない。必要な情報は、特に逆走ドライバが現在どこにいるのか、または逆走ドライバが道路を走行方向とは反対に走行しているかどうかである。このことを判定するためには、履歴が必要であるが、しかしながら、履歴は問題提起の一部ではなく、むしろ結果に至る過程である。
このような状況に基づいて、粒子フィルタに基づいた方法を説明する。粒子フィルタは、カルマンフィルタと同様に、隠れマルコフ連鎖特性、すなわち状態が観察されていないマルコフ連鎖によって支配されたシステムで使用することができる。
図3は、時点kおよびk−1における状態xおよび観察zを備える隠れマルコフ連鎖モデル320を示す。
すなわち、システムの状態を直接に測定することはできないが、しかしながら他の観測に基づいて推定することができる。この場合には、位置、ひいては実際の道路を推定することが重要である。このためには次の方程式を解く必要がある。
Figure 0006944472
次に時点kの状態をxによって表し、これよりも前の状態を
Figure 0006944472
によって要約する。xと同様に、この慣例は制御変数uおよび観測uについてもあてはまる。ηは以下では重要ではない正規化係数を表す。この方程式は以下の方程式に簡略化することができる。
Figure 0006944472
この方程式は2つのステップ、すなわち予測ステップ、
Figure 0006944472
および重み付け係数、
Figure 0006944472
で表わされる。
粒子フィルタでは、積分は、数値近似による確率分布
Figure 0006944472
およびモンテカルロ法によって解かれる。この場合w[j]は、第j粒子の重み/確率を表す。粒子の数量は
Figure 0006944472
によって表される。したがって、それぞれの粒子は重みw[j]および状態x[j]を有する。
図4は、一実施例による粒子フィルタ処理のフロー図を示す。このために、図4には時点kおよびk−1における状態xおよび観察zを備える隠れマルコフ連鎖モデルが示されている。
作業の大部分は、問題を最適に表す
Figure 0006944472
および
Figure 0006944472
のための適切な関数を求めることである。このためには推定されるべき状態xを定義することが重要である。
ブロック401は粒子フィルタ
Figure 0006944472
を表す。
全ての値j=1:Jが通過されるまでブロック403からブロック405に進む。
ブロック405において、新しい状態、
Figure 0006944472
が計算され、ブロック407において、重み、
Figure 0006944472
が計算される。
ブロック403において全ての値が通過された場合には、ブロック409に進む。全ての値i=1:Jが通過されるまで、ブロック409からブロック411に進む。
ブロック411では、
Figure 0006944472
にしたがって値が示される。
ブロック413では、
Figure 0006944472
にしたがって粒子セットが加算される。
ブロック409において全ての値が通過された場合には、終了Xを示すブロック415に進む。
図5は、一実施例による逆走ドライバ検出システムを示す。このシステムは、例えば図1に基づいて説明した伝送装置の形式の機器102と、この実施例によれば、いわゆる「WDWサーバ」として構成されている逆走ドライバ検出装置110とを含む。装置110は、機器102からデータ106、例えば図1に基づいて説明した測定データを受信し、データ106に基づいて警告112を準備し、例えば図1で説明した逆走信号の形式で機器102に再び送信するように構成されている。
装置は、前処理手段530、粒子フィルタ532、および警告モジュール534を備える。
クラウドに基づいた逆走ドライバ警告の簡略化されたアーキテクチャには、図5に示すように粒子フィルタ532が埋め込まれている。
粒子フィルタ532によって、自動車の位置の確率分布を近似で決定することができる。
図6は、車両100について、図5に示したモデルに基づいて使用できる値を示す。値は、例えば縦軸線x、横軸線y、垂直軸線zの方向の状態、ならびに縦軸線を中心としたローリングp、横軸線を中心としたピッチングq、および垂直軸線を中心としたヨーイングrであってもよい。
粒子フィルタを使用したマップの照合に関して、ベイジアンフィルタについて
Figure 0006944472
が成り立つ。この場合、図3を参照して、xは、例えば地理的な長さ、幅、および高さなどの状態(測定されていない)を表し、uk+1は、例えば速度および回転速度に関して自動車100がどのように移動するかを表し、Zは、観測できるもの、例えばGPS信号または車両100の周辺に関する信号(カメラなど)を表す。
図7は、一実施例によるプログラムフロー図を示す。このフロー図はブロック701で始まる。ブロック530では、例えば図5に基づいて説明したようにデータ前処理が行われる。ブロック703では、前の時点の状態があればこの状態が供給される。ブロック705では、粒子フィルタとのマップ照合が行われる。ブロック707では結果の解釈が行われる。ブロック709では逆走が生じているかどうかが点検される。逆走が生じている場合には、ブロック534において、例えば図5に基づいて説明したように警告が発信される。逆走が生じていない場合には、プログラムフローはブロック711で終了する。
図8は、一実施例による粒子フィルタのプログラムフロー図を示す。ブロック801は、粒子フィルタ処理の始まりを示す。ブロック803では、例えば図1に基づいて説明したセンサ装置のセンサの不正確さを考慮して、粒子の移動が行われる。ブロック805では、マップに関するパラメータの検出が行われる。このようなパラメータは、例えば粒子が道路に位置しているかどうか、または道路がどのような名称であるかを示す。このブロック807では、新たに粒子の重みの計算が行われる。ブロック809では、いわゆる「再サンプリング」が行われ、重要ではない範囲および/または粒子の除去が行われる。ブロック811では、個々の粒子の解釈が行われ、ブロック813では、可能性のある道路のフィードバックが行われる。
粒子フィルタを使用することによって、以下に挙げる側面が改善される。まず、連続的に作動する(リアルタイムで可能な)方法が得られ、道路網における実際の位置がまず確定される。さらに道路網における実際の位置を確実に推定することが可能である。実際の推定に関する不確実性が確定可能である。これにより、潜在的な逆走に関する決定を有意義な程度に信頼性良く遅延することができる。
図9は、上記方法の一実施例による道路トポロジーを考慮した図を示す。
粒子フィルタの一般的な用途は多様であり、この用途では最適な位置特定精度を達成することが求められるのではなく、むしろいずれにしても正しい道路要素を確定することが求められる。すなわち、逆走が生じていることをセンサデータが示した場合であっても、実際にも逆走が生じていることを本当に確信できる場合にのみ危険な交通の警告が行われることが望ましい。この場合、道路トポロジーを考慮することが重要な要素である。
したがって「観測モデル」、すなわち粒子の確率の計算は、進んだ距離もしくは2つの道路要素間の推移にも依存している。これは、推移確率と要約することもできる。
図9には、実際の複数の粒子901、すなわち実際の計算サイクル(k)からの粒子および先立ってフィルタ処理された複数の粒子903、すなわち、先行する計算サイクル(k−1)からの粒子が示されている。
何が起こってはならなのか、およびなぜトポロジーを考慮する必要があるのかを次の例で説明する。
緑色の接続911はもっともらしい粒子の移動を示す。
赤色の接続913は、(道路網において)進んだ距離がこの時間間隔にしては大きすぎるのでもっともらしくない粒子の移動を示す。
黒色の接続915は、既知の道路区画ではこれらの道路の接続は知られていない(距離は無限である)ので、同様にもっともらしくない粒子の移動を示す。
したがって、接続911,913,915は、粒子901,903をフィルタ処理する場合に考慮することができる距離として理解することができる。例えば、粒子901,903の重みを適合させるためにこれらの接続911,913,915を使用することができる。
図10は、一実施例による逆走ドライバを検出する方法のプログラムフロー図を示す。この方法は、例えば図1に基づいて説明した装置を使用して実施することができる。
読み取るステップ1001では、「道路区画」とも呼ばれる道路要素がデータバンクから読み取られる。読取りは、一実施例によれば、前の計算ステップおよびこの計算ステップの粒子の周囲のいわゆる「境界ボックス」の形式のエンベロープによって行われる。それぞれのエンベロープが図11に示されている。図11を参照して、道路要素1111,1113,1115,1117,1119,1121が選択される。
ステップ1003では、見つかった全ての道路要素を備える図表が作成される。
ステップ1005では、先行するステップからの全ての道路要素がもっともらしい道路要素を形成する。
ステップ1007では、全ての「新しい」道路要素が実際の粒子の多角形、いわゆる「凸包」と交差した場合には、これらの道路要素は不確かな道路要素のリストに追加される。対応する多角形が図11に示されている。図11を参照して、道路要素1111,1113,1117,1119がもっともらしい道路区画として選択される。随意に、「古い」道路要素も凸包と交差するかどうかについて別の確認が実施される。この場合、道路要素1117,1119が選択される。
ステップ1009では、不確かな道路要素がもっともらしい道路要素と接続されている場合には、もっともらしい道路要素に追加される。
ステップ1011では、いわゆる「マップステイト」、すなわちマップ状態の計算が行われる。
ステップ1013では、道路網において進んだ距離の計算が行われる。例えば、図9に示した接続を決定することができる。
ステップ1015では、進んだ距離を付加的に考慮して重みの計算が行われる。
図11は、一実施例による道路トポロジーの考慮を示す図である。この場合、図9に示したトポロジーであってもよい。
実際の複数の粒子901、すなわち、実際の計算サイクル(k)からの粒子、および先立ってフィルタ処理された複数の粒子903、すなわち先行する計算サイクル(k−1)からの粒子が示されている。
さらに、エンベロープ1101および多角形1103が示されている。多角形1103は、最も外側に位置する実際の粒子901を通ってガイドされる。エンベロープ1101は、実際の粒子901および先立ってフィルタ処理された粒子903の両方を包囲しており、この実施例によれば、それぞれ最も外側に位置する粒子901,903を通ってガイドされる長方形として構成されている。
さらに図11には、第1道路区画1111、第2道路区画1113、第3道路区画1115、第4道路区画1117、第5道路区画1119、および第6道路区画1121が示されており、これらの道路区画は全てエンベロープ1101によって切断または包囲されている。
一実施例によれば、逆走ドライバを検出する方法では、エンベロープ1101を使用して、まず道路区画1111,1113,1115,1117,1119,1121が、先行する多数のもっともらしい道路区画として読み取られる。続いて、実際の粒子901によって張り渡された多角形1103によって切断された道路区画1117,1119,1121が不確かな複数の道路区画として決定される。先行するいずれか1つのもっともらしい道路区画1111,1113,1115,1117,1119,1121に接続する不確な道路区画1117,1119,1121を備える先行する多数のもっともらしい道路区画1111,1113,1115,1117,1119,1121が、多数のもっともらしい道路区画1111,1113,1115,1117,1119,1121に補足される。
拡張のためには粒子フィルタモデルで次の適合が行われる。
マップステイト、
Figure 0006944472
(m)は道路網において進んだ距離
観測モデル、
Figure 0006944472
実施例が、第1の特徴と第2の特徴との間に「および/または」の接続詞を含む場合には、この実施例は、ある実施形態では第1の特徴および第2の特徴の両方を備えており、別の実施形態では第1の特徴のみ、または第2の特徴のみを備えていると読み取られるべきである。

Claims (9)

  1. 逆走ドライバを検出する方法において、
    車両(100)が通行可能な道路網の道路区画(1111,1113,1115,1117,1119,1121)を表すマップデータ(116)を読み取るステップ(201)と、
    車両(100)の測定された実際の位置を使用して実際の複数の粒子(901)を決定するステップ(203)であって、1つの粒子が、仮定された車両(100)の位置および仮定された位置に割り当てられた重みを表すステップ(203)と、
    先立ってフィルタ処理された複数の粒子(903)を読み取るステップ(205)であって、粒子(903)が、先行するフィルタ処理するステップで粒子フィルタ(532)を使用してフィルタ処理された粒子を表すステップ(205)と、
    実際の複数の粒子(901)および先立ってフィルタ処理された複数の粒子(903)を使用して、多数のもっともらしい道路区画(1111,1113,1117,1119)を決定するステップ(207)と、
    フィルタ処理された複数の粒子を決定するために、粒子フィルタ(532)を使用して、多数のもっともらしい道路区画(1111,1113,1117,1119)に基づいて実際の複数の粒子(901)をフィルタ処理するステップ(209;1015)と、
    を含み、
    前記多数のもっともらしい道路区画を決定するステップ(207)で、エンベロープ(1101)を使用して、先行する決定するステップで決定された多数のもっともらしい道路区画を表す先行する多数のもっともらしい道路区画を読み取り、前記先行する多数のもっともらしい道路区画のうち、実際の複数の粒子(901)によって形成された多角形(1103)によって切断される道路区画によって不確かな多数の道路区画決定し、前記先行する多数のもっともらしい道路区画に接続する前記不確かな道路区画を備える先行する多数のもっともらしい道路区画を前記多数のもっともらしい道路区画(1111,1113,1117,1119)に補足し、
    前記エンベロープ(1101)は前記実際の複数の粒子(901)および前記先立ってフィルタ処理された複数の粒子(903)の両方を包囲するように形成され、前記多角形(1103)は、前記実際の複数の粒子(901)が存在する範囲において最も外側に位置する実際の粒子によって決定される、逆走ドライバを検出する方法。
  2. 請求項1に記載の方法において、
    実際の複数の粒子(901)をフィルタ処理するステップ(209;1015)で、実際の複数の粒子(901)のための新しい重みを決定する方法。
  3. 請求項1または2に記載の方法において、
    もっともらしい複数の道路区画(1111,1113,1117,1119)を使用して車両(100)が進んだ距離(911,913,915)を決定するステップ(1013)を備え、フィルタ処理するステップ(209;1015)で、進んだ距離(911,913,915)に基づいて実際の複数の粒子(901)をフィルタ処理する方法。
  4. 請求項1〜3のいずれか一項に記載の方法において、
    フィルタ処理された複数の粒子を使用して逆走信号(112)を供給するステップを備え、逆走信号(112)が、車両(100)の逆走が生じているか、または生じてないかを示す方法。
  5. 請求項1〜4のいずれか一項に記載の方法において、
    クラウド・コンピューティング(118)のインターフェイスを介して、測定された実際の位置を読み取るステップを備える方法。
  6. 請求項1〜5のいずれか一項に記載の方法のステップを対応するユニットで実施するように構成されている逆走ドライバ検出装置(110)。
  7. 逆走ドライバ検出システムにおいて、該システムが、
    車両(100)内に配置可能であるか、または配置されており、車両(100)の位置を表す位置データ(106)を送信するように構成された送信装置(102)と、
    少なくとも1つの送信装置(102)によって送信された位置データ(106)を受信するように構成された請求項に記載の逆走ドライバ検出装置(110)と、
    を含む逆走ドライバ検出システム。
  8. 請求項1〜5のいずれか一項に記載の方法を実施するように構成されたコンピュータプログラム。
  9. 請求項8に記載のコンピュータプログラムが記憶された機械読取り可能なメモリ媒体。
JP2018563797A 2016-06-07 2017-04-13 逆走ドライバを検出するための方法、装置、およびシステム Active JP6944472B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016210025.4 2016-06-07
DE102016210025.4A DE102016210025A1 (de) 2016-06-07 2016-06-07 Verfahren Vorrichtung und System zur Falschfahrererkennung
PCT/EP2017/058957 WO2017211488A1 (de) 2016-06-07 2017-04-13 Verfahren vorrichtung und system zur falschfahrererkennung

Publications (2)

Publication Number Publication Date
JP2019519041A JP2019519041A (ja) 2019-07-04
JP6944472B2 true JP6944472B2 (ja) 2021-10-06

Family

ID=58547535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018563797A Active JP6944472B2 (ja) 2016-06-07 2017-04-13 逆走ドライバを検出するための方法、装置、およびシステム

Country Status (6)

Country Link
US (1) US10916124B2 (ja)
EP (1) EP3465652A1 (ja)
JP (1) JP6944472B2 (ja)
CN (1) CN109313849B (ja)
DE (1) DE102016210025A1 (ja)
WO (1) WO2017211488A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017201924A1 (de) * 2017-02-08 2018-08-09 Audi Ag Verfahren zum Informieren zumindest eines Empfängerfahrzeugs über ein Falschfahrerfahrzeug sowie Servervorrichtung und Kraftfahrzeuge
US20200133308A1 (en) * 2018-10-18 2020-04-30 Cartica Ai Ltd Vehicle to vehicle (v2v) communication less truck platooning
US10748038B1 (en) 2019-03-31 2020-08-18 Cortica Ltd. Efficient calculation of a robust signature of a media unit
DE102019201423A1 (de) 2019-02-05 2020-08-06 Robert Bosch Gmbh Verfahren und Vorrichtung zum Steuern einer Datenübertragung für ein Fahrzeug
FR3095789A1 (fr) * 2019-05-09 2020-11-13 Psa Automobiles Sa Procédé de sécurisation de véhicules en présence d’un véhicule circulant à contre sens
DE102020212037A1 (de) 2020-09-24 2022-03-24 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Erzeugen einer Relevanzkarte für ein Fahrzeug und Verfahren und Vorrichtung zum Bereitstellen eines Positionssignals für eine Falschfahrerkennung
US12049116B2 (en) 2020-09-30 2024-07-30 Autobrains Technologies Ltd Configuring an active suspension
US11335192B1 (en) 2020-12-02 2022-05-17 Here Global B.V. System, method, and computer program product for detecting a driving direction
US12110075B2 (en) 2021-08-05 2024-10-08 AutoBrains Technologies Ltd. Providing a prediction of a radius of a motorcycle turn
CN114910081B (zh) * 2022-05-26 2023-03-10 阿波罗智联(北京)科技有限公司 车辆定位方法、装置及电子设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8209121B1 (en) * 2007-10-10 2012-06-26 Google Inc. Registration of location data to street maps using hidden markov models, and application thereof
JP2009140008A (ja) * 2007-12-03 2009-06-25 Sumitomo Electric Ind Ltd 危険走行情報提供装置、危険走行判定プログラム及び危険走行判定方法
JP5666812B2 (ja) * 2010-03-12 2015-02-12 クラリオン株式会社 車両逆走検出装置
US8452535B2 (en) * 2010-12-13 2013-05-28 GM Global Technology Operations LLC Systems and methods for precise sub-lane vehicle positioning
CN102081844A (zh) * 2011-01-25 2011-06-01 华中科技大学 一种交通视频行为分析与报警服务器
JP5479398B2 (ja) * 2011-03-29 2014-04-23 アイシン・エィ・ダブリュ株式会社 運転支援装置、運転支援方法及びコンピュータプログラム
US20120290150A1 (en) 2011-05-13 2012-11-15 John Doughty Apparatus, system, and method for providing and using location information
US9140792B2 (en) * 2011-06-01 2015-09-22 GM Global Technology Operations LLC System and method for sensor based environmental model construction
KR101881415B1 (ko) * 2011-12-22 2018-08-27 한국전자통신연구원 이동체의 위치 인식 장치 및 방법
JP6169318B2 (ja) * 2012-02-14 2017-07-26 本田技研工業株式会社 ナビゲーションシステム
JP5867176B2 (ja) * 2012-03-06 2016-02-24 日産自動車株式会社 移動物体位置姿勢推定装置及び方法
JP2014169865A (ja) * 2013-03-01 2014-09-18 Hitachi Ltd 目標トラッキング装置、目標トラッキングプログラム及び目標トラッキング方法
JP6036421B2 (ja) * 2013-03-14 2016-11-30 富士通株式会社 道路管理支援方法、道路管理支援装置、及び道路管理支援プログラム
DE102013209502A1 (de) * 2013-05-22 2014-11-27 Robert Bosch Gmbh Verfahren zum automatischen Intervenieren in ein Ego-Fahrzeug bei einer Falschfahrt, insbesondere einer Geisterfahrt
WO2015029565A1 (ja) * 2013-08-28 2015-03-05 アイシン・エィ・ダブリュ株式会社 運転支援システム、方法およびプログラム
JP6511767B2 (ja) * 2014-10-20 2019-05-15 株式会社デンソー 逆走判断装置
CN105448094B (zh) * 2015-12-31 2017-12-05 招商局重庆交通科研设计院有限公司 一种基于车路协同技术的逆行警告与风险规避方法

Also Published As

Publication number Publication date
US10916124B2 (en) 2021-02-09
CN109313849B (zh) 2021-10-15
EP3465652A1 (de) 2019-04-10
US20190189003A1 (en) 2019-06-20
JP2019519041A (ja) 2019-07-04
CN109313849A (zh) 2019-02-05
WO2017211488A1 (de) 2017-12-14
DE102016210025A1 (de) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6944472B2 (ja) 逆走ドライバを検出するための方法、装置、およびシステム
US11105640B1 (en) Using train telematics data to reduce accident risk
JP6776373B2 (ja) 逆走ドライバを検出するための方法、装置、およびシステム
EP3285244B1 (en) Vehicle information processing device and vehicle information processing program
JP7413503B2 (ja) 車両の安全性能を評価すること
US10996073B2 (en) Navigation system with abrupt maneuver monitoring mechanism and method of operation thereof
US9940549B2 (en) Method for black ice detection and prediction
CN114274972A (zh) 自主驾驶环境中的场景识别
CN111829548A (zh) 危险路段的检测方法、装置、可读存储介质和电子设备
JP6732053B2 (ja) 逆走ドライバを検出するための方法、装置、およびシステム
Daraghmi et al. Intelligent Smartphone based system for detecting speed bumps and reducing car speed
CN109313851B (zh) 用于逆行驾驶员识别的方法、设备和系统
US11315417B2 (en) Method, device and system for wrong-way driver detection
US10876843B2 (en) Method, device and system for wrong-way driver detection
CN114120651A (zh) 用于测试感知目标数的方法、装置、设备、介质和产品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210910

R150 Certificate of patent or registration of utility model

Ref document number: 6944472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250