CN109313849A - 用于错路驾驶员识别的方法、设备和系统 - Google Patents

用于错路驾驶员识别的方法、设备和系统 Download PDF

Info

Publication number
CN109313849A
CN109313849A CN201780035503.4A CN201780035503A CN109313849A CN 109313849 A CN109313849 A CN 109313849A CN 201780035503 A CN201780035503 A CN 201780035503A CN 109313849 A CN109313849 A CN 109313849A
Authority
CN
China
Prior art keywords
particle
road
vehicle
wrong
path section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780035503.4A
Other languages
English (en)
Other versions
CN109313849B (zh
Inventor
S·盖斯勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN109313849A publication Critical patent/CN109313849A/zh
Application granted granted Critical
Publication of CN109313849B publication Critical patent/CN109313849B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3697Output of additional, non-guidance related information, e.g. low fuel level
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/056Detecting movement of traffic to be counted or controlled with provision for distinguishing direction of travel
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/164Centralised systems, e.g. external to vehicles

Abstract

本发明涉及一种用于错路驾驶员识别的方法,其中,所述方法包括:读取地图数据(116),所述地图数据反映能由车辆(100)行驶的道路网的道路区段;在使用所述车辆(100)的当前测量位置的情况下确定多个当前粒子,其中,一个粒子代表所述车辆(100)的一个假设位置和配属于所述假设位置的权重;读取多个之前过滤的粒子,这些粒子为在之前的过滤步骤中在使用粒子滤波器的情况下所过滤的粒子;在使用所述多个当前粒子和所述多个之前过滤的粒子情况下确定可信道路区段的数量;基于所述可信道路区段的数量在使用所述粒子滤波器的情况下过滤所述多个当前粒子,以便确定多个过滤的粒子。

Description

用于错路驾驶员识别的方法、设备和系统
技术领域
本发明从一种根据独立权利要求类型的设备或方法出发。本发明的主题也是一种计算机程序。
背景技术
错路驾驶员(“开错方向的驾驶员”)在事故情况下至少造成巨大的财产损失。仅基于导航装置进行的识别(道路等级和方向),对于大多数情况而言过晚,也就是说错路驾驶员(以高的行驶速度和大的碰撞概率)已经位于错误的行车道上。
发明内容
在该背景下,借助在此提出的方案,根据独立权利要求提出一种用于错路驾驶员识别的方法、设备和系统,以及最后提出一种相应的计算机程序。通过在从属权利要求中列举的措施能够实现在独立权利要求中说明的设备的有利扩展方案和改进方案。
例如基于云的错路驾驶员警告可以有利地借助粒子滤波器通过专门匹配于应用情况的识别来实现。
用于错路驾驶员识别的方法包括以下步骤:
读取地图数据,所述地图数据反映可由车辆行驶的道路网的道路区段;
在使用车辆的当前测量位置的情况下确定多个当前粒子,其中,一个粒子代表车辆的假设位置和配属于该假设位置的权重;
读取多个之前过滤的粒子,这些粒子为在之前的过滤步骤中在使用粒子滤波器的情况下所过滤的粒子;
在使用多个当前粒子和多个之前过滤的粒子情况下确定可信道路区段的数量;
基于可信道路区段的数量在使用粒子滤波器的情况下过滤多个当前粒子,以便确定多个过滤的粒子。
所述车辆可以是道路车辆。错误行驶可以理解为车辆在道路上逆着规定的行驶方向行驶。测量位置可以是在使用布置在车辆中的传感器情况下被测量的。可以在使用借助已知粒子滤波器所使用的方法情况下确定所述多个粒子。在此,这些粒子可以不同的假设位置,这些位置例如围绕测量位置被分组。例如可以从数字地图中读取地图数据。可信的道路区段可以理解为以下道路区段,对该道路区段在分析评估现有的数据之后认为,车辆位于该道路区段上。
在过滤多个当前粒子的步骤中,可以为所述多个当前粒子确定新的权重。以该方式可以为表现为可信的粒子设置更高的权重,以便改进该方法的结果。
所述方法可以包括在使用多个过滤的粒子情况下提供错误行驶信号的步骤。在此,错误行驶信号可以指出是否存在车辆的错误行驶。例如,可以仅在认为存在错误行驶时才提供错误行驶信号。
在确定可信道路区段的数量的步骤中,可以读取之前的可信道路区段的数量,所述数量为在之前的确定步骤中所确定的可信道路区段数量。此外,可以在使用多个当前粒子的情况下确定不可靠的道路区段的数量。最后,可以将之前的可信道路区段的数量与不可靠道路区段的数量补充给可信道路区段的数量,所述不可靠的道路区段具有与之前的可信道路区段的连接。以该方式可以持续地更新可信道路区段的数量。
所述方法可以包括在使用可信道路区段的数量情况下确定车辆所走过的距离的步骤。在此,可以在过滤步骤中基于所走过的距离过滤多个当前粒子。通过考虑所走过的距离,例如可以匹配粒子的权重。
所述方法可以包括通过计算云、即所谓的云的接口读取当前的测量位置的步骤。这能够实现基于云的解决方案。
用于错路驾驶员识别的相应设备被设立成用于在相应的单元中实施所述方法的步骤。例如,这样的设备可以具有:读取装置,该读取装置构造为用于读取地图数据,所述地图数据反映可由车辆行驶的道路区段;确定装置,该确定装置构造为用于在使用车辆的当前测量位置的情况下确定多个当前粒子,其中,一个粒子代表一个假设的车辆位置和配属于所述假设位置的权重;读取装置,该读取装置构造为用于读取多个之前过滤的粒子,这些粒子为在之前的过滤步骤中在使用粒子滤波器的情况下所过滤的粒子,并且具有确定装置,该确定装置构造为用于在使用多个当前粒子和多个之前过滤的粒子情况下确定可信道路区段的数量;滤波装置,该滤波装置构造为用于基于可信道路区段的数量在使用粒子滤波器的情况下过滤多个当前粒子,以便确定多个过滤的粒子。相应地,所述设备可以包括粒子滤波器。
用于错路驾驶员识别的相应系统包括至少一个发送装置以及所说的用于错路驾驶员识别的设备,该发送装置可布置或已布置在车辆中并且构造为用于发送位置数据,该设备构造为用于例如通过无线连接接收由至少一个发送装置发送的位置数据。
用于错路驾驶员识别的另一系统包括至少一个发送装置和至少一个接收装置,该发送装置可布置或已布置在车辆中并且构造为用于发送位置数据,其中,所述位置数据代表车辆的测量位置,该接收装置可布置或已布置在所述车辆中并且构造为用于接收设备的数据,该设备根据在此所述的用于错路驾驶员识别的方案构造为用于接收由至少一个发送装置发送的位置数据。
所述方法可以在软件或硬件方面或以软件和硬件构成的混合形式例如在设备中被实现。
为此,所述设备可以具有至少一个用于处理信号或数据的计算单元、至少一个用于存储信号或数据的存储单元和/或至少一个用于读取或输出被嵌入到通信协议中的数据的通信接口。所述计算单元例如可以是信号处理器、微型控制器等,其中,所述存储单元可以是闪存、EPROM或磁性存储单元。所述通信接口可以构造为用于无线地和/或有线地读取或输出数据,其中,可以读取或输出有线传输的数据的通信接口例如可以电地或光学地从相应的数据传输线路读取所述数据或将所述数据输出到相应的数据传输线路中。
当前,设备可以理解为一种电设备,该电设备处理传感器信号并且根据其输出控制信号和/或数据信号。所述设备可以具有接口,该接口可以在硬件和/或软件方面来构造。在硬件方面的构造中,该接口例如可以是所谓的系统ASIC的一部分,该部分包含所述设备的各种不同功能。然而也可能的是,该接口是自有的集成电路或者至少部分地由离散的结构元件组成。在软件方面的构造中,该接口可以是软件模块,这些软件模块例如与其他软件模块并列地存在于微型控制器上。
计算机程序产品或具有程序代码的计算机程序也是有利的,所述程序代码可以储存在机器可读的载体或存储介质上,例如半导体存储器、硬盘存储器或光学存储器并且被用于尤其在所述程序产品或程序在计算机或设备上实施时执行、转化和/或操控根据前述实施方式所述的方法的步骤。
附图说明
在附图中示出并在接下来的说明书中详细阐述在此提出的方案的实施例。附图示出:
图1根据一个实施例的、用于错路驾驶员识别的系统;
图2根据一个实施例的、用于错路驾驶员识别的方法的流程图;
图3隐马尔科夫链模型(Hidden Markov Chain Model);
图4根据一个实施例的粒子滤波进程的流程;
图5根据一个实施例的、用于错路驾驶员识别的系统;
图6根据一个实施例的车辆;
图7根据一个实施例的程序流程;和
图8根据一个实施例的粒子滤波器的程序流程;
图9根据一个实施例的、对道路拓扑的考虑的图解说明;
图10根据一个实施例的、用于错路驾驶员识别的方法的程序流程;
图11根据一个实施例的、对道路拓扑的考虑的图解说明。
在接下来对本方案有利实施例的描述中,对于在不同附图中示出并且类似作用的元件使用相同或类似的附图标记,其中,省去对这些元件的重复描述。
具体实施方式
图1示出根据一个实施例的用于错路驾驶员识别的系统。该系统包括车辆100,该车辆具有传输装置102,该传输装置构造为用于将在使用至少一个布置在车辆100中的传感器装置104的情况下所检测的测量数据106无线地发送给用于错路驾驶员识别的设备110。设备110构造为用于将测量数据106整理成经整理的数据并且在使用粒子滤波器的情况下进一步处理所述经整理的数据,以便产生并且发送错误行驶信号112。根据一个实施例,错误行驶信号112指出,具有已处理的测量数据106的车辆100当前实施错误行驶。根据该实施例,不仅车辆100的传输装置102而且另一车辆100的传输装置102都构造为用于接收错误行驶信号112并且响应于对错误行驶信号112的接收地激活对应的车辆100,114的警告装置,该警告装置例如警告对应车辆100,114的驾驶员以防错误行驶或者根据一个实施例干预对应车辆100,114的至少部分自动的控制,例如干预制动机构或转向机构的控制。根据不同的实施例,传输装置102可以仅实施为发送装置或者也可以实施为发送接收装置。
根据一个实施例,测量数据106包括位置数据,这些位置数据在使用车辆100的位置确定装置的情况下被检测到并且反映车辆100的当前位置。根据另一实施例,测量数据106还包括运动数据,所述运动数据例如在使用车辆100的至少一个加速度传感器的情况下被检测到并且包括关于车辆100的当前运动的信息,例如关于行驶方向、纵向加速度、横向加速度的信息或者关于车辆围绕车辆轴线的转动的信息。
根据一个实施例,设备110构造为用于读取地图数据116,所述地图数据反映可由车辆100行驶的道路网。根据一个实施例,地图数据116例如包括关于道路网的道路区段的信息。根据一个实施例,关于每个道路区段的地图数据116还包括至少一个参数,该参数例如定义了对应道路区段的或对应道路区段走向的行驶方向规定。例如,可以通过该参数来定义,所述道路区段是直线走向还是曲线延伸。根据一个实施方式,设备110具有存储装置,在该存储装置中存储地图数据116。
根据一个实施例,设备110或设备110的功能模块布置或被实现在云118中。
所述方案可以补充或替代地使用多种用于探测错路驾驶员的方法,在这些方法中例如使用视频传感装置,以便探测“禁止驶入”的指示牌被经过,或者结合导航来使用数字地图,以便识别在仅能沿一个方向行驶的道路区段上对错误行驶方向的探测。此外已知的是。此外,所述方案可以与无线方法组合,所述无线方法借助基础设施例如行车道中或行车道边缘处的路标来探测错路驾驶员。
除了探测错路驾驶员以外,所述方案还提供对错路驾驶员作出反应的多个可能性。为此的示例是,通过显示器或声学提示来警告错路驾驶员本身。也可以应用以下方法,借助这些方法例如通过车对车通信或借助移动无线电来警告错路驾驶员附近的其它驾驶员。此外,能够通过在道路边缘处竖起的变换交通标志来警告其它交通参与者。也可以对错误行驶的车辆100的马达控制装置或制动器进行干预。
所述方案使得能够探测到错路驾驶员并且还能及时警告其附近的其它交通参与者,为此仅需提供非常少的时间。
所述方案涉及具有客户端服务器解决方案的错路驾驶员识别(Wrong-Way-Driver-Detection)。可设置位于机动车处或中的器具作为客户端,该器具具有互联网连接并且至少可调用位置坐标。在此例如可以涉及传输装置102。传输装置102例如可以是智能电话。在传输装置102中可以集成传感器装置104。因此,针对错路驾驶员特定的、借助智能电话进行的服务器客户端通信可以被转化为示例性的客户端。所述智能电话可以通过具有网关(PDN_GW)的移动无线电网络连接到互联网上,例如呈服务器形式的设备110可以布置在该互联网中。
由具有客户端服务器解决方案的错路驾驶员警告的上述可能功能方式得到该技术的由在此所述方案涉及的以下关键问题领域:
a)减少假正(False-Positive-Reduktion)
假正,即在正确行驶方式情况下的错误探测,必须在自警告和/或主动介入的情况下尽可能被减少或者被完全避免。根据警告方案而定,必须满足直至ASIL-A(AutomotiveSafety Integrity Level A:汽车安全完整性等级A)的标准。
b)时间紧要地实施触发链
为了从错路驾驶员出发将对其它交通参与者的威胁保持得尽可能小,应尽可能快地进行干预或者警告。也就是说,从探测到紧要状况经识别到错路驾驶员直至进行干预或警告的完整功能链应在尽可能小的时间区间内完成。在此,服务器例如设备110在该功能使用范围相同情况下的满负荷和因此需要的功能能力起到非常重要的作用。除了触发时间以外,经济性也是重要的部分方面。
c)通信、数据效率和电流消耗
特别对于移动设备而言,通信和电流消耗必须是尽可能高效的或者说低的,以便实现可接受的蓄电池使用时间。移动无线电小区(Mobilfunkzelle)或其他方面的无线通信单元的过载也必须通过数据高效的通信被禁止。只要可能,也应限制数据流量和与之相关的成本。由于计算能力原因,通信的效率在服务器侧也是格外重要的因素。
所述方案首先涉及关键领域a)“减少假正”和b)时间紧要地实施触发链,然而c)“通信、数据效率和电流消耗”也可能受上述情况影响。基于商业通用的智能电话传感装置和连接控制单元传感装置在云118中对错路驾驶员的识别不是无意义的冒险。
图2示出根据一个实施例的、用于错路驾驶员识别的方法的流程图。所述方法例如可以在使用根据图1所示的、用于错路驾驶员识别的设备的装置情况下实施。
该方法包括步骤201,在该步骤中读取地图数据,所述地图数据反映可由车辆行驶的道路网的道路区段。在步骤203中,在使用车辆的测量位置情况下确定多个当前粒子。在此,一个粒子代表车辆的一个假设位置和配属于该假设位置的权重。在步骤205中,读取多个之前过滤的粒子。在步骤207中,在使用所述多个当前粒子和所述多个之前过滤的粒子情况下确定可信道路区段的数量。在步骤209中,基于可信道路区段的数量在使用粒子滤波器的情况下过滤多个当前粒子。在此,确定多个过滤的粒子,这些粒子可以在时间上随后的步骤205中作为多个之前过滤的粒子被读取。
对于错路驾驶员识别不起决定性作用的是,错路驾驶员驶过哪个路线。所需的信息首先是,错路驾驶员当前位于哪里并且该错路驾驶员是否在道路上逆着行驶方向行驶。对于所述求取当然需要历史记录,然而该历史记录不是问题提出的一部分,而是通向结果的路径。
由于这些情况,提出一种基于粒子滤波器的方法。该粒子滤波器类似于卡尔曼滤波器地可应用到由隐马尔科夫链特性、即具有不被观测的状态的马尔科夫链决定的系统上。
图3示出具有在时间k和k-1时的状态x和观测量z的隐马尔科夫链模型320。
也就是说,系统的状态不能被直接测量出,而是可以基于其他观测被估计。在该情况下适用的是,估计位置并因此估计当前的道路。为此必须求解以下公式:
p(xk|z0:k,u0:k)=η·g(zk|xk,z0:k-1,u0:k)π(xk|z0:k-1,u0:k)
下面,在时间点k时的状态以xk来描述,先前的状态以x0:k-1=(x0,…,xk-1)来概括。类似于x地,该法则也适用于控制参量u和观测量u.η并且描述了标准项(Normalisierungsterm),然而该标准项在下面不具有很大意义。该公式可以被简化为以下公式:
并且这些公式在两个步骤中被描述:预知步骤
和权重项:
在粒子滤波器的情况下,对概率分布的积分借助数值近似
和蒙特卡洛方法来求解。w[j]在此描述第j个粒子的权重/概率。粒子的数量借助
x={<x[j],w[j]>}j=1,…,J
来描述。因此,每个粒子具有权重w[j]和状态x[j]
图4示出根据一个实施例的粒子滤波进程的流程。为此,在图4中示出具有在时间k和k-1时的状态x和观测量z的隐马尔科夫链模型。
该工作的大部分是找到合适的函数用于
所述函数优化地反映了该问题。对此的基础是,定义待估计的状态x。
模块401代表粒子滤波器(xk-1,uk,z)。
从模块403跳至模块405,直至完成所有值j=1:J。
在模块405中计算新的状态:
在模块407中计算权重:
如果在模块403中完成了所有值,那么跳至模块409。从模块409跳至模块411,直至完成所有值i=1:J。
在模块411中,按照标记一个值。
在模块413中,按照添加给粒子组。
如果在模块409中完成了所有值,那么跳至模块415,该模块为结束xk
图5示出根据一个实施例的、用于错路驾驶员识别的系统。所述系统包括例如呈根据图1所说的传输装置形式的器具102并且包括用于错路驾驶员识别的设备110,该设备根据该实施例实施为所谓的WDW服务器。设备110构造为用于从器具102接收数据106,例如根据图1所述的测量数据,并且基于这些数据106提供警告112并且例如以根据图1所述的错误行驶信号的形式将其发回给器具102。
所述设备具有用于进行预处理的装置530、粒子滤波器532和警告模块534。
在基于云的错路驾驶员警告的简化构架中,如在图5中所示那样的粒子滤波器532被嵌入。
借助粒子滤波器532可以近似地确定车辆位置的概率分布。
图6根据车辆100示出可以被引入到根据图5所示的模型中的值。这些值例如可以是沿纵轴x、横轴y、竖轴z方向的状态以及围绕纵轴的侧倾p、围绕横轴的俯仰q和围绕竖轴的横摆r。
关于在使用粒子滤波器的情况下的地图适配方面适用贝叶斯滤波器p(xk|z0:k,u0:k)。在此,在参照图3的情况下xk可以代表所述状态(未测量)是什么,例如经度、纬度和地理高度,uk+1代表车辆100如何运动,例如在速度和转动速率方面,并且zk代表什么可以被观测,例如GPS信号或涉及车辆100的环境的信号(摄像机等)。
图7示出根据一个实施例的程序流程。所述流程以模块701开始。在模块530中,执行数据预处理,如例如根据图5所述那样。在模块703中,加入先前点的状态,如果存在的话。在模块705中,借助粒子滤波器发生地图适配(map-matching)。在模块707中对结果进行解释。在模块709中检查是否存在错误行驶。如果是这种情况,那么在模块534中发送警告,如例如根据图5所述那样。如果不存在错误行驶,那么以模块711结束该程序流程。
图8示出根据一个实施例的粒子滤波器的程序流程。模块801代表粒子滤波器的开始。在模块803中,在考虑例如根据图1所述的传感器装置的传感器不精确性的情况下移动这些粒子。在模块805中求取与地图有关的参数。这样的参数例如说明,是否有粒子位于道路上或者该道路的走向(Titel)是什么。在模块807中计算新的粒子权重。在模块809中进行所谓的重采样,在所述重采样中删除不相关的区域和/或粒子。在模块811中对各个粒子进行解释,在模块813中对可能的道路进行还原。
通过使用粒子滤波器,会改善下面所说的方面。一方面,实现顺序(能实时地)工作的方法,该方法首要地求取道路网上的当前位置。此外,能够稳健估计道路网上的当前位置。关于当前估计的不可靠性可被求取。这使得能够可靠地有意义地延迟对潜在错误行驶的判定。
图9示出根据一个实施例的、在此处所述的方法中对道路拓扑的考虑的图解说明。
粒子滤波器的典型应用区别如下,在该应用情况中不应实现尽可能好的定位精度,而是应在任何情况下求取正确的道路元素。也就是说,即使传感器数据指明存在错误行驶,应仅在实际上可以确认也确实存在错误行驶时才警告受威胁的交通。在此,重要的组成部分是对道路拓扑的考虑。
“观测模型”,即粒子概率的计算,因此也与所走过的路径有关或者与两个道路元素之间的过渡有关。这也能够被概括为过渡概率。
在图9中示出多个当前粒子901、即来自当前计算周期(k)的粒子,和多个之前过滤的粒子903、即来自先前的计算周期(k-1)的粒子。
在下面的示例中对“不允许发生什么和为什么需要考虑拓扑”进行描述:
绿色连线911示出可信的粒子运动,
红色的连线913示出不可信的粒子运动,因为(在道路网上)走过的路径对于该时步来说太大。
黑色连线915同样示出不可信的粒子运动,因为在已知的道路局部中这些道路的连线是未知的(距离是无限的)。
因此,连线911,913,915可以理解为在过滤粒子901,903时可以被考虑的距离。例如可以使用连线911,913,915,以便匹配粒子901,903的权重。
图10示出根据一个实施例的用于错路驾驶员识别的方法的程序流程。所述方法例如可以在使用根据图1所述的设备情况下来实施。
在读取步骤1001中从数据库中读取也称为道路区段的道路元素。根据一个实施例,所述读取通过包围来自该最后计算步骤的粒子的、呈所谓限界框形式的包围框(Umhüllende)进行。相应的包围框在图11中示出。参照图11来选取道路元素1111,1113,1115,1117,1119,1121。
在步骤1003中,生成具有所有找到的道路元素的图形。
在步骤1005中,来自先前步骤的所有道路元素构成可信的道路元素。
在步骤1007中,如果所有“新”的道路元素与多边形、即当前粒子的所谓凸包(Convex-Hull)相交,那么将它们添加给不可靠的道路元素的列表。在图11中示出相应的多边形。参照图11选择道路元素1111,1113,1117,1119作为可信的道路区段。可选地,执行对“是否“旧”的道路元素也与该凸包相交”的另一询问。在该情况下选择道路元素1117,1119。
在步骤1009中,如果不可靠的道路元素与可靠的道路元素连接,那么进行给可信的道路元素的添加。
在步骤1011中,计算所谓的“地图状态”(MapStates)。
在步骤1013中,计算在道路网上所走过的距离。在此,例如可以确定根据图9所示的连线。
在步骤1015中,在附加地考虑所走过的路程情况下计算权重。
图11示出根据一个实施例的、对道路拓扑的考虑的图解说明。在此,可以涉及根据图9所示的拓扑。
示出有多个当前粒子901,即来自当前计算周期(k)的粒子,和多个之前过滤的粒子903,即来自先前的计算周期(k-1)的粒子。
此外,示出包围框1101以及多边形1103。多边形1103通过当前粒子901中的处于最外边的粒子来引导。包围框1101既包含当前粒子901又包含之前过滤的粒子903并且根据该实施例实施为矩形,该矩形通过粒子901,903中的分别处于最外边的粒子来引导。
此外,在图11中示出第一道路区段1111、第二道路区段1113、第三道路区段1115、第四道路区段1117、第五道路区段1119和第六道路区段1121,这些道路区段全都与包围框1101相交或者被其包含。
根据一个实施例,在用于在使用包围框1101的情况下进行错路驾驶员识别的方法中首先读取道路区段1111,1113,1115,1117,1119,1121作为之前的可靠道路区段的数量。接下来,与通过当前粒子901所展开的多边形1103相交的道路区段1117,1119,1121被确定为不可靠的道路区段的集合。现在,将之前的可信道路区段1111,1113,1115,1117,1119,1121的数量与不可信的道路区段1117,1119,1121的数量补充给可信的道路区段1111,1113,1115,1117,1119,1121的数量,所述不可信的道路区段具有与之前的可信道路区段1111,1113,1115,1117,1119,1121的连接。
对于扩展方案,在颗粒过滤器模型中得到以下匹配:
地图状态:
道路网上的所走过的路程
观测模型:
其中,
如果一个实施例包括第一特征和第二特征之间的“和/或”关联,那么这应当解读为,该实施例根据一个实施方式既具有第一特征又具有第二特征而根据另一实施方式或者仅具有第一特征或者仅具有第二特征。

Claims (10)

1.一种用于错路驾驶员识别的方法,其中,所述方法包括以下步骤:
读取(201)地图数据(116),所述地图数据反映能由车辆(100)行驶的道路网的道路区段(1111,1113,1115,1117,1119,1121);
在使用所述车辆(100)的当前测量位置的情况下确定(203)多个当前粒子(901),其中,一个粒子代表所述车辆(100)的一个假设位置和配属于所述假设位置的权重;
读取(205)多个之前过滤的粒子(903),这些粒子为在之前的过滤步骤中在使用粒子滤波器(532)的情况下所过滤的粒子;
在使用所述多个当前粒子(901)和所述多个之前过滤的粒子(903)情况下确定(207)可信道路区段(1111,1113,1117,1119)的数量;
基于所述可信道路区段(1111,1113,1117,1119)的数量在使用所述粒子滤波器(532)的情况下过滤(209;1015)所述多个当前粒子,以便确定多个过滤的粒子。
2.根据权利要求1所述的方法,其中,在对所述多个当前粒子(901)的所述过滤(209;1015)步骤中,为所述多个当前粒子(901)确定新的权重。
3.根据上述权利要求中任一项所述的方法,具有在使用所述可信道路区段(1111,1113,1117,1119)的数量情况下确定所述车辆(100)所走过的距离(911,913,915)的步骤(1013),其中,在所述过滤(209;1015)步骤中基于所走过的所述距离(911,913,915)过滤所述多个当前粒子(901)。
4.根据上述权利要求中任一项所述的方法,具有在使用所述多个过滤的粒子情况下提供错误行驶信号(112)的步骤,其中,所述错误行驶信号(112)指出是否存在所述车辆(100)的错误行驶。
5.根据上述权利要求中任一项所述的方法,其中,在对可信道路区段的数量的所述确定(207)步骤中,读取之前的可信道路区段的数量,所述数量为在之前的所述确定步骤中所确定的可信道路区段数量,并且在使用所述多个当前粒子(901)的情况下确定(1007)不可靠的道路区段的数量,并且将所述之前的可信道路区段的数量与所述不可靠道路区段的数量补充(1009)给所述可信道路区段(1111,1113,1117,1119)的数量,所述不可靠的道路区段具有与所述之前的可信道路区段的连接。
6.根据上述权利要求中任一项所述的方法,具有通过计算云(118)的接口读取所述当前测量位置的步骤。
7.一种用于错路驾驶员识别的设备(110),其被设立成用于在相应的单元中实施根据上述权利要求中任一项所述的方法的步骤。
8.一种用于错路驾驶员识别的系统,其中,所述系统包括以下特征:
至少一个发送装置(102),所述发送装置能布置或已布置在车辆(100)中并且构造为用于发送位置数据(106),其中,所述位置数据(106)代表车辆(100)的测量位置;和
根据权利要求7所述的用于错路驾驶员识别的设备(110),所述设备构造为用于接收由所述至少一个发送装置(102)发送的所述位置数据(106)。
9.计算机程序,其被设立成用于实施根据上述权利要求中任一项所述的方法。
10.机器可读的存储介质,在所述存储介质上存储根据权利要求9所述的计算机程序。
CN201780035503.4A 2016-06-07 2017-04-13 用于错路驾驶员识别的方法、设备和系统 Active CN109313849B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016210025.4A DE102016210025A1 (de) 2016-06-07 2016-06-07 Verfahren Vorrichtung und System zur Falschfahrererkennung
DE102016210025.4 2016-06-07
PCT/EP2017/058957 WO2017211488A1 (de) 2016-06-07 2017-04-13 Verfahren vorrichtung und system zur falschfahrererkennung

Publications (2)

Publication Number Publication Date
CN109313849A true CN109313849A (zh) 2019-02-05
CN109313849B CN109313849B (zh) 2021-10-15

Family

ID=58547535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780035503.4A Active CN109313849B (zh) 2016-06-07 2017-04-13 用于错路驾驶员识别的方法、设备和系统

Country Status (6)

Country Link
US (1) US10916124B2 (zh)
EP (1) EP3465652A1 (zh)
JP (1) JP6944472B2 (zh)
CN (1) CN109313849B (zh)
DE (1) DE102016210025A1 (zh)
WO (1) WO2017211488A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114910081A (zh) * 2022-05-26 2022-08-16 阿波罗智联(北京)科技有限公司 车辆定位方法、装置及电子设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017201924A1 (de) * 2017-02-08 2018-08-09 Audi Ag Verfahren zum Informieren zumindest eines Empfängerfahrzeugs über ein Falschfahrerfahrzeug sowie Servervorrichtung und Kraftfahrzeuge
US20200133308A1 (en) * 2018-10-18 2020-04-30 Cartica Ai Ltd Vehicle to vehicle (v2v) communication less truck platooning
DE102019201423A1 (de) 2019-02-05 2020-08-06 Robert Bosch Gmbh Verfahren und Vorrichtung zum Steuern einer Datenübertragung für ein Fahrzeug
FR3095789A1 (fr) * 2019-05-09 2020-11-13 Psa Automobiles Sa Procédé de sécurisation de véhicules en présence d’un véhicule circulant à contre sens
DE102020212037A1 (de) 2020-09-24 2022-03-24 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Erzeugen einer Relevanzkarte für ein Fahrzeug und Verfahren und Vorrichtung zum Bereitstellen eines Positionssignals für eine Falschfahrerkennung
US11335192B1 (en) 2020-12-02 2022-05-17 Here Global B.V. System, method, and computer program product for detecting a driving direction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120290150A1 (en) * 2011-05-13 2012-11-15 John Doughty Apparatus, system, and method for providing and using location information
CN102792350A (zh) * 2010-03-12 2012-11-21 歌乐株式会社 车辆逆行检测装置
US20130304374A1 (en) * 2011-12-22 2013-11-14 Electronics And Telecommunications Research Institute Apparatus and method for recognizing position of moving object
CN103403498A (zh) * 2011-03-29 2013-11-20 爱信艾达株式会社 驾驶支持系统、驾驶支持方法和计算机程序

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8209121B1 (en) * 2007-10-10 2012-06-26 Google Inc. Registration of location data to street maps using hidden markov models, and application thereof
JP2009140008A (ja) * 2007-12-03 2009-06-25 Sumitomo Electric Ind Ltd 危険走行情報提供装置、危険走行判定プログラム及び危険走行判定方法
US8452535B2 (en) 2010-12-13 2013-05-28 GM Global Technology Operations LLC Systems and methods for precise sub-lane vehicle positioning
CN102081844A (zh) * 2011-01-25 2011-06-01 华中科技大学 一种交通视频行为分析与报警服务器
US9140792B2 (en) 2011-06-01 2015-09-22 GM Global Technology Operations LLC System and method for sensor based environmental model construction
JP6169318B2 (ja) * 2012-02-14 2017-07-26 本田技研工業株式会社 ナビゲーションシステム
JP5867176B2 (ja) * 2012-03-06 2016-02-24 日産自動車株式会社 移動物体位置姿勢推定装置及び方法
JP2014169865A (ja) * 2013-03-01 2014-09-18 Hitachi Ltd 目標トラッキング装置、目標トラッキングプログラム及び目標トラッキング方法
JP6036421B2 (ja) * 2013-03-14 2016-11-30 富士通株式会社 道路管理支援方法、道路管理支援装置、及び道路管理支援プログラム
DE102013209502A1 (de) * 2013-05-22 2014-11-27 Robert Bosch Gmbh Verfahren zum automatischen Intervenieren in ein Ego-Fahrzeug bei einer Falschfahrt, insbesondere einer Geisterfahrt
WO2015029565A1 (ja) * 2013-08-28 2015-03-05 アイシン・エィ・ダブリュ株式会社 運転支援システム、方法およびプログラム
JP6511767B2 (ja) * 2014-10-20 2019-05-15 株式会社デンソー 逆走判断装置
CN105448094B (zh) * 2015-12-31 2017-12-05 招商局重庆交通科研设计院有限公司 一种基于车路协同技术的逆行警告与风险规避方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102792350A (zh) * 2010-03-12 2012-11-21 歌乐株式会社 车辆逆行检测装置
CN103403498A (zh) * 2011-03-29 2013-11-20 爱信艾达株式会社 驾驶支持系统、驾驶支持方法和计算机程序
US20120290150A1 (en) * 2011-05-13 2012-11-15 John Doughty Apparatus, system, and method for providing and using location information
US20130304374A1 (en) * 2011-12-22 2013-11-14 Electronics And Telecommunications Research Institute Apparatus and method for recognizing position of moving object

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNLI TAO,ET.AL: "Wrong Roadway Detection for Multi-lane Roads", 《NETWORD AND PARALLEL COMPUTING》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114910081A (zh) * 2022-05-26 2022-08-16 阿波罗智联(北京)科技有限公司 车辆定位方法、装置及电子设备
CN114910081B (zh) * 2022-05-26 2023-03-10 阿波罗智联(北京)科技有限公司 车辆定位方法、装置及电子设备

Also Published As

Publication number Publication date
WO2017211488A1 (de) 2017-12-14
US20190189003A1 (en) 2019-06-20
JP6944472B2 (ja) 2021-10-06
EP3465652A1 (de) 2019-04-10
US10916124B2 (en) 2021-02-09
JP2019519041A (ja) 2019-07-04
CN109313849B (zh) 2021-10-15
DE102016210025A1 (de) 2017-12-07

Similar Documents

Publication Publication Date Title
CN109313849A (zh) 用于错路驾驶员识别的方法、设备和系统
CN106352867B (zh) 用于确定车辆自身位置的方法和设备
KR101446546B1 (ko) 위치기반 실시간 차량정보 표시시스템
CN103270780A (zh) 交通工具数据系统和方法
CN109313850A (zh) 用于逆行驾驶员识别的方法、设备和系统
CN104021695B (zh) 车载导航系统、实时路况的导航方法及查询方法
US20230180045A1 (en) Systems and methods for selecting locations to validate automated vehicle data transmission
CN104217588A (zh) 一种实时交通信息获取方法、服务器及系统
US20220413502A1 (en) Method, apparatus, and system for biasing a machine learning model toward potential risks for controlling a vehicle or robot
CN110296708A (zh) 运营路线规划方法、装置及存储介质
CN101975577A (zh) 导航系统中转弯预警处理方法、设备及导航系统
US20190180382A1 (en) Methods and systems for driver and/or itinerary identification
CN109313851A (zh) 用于逆行驾驶员识别的方法、设备和系统
CN109313847A (zh) 用于错路驾驶员识别的方法、设备和系统
Damerow et al. Intersection warning system for occlusion risks using relational local dynamic maps
CN109492518A (zh) 用于识别车辆的周围环境的方法和设备、计算机程序
CN110793531B (zh) 道路匹配的方法、装置以及可读存储介质
CN108320184A (zh) 用于车辆计费的方法、装置、设备、系统及存储介质
CN109313848A (zh) 用于错路驾驶员识别的方法、设备和系统
US10532750B2 (en) Method, device and system for wrong-way driver detection
CN107545760B (zh) 提供在定位地点处定位车辆的定位信息的方法和通过另一车辆提供定位车辆的信息的方法
US8912926B2 (en) Identifying a potential vehicle incident within a communication black spot
CN114166234A (zh) 基于路害度量选择导航路线和路害识别预警的系统、方法、装置、处理器及计算机存储介质
CN111983643A (zh) 一种基于北斗定位的通信验证系统
CN110928277A (zh) 智能路侧单元的障碍物提示方法、装置及设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant