RU2691829C1 - Устройство квантовой криптографии - Google Patents
Устройство квантовой криптографии Download PDFInfo
- Publication number
- RU2691829C1 RU2691829C1 RU2018120086A RU2018120086A RU2691829C1 RU 2691829 C1 RU2691829 C1 RU 2691829C1 RU 2018120086 A RU2018120086 A RU 2018120086A RU 2018120086 A RU2018120086 A RU 2018120086A RU 2691829 C1 RU2691829 C1 RU 2691829C1
- Authority
- RU
- Russia
- Prior art keywords
- fiber
- pulses
- beam splitter
- output
- input
- Prior art date
Links
- 239000000835 fiber Substances 0.000 claims abstract description 55
- 230000010287 polarization Effects 0.000 claims abstract description 51
- 230000003287 optical effect Effects 0.000 claims abstract description 22
- 230000005855 radiation Effects 0.000 claims abstract description 5
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000001066 destructive effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 241000272470 Circus Species 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 229940125730 polarisation modulator Drugs 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000005610 quantum mechanics Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0852—Quantum cryptography
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Computer Security & Cryptography (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- General Health & Medical Sciences (AREA)
- Bioethics (AREA)
- Optical Communication System (AREA)
Abstract
Изобретение относится к области квантовой криптографии. Технический результат - исключение необходимости подстройки состояния поляризации на выходе из линии связи и в принимающей части с одновременным упрощением конструкции принимающей части. Устройство квантовой криптографии включает передающую и принимающую части, разделенные линией связи, передающая часть содержит источник излучения, модулятор интенсивности и фазовый модулятор, передающая часть выполнена с возможностью генерации на выходе пар импульсов с ортогональными состояниями и одинаковыми временными интервалами между импульсами, при этом состояния из разных пар не ортогональны, а поляризация всех импульсов одинакова, принимающая часть содержит волоконный циркулятор, симметричный волоконный светоделитель, первое и второе фарадеевские зеркала и первый и второй детекторы, вход принимающей части соединен с входом волоконного циркулятора, первый выход которого волоконно соединен с первым входом волоконного светоделителя, а второй выход волоконно соединен с первым детектором, второй вход волоконного светоделителя волоконно подключен ко второму детектору, а первый и второй выходы волоконного светоделителя волоконно соединены с первым и вторым фарадеевскими зеркалами соответственно. Длины первого и второго оптических путей на соответственно первом и втором выходах волоконного светоделителя различаются и подобраны так, чтобы при распространении импульсов от выхода волоконного светоделителя до соответствующего фарадеевского зеркала и обратно по первому и второму оптическим путям между ними возникала разность хода, соответствующая временному интервалу между двумя импульсами пары. 1 ил.
Description
Изобретение относится к области квантовой криптографии - системам квантового распределения криптографических ключей, а более конкретно, к волоконно-оптической части систем квантовой криптографии, использующих фазовое кодирование.
Волоконные системы квантовой криптографии делятся на два класса - двухпроходные и однопроходные. В обоих классах может использоваться фазовое кодирование.
Критическим параметром любой системы квантовой криптографии, использующей фазовое кодирование, является видность интерференционной картины на выходах интерферометра V1 - на одном выходе, и V2 - на другом выходе. Причем сумма видностей на двух выходах V1+V2=V всегда равна V=l.
Видность интерференции однозначно определяет наблюдаемую ошибку на приемной стороне Q=(1-V1)/2. При идеальной интерференции (конструктивной на одном выходе V1=1, и идеальной деструктивной интерференции на другом выходе V2=0, наблюдаемая ошибка равна нулю. Секретность ключа гарантируется законами квантовой механики, если наблюдаемая ошибка меньше некоторой критической величины, которая определяется используемым протоколом квантового распределения ключей. Поэтому принципиально важно обеспечить при работе устройства максимальную - наиболее близкую к идеальной, видность интерференции.
В известных из уровня техники устройствах квантовой криптографии для достижения максимальной видности требуется подстройка поляризации на выходе из линии связи и в принимающей части.
Стандартное одномодовое волокно, которое используется для волоконно-оптических линий связи, не сохраняет состояние поляризации. Активные волоконные элементы, такие как фазовые модуляторы, модуляторы интенсивности и т.д. являются поляризационно чувствительными, т.е. для корректной работы принимающей части устройства квантовой криптографии необходимо, чтобы состояние поляризации излучения на выходе из линии связи имело определенную ориентацию по отношению к оптическим осям поляризационно чувствительных элементов. Данное обстоятельство требует постоянного подстраивания состояния поляризации, что приводит к замедлению и усложнению работы устройства квантовой криптографии.
В передающей части несложно обеспечить сохранение состояния поляризации вдоль оптического тракта, используя короткие куски поляризационно сохраняющего волокна. Но для устранения случайных изменений состояния поляризации в линии связи требуются дополнительные, достаточно дорогостоящие, элементы - контроллеры поляризации. А для эффективной и быстрой регулировки состояния поляризации требуются специальные алгоритмы, что, даже при достаточно эффективных и оптимизированных алгоритмах, требует затрат времени.
Из уровня техники известно двухпроходное устройство квантовой криптографии, которое не требует подстройки поляризации (см. US 6438234, опубл. 20.08.2002). В известном техническом решении искажения импульсов, точнее искажения, которые набирают ортогональные компоненты поляризации в линии связи на прямом проходе, компенсируются на обратном проходе. При отражении от фарадеевского зеркала ортогональные компоненты поляризации меняются местами. При обратном проходе искажения самокомпенсируются, поэтому подстройка состояний при прохождении через линию связи не требуется. Однако это не устраняет из системы активные компоненты - фазовые модуляторы, как в принимающей, так и в передающей частях.
В двухпроходных схемах импульсы посылаются пакетами для устранения засветок на прямом проходе, что снижает скорость передачи. Кроме того, двухпроходные системы крайне уязвимы по отношению к атакам активного зондирования.
Из уровня техники известно однопроходное устройство квантовой криптографии (см. RU 2622985, опубл. 21.06.2017), обеспечивающее высокую скорость передачи, поскольку состояния распространяются только в одном направлении от передатчика к приемнику. Однако в данном устройстве все же требуется регулировка состояния поляризации на выходе из линии связи, для достижения максимальной видности требуется подстройка поляризации на выходе из линии связи, а также подстройка видности при прохождении интерферометра, в котором состояние поляризации также подвержено случайным изменениям. Данное решение взято за прототип.
Техническая проблема, на разрешение которой направлено изобретение, заключается в создании устройства квантовой криптографии, в котором достигается высокая видность интерференции при измерении квантовых оптических состояний - одновременно с высокой скоростью передачи оптических сигналов (импульсов).
Технический результат, достигаемый при решении технической проблемы, заключается в исключении необходимости подстройки состояния поляризации на выходе из линии связи и в принимающей части с одновременным упрощением конструкции принимающей части.
Технический результат достигается за счет того, что устройство квантовой криптографии включает передающую и принимающую части, разделенные линией связи, передающая часть содержит источник излучения, модулятор интенсивности и фазовый модулятор, передающая часть выполнена с возможностью генерации на выходе пар импульсов с ортогональными состояниями и одинаковыми временными интервалами между импульсами, при этом состояния из разных пар не ортогональны, а поляризация всех импульсов одинакова, принимающая часть содержит волоконный циркулятор, симметричный волоконный светоделитель, первое и второе фарадеевские зеркала и первый и второй детекторы, при этом вход принимающей части соединен со входом волоконного циркулятора, первый выход которого волоконно соединен с первым входом волоконного светоделителя, а второй выход волоконно соединен с первым детектором, второй вход волоконного светоделителя волоконно подключен ко второму детектору, а первый и второй выходы волоконного светоделителя волоконно соединены с первым и вторым фарадеевскими зеркалами соответственно, причем длины первого и второго оптических путей на соответственно первом и втором выходах волоконного светоделителя различаются и подобраны так, что при распространении импульсов от выхода волоконного светоделителя до соответствующего фарадеевского зеркала и обратно по первому и второму оптическому пути между ними возникала разность хода, соответствующая временному интервалу между двумя импульсами пары.
Исключение необходимости подстройки состояния поляризации на выходе из линии связи достигается благодаря тому, что принимающая часть не содержит активных поляризационно чувствительных элементов, таких как, например, фазовые модуляторы, модуляторы поляризации, контроллеры поляризации, а компенсация искажений осуществляется за счет наличия фарадеевских зеркал. По этой же причине осуществляется упрощение всей конструкции принимающей части.
Использование фарадеевских зеркал в принимающей части, которая в сущности представляет собой интерферометр, приводит к тому, что не требуется подстройка поляризации в самом интерферометре. За счет использования фарадеевских зеркал происходит самокомпенсация искажений поляризации в самом интерферометре при прохождении световых импульсов к фарадеевским зеркалам и обратно. За счет этого достигается высокая и стабильная видность интерференции, соответственно, маленькая наблюдаемая ошибка, по сравнению с известными аналогами, где требуется постоянная подстройка поляризации как на выходе из линии связи, так и в принимающей части.
Однако необходимым требованием для корректной работы вышеописанного устройства квантовой криптографии является использование протокола квантового распределения ключей, в котором неортогональность состояний из разных пар достигается за счет временного сдвига.
За счет вышеизложенных существенных признаков предлагаемого технического решения обеспечивается достижение высокой видности интерференции при измерении квантовых оптических состояний - сигналов одновременно с повышением скорости передачи квантовых оптических состояний.
По мнению авторов, только при использовании предлагаемого протокола возможно решение поставленной задачи, для других протоколов квантового распределения ключей, невозможно добиться исключения активных элементов из принимающей части и исключить подстройку состояния поляризации на выходе из линии связи.
Сущность изобретения поясняется фиг. 1, иллюстрирующей в качестве примера схему одного из вариантов реализации устройства квантовой криптографии.
Устройство квантовой криптографии работает следующим образом.
На передающей части 1 одно из четырех квантовых состояний формируется в каждом такте случайным образом по следующей схеме. Излучение лазера 3, работающего в непрерывном режиме, по волокну, сохраняющему поляризацию, поступает на модулятор интенсивности 4, который вырезает пару импульсов, разделенных по времени либо 12 - состояния в "левой" паре, либо 13 - состояния в "правой" паре. В каждой паре импульсы формируются таким образом, чтобы правый импульс в паре 12 формировался в том же временном окне 2', в котором формируется первый импульс в паре 13. Состояния внутри каждой пары ортогональны между собой. Состояния из разных пар неортогональны, что гарантирует достоверную неразличимость состояний между "левой" и "правой" парами и, как следствие гарантирует детектирование попыток подслушивания.
Кроме того, временной интервал между временными окнами 1' и 2' такой же, как между временными окнами 2' и 3'. Т.е. все временные окна 1', 2' и 3' одинаковы. Далее пара импульсов поступает по волокну, сохраняющему поляризацию, на фазовый модулятор 5.
При прохождении через фазовый модулятор 5, например, первого импульса в паре 12 (или 13) на него накладывается случайным образом одно из значений относительной фазы, либо 0, либо 180 градусов, по отношению ко второму импульсу. В итоге в линию связи 6 поступает одно из четырех состояний. В данном примере весь оптический тракт на передающей стороне 1 выполнен из поляризационно сохраняющих волокон, поэтому состояние поляризации в паре импульсов не изменяется, и тем самым поддерживается одинаковое состояние поляризации в первом и втором импульсе в каждой паре.
Далее одна из четырех пар импульсов поступает в линию связи 6. Волоконно оптические линии связи на сегодняшний день выполнены из одномодового волокна, которое не сохраняет состояние поляризации. Поэтому состояние поляризации испытывает случайные и неконтролируемые флуктуации по мере распространения к принимающей части. После прохождения линии связи 6 пара импульсов поступает на принимающую часть. Весь оптический тракт принимающей части выполнен из стандартного одномодового волокна и не содержит поляризационно чувствительных и активных элементов. Т.е. не содержит ни фазовых модуляторов, ни модуляторов интенсивности, ни контроллеров поляризации. Стандартное одномодовое волокно является поляризационно нечувствительным, поэтому одинаково пропускает любое состояние поляризации. Далее пара импульсов проходит через волоконный циркулятор 7, который также выполнен на основе поляризационно нечувствительного одномодового волокна, и поступает на первый вход симметричного 50/50 волоконного светоделителя 10, выполненного из стандратного одномодового поляризационно нечувствительного волокна. Далее на первом и втором выходах волоконного светоделителя 10 формируется пара импульсов, каждая из которых распространяется по своему оптическому пути до соответственно первого и второго фарадеевских зеркал 11. Длины оптических путей на первом и втором выходах волоконного светоделителя 10 различаются и подобраны таким образом, чтобы при распространении пары импульсов от первого и второго выходов волоконного светоделителя 10 до соответственно первого и второго фарадеевских зеркал 11 и обратно, возникала разность хода соответствующая временному интервалу между импульсами в паре. Оба оптических пути являются поляризационно нечувствительными, поскольку они должны одинаково пропускать любое состояние поляризации. Стрелками на чертеже показано направление распространения импульсов.
Любая поляризация представляет собой суперпозицию двух ортогональных базисных состояний. Ортогональные базисные компоненты поляризации в принимающей части 2 испытывают различные искажения при распространении по вышеописанным первому и второму оптическим путям. Причем эти искажения разные в первом и втором оптическом пути. Для автоматической компенсации искажений двух ортогональных компонент поляризации используются фарадеевские зеркала 11. На прямом проходе к фарадеевскому зеркалу 11 ортогональные компоненты поляризации набирают различные искажения. При отражении от фарадеевского зеркала 11 ортогональные компоненты поляризации меняются местами. Вертикальная компонента поляризации становится горизонтальной, а горизонтальная - вертикальной. В результате искажения автоматически компенсируются на обратном проходе от фарадеевского зеркала 11 к волоконному светоделителю 10. И к волоконному светоделителю 10 импульсы приходят в неискаженном виде. Т.е. на волоконном светоделителе 10 поляризация импульсов, прошедших по первому и второму оптическим путям будет одинаковой, а именно, такой же, какой она была на входе волоконного светоделителя 10. Причем данное свойство соблюдается при любой поляризации принимаемых импульсов. Далее, поскольку разница оптических длин первого и второго оптических путей (при проходе туда и обратно) соответствует временному интервалу между импульсами внутри пары, то на волоконном светоделителе 10 "правый" импульс в одном плече волоконного светоделителя 10 будет перекрываться с "левым" импульсом в другом плече. "Сбивка" импульсов с одинаковой поляризацией приведет к конструктивной или деструктивной интерференции 14 в центральном временном окне 5' для импульсов в "левой" паре (соответственно во временном окне 7' для импульсов 15 в "правой" паре). Если относительная фаза между импульсами в паре равна 0 (этот пример приведен на чертеже), то конструктивная интерференция 14 будет регистрироваться первым детектором 8 (аналогично для состояний в "правой" паре - конструктивная интерференция 15 будет иметь место в первом детекторе 8). Отсчетов во втором детекторе 9 при разности фаз 0 не будет, поскольку на втором входе волоконного светоделителя 10 будет иметь место деструктивная интерференция 16 - полное гашение сигнала. Если относительная разность фаз между импульсами в паре будет равна 180 градусов, то конструктивная интерференция будет иметь место на втором входе волоконного светоделителя 10 - сработает второй детектор 9 во временном окне 5' для импульсов в "левой" паре (соответственно во временном окне 6' для импульсов 17 в "правой" паре). На первом входе волоконного светоделителя 10 (первый детектор 8) будет деструктивная интерференция во временном окне 5' для импульсов в "левой" паре, и окне 6' в "правой" паре. Таким образом, импульсы в разных парах различаются однозначно. В принимающей части выбор пары происходит случайно и независимо от передающей части. После передачи всей серии импульсов, принимающая и передающая части через открытую линию связи 6 раскрывают, какую пару они использовали. Посылки, где пары не совпадают, отбрасываются. В оставшихся посылках, где пары совпадали, импульсы в принимающей части идентифицируются однозначно. В итоге возникает согласованная последовательность 0 и 1, т.е. ключ.
Вторжение в линию связи 6 с целью узнать передаваемые импульсы приведет к ошибкам в принимающей части в передаваемой последовательности. Кроме того, вторжение в линию связи 6 приведет к тому, что возникнут отсчеты во временных окнах 7' - контрольные временные окна, как в первом детекторе 8, так и во втором детекторе 9, там, где их не должно быть, если бы посылались импульсы в "левой" паре. Соответственно, во временных окнах 4' - контрольные временные окна, в первом и втором детекторах 8 и 9, там, где их не должно быть, если импульсы посылались в "правой" паре. Количество отсчетов в контрольных временных окнах позволяет оценить количество информации, которое стало известно потенциальному подслушивателю.
Claims (6)
- Устройство квантовой криптографии, включающее передающую и принимающую части, разделенные линией связи, передающая часть содержит источник излучения, модулятор интенсивности и фазовый модулятор,
- отличающееся тем, что
- передающая часть выполнена с возможностью генерации на выходе пар импульсов с ортогональными состояниями и одинаковыми временными интервалами между импульсами, при этом состояния из разных пар не ортогональны, а поляризация всех импульсов одинакова,
- принимающая часть содержит волоконный циркулятор, симметричный волоконный светоделитель, первое и второе фарадеевские зеркала и первый и второй детекторы,
- при этом вход принимающей части соединен с входом волоконного циркулятора, первый выход которого волоконно соединен с первым входом волоконного светоделителя, а второй выход волоконно соединен с первым детектором, второй вход волоконного светоделителя волоконно подключен ко второму детектору, а первый и второй выходы волоконного светоделителя волоконно соединены с первым и вторым фарадеевскими зеркалами соответственно,
- причем длины первого и второго оптических путей на соответственно первом и втором выходах волоконного светоделителя различаются и подобраны так, чтобы при распространении импульсов от выхода волоконного светоделителя до соответствующего фарадеевского зеркала и обратно по первому и второму оптическим путям между ними возникала разность хода, соответствующая временному интервалу между двумя импульсами пары.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018120086A RU2691829C1 (ru) | 2018-05-31 | 2018-05-31 | Устройство квантовой криптографии |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018120086A RU2691829C1 (ru) | 2018-05-31 | 2018-05-31 | Устройство квантовой криптографии |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2691829C1 true RU2691829C1 (ru) | 2019-06-18 |
Family
ID=66947704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018120086A RU2691829C1 (ru) | 2018-05-31 | 2018-05-31 | Устройство квантовой криптографии |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2691829C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2777422C1 (ru) * | 2021-12-15 | 2022-08-03 | Акционерное Общество "Информационные Технологии И Коммуникационные Системы" | Способ и устройство генерации квантовых состояний в системе квантового распределения ключей с фазовым кодированием |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6438234B1 (en) * | 1996-09-05 | 2002-08-20 | Swisscom Ag | Quantum cryptography device and method |
RU2302085C1 (ru) * | 2005-11-16 | 2007-06-27 | Институт физики твердого тела РАН | Способ кодирования и передачи криптографических ключей |
US20090046857A1 (en) * | 2006-03-16 | 2009-02-19 | Yoshihiro Nambu | Quantum cryptography transmission system and optical device |
RU2621605C2 (ru) * | 2015-10-02 | 2017-06-06 | Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ | Сеть квантового распределения ключей |
RU2622985C1 (ru) * | 2015-12-09 | 2017-06-21 | Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) | Устройство квантовой криптографии (варианты) |
-
2018
- 2018-05-31 RU RU2018120086A patent/RU2691829C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6438234B1 (en) * | 1996-09-05 | 2002-08-20 | Swisscom Ag | Quantum cryptography device and method |
RU2302085C1 (ru) * | 2005-11-16 | 2007-06-27 | Институт физики твердого тела РАН | Способ кодирования и передачи криптографических ключей |
US20090046857A1 (en) * | 2006-03-16 | 2009-02-19 | Yoshihiro Nambu | Quantum cryptography transmission system and optical device |
RU2621605C2 (ru) * | 2015-10-02 | 2017-06-06 | Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ | Сеть квантового распределения ключей |
RU2622985C1 (ru) * | 2015-12-09 | 2017-06-21 | Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) | Устройство квантовой криптографии (варианты) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2777422C1 (ru) * | 2021-12-15 | 2022-08-03 | Акционерное Общество "Информационные Технологии И Коммуникационные Системы" | Способ и устройство генерации квантовых состояний в системе квантового распределения ключей с фазовым кодированием |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10171237B2 (en) | High-speed autocompensation scheme of quantum key distribution | |
KR100890389B1 (ko) | 편광 무의존 단방향 양자 암호 수신 및 송수신 장치 | |
US8331797B2 (en) | Polarization-controlled encoding method, encoder, and quantum key distribution system | |
US7227955B2 (en) | Single-photon watch dog detector for folded quantum key distribution system | |
US7596322B2 (en) | Cryptographic-key-generation communication system | |
US6289104B1 (en) | Free-space quantum cryptography system | |
US8295485B2 (en) | Quantum communication system | |
JP4095672B2 (ja) | 量子暗号装置および方法 | |
US6028935A (en) | Cryptographic receiver | |
GB2405294A (en) | Receiver for a quantum cryptography communication system | |
US8009984B2 (en) | Method and apparatus for measuring optical power of very weak light, and optical communication system using the same | |
US7502476B1 (en) | Systems and methods of enhancing QKD security using a heralded photon source | |
US20100027794A1 (en) | Quantum communication system | |
US7974540B2 (en) | Communication system and communication method using the same | |
RU2622985C1 (ru) | Устройство квантовой криптографии (варианты) | |
RU2507690C1 (ru) | Способ квантового кодирования и передачи криптографических ключей | |
EP1522166B1 (en) | Watch dog detector for qkd system | |
RU2691829C1 (ru) | Устройство квантовой криптографии | |
GB2441364A (en) | A quantum communication system which selects different protocols on the basis of security | |
JP2005286485A (ja) | 量子暗号通信方法、および量子暗号通信装置 | |
Tretyakov et al. | Quantum key distribution in single-photon communication system | |
RU2776030C1 (ru) | Двухпроходная система фазовой модуляции для квантового распределения ключей | |
Kravtsov et al. | On a two-pass scheme without a faraday mirror for free-space relativistic quantum cryptography | |
Ryabtsev et al. | Element base of quantum informatics II: Quantum communications with single photons | |
WO2024186241A1 (en) | Quantum key distribution system, transmitter, receiver and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
QB4A | Licence on use of patent |
Free format text: LICENCE FORMERLY AGREED ON 20210218 Effective date: 20210218 |