JP6943043B2 - 光子検出器のタイミング調整方法および装置 - Google Patents

光子検出器のタイミング調整方法および装置 Download PDF

Info

Publication number
JP6943043B2
JP6943043B2 JP2017132520A JP2017132520A JP6943043B2 JP 6943043 B2 JP6943043 B2 JP 6943043B2 JP 2017132520 A JP2017132520 A JP 2017132520A JP 2017132520 A JP2017132520 A JP 2017132520A JP 6943043 B2 JP6943043 B2 JP 6943043B2
Authority
JP
Japan
Prior art keywords
timing
pulse
photon
asymmetric
delay time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017132520A
Other languages
English (en)
Other versions
JP2019016900A (ja
Inventor
健一郎 吉野
健一郎 吉野
俊介 大河内
俊介 大河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2017132520A priority Critical patent/JP6943043B2/ja
Publication of JP2019016900A publication Critical patent/JP2019016900A/ja
Application granted granted Critical
Publication of JP6943043B2 publication Critical patent/JP6943043B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は光通信システムにおける光通信装置に係り、特に単一光子を検出可能な光子検出器のタイミング調整技術に関する。
光通信の分野において、量子暗号鍵配送(Quantum Key Distribution:QKD)は伝送路の高秘匿性を実現するものとして近年盛んに研究開発が行われている。QKDシステムでは、通信媒体として光子が使用されるので単一光子を検出する素子を必要とし、単一光子検出器としてはアバランシェ・フォトダイオード(Avalanche Photo Diode:APD)が使用されている。APDの駆動には、ブレークダウン電圧を越える逆バイアス電圧を印加するガイガーモード(Geiger Mode)が用いられ、さらにノイズ低減のために光子の入射タイミングでのみ電圧を印加するゲイテッドガイガーモード(Gated Geiger Mode:GGM)が用いられる。GGM駆動方式では、光子の入射タイミングとゲート電圧の印加タイミングとを一致させる必要があるので、ゲート印加タイミングを調整する技術が不可欠である。ゲート印加タイミング調整技術は、これまでにも種々提案されてきた。
たとえば、特許文献1には、光子検出器のゲート印加タイミングをスキャンすることで光子カウント数の最大値を探索し、そのタイミングを最適タイミングとして設定するタイミング調整方法が開示されている。また、特許文献2には、同じくゲート印加タイミングをスキャンすることで、ビット誤り率(BER)が最小となるタイミングを最適設定とする方法が開示されている。
特許第4663651号公報 特表2008−538678号公報
しかしながら、上述した光子カウント値の最大値を利用する方法では、光子検出器に入射する光パルスに不要なパルスが混在する場合、不要なパルスの光子カウント値を最大値と誤認してゲート印加タイミングを設定する可能性がある。以下図面を用いて、このような誤設定の主な原因を簡単に説明する。
図1に例示するように、送信側に遅延時間aの非対称干渉計A、受信側に遅延時間bの非対称干渉計Bが設けられた光通信システムを考える。非対称干渉計は、光路差を利用し、入射パルスとそれを所定時間だけ遅延させた遅延パルスとを合成することで、所定の遅延時間だけ分離した2連パルスを生成する。
送信側の干渉計Aは、所定周期(1CLK)の光パルスを入力し、それを時間aだけ遅延させたパルスと合成することで、遅延時間aだけ分離した第一の2連パルスを出力する。受信側の干渉計Bは、第一の2連パルスを入力し、それを遅延時間bだけ遅延させた第二の2連パルスと合成することで、受信パルス列を出力する。このとき、システムのパルス繰り返し周波数を最大限に使用すると、遅延時間aおよびbはそれぞれ同一のCLK/2に設定される。したがって、受信側の干渉計Bでは、図1に示すように、第一の2連パルスの後続パルスが第二の2連パルスの先頭パルスと重なり、第一の2連パルス列の先頭のパルスが第二の2連パルスの後続パルスと重なる。
QKDシステムでは、送信側において第一の2連パルスの間で位相差を与えるように変調されるので、第一の2連パルスの後続パルスと第二の2連パルスの先頭パルスとの合成光がタイミング調整および情報取得に必要なパルス(以下、メインパルスという。)となり、第一の2連パルス列の先頭のパルスと第二の2連パルスの後続パルスとの合成光が不要なパルス(以下、サテライトパルスという。)となる。言い換えれば、受信パルス列の3連パルスのうち中央が必要なメインパルス、その両サイドが不要なサテライトパルスとなり、メインパルスだけを用いてタイミング調整を行うことが必要である。
ところが、上述した光子カウント値をモニタする方法では、メインパルスおよびサテライト共に2つのパルスが重なっているために、光子カウント数では有意な差がなく、両者を判別することができない。したがって、誤ってサテライトパルスに従ってタイミング調整を行う場合が50%の確率で存在する。
一方、上述したビット誤り率(BER)が最小となるタイミングを最適設定とする方法では、サテライトパルスのBERがより高くなるので、メインパルスを正しく選択することができる。しかしながら、BERを精度良く評価するには、光子カウント値をモニタする場合よりも100倍程度のデータ点が必要となる。このために、BERを利用する方法は、光子カウント値を利用する方法より、測定時間や計算量が増大し、最適タイミングを発見するまでにより時間がかかる、という難点がある。
そこで本発明の目的は、必要なパルスを判別することで光子検出器のタイミング調整を高速かつ高い信頼性で実行できる方法、装置、システムおよびプログラムを提供することにある。
本発明によるタイミング調整装置は、送信機の第一非対称干渉計と受信機の第二非対称干渉計とからなる干渉計システムにおける前記受信機の光子検出器に対するゲート印加タイミングの調整装置であって、前記送信機で生成された所定周期のパルスが所定の遅延時間を有する前記第一および第二非対称干渉計を通過することで生成された複数の受信パルスを前記光子検出器で検出するタイミングを設定する第一制御手段と、前記第一及び第二非対称干渉計の前記所定の遅延時間を所定時間だけ変化させる第二制御手段と、前記タイミングに設定された前記光子検出器で検出される受信パルスのうち、前記遅延時間の変化による光子カウント数の変化が小さい受信パルスを基準として、前記光子検出器で検出するタイミングを設定する第三制御手段と、を備えたことを特徴とする。
本発明によるタイミング調整方法は、送信機の第一非対称干渉計と受信機の第二非対称干渉計とからなる干渉計システムにおける前記受信機の光子検出器に対するゲート印加タイミングの調整方法であって、第一制御手段が、前記送信機で生成された所定周期のパルスが所定の遅延時間を有する前記第一および第二非対称干渉計を通過することで生成された複数の受信パルスを前記光子検出器で検出するタイミングを設定し、第二制御手段が、前記第一及び第二非対称干渉計の前記所定の遅延時間を所定時間だけ変化させ、第三制御手段が、前記タイミング設定された前記光子検出器で検出される受信パルスのうち、前記遅延時間の変化による光子カウント数の変化が小さい受信パルスを基準として前記光子検出器で検出するタイミングを設定する、ことを特徴とする。
本発明による光通信システムは、送信機と受信機とが光伝送路で接続された光通信システムであって、前記送信機が、所定周期のパルスを生成する光源と、遅延時間を変更可能な第一非対称干渉計と、を有し、
前記受信機が、遅延時間を変更可能な第二非対称干渉計と、光子検出手段と、前記送信機で生成された前記所定周期のパルスが所定の遅延時間を有する前記第一および第二非対称干渉計を通過することで生成された複数の受信パルスを前記光子検出手段で検出するタイミングを設定する第一制御手段と、前記第一及び第二非対称干渉計の前記所定の遅延時間を所定時間だけ変化させる第二制御手段と、前記タイミングに設定された前記光子検出手段に入射する受信パルスのうち、前記遅延時間の変化による光子カウント数の変化が小さい受信パルスを基準として前記光子検出器で検出するタイミングを設定する第三制御手段と、を備えたことを特徴とする。
本発明によるプログラムは、送信機の第一非対称干渉計と受信機の第二非対称干渉計とからなる干渉計システムにおける前記受信機の光子検出器に対するゲート印加タイミングの調整装置としてコンピュータを機能させるプログラムであって、前記送信機で生成された所定周期のパルスが所定の遅延時間を有する前記第一および第二非対称干渉計を通過することで生成された複数の受信パルスを前記光子検出器で検出するタイミングを設定する機能と、前記第一及び第二非対称干渉計の前記所定の遅延時間を所定時間だけ変化させる機能と、前記タイミングに設定された前記光子検出器に入射する受信パルスのうち、前記遅延時間の変化による光子カウント数の変化が小さい受信パルスを判別する機能と、前記判別された受信パルスを基準として前記光子検出器で検出するタイミングを設定する機能と、を前記コンピュータで実現させることを特徴とする。
上述したように、本発明によれば、タイミング調整に必要なパルスを容易に判別することができ、光子検出器の正しいタイミング調整を高速で実行できる。
図1は、非対称干渉計を用いた光通信システムにおける受信パルス列の生成過程を示す動作説明図である。 図2は、本発明の一実施形態による光通信システムにおける要/不要パルスの判別過程を説明するための模式的光子パルス波形図である。 図3は、本発明の一実施形態による光通信装置の送信側および受信側の概略的構成例を示すブロック図である。 図4は、図3の光通信装置における光子検出器のタイミング調整方法の一例を示すフローチャートである。 図5は、本発明の一実施例による光通信装置の送信側および受信側のより詳細な構成例を示すブロック図である。 図6は、図5に示す光通信装置におけるゲート印加タイミングスキャンによる光子カウント数の測定手順の一例を示すフローチャートである。 図7は、図5に示す光通信装置におけるゲート印加タイミングスキャンの一例を示すタイミングチャートである。 図8は、図7のゲート印加タイミングスキャンにより得られる光子カウント数の変化を示すグラフである。 図9は、図5に示す光通信装置におけるメインパルス判別方法の第一例を示すフローチャートである。 図10は、図9に示すメインパルス判別過程を説明するための模式的光子パルス波形図である。 図11は、図5に示す光通信装置におけるメインパルス判別方法の第二例を示すフローチャートである。 図12は、図11に示すメインパルス判別過程を説明するための模式的光子パルス波形図である。 図13は、本実施例を適用したQKDシステムの一例を示す概略的構成図である。
<実施形態の概要>
本発明の実施形態によれば、非対称干渉計を用いた光通信システムにおいて、受信側光通信装置で光子検出器への入射パルスのタイミングを検出した後、送信側および受信側の両方の非対称干渉計に対して遅延時間を同じ量だけ変化させることで生じる光子検出カウント数の変化により、入射パルスの要/不要を判別する。たとえば、遅延変化前と同レベルの高いカウント数であれば必要なパルス(メインパルス)、遅延変化前より低いレベルのカウント数であれば不要なパルス(サテライトパルス)、と判別される。以下、メインパルスの判定方法の概略について図2を参照しながら簡単に説明する。
図2に示すように、光通信システムは図1と同様のシステム構成を有するが、送信側および受信側の非対称干渉計10および20は遅延時間aおよびbをそれぞれ変更可能であるものとする。非対称干渉計10および20の遅延時間が所定値aおよびbであれば、図1に例示したように、a=b=CLK/2の周期でメインパルスとサテライトパルスが交互に光子検出器に入射する。この場合のサテライトパルスは、すでに述べたように、第一の2連パルス列の先頭のパルスと第二の2連パルスの後続パルスとの合成光となる。
これに対して、図2に示すように、送信側および受信側の非対称干渉計10および20の遅延時間aおよびbを同じ時間δだけ変化させると、メインパルスは変化しないが、サテライトパルスは時間幅2δの2つのパルスに分離する。より詳しくは以下の通りである。
送信側の非対称干渉計10は、所定周期(1CLK)の光パルスを入力し、それを時間a+δだけ遅延させたパルスと合成することで、遅延時間a+δだけ分離した第一の2連パルスP1を出力する。受信側の非対称干渉計20は、第一の2連パルスP1を入力し、それを遅延時間b+δだけ遅延させた第二の2連パルスP2と合成することで、受信パルス列P3を出力し、この受信パルス列P3が光子検出器により検出される。システムのパルス繰り返し周波数を最大限に使用すると、すでに述べたように、遅延時間aおよびbはそれぞれ同一のCLK/2に設定される。
この場合、受信側の非対称干渉計20では、図2に示すように、第一の2連パルスP1の後続パルスと第二の2連パルスP2の先頭パルスとは重なるが、第一の2連パルスP1の先頭のパルスと第二の2連パルスP2の後続パルスとは2δの時間差で分離する。すなわち、送信側および受信側の非対称干渉計の遅延時間を同一のδだけ変化させると、メインパルスは変化しないが、サテライトパルスは時間幅2δの2つのパルスに分離する。したがって、ゲート印加タイミングをメインパルスに同期させると、2パルス分の光子を検出するが、サテライトパルスに同期させると1パルス分の光子しか検出されない。この光子カウント数の差異を検出することで、メインパルスかサテライトパルスかを判別することができる。
なお、非対称干渉計10および20の一方だけ遅延時間を変化させると、メインパルスとサテライトパルスのタイミングが両方ともシフトしてしまい判別が不可能となる。したがって、本発明の実施形態および実施例では、非対称干渉計10および20の両方の遅延時間を同じ時間δだけ変化させる。
以下、一方向型干渉計システムを一例として、本発明の実施形態および実施例について図面を参照しながら詳細に説明する。
1.実施形態
1.1)構成
図3において、光通信装置である送信機100と受信機200とは光伝送路によって接続されているものとする。送信機100は、発光部101、遅延時間を変更できる非対称干渉計102およびコントローラ103を有する。発光部101は、微弱光パルスを生成するレーザ光源、たとえばレーザダイオード(LD)である。微弱光パルスは、強度を1光子/パルス以下に減衰させる光減衰器を用いることで生成することもできる。非対称干渉計102は、図2における非対称干渉計10に対応し、微弱光パルスを可変遅延時間だけ分離して2連パルスとして光伝送路へ送出する。コントローラ103は、後述するように、レーザ光源101および非対称干渉計102を制御する。
受信機200は、非対称干渉計201、光子検出器202、ゲート印加回路203、コントローラ204、メモリ205、およびプログラムメモリ206を有する。非対称干渉計201は、図2における非対称干渉計20に対応し、送信側の非対称干渉計102と同様に遅延時間を変更できる。光伝送路を通して到達した2連パルスは非対称干渉計201により合波し、受信パルス列として光子検出器202へ入射する。光子検出器202は、単一光子を検出可能な素子であり、典型的にはアバランシェ・フォトダイオード(APD)である。ゲート印加回路203は、コントローラ204により制御されたタイミングで、光子検出器202に対してゲート電圧を印加する。
コントローラ204は、光子検出器202により検出された光子の数をカウントし、ゲート印加回路203によるゲート印加タイミングを制御し、各ゲート印加タイミングでの光子カウント数をメモリ205に記録する。さらに、コントローラ204は、非対称干渉計102および201との遅延時間をそれぞれ所定時間δだけ変化させることができる。以下、非対称干渉計102の基準遅延時間をa、変化後の遅延時間をa+δとし、非対称干渉計201の基準遅延時間をb、変化後の遅延時間をb+δとする。なお、コントローラ204は、プロセッサあるいはCPU(Central Processing Unit)により実現可能であり、プログラムメモリ206に格納されたプログラムを実行することにより、後述するゲート印加タイミングの調整動作を制御する。以下、図4を参照しながら、本実施形態によるゲート印加タイミングの調整方法について説明する。
1.2)動作
図4において、コントローラ204は、プログラムメモリ206に格納されたプログラムを実行することで、次の機能を実現する。
<光子カウント数の記録>
コントローラ204は、ゲート印加回路203を制御して、ゲート印加タイミングを所定のスキャン範囲Rでスキャンし、各タイミングで光子検出器202により検出される光子カウント数をメモリ205に記録する(動作S301)。
<ピーク値およびピークタイミングの抽出>
コントローラ204は、メモリ205に記録されたデータから光子カウント数のピーク値Npとその時のタイミングtpとを抽出する(動作S302)。
<遅延時間の変更>
コントローラ204は、送信側の非対称干渉計102と受信側の非対称干渉計201の遅延時間をそれぞれ所定時間δだけ変化させる。これにより、図2で説明したように、時間δだけシフトしたピークタイミングで、あるいは当該ピークタイミングを含む所定の範囲で、光子カウント数Nを測定する(動作S303)。
<メインパルスの判別>
コントローラ204は、遅延時間の変化前のピーク値Npと変化後の光子カウント値Nとを比較することで、ピーク値Npを示すタイミングtpのパルスがメインパルスか否かを判別する(動作S304)。上述したように、ゲート印加タイミングがメインパルスに同期している場合は2パルス分の光子を検出するためNはNpとほぼ等しくなるが、サテライトパルスに同期していた場合には、ピークを構成していた2つのパルスが分離するためNはNpよりも小さくなる。そのため、光子カウント数NpとNとを比較することでメインパルスかサテライトパルスかを判別することができる。
<ゲート印加タイミングの設定>
コントローラ204は、メインパルスのタイミングが決定したので、それに同期したゲート印加タイミングでゲート印加回路203を動作させ、必要な光子パルスの入射タイミングに合わせてゲート電圧を光子検出器202に印加する(動作S305)。
1.3)効果
上述したように、本発明の一実施形態によれば、送信側および受信側の両方の非対称干渉計の遅延時間を同じ量だけ変化させ、遅延変化の前後で光子カウント数の変化をモニタすることにより、光子検出器に入射する光子パルスの要/不要を判別することができる。これにより、不要なサテライトパルスではなく、メインパルスに同期したゲート印加タイミングを設定することができる。誤り率を計算してメインパルスを判定する方法とは異なり、光子カウント数のみを用いてメインパルスを判定するので、測定時間や計算量が大幅に減少しタイミング調整時間を短縮できるという効果を有する。
2.実施例
以下、本発明の一実施例として、上述した実施形態による一方向型干渉計システムのより詳細な構成例を説明する。
2.1)構成
図5において、本実施例によるシステムは、図3に示すシステムと基本的の同様の構成を有するので、同様の機能を有するブロックには同一の参照番号を付して説明を簡略化し、主に異なる構成について説明する。
本実施例で用いられる非対称干渉計102および201は、いずれも遅延時間が可変の干渉計であり、本発明では遅延時間の可変メカニズムを問わない。たとえば、図5の非対称干渉計102および201に例示するように、プリズムPを矢印方向に機械的に移動させることで遅延時間を変更することができる。この他に、入射パルスを2分岐し、一方の光路を光学的に接続可能に分断して、分断された光路間の距離を機械的に変化させる方法や、長さの異なる2つの伝送路を光スイッチで切り替えることで光路長を変化させる方法などを採用することができる。本実施例で採用される非対称干渉計102および201は、一例として、基準となる遅延時間をa、bとし、プリズムPを所定距離移動させることで遅延時間a+δ、b+δだけ分離した2連パルスをそれぞれ生成することができるものとする。
受信機200のコントローラ204は、上述したようにプログラムメモリ206に格納されたプログラムを実行することで、ゲート印加タイミング制御部210、光子カウント値ピーク抽出部211、光子カウンタ212、およびメインパルス判定部213と、全体的動作を制御する制御部214と、を含む機能を実現する。光子カウンタ212は、光子検出器202により検出された光子数を計数する。APDの場合、光子カウンタ212は、APDにゲート電圧を印加する毎になだれ降伏の発生の有無を検出し、なだれ降伏発生回数をカウントする。
ゲート印加タイミング制御部210は、ゲート印加回路203を制御してゲート印加タイミングを所定ステップでシフトさせ、各ゲート印加タイミングでの光子カウント数をメモリ205に記録する。光子カウント値ピーク抽出部211は、メモリ205に格納された光子カウント値からピーク値とその時のゲート印加タイミングとを抽出する。メインパルス判定部213は、制御部214による非対称干渉計102および201の遅延時間変更により得られる光子カウント数の変化に基づいて、メインパルスか否かを判別する。以下、図4〜図12を参照しながら、本実施例によるゲート印加タイミングの調整方法について詳細に説明する。
2.2)スキャンによる光子カウント数の記録
まず、図6〜図8を参照しながら、スキャンにおける各ゲート印加タイミングでの光子カウント数の記録動作について説明する。
図6において、制御部214は、本実施例によるタイミング調整方法で使用する変数t、N、δ等を初期化した後(動作S401)、ゲート印加タイミングtをゲート印加タイミング制御部210に設定する(動作S402)。これにより、ゲート印加タイミング制御部210は、図7の位相θ=0に示すように、ゲート印加回路203を通して光子検出器202に周期CLK=Tの繰り返しゲート電圧を所定期間Tgだけ印加する。たとえば、周期CLK=T=800ps(ピコ秒)、測定時間Tg=1秒に設定する。制御部214は、所定期間Tgでの光子カウント数Nを光子カウンタ212から入力し、ゲート印加タイミングtと当該カウント数Nとを関係づけてメモリ205に記録する(動作S403)。
ゲート印加タイミングtが周期CLK=Tに到達していなければ(動作S404のNO)、制御部214は、ゲート印加タイミングtを所定時間dだけ増加させる(動作S405)。言い換えれば、ゲート印加タイミングtの位相を1ステップd=2π/nだけシフトさせ、ゲート印加タイミング制御部210に設定し(動作S402)、以下、動作S402〜S405をt>Tを満たすまで繰り返す。したがって、Tはスキャン範囲であり、シフトステップdはT/nとなる。ゲート印加タイミング制御部210は、図7の位相θ=0〜2πに示すように、ゲート印加回路203を通して光子検出器202に周期CLKの繰り返しゲート電圧をステップdずつ位相シフトさせながら印加し、各ゲート印加タイミングtの光子カウント数Nをメモリ205に記録する。一例として、スキャン範囲T=800psであれば、たとえばステップd=25psであり、このときのn=32である。
光子検出器202への光子入射タイミングとゲート印加タイミングとが一致すれば、光子を最も効率的に検出できるので、図7では位相θi、θjの時に光子を最も効率的に検出できる。したがって、メモリ205に記録された光子カウント数は、図8に示すように、位相θi、θjに対応するゲート印加タイミングtp(1)、tp(2)でそれぞれピーク値Np(1)、Np(2)を示す。既に述べたように、これらのピーク値Npがメインパルスあるいはサテライトパルスのいずれによる値であるかを判別することはできない。メインパルスか否かの判別は、上述したように、送信側および受信側の両方の非対称干渉計の遅延時間を同じ量δだけ変化させた時の光子カウント数の変化の有無を調べることにより可能となる。以下、本実施例によるメインパルス判別方法の具体例を説明する。
2.3)メインパルス判別方法(I)
メインパルス判別方法の第一例によれば、1つのゲート印加タイミングでの光子カウント数が非対称干渉計の遅延時間の変化前後で変化するか否かをチェックすることによりメインパルスか否かを判別することが可能である。以下、図9および図10を参照しながら、当該第一例について詳細に説明する。
図9において、上述したゲート印加タイミングスキャンによる光子カウント数の測定および保存(動作S401〜S404)が完了すると、光子カウント値ピーク抽出部211は、メモリ205に格納された光子カウント数の測定データ(図8参照)から、1つのカウントピーク値Npと、その時のゲート印加タイミングtpとを取得する(動作S501)。たとえば、図8のカウントピーク値Np(1)およびタイミングtp(1)が取得される。
続いて、制御部214は、送信側の非対称干渉計102と受信側の非対称干渉計201の遅延時間をそれぞれ所定時間δだけ変化させる(動作S502)。これに伴い、ゲート印加タイミング制御部210は、ゲート印加回路203を通して光子検出器202のゲート電圧の印加タイミングをtp+δに設定し、制御部214は、新たに設定されたゲート印加タイミングtp+δで光子カウント数Nを測定する(動作S503)。
メインパルス判定部213には、平均的な光子カウントピーク値より小さい値であってメインパルス判定用のしきい値NTHが予め設定されている。メインパルス判定部213は、測定された光子カウント数Nと判定用しきい値NTHとを比較することで、対象となる受信パルスがメインパルスか否かを判定する(動作S504;図10参照)。光子カウント数Nが判定用しきい値NTHより大きい場合、当該ゲート印加タイミングtpの受信パルスがメインパルスであると判定できる(動作S505)。
他方、光子カウント数Nが判定用しきい値NTHより小さい場合には、当該受信パルスがサテライトパルスであると判定できる。この場合、制御部214は、メモリ205から隣接するピーク値Npのゲート印加タイミングtpを取得し(動作S506)、N>NTHを満たすまで、あるいは所定の上限回数まで、上記動作S503〜S504を繰り返すように制御する。図8の場合、カウントピーク値Np(1)の隣のピーク値Np(2)が抽出され、そのゲート印加タイミングtp(2)を新たなタイミングとして光子カウント数が測定される。図2を用いて述べたように、システムのパルス繰り返し周波数を最大限に使用する場合、ピーク値Np(1)を示す受信パルスがサテライトパルスであれば、その隣のピーク値Np(2)を示す受信パルスはメインパルスとなると推定できる。
図10において、図8に示す測定データがメモリ205に保存されている場合、非対称干渉計102および201の遅延時間が基準値に設定された状態(δ=0)では、ゲート印加タイミングtp(1)、tp(2)で光子カウントピーク値Np(1)、Np(2)がそれぞれ保存されている。ピーク値Np(1)がメインパルスによる値であれば、非対称干渉計の遅延時間をδだけ変化させた状態(δ>0)でも、測定された光子カウント数Nは変化前のNp(1)とほぼ同じレベルであり、判定用のしきい値NTHより大きくなる。これに対して、ピーク値Np(2)がサテライトパルスによる値であれば、非対称干渉計の遅延時間をδだけ変化させた状態(δ>0)では、測定された光子カウント数Nが変化前のNp(2)より大幅に減少し、判定用のしきい値NTHより小さくなる。このように干渉計の遅延時間の変化前後で測定した光子カウント数を比較することで、メインパルスか否かを判別することができる。
なお、図2を用いて説明したように、2連パルスを用いた場合、システムのパルス繰り返し周波数を最大限に使用すると、送信側および受信側の非対称干渉計の遅延時間aおよびbはそれぞれ同一のCLK/2に設定される。したがって、図2に例示したように、メインパルスとサテライトパルスは時間軸上で交互に現れる。したがって、図9に示す動作S503〜S504は最大2回繰り返すだけである。また、初回でピーク値Np(1)を示す受信パルスがサテライトパルスと判定された場合、2回目の判定を行うことなく、その隣のピーク値Np(2)を示す受信パルスをメインパルスと判定することも可能である。
2.4)メインパルス判別方法(II)
メインパルス判別方法の第二例によれば、異なるタイミングでの2つの光子カウントピーク値の大小関係が非対称干渉計の遅延時間を変化させた後でどのように変化するかをチェックすることにより、いずれのタイミングがメインパルスを示すかを判定できる。以下、図11および図12を参照しながら、当該第二例について詳細に説明する。
図11において、上述したゲート印加タイミングスキャンによる光子カウント数の測定および保存(動作S401〜S404)が完了すると、光子カウント値ピーク抽出部211は、メモリ205に格納された光子カウント数の測定データ(図8参照)から、2カ所のカウントピーク値Np(1)、Np(2)と、その時のゲート印加タイミングtp(1)、tp(2)とを取得する(動作S601;図12のδ=0で示すグラフを参照)。
続いて、制御部214は、送信側の非対称干渉計102と受信側の非対称干渉計201の遅延時間をそれぞれ所定時間δだけ変化させる(動作S602)。これに伴い、ゲート印加タイミング制御部210は、ゲート印加回路203を通して光子検出器202のゲート電圧の印加タイミングをtp(1)+δおよびtp(2)+δの両方を含む限定範囲あるいはそれぞれを含む2つの限定範囲でスキャンし、制御部214は、限定範囲における各ゲート印加タイミングでの光子カウント数Nをメモリ205に記録する(動作S603;図12のδ>0で示すグラフを参照)。限定範囲内でのゲート印加タイミングは、tp(1)+δとtp(2)+δとを少なくとも含むものであればよく、タイミングステップは図6におけるステップdより大きく設定することができる。また、ゲート印加タイミングtp(1)+δとtp(2)+δのピンポイントでの光子カウント数を測定してもよい。
続いて、光子カウント値ピーク抽出部211は、メモリ205に格納された限定範囲の各タイミングでの光子カウント数の測定データ(図12のδ>0のグラフを参照)から、2つのカウントピーク値Nrp(1)、Nrp(2)を抽出する(動作S604)。
メインパルス判定部213は、2つのカウントピーク値Nrp(1)、Nrp(2)を比較することで、いずれの受信パルスがメインパルスであるかを判定する(動作S605〜S608;図12のδ>0で示すグラフを参照)。より詳しくは、Nrp(1)>Nrp(2)であれば(動作S605のYES)、Nrp(1)に対応するゲート印加タイミングtp(1)での受信パルスをメインパルスと判定する(動作S606)。Nrp(1)<Nrp(2)であれば(動作S605のNO、S607のYES)、Nrp(2)に対応するゲート印加タイミングtp(2)での受信パルスをメインパルスと判定する(動作S608)。
図2を用いて説明したように、2連パルスを用いた場合、システムのパルス繰り返し周波数を最大限に使用すると、送信側および受信側の非対称干渉計の遅延時間aおよびbはそれぞれ同一のCLK/2に設定される。したがって、図2に例示したように、メインパルスとサテライトパルスとは時間軸上で交互に現れる。したがって、図11における動作S601で抽出されるカウントピーク値Np(1)、Np(2)が図8における隣接する2つのピーク値であれば、図12のδ>0で示すグラフで示すように、一回の限定範囲スキャンによってメインパルスを判別することができる。
2.5)効果
以上述べたように、本発明の一実施例によれば、1つの光子カウントピーク値あるいは2つの光子カウントピーク値に注目し、送信側および受信側の両方の非対称干渉計の遅延時間を同じ量だけ変化させた時の光子カウント数の変化を検出することによって、受信パルス列から必要なメインパルスを判別する。1つの光子カウントピーク値に基づいてメインパルス判別を行う場合は、1回の判別によりメインパルスを判別可能となり、計算量の軽減、タイミング調整時間の短縮が可能となる。また、2つの光子カウントピーク値に基づいてメインパルス判別を行う場合は、隣接するピーク値を利用することで1回の限定されたスキャンを実行するだけでメインパルスを判別可能となり、同様に、計算量の軽減、タイミング調整時間の短縮が可能となる。
3.QKDシステムへの適用例
以下、上述した本実施例を適用したQKDシステムについて図13を参照しながら説明する。
図13において、QKDシステムのアリス(Alice)100およびボブ(Bob)200は、図5の送信機100および受信器200にそれぞれ対応し、同様の構成を有する。ただし、図13では、説明に必要な構成のみを図示する。以下、図5と同一のブロックについては同一の参照番号を付して説明を省略し、図5と異なる構成について説明する。
Alice100は、光子パルスの生成を行うレーザダイオード(LD)101と、光子パルスを可変の遅延時間Δtだけ分離して2連パルスを出力する非対称光学干渉計102と、2連パルス間に所定の位相差を加える位相変調器Mod(a)と、2系統の乱数源RND1およびRND2と、これらの乱数を足し合わせて位相変調器Mod(a)へ乱数を供給するデジタル−アナログコンバータ(DAC)と、を有する。
Bob200は、Alice100から光伝送路を通して送られた2連パルスに再度位相差を与える位相変調器Mod(b)と、2連パルスを合波する遅延時間可変の非対称光学干渉計201と、非対称光学干渉計201の2つの出力ポートport1およびport2にそれぞれ光学的に接続された2つのゲートモード光子検出器202(1)、202(2)と、位相変調器Mod(b)へ乱数を供給する乱数源RND3と、を有する。なお、非対称光学干渉計として2入力2出力非対称マッハツェンダ(Mach-Zehnder)干渉計を用いることができる。
Alice100では、パルス光源(LD)101によって発生した周期CLKの光パルス列1001を、可変遅延量Δtの2連パルス列1002へと変換し、位相変調器Mod(a)によって各々のパルス対の間にφAの位相差を与える様に変調を施すことで送信2連パルス列1003を得る。送信2連パルス列1003が光伝送路を通してBob側へ送信される。BB84プロトコルと呼ばれる最も代表的な量子暗号鍵配送アルゴリズムでは、φAは0、π/2、π、3π/2の4値を採り、各パルス対に対してこの4値をランダムに割り当てる。この為、Alice内には2系統の乱数源RND1およびRND2と、これらの乱数を足し合わせるデジタル−アナログコンバータ(DAC)が設けられている。
Bob200では、Alice100から送られてきた微弱光パルス列に対し、位相変調器Mod(b)によって再びパルス対の間にφBの位相差を与える様に変調を施すことでBob側の2連パルス列1004を生成し、そのパルス対を可変遅延量Δtの非対称干渉計201を用いて干渉させる。その干渉結果がポートport1あるいはport2にそれぞれパルス列1005あるいは1006として現れ、それぞれ光子検出器PDにより電気信号に変換される。
上述したように、本実施例を適用したQKDシステムでは、すでに述べたように、非対称干渉計102および201の両方の遅延時間を同じ量δだけ変化させた状態で測定された光子カウント数の変化を検出する。これにより受信パルス列から必要なメインパルスを迅速且つ高い信頼性で判別することが可能となる。したがって、受信パルス列1005および1006の3連パルスのうち中央のメインパルスだけを用いて正確なタイミング調整を行うことができ、QKDシステムの調整に要する計算量を軽減し、動作を高速化できる。
4.付記
上述した実施形態の一部あるいは全部は、以下の付記のようにも記載されうるが、これらに限定されるものではない。
(付記1)
送信機の第一非対称干渉計と受信機の第二非対称干渉計とからなる干渉計システムにおける前記受信機の光子検出器に対するゲート印加タイミングの調整装置であって、
前記送信機で生成された所定周期のパルスが所定の遅延時間を有する前記第一および第二非対称干渉計を通過することで生成された複数の受信パルスを前記光子検出器で検出するタイミングを設定する第一制御手段と、
前記第一及び第二非対称干渉計の前記所定の遅延時間を所定時間だけ変化させる第二制御手段と、
前記タイミングに設定された前記光子検出器で検出される受信パルスのうち、前記遅延時間の変化による光子カウント数の変化が小さい受信パルスを基準として、前記光子検出器で検出するタイミングを設定する第三制御手段と、
を備えたタイミング調整装置。
(付記2)
前記第三制御手段が、1つの受信パルスに対応するタイミングでの前記光子カウント数が所定値より大きいか否かを判定し、前記所定値より大きい受信パルスを判別することを特徴とする付記1に記載のタイミング調整装置。
(付記3)
前記第三制御手段が、2つの受信パルスにそれぞれ対応するタイミングでの前記光子カウント数を比較し、光子カウント数が大きい方の受信パルスを判別することを特徴とする付記1に記載のタイミング調整装置。
(付記4)
前記第一制御手段が、ゲート印加タイミングを前記所定周期の範囲でスキャンすることで各タイミングでの光子カウント数を記録し、前記光子カウント数のピーク値を抽出することで前記光子検出器で検出するタイミングを設定する、ことを特徴とする付記1−3のいずれか1項に記載のタイミング調整装置。
(付記5)
送信機の第一非対称干渉計と受信機の第二非対称干渉計とからなる干渉計システムにおける前記受信機の光子検出器に対するゲート印加タイミングの調整方法であって、
前記送信機で生成された所定周期のパルスが所定の遅延時間を有する前記第一および第二非対称干渉計を通過することで生成された複数の受信パルスを前記光子検出器で検出するタイミングを設定し、
前記第一及び第二非対称干渉計の前記所定の遅延時間を所定時間だけ変化させ、
前記タイミング設定された前記光子検出器で検出される受信パルスのうち、前記遅延時間の変化による光子カウント数の変化が小さい受信パルスを基準として前記光子検出器で検出するタイミングを設定する、
ことを特徴とするタイミング調整方法。
(付記6)
前記基準となる受信パルスは、1つの受信パルスに対応するタイミングでの前記光子カウント数が所定値より大きい受信パルスであることを特徴とする付記5に記載のタイミング調整方法。
(付記7)
前記基準となる受信パルスは、2つの受信パルスにそれぞれ対応するタイミングでの前記光子カウント数が大きい方の受信パルスであることを特徴とする付記5に記載のタイミング調整方法。
(付記8)
ゲート印加タイミングを前記所定周期の範囲でスキャンすることで各タイミングでの光子カウント数を記録し、前記光子カウント数のピーク値を抽出することで、前記光子検出器で検出するタイミングを設定する、ことを特徴とする付記5−7のいずれか1項に記載のタイミング調整方法。
(付記9)
送信機と受信機とが光伝送路で接続された光通信システムであって、
前記送信機が、
所定周期のパルスを生成する光源と、
遅延時間を変更可能な第一非対称干渉計と、
を有し、
前記受信機が、
遅延時間を変更可能な第二非対称干渉計と、
光子検出手段と、
前記送信機で生成された前記所定周期のパルスが所定の遅延時間を有する前記第一および第二非対称干渉計を通過することで生成された複数の受信パルスを前記光子検出手段で検出するタイミングを設定する第一制御手段と、
前記第一及び第二非対称干渉計の前記所定の遅延時間を所定時間だけ変化させる第二制御手段と、
前記タイミングに設定された前記光子検出手段に入射する受信パルスのうち、前記遅延時間の変化による光子カウント数の変化が小さい受信パルスを基準として前記光子検出器で検出するタイミングを設定する第三制御手段と、
を備えたことを特徴とする光通信システム。
(付記10)
送信機の第一非対称干渉計と受信機の第二非対称干渉計とからなる干渉計システムにおける前記受信機の光子検出器に対するゲート印加タイミングの調整装置としてコンピュータを機能させるプログラムであって、
前記送信機で生成された所定周期のパルスが所定の遅延時間を有する前記第一および第二非対称干渉計を通過することで生成された複数の受信パルスを前記光子検出器で検出するタイミングを設定する第一機能と、
前記第一及び第二非対称干渉計の前記所定の遅延時間を所定時間だけ変化させる第二機能と、
前記タイミングに設定された前記光子検出器に入射する受信パルスのうち、前記遅延時間の変化による光子カウント数の変化が小さい受信パルスを判別する第三機能と、
前記判別された受信パルスを基準として前記光子検出器で検出するタイミングを設定する第四機能と、
を前記コンピュータで実現させるためのプログラム。
(付記11)
前記第三機能が、1つの受信パルスに対応するタイミングでの前記光子カウント数が所定値より大きいか否かを判定し、前記所定値より大きい受信パルスを判別することを特徴とする付記10に記載のプログラム。
(付記12)
前記第三機能が、2つの受信パルスにそれぞれ対応するタイミングでの前記光子カウント数を比較し、光子カウント数が大きい方の受信パルスを判別することを特徴とする付記10に記載のプログラム。
(付記13)
前記一機能が、ゲート印加タイミングを前記所定周期の範囲でスキャンすることで各タイミングでの光子カウント数を記録し、前記光子カウント数のピーク値を抽出することで前記光子検出器で検出するタイミングを設定する、ことを特徴とする付記10−12のいずれか1項に記載のプログラム。
(付記14)
付記1−3のいずれか1項に記載のタイミング調整装置を備えた光通信装置。
(付記15)
付記1−3のいずれか1項に記載のタイミング調整装置を備えた、量子鍵配送(QKD)システムの受信機。
本発明は非対称干渉計からなる一方向型QKDシステムに適用可能である。
10、20 遅延可変非対称干渉計
100 送信機、Alice
101 レーザ光源
102 遅延可変非対称干渉計
102 コントローラ
200 受信機、Bob
201 遅延可変非対称干渉計
202 光子検出器
203 ゲート印加回路
204 コントローラ
205 メモリ
206 プログラムメモリ
210 ゲート印加タイミング制御部
211 光子カウント値ピーク抽出部
212 光子カウンタ
213 メインパルス判定部
214 制御部

Claims (10)

  1. 送信機の第一非対称干渉計と受信機の第二非対称干渉計とからなる干渉計システムにおける前記受信機の光子検出器に対するゲート印加タイミングの調整装置であって、
    前記送信機で生成された所定周期のパルスが所定の遅延時間を有する前記第一および第二非対称干渉計を通過することで生成された複数の受信パルスを前記光子検出器で検出するタイミングを設定する第一制御手段と、
    前記第一及び第二非対称干渉計の前記所定の遅延時間を所定時間だけ変化させる第二制御手段と、
    前記タイミングに設定された前記光子検出器で検出される受信パルスのうち、前記遅延時間の変化による光子カウント数の変化が小さい受信パルスを基準として、前記光子検出器で検出するタイミングを設定する第三制御手段と、
    を備えたタイミング調整装置。
  2. 前記第三制御手段が、1つの受信パルスに対応するタイミングでの前記光子カウント数が所定値より大きいか否かを判定し、前記所定値より大きい受信パルスを判別することを特徴とする請求項1に記載のタイミング調整装置。
  3. 前記第三制御手段が、2つの受信パルスにそれぞれ対応するタイミングでの前記光子カウント数を比較し、光子カウント数が大きい方の受信パルスを判別することを特徴とする請求項1に記載のタイミング調整装置。
  4. 送信機の第一非対称干渉計と受信機の第二非対称干渉計とからなる干渉計システムにおける前記受信機の光子検出器に対するゲート印加タイミングの調整方法であって、
    第一制御手段が、前記送信機で生成された所定周期のパルスが所定の遅延時間を有する前記第一および第二非対称干渉計を通過することで生成された複数の受信パルスを前記光子検出器で検出するタイミングを設定し、
    第二制御手段が、前記第一及び第二非対称干渉計の前記所定の遅延時間を所定時間だけ変化させ、
    第三制御手段が、前記タイミング設定された前記光子検出器で検出される受信パルスのうち、前記遅延時間の変化による光子カウント数の変化が小さい受信パルスを基準として前記光子検出器で検出するタイミングを設定する、
    ことを特徴とするタイミング調整方法。
  5. 送信機と受信機とが光伝送路で接続された光通信システムであって、
    前記送信機が、
    所定周期のパルスを生成する光源と、
    遅延時間を変更可能な第一非対称干渉計と、
    を有し、
    前記受信機が、
    遅延時間を変更可能な第二非対称干渉計と、
    光子検出手段と、
    前記送信機で生成された前記所定周期のパルスが所定の遅延時間を有する前記第一および第二非対称干渉計を通過することで生成された複数の受信パルスを前記光子検出手段で検出するタイミングを設定する第一制御手段と、
    前記第一及び第二非対称干渉計の前記所定の遅延時間を所定時間だけ変化させる第二制御手段と、
    前記タイミングに設定された前記光子検出手段に入射する受信パルスのうち、前記遅延時間の変化による光子カウント数の変化が小さい受信パルスを基準として前記光子検出器で検出するタイミングを設定する第三制御手段と、
    を備えたことを特徴とする光通信システム。
  6. 送信機の第一非対称干渉計と受信機の第二非対称干渉計とからなる干渉計システムにおける前記受信機の光子検出器に対するゲート印加タイミングの調整装置としてコンピュータを機能させるプログラムであって、
    前記送信機で生成された所定周期のパルスが所定の遅延時間を有する前記第一および第二非対称干渉計を通過することで生成された複数の受信パルスを前記光子検出器で検出するタイミングを設定する第一機能と、
    前記第一及び第二非対称干渉計の前記所定の遅延時間を所定時間だけ変化させる第二機能と、
    前記タイミングに設定された前記光子検出器に入射する受信パルスのうち、前記遅延時間の変化による光子カウント数の変化が小さい受信パルスを判別する第三機能と、
    前記判別された受信パルスを基準として前記光子検出器で検出するタイミングを設定する第四機能と、
    を前記コンピュータで実現させるためのプログラム。
  7. 前記第三機能が、1つの受信パルスに対応するタイミングでの前記光子カウント数が所定値より大きいか否かを判定し、前記所定値より大きい受信パルスを判別することを特徴とする請求項6に記載のプログラム。
  8. 前記第三機能が、2つの受信パルスにそれぞれ対応するタイミングでの前記光子カウント数を比較し、光子カウント数が大きい方の受信パルスを判別することを特徴とする請求項6に記載のプログラム。
  9. 請求項1−3のいずれか1項に記載のタイミング調整装置を備えた光通信装置。
  10. 請求項1−3のいずれか1項に記載のタイミング調整装置を備えた、量子鍵配送(QKD)システムの受信機。
JP2017132520A 2017-07-06 2017-07-06 光子検出器のタイミング調整方法および装置 Active JP6943043B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017132520A JP6943043B2 (ja) 2017-07-06 2017-07-06 光子検出器のタイミング調整方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017132520A JP6943043B2 (ja) 2017-07-06 2017-07-06 光子検出器のタイミング調整方法および装置

Publications (2)

Publication Number Publication Date
JP2019016900A JP2019016900A (ja) 2019-01-31
JP6943043B2 true JP6943043B2 (ja) 2021-09-29

Family

ID=65356995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017132520A Active JP6943043B2 (ja) 2017-07-06 2017-07-06 光子検出器のタイミング調整方法および装置

Country Status (1)

Country Link
JP (1) JP6943043B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748311B2 (ja) * 2005-10-31 2011-08-17 日本電気株式会社 微弱光の光パワー測定方法および装置、それを用いた光通信システム
JP2010166285A (ja) * 2009-01-15 2010-07-29 Nec Corp 光受信装置および光受信方法
JP5440787B2 (ja) * 2010-03-05 2014-03-12 日本電気株式会社 光通信システムにおける通信装置およびその干渉計同期制御方法
GB2529101B (en) * 2011-06-17 2016-03-23 Toshiba Res Europ Ltd A quantum communication system
GB2513408B (en) * 2013-04-26 2017-12-13 Toshiba Res Europe Limited A photon detector and a photon detection method

Also Published As

Publication number Publication date
JP2019016900A (ja) 2019-01-31

Similar Documents

Publication Publication Date Title
JP7075065B2 (ja) 光子検出器の駆動タイミング調整方法、装置および光通信システム
RU2671620C1 (ru) Высокоскоростная автокомпенсационная схема квантового распределения ключа
EP1732262B1 (en) Method and system for cryptographic-key-generation and communication
EP1808761B1 (en) Circuit and method for controlling quality of random numbers
JP4748311B2 (ja) 微弱光の光パワー測定方法および装置、それを用いた光通信システム
US7934132B2 (en) Communication system and method for controlling the same
JP7160027B2 (ja) 量子鍵配送システムにおける単一光子検出器のタイミング調整方法、装置、およびプログラム
US10523429B2 (en) Method and device for synchronizing quantum data start points in quantum key distribution system
JP4638478B2 (ja) 量子キー分配に対する変調器タイミング
US9768885B2 (en) Pilot-aided feedforward data recovery in optical coherent communications
WO2014068959A1 (ja) 光通信システムにおける光受信装置、光子検出器の制御方法および装置、並びに光子検出器の暗計数評価方法
CN113162767A (zh) 一种基于外差测量的四态量子密钥分发方法及系统
RU2783977C1 (ru) Способ обнаружения атаки с ослеплением детекторов в системах квантовой криптографии с поляризационным кодированием
JP6943043B2 (ja) 光子検出器のタイミング調整方法および装置
EP3503461A1 (en) Qkd synchronization apparatus and method
JP4358829B2 (ja) Qkdシステムのウォッチドッグ検出器
RU2706175C1 (ru) Способ квантового распределения ключей в однопроходной системе квантового распределения ключей
US20240048368A1 (en) Auto compensated quantum key distribution transmitter, receiver, system and method
JP2007036513A (ja) 光子受信器および光子受信方法
JP2008259084A (ja) 光通信システムにおける光強度設定方法および光通信装置
JP6672918B2 (ja) 光受信装置および光受信方法
US20210203499A1 (en) Methods for minimizing an error condition with separately generated secret keys based upon one or more shared characteristics and devices thereof
Zhou et al. Quantum key distribution in 50-km optic fibers
JP4748329B2 (ja) 通信システム及びその同期方法
JP2010166285A (ja) 光受信装置および光受信方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200603

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200603

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210823

R150 Certificate of patent or registration of utility model

Ref document number: 6943043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150