JP6940739B2 - 発光素子及び発光素子の製造方法 - Google Patents

発光素子及び発光素子の製造方法 Download PDF

Info

Publication number
JP6940739B2
JP6940739B2 JP2016053813A JP2016053813A JP6940739B2 JP 6940739 B2 JP6940739 B2 JP 6940739B2 JP 2016053813 A JP2016053813 A JP 2016053813A JP 2016053813 A JP2016053813 A JP 2016053813A JP 6940739 B2 JP6940739 B2 JP 6940739B2
Authority
JP
Japan
Prior art keywords
electrode
light emitting
emitting element
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016053813A
Other languages
English (en)
Other versions
JP2017168725A (ja
Inventor
真弘 野口
真弘 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2016053813A priority Critical patent/JP6940739B2/ja
Publication of JP2017168725A publication Critical patent/JP2017168725A/ja
Application granted granted Critical
Publication of JP6940739B2 publication Critical patent/JP6940739B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Led Devices (AREA)

Description

本開示は、発光素子及び発光素子の製造方法に関するものである。
近年、発光素子には、GaN系化合物半導体が用いられている。一般的なGaN系化合物半導体からなる発光素子の構造として、サファイア単結晶基板を用いた場合、n側半導体層、発光層、p側半導体層がこの順で積層される。サファイア基板は絶縁体であるので、p側半導体層上に形成されたp電極とn側半導体層上に形成されたn電極とが同一面側に存在する構造となる。このような発光素子には、透光性を有する電極をp電極に使用してp側半導体層側から光を取り出すフェースアップ型がある。
ところで、発光素子の電極の電気抵抗を低減するためには、電極自体を厚膜に形成することが望ましい。電極を形成するための手法には、例えば、メッキ法やスパッタ法などがある。メッキ法は、短時間で厚膜の電極を形成できるので好適である。この点に関し、特許文献1には、金やニッケルなどを用いた無電解メッキ法により、電極などになる金属層を形成することが開示されている。
特開2004−103975号公報
スパッタ法によって電極を形成する場合には、マスクを用いて電極となる材料をスパッタリングする。このため、図11に示すように、マスクを除去した後の電極213の側面は、保護膜217の表面に対して略垂直面となってしまう。このような電極213の側面に活性層(発光層)から放射された光が照射されると、図中の矢印で示すように、光は電極213の側面で概ね反対方向に反射してしまい、上方には反射しない。このため、発光素子201の出力(放射光量)が低下してしまう。また、メッキ法を用いて金属層を形成する場合については、このような電極をフェースアップ型の発光素子に用いたときの利点について十分に検討されていなかった。例えば、メッキ法では、マスクを用いなければ、膜厚の増大に伴って電極の幅も増大してしまう。この電極の幅の増大は、フェースアップ型の発光素子では、電極による遮光面積の増大を引き起こす。電極による遮光面積が増大すれば、発光素子の出力は低下するのが通常の予想である。しかしながら、実際にフェースアップ型の発光素子の電極をメッキ法によって形成したところ、遮光面積の増大にも拘わらず出力は低下しなかった。
本開示に係る実施形態は、同一面側にp電極及びn電極を有し、この面側から光を取り出す(いわゆる、フェースアップ型)発光素子において、メッキ法によって電極を形成した場合の利点について検討し、発光素子の光取り出し効率を向上させることを課題とする。
本開示の実施形態に係る発光素子は、同一面側にp電極及びn電極を有し、前記p電極及びn電極が設けられた側から光を取り出すものであって、p電極及びn電極の少なくとも一方は、断面における周縁端部に丸み部を有する少なくとも1つのメッキ層を備えている。
また、本開示の実施形態に係る発光素子の製造方法では、同一面側にp電極及びn電極を有し、前記p電極及びn電極が設けられた側から光を取り出す発光素子の製造方法であって、前記p電極及びn電極の少なくともいずれか一方を形成する工程は、所定の半導体層上に、金属層を形成する第1工程と、前記金属層上に無電解メッキ法によって、メッキ層を形成する第2工程とを含む。
本開示の実施形態によれば、メッキ法によって電極を形成する場合でも、高い光取り出し効率の発光素子を実現することができる。
本開示の実施形態に係る発光素子を模式的に示す平面図である。 図1のII−II線における発光素子の断面図である。 図1に開示した発光素子を備える発光装置を示す断面図である。 図1のIV−IV線における発光素子の部分断面図である。 本実施形態の発光素子及び発光装置の製造工程を示すフローチャートである。 図6(a)は発光素子における開口部からITO膜が露出している状態を示し、図6(b)は露出しているITO膜の表面に金属層が形成された状態を示し、図6(c)は金属層上に電極が形成された状態を示す。 図7(a)は、実施例および比較例の発光素子の順方向電流に対する順方向電圧を示す図であり、図7(b)は、順方向電流に対する出力を示す図である。 第2実施形態に係る発光素子の部分断面図である。 第3実施形態に係る発光素子の部分断面図である。 第4実施形態に係る発光素子の部分断面図である。 従来の発光素子の電極を示す断面図である。
以下、各実施形態に係る発光素子及び発光装置について、図面を参照しながら説明する。なお、以下の説明において参照する図面は、各実施形態を概略的に示したものである。このため、各部材のスケールや間隔、位置関係等が誇張、あるいは、部材の一部の図示が省略されている場合がある。また、以下の説明では、同一の名称及び符号については原則として同一もしくは同質の部材を示しており、詳細説明を適宜省略することとする。さらに、各図において示す「上」、「下」、「左」及び「右」などの方向は、構成要素間の相対的な位置関係を示し、絶対的な位置を示すことを意図したものではない。
<第1実施形態>
[発光装置の構成]
第1実施形態に係る発光素子及びその発光素子を用いた発光装置の構成について、図1〜図4を参照して説明する。
本実施形態に係る発光素子1は、図1及び図2に示すように、平面視で略正方形に形成されている。また、発光素子1は、基板11と、半導体積層体12と、n電極と、p電極と、保護膜17とを備えて構成されている。n電極は、半導体積層体12から順に、透光性電極(ITO膜)14と、金属層16と、メッキ層13とを有する。p電極は、半導体積層体12から順に、透光性電極14と、金属層16と、メッキ層15とを有する。発光素子1は、同一面側にn電極及びp電極を有し、前記n電極及びp電極が設けられた側から光を取り出すものである。すなわち、発光素子1は、フェースアップ型の実装に適した構造を有している。また、n電極及びp電極の少なくとも一方は、断面における周縁端部に丸み部13c、15cを有する少なくとも1つのメッキ層13,15を備えている。また、図3に示すように、本実施形態に係る発光装置100は、発光素子1が実装基板2に実装され、発光素子1が封止部材4によって被覆されている。
次に、各構成要素について説明する。基板11は、半導体積層体12を支持するものである。また、基板11は、半導体積層体12をエピタキシャル成長させるための成長基板であってもよい。例えば、半導体積層体12に窒化物半導体を用いる場合、基板11としてはサファイア(Al)基板を用いることができる。基板11の厚みは例えば50〜400μm程度である。
また、図2に示すように、半導体積層体12は、基板11の上面である一方の主面上に、n側半導体層12nが積層されている。また、半導体積層体12には、n側半導体層12nの上方であって、n側半導体層12nの一部の領域に設けられたp側半導体層12pが積層されている。n電極は、n側半導体層12nの上方であってp側半導体層12pが設けられた領域と異なる領域に設けられ、かつn側半導体層12nと電気的に接続されている。p電極は、p側半導体層12pの上方に設けられ、かつp側半導体層12pと電気的に接続されている。これらn電極及びp電極との間に電流を通電することにより、活性層12aが発光するようになっている。
半導体積層体12には、p側半導体層12p及び活性層12aが部分的に存在しない領域が形成されている。すなわち、半導体積層体12に、p側半導体層12pの表面から凹んで、上面側にn側半導体層12nが露出した領域が形成されている。n側半導体層12nが露出した領域は、n電極を設けるためのn電極領域121となっている。なお、n電極領域121の底面及び側面は、完成した発光素子1においては、保護膜17によって被覆されている。しかしながら、本明細書において半導体積層体12の構成を説明する際に、便宜的に「露出」していると言うことがある。
n電極領域121は、平面視において半導体積層体12の中央領域に略C字形状に設けられている。n電極領域121の底面には、その略C字形状に沿ってn電極が設けられている。n電極領域121の側面121aは、半導体積層体12の側面であって、p側半導体層12p及び活性層12aが露出した端面である。n電極領域121の側面121aは、n電極領域121に設けられたメッキ層13の側面と対向している。半導体積層体12を構成するn側半導体層12n、活性層12a及びp側半導体層12pの材料としては、例えば、InAlGa1−X−YN(0≦X、0≦Y、X+Y<1)で表される窒化物半導体を用いることができる。また、n側半導体層12nはSi等のn型不純物が添加されたn型半導体層を含み、p側半導体層12pはMg等のp型不純物が添加されたp型半導体層を含む。半導体積層体12の厚みは例えば5〜15μm程度である。
透光性電極14は、n電極領域121の底面とp側半導体層12pの上面の略全面を覆うように設けられている。n電極領域121の底面の透光性電極14は、メッキ層13および金属層16を介して、外部から供給される電流を、n側半導体層12nに供給する機能を有する。また、p側半導体層12pの上面の透光性電極14は、メッキ層15及び金属層16を介して外部から供給される電流を、p側半導体層12pの全面に拡散させる機能を有する。ここで略全面とは、p側半導体層12pの上面において、n電極領域121に沿った内縁の領域以外の領域をいう。例えば、透光性電極14は、p側半導体層12pの上面のうち90%以上の面に設けられているのが好ましい。
発光素子1がフェースアップ実装型である場合、半導体積層体12の活性層12aが発光した光は、主として、透光性電極14を介して上面側から外部に取り出される。このため、透光性電極14は、半導体積層体12が発する光の波長に対して良好な透光性を有することが好ましい。透光性電極14に用いられる透光性導電材料としては、金属薄膜や導電性金属酸化物を挙げることができる。更に、導電性金属酸化物としては、Zn(亜鉛)、In(インジウム)、Sn(スズ)、Ga(ガリウム)及びTi(チタン)からなる群から選択された少なくとも1種の元素を含む酸化物が挙げられる。なかでも、ITO(SnドープIn)は、可視光(可視領域)において高い透光性を有し、導電率の高い材料である。このため、ITOは、p側半導体層12pの上面の略全面を覆うのに好適な材料である。
また、透光性電極14が形成された領域のうち、メッキ層13、15が形成される部分には、所定の金属層16が形成されている。この金属層16は、メッキ工程においてメッキ層13、15を形成するためのシード層となるものである。金属層16は、例えば、スパッタ法により、Ti(1.5nm)/Pt(200nm)/Au(200nm)を積層した構成を有している。但し、金属層16は、上記各材料のいずれか1種類を用いて形成してもよいし、上記各材料の合金を用いて形成してもよい。
また、金属層16の表面に形成されるメッキ層13は、発光素子1に外部からの電流を供給するためのパッド電極(nパッド電極)である。メッキ層13は、ワイヤボンディングなどによる外部との接続に適するように、例えば、Cu、Pt、Au又はこれらのいずれかの金属を主成分とする合金を用いることができる。また、n電極の最下層(n側半導体層12n側)として、光反射性の良好な金属材料を用いた光反射層を設けるようにしてもよい。光反射性の良好な金属材料としては、Al、Rh、Ag又はこれらのいずれかの金属を主成分とする合金を有するものを挙げることができる。
また、メッキ層13は、略C字形状の中央部近傍に円形状に形成された外部接続部13aを備えている。また、メッキ層13は、外部接続部13aから円弧状に延伸する延伸部13bも備えている。外部接続部13a及び延伸部13bは、ともに同じ材料で構成されている。外部接続部13aは、外部と接続するための領域である。一方、延伸部13bは、外部接続部13aから供給される電流を、n側半導体層12nの全領域に効率的に拡散させるための機能を有する。後記する丸み部13cによる光出力の低下抑制効果は、メッキ層13の外縁の長さが長いほど得られやすいと考えられるため、このようにメッキ層13は延伸部13bを有することが好ましい。
メッキ層15は、発光素子1に外部からの電流を供給するためのパッド電極(pパッド電極)であり、透光性電極14の上面の一部に設けられている。メッキ層15は、平面視で略円形状に形成された外部接続部15aを備えている。また、メッキ層15は、外部接続部15aから延伸して、平面視でp側半導体層12p上の広範囲に配置された延伸部15bを備えている。外部接続部15aは、外部と接続するための領域であり、延伸部15bは、外部接続部15aから供給される電流を、透光性電極14の全領域に効率的に拡散させるための機能を有する。なお、延伸部15bは、平面視で、メッキ層13を囲むように円弧状に延伸した部分と、当該円弧の途中から分岐して直線状に延伸する部分と、外部接続部15aからメッキ層13の外部接続部13aに向かって直線状に延伸する部分とを有している。また、メッキ層13の外部接続部13aとメッキ層15の外部接続部15aとは、平面視で略正方形である発光素子1の一方の対角線上に離間して配置されている。後記する丸み部13cによる光出力の低下抑制効果は、n電極のメッキ層13の外縁の長さが長いほど得られやすいと考えられるため、このようにp電極のメッキ層15は延伸部15bを有することが好ましい。
p電極のメッキ層15は、外部接続部15aが、前記したn電極のメッキ層の外部接続部13aと同様に、ワイヤボンディングなどによる外部との接続に適するように、例えば、Cu、Pt,Au又はこれらのいずれかの金属を主成分とする合金を用いることができる。また、p電極は、前記したn電極と同様に、最下層(透光性電極14側)として、光反射層を設けるようにしてもよい。なお、p電極のメッキ層15も、外部接続部15a及び延伸部15bが、ともに同じ材料で構成されている。
n電極及びp電極のメッキ層13,15は、無電解メッキ法によって形成されている。図4に示すように、メッキ層13,15は、断面における周縁端部(側面部)に所定の丸み部13c、15cが形成されている。本開示では、メッキ法として無電解メッキ法を用いたが、丸み部13c、15cを形成することが可能であれば、他のメッキ法を用いてもよい。メッキ層の厚みは、1〜3μm程度が望ましい。これにより、薄膜の電極と比較して配線抵抗を低減することができ、また、丸み部13c、15cによる光出力の低下抑制効果をより顕著に得ることができる。
保護膜17は、絶縁性を有し、n電極及びp電極が設けられた領域を除いて、透光性電極14の上面及び側面を被覆する。また、保護膜17は、n電極領域121の上面及び側面121aを被覆するように設けられている。
保護膜17としては、透光性が良好で、かつ、屈折率が比較的低いSiOを好適に用いることができる。また、保護膜17は、前記したように透光性電極14を被覆している。このため、発光素子1の上面側からは、半導体積層体12、透光性電極14及び保護膜17を透過して光が取り出される。このとき、半導体積層体12、透光性電極14、保護膜17の順で、外側ほど屈折率が低くなるように材料を選択することが好ましい。このような組み合わせとして、例えば、半導体積層体12にGaN、透光性電極14にITO膜、保護膜17にSiOを用いることができる。これによって、発光素子1の上面側からの光取り出し効率を向上させることができる。
図1〜図3に戻って、第1実施形態に係る発光装置100の構成について説明する。
実装基板2は、発光素子1を実装するための基板である。そのために、実装基板2は、絶縁性の基体21と、基体21の上面に発光素子1を実装するための上部配線22と、基体21の下面に他の回路基板などに2次実装するための下部配線23と、上部配線22及び下部配線23を電気的に接続するために基体21を厚さ方向に貫通するビア24と、を備えている。発光素子1は、実装基板2の上面にダイボンドされ、n電極及びp電極が、それぞれ対応する極性の上部配線22とワイヤ3を用いて電気的に接続されている。また、実装基板2の上面には、発光素子1を被覆する略半球状の封止部材4が設けられている。
なお、実装基板2は一例を示したものであり、これに限定されるものではなく、発光素子1を実装し、発光素子1が封止部材4で封止可能な形態であればよい。例えば、実装基板2は、発光素子1を搭載するキャビティを備え、当該キャビティに封止部材を充填することで発光素子1を封止する構成のセラミックパッケージや樹脂パッケージであってもよい。また、一対のリードフレームに発光素子1を実装し、リードフレームの外部接続部を除いて、全体を樹脂などで封止する構成のものであってもよい。
封止部材4は、実装基板2の上面に実装された発光素子1及びワイヤ3などを、外部環境から保護するための透光性を有する部材である。封止部材4の材料としては、例えば、シリコーン樹脂、エポキシ樹脂などを好適に用いることができる。また、このような樹脂材料には、適宜に、波長変換物質(蛍光体)、着色剤、光拡散性物質、その他のフィラーを含有させてもよい。また、封止部材4は樹脂材料に限定されず、ガラスなどの耐光性に優れた無機材料を用いることもできる。
波長変換物質である蛍光体材料としては、例えば、YAG(イットリウム・アルミニウム・ガーネット)系蛍光体などの当該分野で公知のものを使用することができる。なお、封止部材4は、発光素子1と接するように設けられることに限らず、空気、窒素ガス、その他の不活性ガスなどの気体の層を介して発光素子1を気密封止するカバー部材であってもよい。
[発光装置の動作]
次に、第1実施形態に係る発光装置100の動作について、図3及び図4を参照して説明する。発光素子1は、実装基板2及びワイヤ3を介して外部接続部13a及び外部接続部15aに外部電源が接続され、n側半導体層12n及びp側半導体層12p間に電流が供給されると、活性層12aが発光する。発光素子1の活性層12aが発した光は、半導体積層体12内を伝播して、主に透光性電極14及び保護膜17を通って、発光素子1の上面又は側面から出射する。発光素子1から出射した光は、更に封止部材4を通って、発光装置100の外部に取り出される。
また、p電極に着目すると、図4に示すように、発光素子1の活性層12aが発した光の一部はメッキ層15の周縁端部に照射される。メッキ層15の周縁端部には、前記した所定の丸み部15cが形成されている。このため、照射された光はこの丸み部15cによって反射し、その反射した光は発光素子1の上方に向かうと考えられる。その結果、これまではn電極及びp電極によって取り出せなかった光の一部を出力として取り出すことが可能となる。後記するようにスパッタ法によって形成された電極を有する発光素子と比較しても、出力が低下することはなく、スパッタ法の場合よりも出力が増大することもあるのは、このためであると考えられる。なお、前記作用はn電極のメッキ層13も同様である。
[発光装置の製造方法]
図5に示すように、本実施形態の発光装置が完成するまでの工程には、発光素子製造工程S10と、発光装置製造工程S20と、が含まれている。発光素子製造工程S10には、半導体積層体形成工程S101と、n側半導体層露出工程S102と、透光性電極形成工程S103と、保護膜形成工程S104と、保護膜開口形成工程S105と、金属層形成工程S106と、メッキ工程S107と、個片化工程S108と、が含まれている。発光装置製造工程S20には、発光素子実装工程S201と、封止工程S202と、が含まれている。以下、各工程について、図5及び図6に基づいて詳細に説明する。
(発光素子製造工程S10)
先ず、図6(a)は、基板11上に半導体積層体12、透光性電極14及び保護膜17が形成されている状態を示している。先ず、この図6(a)までの製造工程について、説明する。半導体積層体形成工程S101において、基板11上に半導体積層体12を形成する。この工程では、例えば、サファイアからなる基板11の一方の主面上に、前記した窒化物半導体材料の原料を用いて、MOCVD法によりn側半導体層12n、活性層12a及びp側半導体層12pを順次に積層することで、半導体積層体12を形成する。なお、発光素子製造工程S10の各工程は、1枚の基板11のウエハに、複数の発光素子1が形成されるウエハレベルプロセスで行われる。すなわち、1枚のウエハに複数の発光素子1が1次元又は2次元に配列するように形成される。
次に、n側半導体層露出工程S102において、n電極を形成するためのn電極領域121に、n側半導体層12nが露出した領域を形成する。n電極領域121は、例えば、フォトリソグラフィ法により、n電極領域121を形成する領域に開口部を有するレジストパターンを形成した後、当該レジストパターンをエッチングマスクとして、半導体積層体12を上面側からn側半導体層12nが露出するまでエッチングすることで形成することができる。
次に、透光性電極形成工程S103において、p側半導体層12pの上面の略全領域を被覆するように透光性電極14を形成する。透光性電極14は、例えば、ITOなどの材料を用いて、スパッタ法により成膜し、その後にフォトリソグラフィ法で形成したエッチングマスクを用いてエッチングすることで形成することができる。
次に、保護膜形成工程S104において、SiOなどの材料を用いて、スパッタ法や蒸着法などにより、透光性電極14の表面に保護膜17を形成する。保護膜17のパターニングは、フォトリソグラフィ法によって形成されるマスクを用いたエッチング法によって行うことができる。
次に、保護膜開口形成工程S105において、n電極領域121に透光性電極14を露出させる開口部17nを形成するとともに、p側半導体層12p上の透光性電極14を露出させる開口部17pを形成する。この工程では、フォトリソグラフィ法によってn電極領域121の底面及びp側半導体層12p上の保護膜17上に、n電極及びp電極を設けるための領域に開口を有するマスクを形成し、当該マスクの開口内の保護膜17をエッチングにより除去する。これによって、開口部17n、17pに透光性電極14の一部が露出する。以上が、図6(a)に示す状態となるまでの一連の工程である。
次に、金属層形成工程S106において、図6(b)に示すように、開口部17n、17pに金属層16を形成する。この工程では、保護膜開口形成工程S105でエッチングに用いたマスクを除去せずに、所定の金属材料を用いて、スパッタ法、蒸着法などにより金属層16を成膜する。ここで、金属層16の材料には、少なくとも最表面が後記するメッキ工程のシード層として使用可能であるものを用いる。例えば、Auが挙げられる。これらの金属材料は、金属層16として単独で用いてもよいし、異なる金属材料からなる複数の層を積層してもよい。例えば、Ti/Pt/Auの積層構造が挙げられる。また、金属層16として、上記各金属材料を含んだ合金を用いてもよい。なお、図6(b)において、金属層16の厚さは保護膜17の厚さよりも薄くなっている。後記するメッキ工程において厚膜の電極を形成するため、金属層16の厚みはこの程度とすることができる。
次に、メッキ工程S107において、図6(c)に示すように、開口部17nにn電極のメッキ層13を形成する。メッキ層13は、金属層16及び透光性電極14を介してn側半導体層12nと接続される。また、開口部17pにはp電極のメッキ層15を形成する。メッキ層15は、金属層16及び透光性電極14を介してp側半導体層12pと電気的に接続される。このメッキ工程では、保護膜開口形成工程S105でエッチングに用いたマスクを予め除去しておく。そして、発光素子1をメッキ液に浸漬する。メッキ工程において、メッキ液は、約60℃に維持され、発光素子を約300分間程度メッキ液に浸漬する。その後、発光素子1をメッキ液から取り出す。これらの工程により、n電極及びp電極を形成する。なお、n電極とp電極のメッキ層13,15に同じ材料を用いる場合は、両電極を同時に形成することができる。また、n電極とp電極とに異なる材料を用いる場合には、それぞれ別の工程で行うようにすればよい。また、n電極及びp電極の両方をメッキ法で形成することは必須ではなく、2つの電極のいずれか一方をメッキ法で形成するようにしてもよい。丸み部13c(15c)を有するn電極及びp電極のメッキ層13,15を形成するためには、メッキ工程S107においてマスクを用いないことが好ましい。
上記メッキ工程S107に用いられるメッキ液には、Auが含まれている。これは、n電極とp電極の表面に、Auワイヤを用いてワイヤボンディングをするからである。但し、n電極、p電極の材料としては、Auの他、PdやNiなども用いることができる。n電極、p電極の表面の平滑性に着目した場合、PdやNiによって形成されるメッキ層13,15は、Auによって形成される場合と比較して高い平滑性を有することができる。このため、メッキ層13,15の表面の平滑性をより重要視する場合には、PdやNiを用いることが望ましい。メッキ液の温度は50〜80℃程度が望ましい。メッキ液の温度が低すぎるとAu等が析出しにくく、また、温度が高すぎると形成レートが速くなりメッキ層の表面の荒れが懸念されるためである。また、メッキ液に浸漬する時間は、メッキ層の厚みが1〜3μm程度となる時間が望ましい。メッキ法としては、無電解メッキ法を用いている。メッキ工程の後、発光素子1を洗浄する。
なお、メッキ層を形成した後に、このメッキ層の表面の少なくとも一部に光反射膜を形成する工程を設けてもよい。光反射膜を形成することで、後記するように、より多くの光を取り出すことが可能となるからである。光反射膜は、スパッタ法によって形成される。
次に、個片化工程S108において、ダイシング法やスクライビング法などによりウエハを切断することで、発光素子1を個片化する。なお、個片化する前に、基板11の裏面を研磨して薄肉化するようにしてもよい。また、個片化する前に、又は個片化した後で、基板11の裏面側に金属や誘電体多層膜などからなる反射層を設けるようにしてもよい。以上の工程を行うことによって、発光素子1を形成することができる。
(発光装置製造工程S20)
次に、発光素子実装工程S201において、実装基板2に、発光素子1を実装する。この工程において、発光素子1は、基板11の裏面(下面)を実装基板2側として、実装基板2の所定位置に、樹脂や半田などのダイボンド部材を用いて接合される。そして、n電極及びp電極の外部接続部13a,15aは、それぞれ実装基板2の対応する極性の上部配線22と、ワイヤ3を用いて電気的に接続される。以上の工程を行うことによって、発光装置100を製造することができる。
実施例として、以下の仕様の発光素子を製作して、その順方向電圧Vfと発光出力Poとを測定した。
・サイズおよび形状:一辺約650μmの略正方形
・基板:サファイア基板
・半導体層:GaN系半導体、発光波長ピークは約450nm
・シード層:ITO膜(約60nm)側から順に、Ti(約1.5nm)/Pt(約200nm)/Au(約200nm)を積層
・p電極のメッキ層(pパッド電極):Au(約2μm)
・n電極のメッキ層(nパッド電極):Au(約2μm)
・保護膜:SiO
・光出力の測定法:積分球による測定
上記実施例に対する比較例として、nパッド電極及びpパッド電極をスパッタ法によって形成した発光素子を製作した。この比較例のnパッド電極及びpパッド電極は、上記実施例と同様に2μmの厚さで、材料はAuである。なお、上面視における面積は、実施例のシード層の合計面積が比較例のn電極及びp電極の合計面積と略等しい。すなわち、実施例のメッキ層の合計面積は、比較例のn電極及びp電極の合計面積よりも一回り大きい。
<測定結果>
測定結果を図7(a)及び図7(b)に示す。これらの図は、実施例の発光素子と、比較例の発光素子について、順方向電流(If)がそれぞれ60mA,120mA及び240mAの場合の、順方向電圧(Vf)と出力(Po)を示すものである。図7(a)に示すように、順方向電圧(Vf)については、順方向電流(If)が60mAの場合、両者とも2.97Vであり差は無かった。また、順方向電流(If)が120mAでは、メッキ法の場合の順方向電圧は3.22Vでスパッタ法の場合のそれは3.23Vとなっており、メッキ法の方が0.01V低くなった。更に、順方向電流(If)が240mAでは、メッキ法の場合の順方向電圧は3.62Vでスパッタ法の場合のそれは3.65Vとなっており、メッキ法の場合が0.03V低くなった。
また、図7(b)に示すように、出力(Po)については、順方向電流(If)が60mAの場合、両者とも125.2mWであり差は無かった。また、順方向電流(If)が120mAでは、メッキ法の場合の出力は239.0mWでスパッタ法の場合が239.8mWとなり、メッキ法の方が0.8mW低かった。一方、順方向電流(If)が240mAでは、メッキ法の場合の出力は444.1mWでスパッタ法の場合のそれは443.5mWとなり、メッキ法の場合が0.6mW高かった。このように、メッキ法の場合とスパッタ法の場合とで大きな出力差が生じないのは、メッキ法による電極に前記丸み部が形成されるからと考えられる。
<第2実施形態>
第2実施形態に係る発光素子は、図8に示すように、図4に示す発光素子と主要な構成要素が共通している。一方で、この第2実施形態に係る発光素子は、n電極のメッキ層13D、p電極のメッキ層15Dの表面に光反射膜18Bが形成されている点が特徴である。この光反射膜18Dは、活性層から出力された光を反射するためのものである。このため、光反射膜18Dを形成することで、メッキ層13D、15Dによって光が吸収されにくく、より多くの光を外部に取り出すことができる。光反射膜18Dの材料としてはAlが挙げられる。これは、AlがAuからなるメッキ層13D、15Dよりも紫外域から可視光域において高い反射率を有するからである。図8に示す発光素子では、メッキ層13D、15Dの表面全体に光反射膜18Dが形成されている。しかし、メッキ層13D、15Dの表面の一部にだけ光反射膜18Dを形成するようにしてもよい。その場合には、メッキ層13D、15Dの周縁端部の丸み部(メッキ層の側面部)にのみ形成するようにしてもよい。こうすることで、メッキ層13D、15Dの側面に照射された光を発光素子の上方に反射させることができるからである。
光反射膜18Dは、スパッタ法を用いて形成されている。具体的には、先ず、メッキ層13D、15Dが形成されている領域以外をマスクでパターニングする。その後、メッキ層13D、15Dの表面にAlをスパッタリングする。Alはメッキ法を用いて形成するよりもスパッタ法を用いて形成する方が適しているため、Alの形成にはスパッタ法を用いることが好ましい。但し、Alは、Auワイヤによるワイヤボンディングには不向きである。このため、メッキ層13D、15Dのワイヤボンディング部には、光反射膜18Dが形成されないように、マスクでパターニングする必要がある。なお、光反射膜18Dの材料はAlに限定されるものではなく、光を反射するものであれば、Agやその他の材料を用いてもよい。但し、光反射膜18Dの材料としてAgを用いた場合、マイグレーションが発生する可能性もある。マイグレーションを低減するためには、光反射膜18Dの材料を、例えばAgとPdとCuの合金とすることが望ましい。また、光反射膜18Dがメッキ層13D、15Dの形成領域以外に形成されると、発光素子1の中から外に出ようとする光を遮る部材の面積が、光反射膜18Dがない場合よりも増大するため、光反射膜18Dはメッキ層13D、15Dの上のみに形成されることが好ましい。このため、光反射膜18Dは、メッキ層13D、15Dよりも上面視における面積が小さく、メッキ層13D、15Dの外縁よりも内側に形成されていることが好ましい。これにより、製造時に光反射膜18Dの形成位置がずれても、n電極、p電極の形成領域以外に形成されにくい。
<第3実施形態>
第3実施形態に係る発光素子は、図9に示すように、図8に示す発光素子と主要な構成要素が共通している。一方で、この第3実施形態に係る発光素子は、メッキ層13E,15Eの断面形状が略半円形状となっている。このような半円形状は、メッキ層13E,15Eの幅およびメッキ条件を適切に調整することで実現することができる。半円形状の断面を有するメッキ層13E,15Eに光が照射された場合でも、メッキ層13E,15Eの表面で反射した光は、発光素子の上方に反射される。なお、本実施形態のメッキ層13E,15Eの表面には、光反射膜18Eが形成されている。しかしながら、光反射膜18Eは必須ではなく、この点は以下の実施形態についても同様である。
<第4実施形態>
第4実施形態に係る発光素子は、図10に示すように、図8に示す発光素子と主要な構成要素が共通している。一方で、この第4実施形態に係る発光素子は、メッキ層13F,15Fの断面形状が略半楕円形状となっている。このような半楕円形状も、メッキ層13F,15Fの幅およびメッキ条件を適切に調整することで実現することができる。半楕円形状の断面を有するメッキ層13F,15Fに光が照射された場合でも、メッキ層13F,15Fの表面で反射した光は、発光素子の上方に反射される。なお、本実施形態のメッキ層13F,15Fの表面にも、光反射膜18Fが形成されている。
以上、本発明に係る発光素子及び発光装置について、発明を実施するための形態により具体的に説明したが、本発明の趣旨はこれらの記載に限定されるものではなく、特許請求の範囲の記載に基づいて広く解釈されなければならない。また、これらの記載に基づいて種々変更、改変などしたものも本発明の趣旨に含まれることはいうまでもない。
1 発光素子
11 基板
12 半導体積層体
12n n側半導体層
12a 活性層
12p p側半導体層
121 n電極領域
121a 側面
13,13D,13E,13F n電極のメッキ層(nパッド電極)
13a 外部接続部
13b 延伸部
13c 丸み部
14 透光性電極
15 p電極のメッキ層(pパッド電極)
15a 外部接続部
15b 延伸部
15c 丸み部
16 金属層
17 保護膜
17n,17p 開口部
18,18D,18E,18F 光反射膜
2 実装基板
21 基体
22 上部配線
23 下部配線
24 ビア
3 ワイヤ
4 封止部材
100 発光装置

Claims (11)

  1. n側半導体層と活性層とp側半導体層と、を順次含み、前記p側半導体層の表面から凹み前記p側半導体層および前記活性層が部分的に存在せずn電極が設けられる前記n側半導体層が露出した領域を含む半導体積層体と、前記半導体積層体の同一面側にp電極及び前記n電極を有し、前記p電極及びn電極が設けられた側から光を取り出す発光素子であって、
    少なくとも前記p電極は、金属層と、前記金属層上に形成され、断面における周縁端部に丸み部を有する少なくとも1つのメッキ層を備え、
    前記メッキ層は、上面視における面積が前記金属層の面積よりも大きく、表面の少なくとも周縁端部の丸み部に材料にAlを含む光反射膜が形成され、
    前記光反射膜は、ワイヤが接続される領域には形成されていない、発光素子。
  2. 前記メッキ層の材料は、Au、Pd及びNiからなる群から選択される少なくとも1つを含む、請求項1に記載の発光素子。
  3. 前記光反射膜は、前記メッキ層の少なくとも側面部に形成される、請求項1又は請求項2に記載の発光素子。
  4. 前記p電極及びn電極の少なくとも一方は、前記ワイヤが接続される領域を含む外部接続部と、延伸部と、を備え、
    前記延伸部は前記光反射膜で覆われている、請求項1から請求項3のいずれか一項に記載の発光素子。
  5. 前記p電極は、透光性電極を備え、
    前記金属層は、前記透光性電極の上面の一部に形成される、請求項1から請求項4のいずれか一項に記載の発光素子。
  6. 前記透光性電極は、前記n電極および前記p電極が設けられる領域を除いて、前記透光性電極の上面および側面を被覆する保護膜を有し、
    前記金属層の厚さは、前記保護膜の厚さよりも薄い、請求項5に記載の発光素子。
  7. 請求項1から請求項6のいずれか一項に記載の発光素子と、前記ワイヤが接続される領域にAuワイヤと、を備える発光装置。
  8. n側半導体層と活性層とp側半導体層と、を順次含み、前記p側半導体層の表面から凹み前記p側半導体層および前記活性層が部分的に存在せずn電極が設けられる前記n側半導体層が露出した領域を含む半導体積層体と、前記半導体積層体の同一面側にp電極及び前記n電極を有し、前記p電極及びn電極が設けられた側から光を取り出す発光素子の製造方法であって、
    少なくとも前記p電極を形成する工程は、
    前記p側半導体層上に、金属層を形成する第1工程と、
    前記金属層上に無電解メッキ法によって、上面視において前記金属層よりも面積が大きいメッキ層を形成する第2工程と、
    前記メッキ層の表面の少なくとも周縁端部の丸み部に材料にAlを含む光反射膜を形成する第3工程と、を含み、
    前記第3工程は、ワイヤが接続される領域には前記光反射膜を形成しない、発光素子の製造方法。
  9. 前記光反射膜は、スパッタ法によって形成する、請求項8に記載の発光素子の製造方法。
  10. 前記メッキ層の形成に先だって、前記p電極及びn電極を形成する部位以外に保護膜を形成する、請求項8又は請求項9に記載の発光素子の製造方法。
  11. 前記第1工程は、前記p側半導体層上に、透光性電極を介して前記金属層を形成する、請求項8から請求項10のいずれか一項に記載の発光素子の製造方法。
JP2016053813A 2016-03-17 2016-03-17 発光素子及び発光素子の製造方法 Active JP6940739B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016053813A JP6940739B2 (ja) 2016-03-17 2016-03-17 発光素子及び発光素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016053813A JP6940739B2 (ja) 2016-03-17 2016-03-17 発光素子及び発光素子の製造方法

Publications (2)

Publication Number Publication Date
JP2017168725A JP2017168725A (ja) 2017-09-21
JP6940739B2 true JP6940739B2 (ja) 2021-09-29

Family

ID=59914157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016053813A Active JP6940739B2 (ja) 2016-03-17 2016-03-17 発光素子及び発光素子の製造方法

Country Status (1)

Country Link
JP (1) JP6940739B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3679001B2 (ja) * 2000-12-22 2005-08-03 シャープ株式会社 半導体装置およびその製造方法
JP2004103975A (ja) * 2002-09-12 2004-04-02 Citizen Watch Co Ltd 光半導体素子の製造方法と光半導体素子およびその光半導体素子を実装した光半導体装置
JP2004128321A (ja) * 2002-10-04 2004-04-22 Matsushita Electric Works Ltd 半導体発光素子
JP4758470B2 (ja) * 2008-12-18 2011-08-31 シャープ株式会社 突起電極の形成方法及び置換金めっき液
JP2011026680A (ja) * 2009-07-28 2011-02-10 Renesas Electronics Corp 半導体装置の製造方法及び半導体装置の製造装置
JP2011096970A (ja) * 2009-11-02 2011-05-12 Dainippon Printing Co Ltd Led素子載置部材、led素子載置基板およびその製造方法、ならびにled素子パッケージおよびその製造方法
US8344392B2 (en) * 2011-05-12 2013-01-01 Epistar Corporation Light-emitting element and the manufacturing method thereof
JP6011108B2 (ja) * 2011-09-27 2016-10-19 日亜化学工業株式会社 半導体素子

Also Published As

Publication number Publication date
JP2017168725A (ja) 2017-09-21

Similar Documents

Publication Publication Date Title
CN107742633B (zh) 发光二极管模块和发光二极管以及制造发光二极管的方法
KR101546929B1 (ko) 발광 다이오드 및 그것을 갖는 발광 다이오드 모듈
US9640719B2 (en) Light emitting diode, method of fabricating the same and LED module having the same
US9837579B2 (en) Semiconductor light emitting element and method for producing the same
JP5693375B2 (ja) 半導体発光素子
CN108598251B (zh) 半导体发光元件
JP2017204571A (ja) 半導体素子、半導体装置及び半導体素子の製造方法
KR20150078295A (ko) 측면 발광형 질화물 반도체 발광 소자
KR20150078296A (ko) 신뢰성이 향상된 발광 소자
US20170317230A1 (en) Supporting substrate for semiconductor device, semiconductor apparatus comprising the same, and method for manufacturing the same
KR20150014353A (ko) 발광 다이오드
KR20160005827A (ko) 측면 발광형 질화물 반도체 발광 칩 및 이를 갖는 발광 소자
KR20150014136A (ko) 발광 다이오드 및 그것을 제조하는 방법
US9691953B2 (en) Light emitting element and light emitting device
KR20160065349A (ko) 질화물 반도체 발광 칩 및 이를 갖는 발광 소자
JP4622426B2 (ja) 半導体発光素子
US20190165216A1 (en) Ultraviolet light emitting device package
KR101764129B1 (ko) 반도체 발광소자 및 이를 제조하는 방법
JP6940739B2 (ja) 発光素子及び発光素子の製造方法
KR102002618B1 (ko) 발광 다이오드
KR20150052513A (ko) 발광 소자 및 그 제조 방법
KR101428774B1 (ko) 반도체 발광소자 및 이를 제조하는 방법
KR102387082B1 (ko) 반도체 소자용 지지 기판, 이를 포함하는 반도체 장치 및 이를 제조하는 방법
KR20140130270A (ko) 반도체 발광소자 및 이를 제조하는 방법
KR102002617B1 (ko) 발광 다이오드

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R150 Certificate of patent or registration of utility model

Ref document number: 6940739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150