RU2671620C1 - Высокоскоростная автокомпенсационная схема квантового распределения ключа - Google Patents

Высокоскоростная автокомпенсационная схема квантового распределения ключа Download PDF

Info

Publication number
RU2671620C1
RU2671620C1 RU2016152338A RU2016152338A RU2671620C1 RU 2671620 C1 RU2671620 C1 RU 2671620C1 RU 2016152338 A RU2016152338 A RU 2016152338A RU 2016152338 A RU2016152338 A RU 2016152338A RU 2671620 C1 RU2671620 C1 RU 2671620C1
Authority
RU
Russia
Prior art keywords
beam splitter
phase modulator
laser
electro
optical
Prior art date
Application number
RU2016152338A
Other languages
English (en)
Inventor
Александр Валерьевич Дуплинский
Василий Евгеньевич Устимчик
Юрий Владимирович Курочкин
Владимир Леонидович Курочкин
Александр Витальевич Миллер
Original Assignee
Общество с ограниченной ответственностью "Международный центр квантовой оптики и квантовых технологий" (ООО "МЦКТ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Международный центр квантовой оптики и квантовых технологий" (ООО "МЦКТ") filed Critical Общество с ограниченной ответственностью "Международный центр квантовой оптики и квантовых технологий" (ООО "МЦКТ")
Priority to RU2016152338A priority Critical patent/RU2671620C1/ru
Priority to US15/854,298 priority patent/US10171237B2/en
Application granted granted Critical
Publication of RU2671620C1 publication Critical patent/RU2671620C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/85Protection from unauthorised access, e.g. eavesdrop protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0855Quantum cryptography involving additional nodes, e.g. quantum relays, repeaters, intermediate nodes or remote nodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

Изобретение относится к квантовой криптографии, лежащей в области защиты информации. Техническим результатом является повышение предельной частоты следования лазерных импульсов при фиксированном значении их ширины, что позволяет использовать автокомпенсационную схему на частоте, период которой равен ширине лазерного импульса, что является предельно возможным результатом. Система связи для передачи криптографического ключа между концами канала включает передающий узел, содержащий светоделитель, электрооптический аттенюатор, амплитудный модулятор, фазовый модулятор, накопительную линию, зеркало Фарадея, детектор синхронизации; приемный узел, содержащий лазер, лавинные фотодиоды, светоделитель, циркулятор, линию задержки, фазовый модулятор, поляризационный светоделитель, интерферометр Маха-Ценднера; а также квантовый канал для соединения указанных узлов. При этом накопительная линия помещена между электрооптическим фазовым модулятором отправителя и зеркалом Фарадея. 2 з.п. ф-лы, 3 ил.

Description

Изобретение относится к квантовой криптографии, лежащей в области защиты информации.
Уровень техники
Из уровня техники известен патент США №6188768 «Автокомпенсационная схема квантового распределения криптографического ключа на основе поляризационного разделения света», опубликованный 13 февраля 2001 года. В указанном патенте содержатся основные сведения и технические решения, используемые для автокомпенсационной оптической схемы квантового распределения ключа. В такой оптической схеме, когда импульсы распространяются вперед и назад, обратное рэлеевское рассеяние света может значительно увеличить шум, регистрируемый детекторами, работающими в режиме регистрации одиночных фотонов в процессе генерации квантового ключа. В результате импульсы посылаются небольшими пачками, между которыми следуют значительные временные паузы, необходимые, для прохождения света сквозь схему.
Также известна статья Automated 'plug and play' quantum key distribution, опубликованная в журнале Electronics Letters (Volume: 34, Issue: 22, 29 Oct 1998). В указанной статье частично решена вышеуказанная проблема добавлением накопительной линии на стороне отправителя. Однако необходимо модулировать импульсы при движении в обе стороны в следствие поляризационной чувствительности фазового модулятора. Взаимное расположение фазового модулятора и зеркала Фарадея на стороне отправителя в вышеуказанной схеме накладывает существенные ограничения на максимальную частоту следования импульсов
Техническая задача
Технической задачей является модернизация автокомпенсационной схемы квантового распределения ключа, с целью повышения предельной частоты следования лазерных импульсов при фиксированном значении их ширины.
Технический результат совпадает с задачей и позволяет использовать автокомпенсационную схему на частоте, соответствующей период которой равен ширине лазерного импульса, что является принципиально предельно возможным результатом.
Решение
Технический результат достигается за счет использования системы связи для передачи криптографического ключа между концами канала, включающей
a) передающий узел (Алиса), содержащий светоделитель, электрооптический аттенюатор, амплитудный модулятор, фазовый модулятор, накопительную линию, зеркало Фарадея, детектор синхронизации,
b) приемный узел (Боб), содержащий лазер, лавинные фотодиоды, светоделитель, циркулятор, линию задержки, фазовый модулятор, поляризационный светоделитель, интерферометр Маха-Ценднера,
c) а также квантовый канал для соединения указанных узлов,
при этом накопительная линия помещена между электрооптическим фазовым модулятором отправителя и зеркалом Фарадея. Изменение положения накопительной линии позволяет исключить пересечение на фазовом модуляторе отправителя импульсов, идущих в разных направлениях. В результате становится возможным увеличение частоты следования импульсов до предельно допустимого значения. Предельно допустимое значение частоты соответствует периоду равному по длительности ширине импульса у основания. Дальнейшее увеличение частоты повлечет за собой взаимное наложение соседних импульсов, что приведет к повышению уровня ошибок в итоговом ключе.
В приведенных аналогах время движения импульсов от фазового модулятора до зеркала Фарадея и обратно существенно меньше времени следования цуга импульсов, что приводит к наложению на фазовом модуляторе сигналов, идущих в разные стороны. Таким образом для корректной модуляции состояний, передаваемых отправителем необходимо делать временные промежутки между импульсами в цуге, так, чтобы исключить взаимное наложение приходящих и отраженных импульсов. Это приводит к понижению скорости отправки ключа.
Описание чертежей
На фиг. 1 изображена автокомпенсационная схема квантового распределения ключа в предложенной модификации. Введены следующие обозначения.
Передающий узел (Алиса). Светоделитель 11; электрооптический аттенюатор 12; амплитудный модулятор 13; фазовый модулятор 14; накопительная линия 15; зеркало Фарадея 16; синхронизирующий детектор 17.
Приемный узел (Боб). Лазер 1; циркулятор 2; лавинные фотодиоды 3, 4; светоделитель 5; фазовый модулятор 6; линия задержки 7; интерферометр Маха-Ценднера 8; поляризационный светоделитель 9.
Квантовый канал 10.
На фиг. 2 изображена модель следования импульсов до и после отражения от зеркала Фарадея в автокомпенсационной схеме в исходной конфигурации. Сплошными линиями обозначены пришедшие импульсы, штриховыми - отраженные.
На фиг. 3 изображена модель следования импульсов до и после отражения от зеркала Фарадея в представленной модификации автокомпенсационной схемы. Сплошными линиями обозначены пришедшие импульсы, штриховыми - отраженные.
Детальное описание
Автокомпенсационная схема состоит из передатчика и приемника (в криптографии традиционно называемых соответственно Алиса и Боб), которые соединены между собой одномодовым оптоволокном. Передача оптических сигналов организована следующим образом.
Лазер на стороне Боба испускает многофотонный оптический импульс с линейной поляризацией в спектральном диапазоне в районе 1550 нм, который проходит через циркулятор 2 (фиг. 1) и направляется на светоделитель 5. Функция циркулятора заключается в том, чтобы направлять свет в необходимые выходы. Из лазера он переводит его на светоделитель 5, а когда свет возвращается обратно со стороны светоделителя 5 - направляет его на детектор 3. Циркулятор может быть выполнен в виде волоконно-оптического элемента на кристалле.
Далее одна часть импульса поступает на вход поляризационного светоделителя 9 по короткому плечу оптоволоконного интерферометра Маха-Цендера (8). Вторая часть импульса приходит на поляризационный светоделитель 9, пройдя длинное плечо, образованное линией задержки и оптоволоконным фазовым модулятором 6. Оптические элементы в длинном плече выполнены из поддерживающего поляризацию оптоволокна. Это позволяет сориентировать поляризацию излучения так, чтобы обе части импульса вышли через выход поляризационного светоделителя 9 и направились от Боба к Алисе по протяженному одномодовому оптоволокну (традиционно называемому квантовым каналом связи (10)).
После прохождения квантового канала лазерный импульс поступает на вход Алисы, проходит фазовый модулятор 14, накопительную линию 15, и отражается от зеркала Фарадея 16, которое поворачивает поляризацию излучения на 90° для автокомпенсации поляризационных искажений оптоволокна. На обратном пути, на выходе из Алисы лазерный импульс ослабляется перестраиваемым аттенюатором 12 до однофотонного состояния (среднее число фотонов на импульс 0,1-0,3). Вернувшиеся от Алисы к Бобу фотоны имеют повернутую на 90° линейную поляризацию, поэтому входным поляризационным светоделителем 9 они направляются в другое плечо интерферометра, после прохождения которого соединяются на выходе, где они интерферируют. Результат интерференции регистрируется лавинным фотодиодом 4 в одном плече либо, после прохождения циркулятора 2, на лавинном фотодиоде 3 в другом плече. Поскольку эти две части импульса проходят одинаковый путь, причем в обратном порядке внутри Боба, этот интерферометр автоматически скомпенсирован.
Для реализации протокола ВВ84 Алиса с помощью фазового модулятора 14 прикладывает в нужный момент времени фазовый сдвиг 0 или π (первый базис), и π/2 или 3π/2 (второй базис) к световому импульсу, пришедшему от Боба. Так как после прохождения квантового канала импульс имеет случайную поляризацию, и фазовый модулятор работает только вдоль выделенного направления, Алиса производит модуляцию дважды для каждого импульса - сначала, на пути в сторону зеркала Фарадея 16, а затем при движении в обратном направлении - с повернутой поляризацией. Боб, получив отраженные от Алисы одиночные фотоны, случайным образом выбирает базис для измерения, прикладывая сдвиг 0 (первый базис) или π/2 (второй базис) на свой фазовый модулятор 6 в соответствующий момент времени.
В такой оптической схеме, когда импульсы распространяются вперед и назад, обратное рэлеевское рассеяние света может значительно увеличить шум, регистрируемый детекторами 3 и 4, работающими в режиме регистрации одиночных фотонов в процессе генерации квантового ключа. Поэтому лазер испускает импульсы не постоянно, а посылает цуги импульсов в каждом цикле передачи, причем длина этих цугов соответствует длине накопительной линии 15, установленной для этой цели в оптическую схему Алисы. Благодаря этому, однофотонные импульсы, распространяющиеся обратно, больше не пересекаются в квантовом канале с многофотонными импульсами, идущими от Боба к Алисе. Так, для накопительной линии длиной 25 км цуг импульсов содержит 120000 импульсов при тактовой частоте посылки лазерных импульсов 500 МГц.
Процесс генерации квантового ключа происходит следующим образом. На первом этапе производится калибровка и настройка оптоволоконного канала связи. Для этого точно измеряется длина оптического канала с использованием многофотонных импульсов от Боба, при этом регулируемый аттенюатор 12 у Алисы устанавливается на полное пропускание. Боб принимает отраженный сигнал и на основании этих измерений устанавливает положение во времени строба для детекторов 3 и 4, когда они должны регистрировать сигнал. Детекторы при этом работают в линейном режиме регистрации многофотонных световых импульсов.
После этого устанавливается режим генерации квантового ключа. Обратное напряжение на лавинных фотодиодах поднимается выше порогового напряжения пробоя, и они переходят в режим регистрации одиночных фотонов (Гейгеровский режим счета импульсов). Боб испускает цуг лазерных импульсов. Далее светоделитель 11 Алисы направляет часть мощности излучения приходящих световых импульсов на детектор синхронизации 17. Он генерирует сигнал запуска, который используется для синхронизации Алисы с Бобом. Синхронизация позволяет Алисе прикладывать электрический импульс к фазовому модулятору в нужный момент времени для модуляции фазы оптического импульса, в соответствии с протоколом ВВ84. Аттенюатор 12 у Алисы открыт на пропускание. Когда цуг импульсов заполнит накопительную линию 15, этот быстрый, электрически управляемый, аттенюатор уменьшает свое пропускание до такого уровня, чтобы от Алисы к Бобу выходили световые импульсы с содержанием фотонов на уровне 0,1-0,3 фотона на импульс. В таких условиях вероятность Pn найти n фотонов в лазерном импульсе подчиняется статистике Пуассона:
Figure 00000001
где
Figure 00000002
- среднее число фотонов в импульсе. В квантовой криптографии импульс считается однофотонным, если
Figure 00000002
находится в пределах 0,1-0,2. Так, для
Figure 00000003
, доля импульсов с двумя фотонами составляет 5% от однофотонных, а с тремя фотонами - 0.16%. Практически, в этом случае из каждых 10 импульсов в 9 нет ни одного фотона.
Алиса запоминает порядковый номер каждого импульса и значение приложенной при помощи модулятора фазы. Боб записывает в буфер и посылает в компьютер как порядковый номер импульса, так и базис измерения одиночных фотонов, зарегистрированных детекторами 3 и 4. На основании этих данных, пользуясь открытым каналом между своими компьютерами, Алиса и Боб формируют одинаковый квантовый ключ.
Электрооптические фазовые модуляторы добавляют сдвиг фазы вдоль выделенного направления поляризации проходящего излучения. Так как после прохождения квантового канала поляризация случайным образом изменится вследствие внешних воздействий, импульс, пришедший на фазовый модулятор Алисы, будет иметь случайное состояние поляризации. Таким образом, его фаза будет подвергнута модуляции лишь частично - вдоль одной из компонент. Однако поворот поляризации излучения на 90° зеркалом Фарадея позволяет приложить необходимый сдвиг фазы и к ортогональной компоненте, в момент движения импульса в обратном направлении. В результате, корректная модуляция может быть осуществлена, если одинаковый фазовый сдвиг на модуляторе будет приложен при движении импульса в обе стороны.
Отличие вышеизложенной схемы от прототипа 2 состоит в изменении расположения накопительной линии на стороне Алисы. В конфигурации прототипа необходимо, чтобы время между соседними импульсами в цуге было больше, чем время прохождения импульса через кристалл, также необходимо точно подобрать расстояние между модулятором и зеркалом Фарадея таким образом, чтобы приходящие и отраженные импульсы не проходили через модулятор одновременно, в противном случае становится невозможным присваивать им различные, случайным образом выбираемые фазы. Временной промежуток между импульсами в цуге увеличивает период их следования, тем самым уменьшая частоту и итоговую скорость генерации ключа.
Скорость отправки ключа выражается как:
Figure 00000004
Где s - скважность следования цугов, равная отношению времени цуга к периоду их следования, Т - длительность одного цуга импульсов, v - частота повторения импульсов в рамках одного цуга. Длительность цуга определяется длиной накопительной линии, применяющийся на стороне приемника:
Figure 00000005
Где l - длина накопительной линии, n - показатель преломления оптоволокна, с - скорость света в вакууме.
Максимальная частота следования импульсов в приведенной конфигурации как видно на фиг. 2 определяется удвоенной длиной кристалла в модуляторе, так как необходимо пространственно разделить импульсы, идущие в различных направлениях. Таким образом:
Figure 00000006
Где tm - время движения импульса через кристалл фазового модулятора.
Таким образом итоговая формула скорости отправки ключа:
Figure 00000007
В предлагаемом решении накопительная линия 15 располагается между фазовым модулятором Алисы и зеркалом Фарадея. Таким образом весь цуг импульсов сначала проходит через фазовый модулятор в одну сторону, попадая в накопительную линию, а затем, отразившись, в том же порядке проходит в обратном направлении. В данной конфигурации импульсы, движущиеся в прямом и обратном направлениях, никогда не пересекутся на модуляторе, что позволяет располагать их максимально близко друг к другу, увеличивая частоту следования до предельно возможной при данной ширине импульса, как показано на фиг. 3. Таким образом частота следования импульсов в предложенной конфигурации равна:
Figure 00000008
где tp - период следования импульсов.
Так как модификация не затрагивает прочих параметров схемы итоговая скорость отправки ключа:
Figure 00000009
Типичная длина кристалла, например ниобата лития (LiNbO3), в электрооптических модуляторах составляет порядка 7 см. Таким образом, время движения света в кристалле составляет около 500 пс. При этом при помощи современной электроники (программируемые логические интегральные схемы) возможно генерировать существенно более короткие (100 пс и меньше) лазерные импульсы. При вышеуказанных параметрах скорость отправки ключа в автокомпенсационной схеме возрастает более чем в 10 раз.
Предложенная модификация позволяет значительно поднять максимальную частоту следования лазерных импульсов, не влияя при этом на остальные параметры схемы. Тем самым существенно увеличивается максимальная скорость отправки ключа.

Claims (7)

1. Система связи для передачи криптографического ключа между концами канала, включающая:
- приемный узел, содержащий лазер, по крайней мере два лавинных фотодиода, светоделитель, циркулятор, линию задержки, фазовый модулятор, поляризационный светоделитель, интерферометр Маха-Ценднера, при этом указанные элементы оптически соединены между собой таким образом, что оптический импульс от лазера проходит через циркулятор, оптически соединенный со вторым лавинным фотодиодом и с поляризационным светоделителем, по короткому плечу интерферометра Маха-Цендера и по длинному плечу, образованному линией задержки, фазовым модулятором,
- передающий узел, содержащий оптически соединенные между собой светоделитель, электрооптический аттенюатор, амплитудный модулятор, фазовый модулятор, накопительную линию, зеркало Фарадея, при этом выход светоделителя оптически соединен с детектором синхронизации,
- а также квантовый канал, который соединяет поляризационный светоделитель приемного узла со светоделителем передающего узла,
отличающаяся тем, что накопительная линия помещена между электрооптическим фазовым модулятором отправителя и зеркалом Фарадея.
2. Система по п. 1, отличающаяся тем, что лазер испускает свет на телекоммуникационной длине волны 1555 нм.
3. Система по п. 1, отличающаяся тем, что для изменения фазы используются электрооптические модуляторы на основе кристалла ниобата лития (LiNbO3).
RU2016152338A 2016-12-29 2016-12-29 Высокоскоростная автокомпенсационная схема квантового распределения ключа RU2671620C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2016152338A RU2671620C1 (ru) 2016-12-29 2016-12-29 Высокоскоростная автокомпенсационная схема квантового распределения ключа
US15/854,298 US10171237B2 (en) 2016-12-29 2017-12-26 High-speed autocompensation scheme of quantum key distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016152338A RU2671620C1 (ru) 2016-12-29 2016-12-29 Высокоскоростная автокомпенсационная схема квантового распределения ключа

Publications (1)

Publication Number Publication Date
RU2671620C1 true RU2671620C1 (ru) 2018-11-02

Family

ID=62711409

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016152338A RU2671620C1 (ru) 2016-12-29 2016-12-29 Высокоскоростная автокомпенсационная схема квантового распределения ключа

Country Status (2)

Country Link
US (1) US10171237B2 (ru)
RU (1) RU2671620C1 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2706175C1 (ru) * 2018-12-27 2019-11-14 Открытое Акционерное Общество "Информационные Технологии И Коммуникационные Системы" Способ квантового распределения ключей в однопроходной системе квантового распределения ключей
RU2708511C1 (ru) * 2019-02-04 2019-12-09 Открытое Акционерное Общество "Информационные Технологии И Коммуникационные Системы" Способ формирования ключа между узлами вычислительной сети с использованием системы квантового распределения ключей
RU2722133C1 (ru) * 2019-12-20 2020-05-26 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "КуРэйт" (ООО "КуРэйт") Учебная установка для выполнения экспериментов по квантовой оптике для целей изучения протоколов квантовой криптографии
RU2747164C1 (ru) * 2019-11-12 2021-04-28 Общество с ограниченной ответственностью "СМАРТС-Кванттелеком" Устройство квантовой рассылки ключа на боковых частотах, устойчивое к поляризационным искажениям сигнала в волоконно-оптических линиях связи
CN113037384A (zh) * 2021-03-08 2021-06-25 安徽问天量子科技股份有限公司 一种强度调制装置和方法
RU2758147C1 (ru) * 2021-02-10 2021-10-26 Общество с ограниченной ответственностью «Лазерлаб» (ООО «Лазерлаб») Способ испытания терминала лазерной связи с квантовым приемом информации
RU2771775C1 (ru) * 2021-05-21 2022-05-12 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "КуРэйт" (ООО "КуРэйт") Способ и устройство для квантового распределения ключа по подвесному волокну

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020030847A1 (en) * 2018-08-10 2020-02-13 Nokia Technologies Oy Fibre-based communication
US11258594B2 (en) * 2018-11-21 2022-02-22 Ut-Battelle, Llc Quantum key distribution using a thermal source
CN109586907B (zh) * 2018-12-30 2022-03-15 广东尤科泊得科技发展有限公司 一种量子通信与量子时频传输的融合网络系统与方法
CN109617687B (zh) * 2019-01-15 2021-03-09 三峡大学 一种可见光通信的量子加密系统
CN109617688B (zh) * 2019-01-29 2021-07-16 安徽问天量子科技股份有限公司 一种针对复杂环境的相位补偿控制方法
WO2020256408A1 (ko) * 2019-06-17 2020-12-24 주식회사 케이티 양자 암호키 분배 방법, 장치 및 시스템
CN110675716B (zh) * 2019-09-24 2021-06-25 华东师范大学 一种全光纤量子态模拟装置及模拟方法
US11329730B2 (en) 2019-09-26 2022-05-10 Eagle Technology, Llc Quantum communication system having time to frequency conversion and associated methods
CN110719128A (zh) * 2019-09-30 2020-01-21 安徽问天量子科技股份有限公司 光纤窃听可感知定位的检测装置及方法
US11418330B2 (en) 2019-10-21 2022-08-16 Eagle Technology, Llc Quantum communication system that switches between quantum key distribution (QKD) protocols and associated methods
CN110519057B (zh) * 2019-10-23 2020-02-14 北京中创为南京量子通信技术有限公司 量子密钥分发系统的经典信号编解码方法、同步方法及装置
US11240018B2 (en) 2019-10-30 2022-02-01 Eagle Technology, Llc Quantum communications system having quantum key distribution and using a talbot effect image position and associated methods
US11082216B2 (en) * 2019-10-30 2021-08-03 Eagle Technology, Llc Quantum communication system having quantum key distribution and using a midpoint of the talbot effect image position and associated methods
CN110808806B (zh) * 2019-11-04 2021-06-01 中国科学院国家授时中心 一种基于光纤频率传递的量子双向时间同步方法及系统
US11050559B2 (en) 2019-11-19 2021-06-29 Eagle Technology, Llc Quantum communications system using Talbot effect image position and associated methods
RU2736870C1 (ru) * 2019-12-27 2020-11-23 Открытое Акционерное Общество "Информационные Технологии И Коммуникационные Системы" Комплекс для защищенной передачи данных в цифровой сети передачи данных с использованием однопроходной системы квантового распределения ключей и способ согласования ключей при работе комплекса
WO2021235563A1 (ko) * 2020-05-18 2021-11-25 엘지전자 주식회사 다중 경로 및 파장 분할에 기반한 플러그 앤드 플레이 퀀텀 키 분배 방법 및 상기 방법을 이용하는 장치
CN111769881B (zh) * 2020-06-15 2021-07-09 中国电子科技集团公司第三十研究所 提高cvqkd系统相位补偿精度和通信效率的方法及系统
CN111525951B (zh) * 2020-07-02 2020-10-23 北京中创为南京量子通信技术有限公司 一种探测器的安全监测装置、方法及量子密钥分发接收机
CN111901113B (zh) * 2020-08-12 2021-08-13 中国科学技术大学 一种基于高斯密集调制的连续变量量子密钥分发方法
CN111970280B (zh) * 2020-08-18 2022-05-06 中南大学 连续变量量子密钥分发系统的攻击检测方法
US11558123B2 (en) 2021-02-19 2023-01-17 Eagle Technology, Llc Quantum communications system having stabilized quantum communications channel and associated methods
CN113422653B (zh) * 2021-06-18 2022-08-09 广西大学 一种无需偏振反馈的量子通信系统及量子安全直接通信方法
US11936779B1 (en) * 2022-12-28 2024-03-19 Triarii Research Ltd. Quantum key distribution with single detector and interferometer based optical switch
CN116760479B (zh) * 2023-08-14 2023-11-24 浙江九州量子信息技术股份有限公司 一种薄膜铌酸锂相位解码光子芯片及量子密钥分发系统
CN117459153B (zh) * 2023-12-26 2024-04-02 万事通科技(杭州)有限公司 一种光纤信道窃听检测装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188768B1 (en) * 1998-03-31 2001-02-13 International Business Machines Corporation Autocompensating quantum cryptographic key distribution system based on polarization splitting of light
RU2302085C1 (ru) * 2005-11-16 2007-06-27 Институт физики твердого тела РАН Способ кодирования и передачи криптографических ключей
RU2454810C1 (ru) * 2010-11-24 2012-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" ("НИУ ИТМО") Устройство квантовой рассылки криптографического ключа на поднесущей частоте модулированного излучения

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010560A1 (en) * 1996-09-05 1998-03-12 Swisscom Ag Quantum cryptography device and method
US7580524B2 (en) * 2002-03-11 2009-08-25 Universite De Geneve Method and apparatus for synchronizing the emitter and the receiver in an autocompensating quantum cryptography system
GB2405294B (en) * 2003-08-18 2006-08-09 Toshiba Res Europ Ltd A quantum communication system and a receiver for a quantum communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188768B1 (en) * 1998-03-31 2001-02-13 International Business Machines Corporation Autocompensating quantum cryptographic key distribution system based on polarization splitting of light
RU2302085C1 (ru) * 2005-11-16 2007-06-27 Институт физики твердого тела РАН Способ кодирования и передачи криптографических ключей
RU2454810C1 (ru) * 2010-11-24 2012-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" ("НИУ ИТМО") Устройство квантовой рассылки криптографического ключа на поднесущей частоте модулированного излучения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RIBORDY G. et al.: "AUTOMATED "PLUG&PLAY" QUANTUM KEY DISTRIBUTION", Electronics Letters, Volume: 34, Issue: 22, 29 Oct 1998. *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2706175C1 (ru) * 2018-12-27 2019-11-14 Открытое Акционерное Общество "Информационные Технологии И Коммуникационные Системы" Способ квантового распределения ключей в однопроходной системе квантового распределения ключей
RU2708511C1 (ru) * 2019-02-04 2019-12-09 Открытое Акционерное Общество "Информационные Технологии И Коммуникационные Системы" Способ формирования ключа между узлами вычислительной сети с использованием системы квантового распределения ключей
RU2747164C1 (ru) * 2019-11-12 2021-04-28 Общество с ограниченной ответственностью "СМАРТС-Кванттелеком" Устройство квантовой рассылки ключа на боковых частотах, устойчивое к поляризационным искажениям сигнала в волоконно-оптических линиях связи
WO2021096385A1 (ru) * 2019-11-12 2021-05-20 Общество с ограниченной ответственностью "Кванттелеком" Устройство квантовой рассылки ключа на боковых частотах
RU2722133C1 (ru) * 2019-12-20 2020-05-26 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "КуРэйт" (ООО "КуРэйт") Учебная установка для выполнения экспериментов по квантовой оптике для целей изучения протоколов квантовой криптографии
WO2021126011A1 (ru) * 2019-12-20 2021-06-24 Общество С Ограниченной Ответственностью "Курэйт"" Учебная установка для выполнения экспериментов по квантовой оптике
RU2758147C1 (ru) * 2021-02-10 2021-10-26 Общество с ограниченной ответственностью «Лазерлаб» (ООО «Лазерлаб») Способ испытания терминала лазерной связи с квантовым приемом информации
CN113037384A (zh) * 2021-03-08 2021-06-25 安徽问天量子科技股份有限公司 一种强度调制装置和方法
RU2771775C1 (ru) * 2021-05-21 2022-05-12 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "КуРэйт" (ООО "КуРэйт") Способ и устройство для квантового распределения ключа по подвесному волокну
RU2776030C1 (ru) * 2022-01-11 2022-07-12 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "КуРэйт" (ООО "КуРэйт") Двухпроходная система фазовой модуляции для квантового распределения ключей
RU2798394C1 (ru) * 2022-07-05 2023-06-22 Общество С Ограниченной Ответственностью "Курэйт" Способ и схема синхронизации активного сброса и восстановления детекторов одиночных фотонов в системе квантового распределения ключа
RU2806904C1 (ru) * 2023-04-20 2023-11-08 Открытое Акционерное Общество "Российские Железные Дороги" Устройство формирования квантовых состояний для систем квантовых коммуникаций с оценкой качества приготовления состояний для протоколов квантовой генерации ключа на чипе

Also Published As

Publication number Publication date
US10171237B2 (en) 2019-01-01
US20180191496A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
RU2671620C1 (ru) Высокоскоростная автокомпенсационная схема квантового распределения ключа
US7583803B2 (en) QKD stations with fast optical switches and QKD systems using same
JP4748311B2 (ja) 微弱光の光パワー測定方法および装置、それを用いた光通信システム
JP4800674B2 (ja) 通信方法および通信システム
Kimura et al. Single-photon interference over 150 km transmission using silica-based integrated-optic interferometers for quantum cryptography
US7227955B2 (en) Single-photon watch dog detector for folded quantum key distribution system
CN100403152C (zh) 具有后向散射抑制的双向qkd系统
KR100890389B1 (ko) 편광 무의존 단방향 양자 암호 수신 및 송수신 장치
JP4977213B2 (ja) 光子検出器
Liu et al. Experimental demonstration of counterfactual quantum communication
US20050100351A1 (en) Quantum communication system and a receiver for a quantum communication system
US20070110454A1 (en) Communication system and timing control method
WO2004073228A2 (en) Watch dog detector for qkd system
JP2006166162A (ja) パルス波形整形機能を有する通信システムおよび通信方法
RU2691829C1 (ru) Устройство квантовой криптографии
KR102668649B1 (ko) Tdc를 이용하여 양자 암호 키 분배 시스템의 타임빈 큐비트의 상태를 결정하는 방법 및 이를 이용한 양자 암호 키 분배 시스템
Zhou et al. Single-photon routing by time-division phase modulation in a Sagnac interferometer
RU2776030C1 (ru) Двухпроходная система фазовой модуляции для квантового распределения ключей
RU2722133C1 (ru) Учебная установка для выполнения экспериментов по квантовой оптике для целей изучения протоколов квантовой криптографии
JP7452699B2 (ja) 測定装置及び測定方法
US20240048368A1 (en) Auto compensated quantum key distribution transmitter, receiver, system and method
JP6943043B2 (ja) 光子検出器のタイミング調整方法および装置
Suda Qkd systems
JP2003032249A (ja) 光通信装置
Zhou et al. Dual-port polarization mode dispersion free phase modulator for quantum key distribution

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20211007