JP6933599B2 - ヒートポンプ冷熱源機 - Google Patents

ヒートポンプ冷熱源機 Download PDF

Info

Publication number
JP6933599B2
JP6933599B2 JP2018056499A JP2018056499A JP6933599B2 JP 6933599 B2 JP6933599 B2 JP 6933599B2 JP 2018056499 A JP2018056499 A JP 2018056499A JP 2018056499 A JP2018056499 A JP 2018056499A JP 6933599 B2 JP6933599 B2 JP 6933599B2
Authority
JP
Japan
Prior art keywords
heat
temperature
heat source
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018056499A
Other languages
English (en)
Other versions
JP2019168169A (ja
Inventor
眞柄 隆志
隆志 眞柄
真典 上田
真典 上田
岳彦 川上
岳彦 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2018056499A priority Critical patent/JP6933599B2/ja
Publication of JP2019168169A publication Critical patent/JP2019168169A/ja
Application granted granted Critical
Publication of JP6933599B2 publication Critical patent/JP6933599B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps

Description

この発明は、負荷端末における冷房運転を行う、ヒートポンプ冷熱源機に関するものである。
従来よりこの種のヒートポンプ冷熱源機においては、特許文献1記載のように、圧縮機からの冷媒の実吐出温度が目標吐出温度となるように、膨張弁の開度を制御するものがあった。
特開2015−129616号公報(段落0036等)
しかしながら、この従来のものでは、熱源である地中の実際の温度状態を加味することなく、圧縮機の回転数及びリモコン設定温度に基づいて前記目標吐出温度を設定している。このため、冷房運転時は、想定しうる最高の地中温度(例えば約30℃)に合わせて前記目標吐出温度が設定されることとなる。この結果、場合によっては必要以上に冷媒吐出温度が無駄に高く制御されることとなり、冷熱源機全体の効率の低下を招くという問題があった。
上記課題を解決するために、本発明の請求項1では、圧縮機、蒸発器として機能する負荷側熱交換器、減圧手段、及び、凝縮器として機能する熱源側熱交換器、を冷媒配管で接続して、ヒートポンプ回路を形成し、前記負荷側熱交換器、及び、負荷端末を、循環液配管で接続して、負荷側回路を形成し、前記熱源側熱交換器、及び、熱源を熱媒配管で接続して熱源接続路を形成した、ヒートポンプ冷熱源機において、前記ヒートポンプ回路において、前記圧縮機から吐出される冷媒の実吐出温度を検出する吐出温度検出手段と、前記熱源の温度を推定可能な熱源指標を検出する熱源指標検出手段と、前記熱源指標検出手段が検出した前記熱源指標に応じて、前記圧縮機から吐出される冷媒の目標吐出温度を決定する目標吐出温度決定手段と、前記吐出温度検出手段により検出される前記実吐出温度が、前記目標吐出温度決定手段が決定する前記目標吐出温度となるように、前記減圧手段の開度を制御する減圧制御手段と、を有し、前記目標吐出温度決定手段は、前記熱源指標検出手段が検出した前記熱源指標と、前記圧縮機の回転数と、前記負荷端末を操作可能な操作手段の操作に対応した循環液の目標循環液温度と、に応じて、前記目標吐出温度Toを、前記熱源指標検出手段が検出する前記熱源指標に係わる複数の温度ゾーンそれぞれに予め対応づけられた温度係数Xと、前記圧縮機の回転数に係わる複数の回転数ゾーンそれぞれに予め対応づけられた回転数係数Yと、前記目標循環液温度に係わる複数の循環液温度ゾーンそれぞれに予め対応づけられた循環液温度係数Zと、を用いた式To=X+Y+Zにより算出するものである。
また、請求項2では、前記熱源接続路の前記熱媒配管に設けられた熱媒ポンプを有し、前記減圧制御手段は、前記熱媒ポンプが起動して所定期間が経過した後に、前記実吐出温度が前記目標吐出温度となるように前記減圧手段の開度を制御するものである。
また、請求項3では、前記熱源接続路は、前記熱源としての地中熱交換器と前記熱源側熱交換器とを前記熱媒配管で接続した地中熱循環回路であり、前記熱源指標検出手段は、前記熱源側熱交換器から前記熱媒配管を介し前記地中熱交換器へ戻る熱媒の戻り温度を検出する地中戻り温度検出手段、若しくは、前記地中熱交換器から前記熱媒配管を介し前記熱源側熱交換器へ向かう熱媒の往き温度を検出する地中往き温度検出手段、若しくは、前記熱源側熱交換器から前記冷媒配管を介し流出する前記冷媒の温度を検出する冷媒温度検出手段、若しくは、前記熱源側熱交換器内で凝縮する前記冷媒の凝縮温度を検出する凝縮温度検出手段、であるものである。
この発明の請求項1によれば、負荷側熱交換器における、ヒートポンプ回路及び熱源接続路と負荷側回路との熱交換により、負荷端末における冷房運転が行われる。
すなわち、運転時には、前記ヒートポンプ回路において、低温・低圧で吸入されたガス状態の冷媒が圧縮機で圧縮されて高温・高圧のガスとなった後、凝縮器として機能する前記熱源側熱交換器において前記熱媒配管を流れる熱媒に放熱して高圧の液体となり、蒸発器として機能する負荷側熱交換器において前記負荷側回路を流れる循環液から吸熱し、低温・低圧のガスとして再び第1圧縮機へと戻る。このとき、熱源接続路において、熱媒配管を流れる熱媒は、前記熱源側熱交換器において高温となっている前記冷媒から吸熱し、その熱を帯びた熱媒が熱媒配管を介し導かれて熱を熱源(例えば地中に設けられた地中熱交換器)へと放熱する。
このとき、前記熱源への放熱(例えば地中への放熱)を行うためには熱媒の温度を熱源の温度(例えば地中温度)よりも高くする必要があることから、通常、ヒートポンプ回路において、圧縮機からの冷媒の実吐出温度が、前記熱媒の温度を勘案した目標吐出温度となるように、減圧手段の開度が制御される。しかしながら、熱源の実際の温度状態を加味しない場合には、想定しうる熱源の最高温度(例えば地中温度の場合約30℃)に合わせて前記目標吐出温度が設定されることとなる。この結果、場合によっては必要以上に前記冷媒吐出温度が無駄に高く制御されることとなり、冷熱源機全体の効率(例えばCOP)の低下を招く。
そこで請求項1によれば、熱源指標検出手段が設けられ、前記熱源の温度を推定可能な熱源指標(例えば、地中熱交換器へ向かう熱媒の往き温度、地中熱交換器から戻る熱媒の戻り温度、熱源側熱交換器から流出する冷媒の温度、熱源側熱交換器内における冷媒の凝縮温度、等)が検出される。そして、目標吐出温度決定手段が、前記熱源指標検出手段が検出した熱源指標に応じて前記目標吐出温度を決定し、減圧制御手段は、吐出温度検出手段により検出される実吐出温度が前記決定された目標吐出温度となるように、前記減圧手段を制御する。これにより、前記した手法と異なり、熱源の実際の温度状態を加味した目標吐出温度の設定を行うことができるので、冷熱源機全体の効率を向上することができる。
また、請求項1によれば、熱源指標と、圧縮機回転数と、操作手段の操作に対応した目標循環液温度とに対応して目標吐出温度を決定する。これにより、ユーザによる冷房能力の設定やヒートポンプ回路における圧縮機の動作状態を加味した、さらに精度のよい目標吐出温度の設定を行うことができる。
また、請求項1によれば、温度ゾーンに対応づけられた温度係数X、圧縮機の回転数ゾーンに対応づけられた回転数係数Y、循環液温度ゾーンに対応づけられた循環液温度係数Z、を用いた式To=X+Y+Zで目標吐出温度Toを算出することにより、簡素な演算で確実かつ迅速な減圧制御を実行することができる。
地中熱循環回路では、通常、地上側に位置する熱源側熱交換器と地中熱交換器とを接続する熱媒配管においても、ある程度の長さの地上区間が存在する。あるいは、地中に配置されていてもその深さが浅く、外気の影響を受ける(すなわち厳密には地中のみと熱交換しているとは言えない)区間が存在する。熱媒配管のうちそれらの区間に存在する熱媒は、地中の温度を正しく反映していないおそれがある。これに対応して、請求項2によれば、熱媒配管の熱媒ポンプの起動後、所定期間が経過したのちに、減圧制御手段による減圧手段の開度制御を開始する。これにより、熱媒の流動が進んで地中の温度を正しく反映するようになってから前述の制御が行われるので、前記のおそれを確実に回避した、精度のよい目標吐出温度の設定を確実に行うことができる。
また、請求項3によれば、地中に放熱する場合に、熱源指標として、地中熱交換器への熱媒戻り温度、若しくは地中熱交換器からの熱媒往き温度、若しくは熱源側熱交換器から流出する冷媒温度、若しくは熱源側熱交換器内での冷媒凝縮温度を用いることにより、地中側の温度状態を精度よく把握し、適切な目標吐出温度の設定を行って確実に効率を向上することができる。
本発明の一実施形態のヒートポンプ冷熱源機の主要なユニットの外観構成図 ヒートポンプ冷熱源機全体の回路構成図 冷房運転時の作動を説明する図 地中熱制御装置の機能的構成図 空気熱制御装置の機能的構成図 冷媒温度と冷媒温度ゾーンとの対応付け、及び、冷媒温度ゾーンと冷媒温度係数の値との対応付け、を表す図 圧縮機回転数と回転数ゾーンとの対応付け、及び、回転数ゾーンと回転数係数の値との対応付け、を表す図 メインリモコンによる設定温度範囲による循環液温度ゾーンと循環液温度係数Zの値との対応付け、を表す図 冷房時のCOP向上効果を比較例と対比させて示すグラフ図 熱源指標として地中往き温度を用いる変形例におけるヒートポンプ冷熱源機全体の回路構成図 地中熱制御装置の機能的構成図 熱源指標として地中戻り温度を用いる変形例におけるヒートポンプ冷熱源機全体の回路構成図 地中熱制御装置の機能的構成図 熱源指標として凝縮温度を用いる変形例におけるヒートポンプ冷熱源機全体の回路構成図 地中熱制御装置の機能的構成図
以下、本発明の一実施形態を図1〜図9に基づいて説明する。
本実施形態は、本発明を複合熱源型のヒートポンプ冷熱源機に適用した場合の実施形態である。本実施形態のヒートポンプ冷熱源機1の主要なユニットの外観構成を図1に示す。図1において、本実施形態のヒートポンプ冷熱源機1は、地中熱ヒートポンプユニット4と、空気熱ヒートポンプユニット5と、熱交換端末36に循環液L(例えば、水や不凍液)を循環させる、負荷側回路としての端末循環回路30と、熱源接続路としての地中熱循環回路20とを有している。
本実施形態のヒートポンプ冷熱源機1全体の回路構成を図2に示す。図2に示すように、前記ヒートポンプ冷熱源機1は、前記地中熱ヒートポンプユニット4に備えられ、地中熱源を利用して前記熱交換端末36側の循環液Lを加熱又は冷却可能な第1ヒートポンプ回路40(ヒートポンプ回路に相当)と、前記空気熱ヒートポンプユニット5に備えられ、空気熱源を利用して前記熱交換端末36側の循環液Lを加熱又は冷却可能な第2ヒートポンプ回路50と、前記端末循環回路30と、前記地中熱循環回路20とを有している。
図2において、第1ヒートポンプ回路40は、能力可変の第1圧縮機43と、負荷側熱交換器としての第1熱交換器41と、減圧手段としての第1膨張弁44と、熱源側熱交換器としての地中熱源熱交換器45とが、第1冷媒配管42(冷媒配管に相当)によって環状に接続されている。この第1冷媒配管42には、前記第1ヒートポンプ回路40における第1冷媒C1(後述の図3参照)の流れ方向を切り換える切換弁としての四方弁46が設けられている。
前記第1熱交換器41及び前記地中熱源熱交換器45は、例えばプレート式熱交換器で構成されている。このプレート式熱交換器は、複数の伝熱プレートが積層され、第1冷媒C1を流通させる冷媒流路と前記循環液Lを流通させる流体流路とが各伝熱プレートを境にして交互に形成されているものである。
また、第1圧縮機43から吐出された第1冷媒C1の温度(実吐出温度に相当)は、吐出温度検出手段としての第1冷媒吐出温度センサ42aによって検出される。同様に、第1熱交換器41から第1膨張弁44を介して地中熱源熱交換器45に至るまでの第1冷媒配管42に設けられた冷媒温度センサ42c,42bのうち、第1膨張弁44から地中熱源熱交換器45までの第1冷媒配管42に設けられた第1冷媒温度センサ42bによって、低圧側(暖房時)又は高圧側(冷房時)の第1冷媒C1の温度が検出される。前記第1冷媒吐出温度センサ42a及び前記第1冷媒温度センサ42bの検出結果は、前記地中熱制御装置61へ入力される。なお、第1冷媒温度センサ42bで検出される第1冷媒C1の温度が、この実施形態における熱源指標に相当し、第1冷媒温度センサ42bは、冷媒温度検出手段に相当すると共に、熱源指標検出手段にも相当する。
第2ヒートポンプ回路50は、能力可変の第2圧縮機53と、第2熱交換器51と、第2膨張弁54と、空気熱源熱交換器55とが、第2冷媒配管52によって環状に接続されている。この第2冷媒配管52には、前記第2ヒートポンプ回路50における第2冷媒C2(後述の図3参照)の流れ方向を切り換える切換弁としての四方弁58が設けられている。
前記第2熱交換器51は、前述と同様、例えばプレート式熱交換器で構成されており、前記第2冷媒C2を流通させる冷媒流路と前記循環液Lを流通させる流体流路とが各伝熱プレートを境にして交互に形成されているものである。
また、第2圧縮機53から吐出された第2冷媒C2の温度は、第2冷媒吐出温度センサ52aによって検出される。同様に、第2膨張弁54から空気熱源熱交換器55までの第2冷媒配管52に設けられた第2冷媒温度センサ52bによって、低圧側(暖房時)又は高圧側(冷房時)の第2冷媒C2の温度が検出される。さらに、外気の温度が、外気温センサ57によって検出される。前記第2冷媒吐出温度センサ52a及び前記外気温センサ57の検出結果は、空気熱制御装置62へ入力される。
なお、前記第1ヒートポンプ回路40の前記第1冷媒C1、および、前記第2ヒートポンプ回路50の前記第2冷媒C2としては、例えばR410AやR32等のHFC冷媒や二酸化炭素冷媒等の任意の冷媒を用いることができる。
地中熱循環回路20は、回転速度(単位時間当たりの回転数)可変の熱源側循環ポンプとしての地中熱循環ポンプ22(熱媒ポンプに相当)と、熱源側熱交換器としての地中熱源熱交換器45と、地中熱源熱交換器45を流通する前記第1冷媒C1と熱交換する熱源として(この例では地中に)設置された地中熱交換器23とが、熱媒配管としての地中熱配管21によって環状に接続されている。この地中熱配管21には、前記地中熱循環ポンプ22によって、エチレングリコールやプロピレングリコール等を添加した不凍液が熱媒H1(後述の図3参照)として循環されるとともに、前記熱媒H1を貯留し地中熱循環回路20の圧力を調整する地中用シスターン24が設けられている。なお、地中熱交換器23は、地中に設けられるのには限られず、例えば湖沼、貯水池、河川、海、温泉、井戸等の、比較的大容量の水源中に設けられ、それらから採熱するようにしてもよい。
端末循環回路30は、前記第1熱交換器41と、前記第2熱交換器51と、ファンコイルや床暖房パネルやパネルコンベクタ等の負荷端末としての熱交換端末36とが、循環液配管としての負荷配管31によって上流側から順に環状に接続されている。この負荷配管31には、端末循環回路30に前記循環液Lを循環させる負荷側循環ポンプとしての循環液循環ポンプ32と、循環液Lを貯留し端末循環回路30の圧力を調整する冷暖房用シスターン35とが設けられている。前記循環液循環ポンプ32は、この例では、定速(一定回転数)にて回転するように構成されている。また、前記熱交換端末36は、端末用リモコン60bによって操作可能である。なお、熱交換端末36は、図2では1つ設けられているが、2つ以上であってもよく、数量や仕様が特に限定されるものではない。
このとき、端末循環回路30においては、前記第1熱交換器41と前記第2熱交換器51とが直列に接続されており、かつ、前記したように、端末循環回路30を循環する循環液Lの流れに対して、前記第1熱交換器41が前記第2熱交換器51よりも上流側に配設されている。すなわち、前記ヒートポンプ冷熱源機1は、地中熱源を利用して熱交換端末36側の循環液Lを加熱又は冷却する第1ヒートポンプ回路40の第1熱交換器41と、空気熱源を利用して熱交換端末36側の循環液Lを加熱又は冷却する第2ヒートポンプ回路50の第2熱交換器51とが、端末循環回路30に対して直列に接続された、複合熱源ヒートポンプ装置となっているものである。
なお、負荷配管31には、熱交換端末36から第1熱交換器41に流入する循環液Lの温度を検出する、循環液温度検出手段としての戻り温水温度センサ34が設けられており、その検出結果は、前記地中熱制御装置61及び前記空気熱制御装置62へ入力される。なお、空気熱制御装置62は、戻り温水温度センサ34に直接接続されず、前記地中熱制御装置61を介して戻り温水温度センサ34の検出結果を取得する構成でもよい。
ここで、前記ヒートポンプ冷熱源機1は、前記の四方弁46,58の切替によって冷房運転を行う冷房装置、若しくは、暖房運転を行う暖房装置として選択的に機能させることができる。
図3に、冷房運転時の状態を示す。なお、図示の煩雑を防止するために、図2に示していた各種の信号線は省略している。この図3に示す冷房運転時においては、前記第1ヒートポンプ回路40では、図示のように前記四方弁46が切り替えられることで、第1圧縮機43から吐出された第1冷媒C1を、地中熱源熱交換器45、第1膨張弁44、第1熱交換器41の順に流通させた後、第1圧縮機43に戻す流路を形成する。これにより、低温・低圧で吸入されたガス状態の第1冷媒C1が前記第1圧縮機43で圧縮されて高温・高圧のガスとなった後、凝縮器として機能する前記地中熱源熱交換機45において、前記地中熱循環回路20を流れる熱媒H1と熱交換を行って前記熱媒H1に熱を放出しながら高圧の液体に変化する。こうして液体となった第1冷媒C1は前記第1膨張弁44において減圧されて低圧の液体となって蒸発しやすい状態となり、蒸発器として機能する前記第1熱交換器41において、前記端末循環回路30を流れる循環液Lと熱交換を行って蒸発してガスに変化することで吸熱し前記循環液Lを冷却した後、低温・低圧のガスとして再び前記第1圧縮機43へと戻る。
一方、前記第2ヒートポンプ回路50では、図示のように前記四方弁58が切り替えられることで、第2圧縮機53から吐出された第2冷媒C2を、空気熱源熱交換器55、第2膨張弁54、第2熱交換器51の順に流通させた後、第2圧縮機53に戻す流路を形成する。これにより、低温・低圧で吸入されたガス状態の第2冷媒C2が前記第2圧縮機53で圧縮されて高温・高圧のガスとなった後、凝縮器として機能する前記空気熱源熱交換器55において、送風ファン56の作動により送られる空気との熱交換を行って外気へ熱を放出しながら高圧の液体に変化する。こうして液体となった第2冷媒C2は前記第2膨張弁54において減圧されて低圧の液体となって蒸発しやすい状態となり、蒸発器として機能する前記第2熱交換器51において、前記端末循環回路30を流れる循環液Lと熱交換を行って蒸発してガスに変化することで吸熱し前記循環液Lを冷却した後、低温・低圧のガスとして再び前記第2圧縮機53へと戻る。
また、地中熱循環回路20では、前記熱媒H1が地中熱循環ポンプ22により地中熱源熱交換器45に供給される。そして、凝縮器として機能する前記地中熱源熱交換器45において、地中熱源熱交換器45の冷媒流路を流通する前記第1冷媒C1と、地中熱源熱交換器45の流体流路を流通する前記熱媒H1とが対向して流れて熱交換が行われ、高温となっている第1冷媒C1の熱が熱媒H1側に放熱されて第1冷媒C1が冷却された後、熱媒H1の熱は地中熱交換器23によって地中へと放熱される。
また、端末循環回路30では、循環液循環ポンプ32により第1熱交換器41に流入した循環液Lは、蒸発器として機能する前記第1熱交換器41において、地中熱循環回路20の熱媒H1と熱交換し前記のように冷却された前記第1冷媒C1との熱交換を行って冷却された後、蒸発器として機能する前記第2熱交換器51において、前記空気熱源熱交換器55で外気と熱交換し前記のように冷却された前記第2冷媒C2との熱交換を行ってさらに冷却される。こうして冷却された循環液Lは、その後、前記熱交換端末36に供給されて被空調空間を冷却する。
なお、上記においては、地中熱ヒートポンプユニット4および空気熱ヒートポンプユニット5の両方を動作させた冷房運転時の状態を図3に示して説明したが、これに限られない。すなわち、地中熱ヒートポンプユニット4単体のみを動作させての冷房運転や、空気熱ヒートポンプユニット5単体のみを動作させての冷房運転も可能なものである。
なお、以上においては冷房運転を例にとって説明したが、四方弁46が切り替えられることで、第1圧縮機43から吐出された第1冷媒C1を、第1熱交換器41、第1膨張弁44、地中熱源熱交換器45の順に流通させた後、第1圧縮機43に戻す流路を形成し、暖房運転を行うこともできる(詳細な説明は省略)。
次に、本実施形態における地中熱制御装置61及び空気熱制御装置62について説明する。前記地中熱制御装置61及び前記空気熱制御装置62は、詳細な図示を省略するが、各種のデータやプログラムを記憶する記憶部と、演算・制御処理を行う制御部とを備えている。これら前記地中熱制御装置61及び前記空気熱制御装置62の機能的構成を図4及び図5により説明する。
図4に示すように、前記地中熱制御装置61は、圧縮機制御手段としての圧縮機制御部61Aと、膨張弁制御部61Bと、ポンプ制御部61Cと、を機能的に備えている。また、地中熱制御装置61は、熱交換端末36に備えられた端末制御装置36a及びメインリモコン60a(操作手段に相当)に対し、通信可能に接続されている(図2参照)。
圧縮機制御部61Aは、前記戻り温水温度センサ34により検出された循環液Lの温度に応じて、前記第1圧縮機43の回転数を制御する。特にこの例では、圧縮機制御部61Aは、前記戻り温水温度センサ34により検出される循環液Lの温度が、例えば前記メインリモコン60aの操作に対応した所望の目標温度となるように、前記第1圧縮機43の回転数を制御する。
膨張弁制御部61Bは、前記第1圧縮機43から吐出される冷媒の目標吐出温度を決定する目標吐出温度決定部61Ba(目標吐出温度決定手段に相当)と、前記第1冷媒吐出温度センサ42aにより検出される前記実吐出温度が、前記目標吐出温度決定部61Baが決定する前記目標吐出温度となるように、前記第1膨張弁44の弁開度を制御する開度制御部61Bb(減圧制御手段に相当)とを有している。なお、目標吐出温度決定部61Baによる前記目標吐出温度の決定手法の詳細については、後述する。
ポンプ制御部61Cは、前記第1冷媒温度センサ42bにより検出された第1冷媒C1の温度に応じて、前記地中熱循環ポンプ22の前記回転数を制御する(図2も参照)。特にこの例では、前記ポンプ制御部61Cは、前記第1冷媒温度センサ42bにより検出される前記第1冷媒C1の温度が略一定値となるように、前記地中熱循環ポンプ22の前記回転数を制御する。
図5に示すように、前記空気熱制御装置62は、圧縮機制御部62Aと、膨張弁制御部62Bと、ファン制御部62Cとを機能的に備えている。また空気熱制御装置62は、前記地中熱制御装置61に対し、通信可能に接続されている(図2参照)。
圧縮機制御部62Aは、前記戻り温水温度センサ34により検出された循環液Lの温度に応じて、前記第2圧縮機53の回転数を制御する。特にこの例では、圧縮機制御部62Aは、前記戻り温水温度センサ34により検出される循環液Lの温度が、例えば前記メインリモコン60aの操作に対応した所望の目標温度となるように、前記第2圧縮機53の回転数を制御する。なお、この空気熱制御装置62の圧縮機制御部62Aと前記地中熱制御装置61の前記圧縮機制御部61Aとは、必要に応じて互いに連携しつつ、対象となる第1圧縮機43又は第2圧縮機53の制御を行う。
膨張弁制御部62Bは、第2冷媒吐出温度センサ52aにより検出される第2冷媒C2の温度に応じて、前記第2膨張弁54の弁開度を制御する。特にこの例では、膨張弁制御部62Bは、第2冷媒吐出温度センサ52aにより検出される第2冷媒C2の温度が、例えば前記メインリモコン60aの操作に対応した制御上の目標温度となるように、前記第2膨張弁54の弁開度を制御する。なお、この空気熱制御装置62の膨張弁制御部62Bと前記地中熱制御装置61の前記膨張弁制御部61Bとは、必要に応じて互いに連携しつつ、対象となる第1膨張弁44又は第2膨張弁54の制御を行う。
ファン制御部62Cは、前記外気温センサ57により検出された外気の温度に応じて、前記送風ファン56の回転数を制御する(図2も参照)。
以上の基本構成及び作動であるヒートポンプ冷熱源機1において、本実施形態の要部は、前記第1圧縮機43からの前記目標吐出温度は、熱源である地中の実際の温度を勘案した温度となるように目標吐出温度決定部61Baによって設定されるとともに、第1膨張弁44の弁開度は、前記実吐出温度がその目標吐出温度となるように開度制御部61Bbによって制御されることにある。以下、その詳細を順を追って説明する。
すなわち、本実施形態では、冷房運転時においては、熱源としての地中への放熱を行うためには熱媒H1の温度を熱源温度である地中温度よりも高くする必要がある。そのため、通常、第1ヒートポンプ回路40において、第1圧縮機43からの冷媒の実吐出温度が、前記熱媒H1の温度を勘案した目標吐出温度となるように、第1膨張弁44の開度が制御される。
しかしながら、熱源である地中の実際の温度状態を加味しない場合には、想定しうる地中の最高温度(例えば約30℃)に合わせて前記目標吐出温度が設定されることとなる。この結果、場合によっては必要以上に前記冷媒吐出温度が無駄に高く制御されることとなり、冷熱源機全体の効率(例えば成績係数である後述するCOP等)の低下を招く。
そこで本実施形態においては、熱源である地中の温度を推定可能な熱源指標として、前記地中熱源熱交換器45から流出する冷媒の温度(前記第1冷媒温度センサ42bにより検出)が用いられ、目標吐出温度決定部61Baによってこの冷媒の温度に応じて前記目標吐出温度が決定される。そして、膨張弁制御部61Bは、検出される実吐出温度が前記決定された目標吐出温度となるように、前記第1膨張弁を制御する。以下、目標吐出温度決定部61Baによる前記目標吐出温度決定手法の詳細について、図6〜図8により説明する。
前記目標吐出温度決定部61Baは、目標吐出温度Toを、以下の式1によって算出する。
To=X+Y+Z ・・ 式1
(但し、X:冷媒温度係数、Y:回転数係数、Z:循環液温度係数)
冷媒温度係数Xは、冷房運転時において前記第1冷媒温度センサ42bが検出する前記冷媒の温度に係わる、複数の冷媒温度ゾーンそれぞれに予め対応づけられている。図6(a)に、前記冷媒の温度と、前記冷媒温度ゾーンとの対応付けの一例を示す。
図6(a)のテーブルに示すように、前記第1冷媒温度センサ42bが検出する前記冷媒の温度にそれぞれ対応づける冷媒温度ゾーンとして、冷媒温度が高いほうから低いほうへと向かう順に、5つの冷媒温度ゾーン、すなわち、冷媒温度ゾーンI、冷媒温度ゾーンII、冷媒温度ゾーンIII、冷媒温度ゾーンIV、冷媒温度ゾーンVが規定されている。
その際、各冷媒温度ゾーンI〜Vどうしの境界にはヒステリシスが設けられており、前記冷媒温度が低くなる方向に冷媒温度ゾーンが切り替わる場合の各ゾーンどうしの境界と、前記冷媒温度が高くなる方向に冷媒温度ゾーンが切り替わる場合の各ゾーンどうしの境界とが異なる。すなわち、冷媒温度の値が最低となる冷媒温度ゾーンVから冷媒温度の値が高くなる側に隣接する冷媒温度ゾーンIVへ切り替わるときの境界は冷媒温度=15[℃]である(言い替えれば、冷媒が低い状態から徐々に上昇してきて15[℃]となると、冷媒温度ゾーンVから冷媒温度ゾーンIVに切り替わる)。同様に、冷媒温度ゾーンIVから冷媒温度ゾーンIIIへ切り替わるときの境界は冷媒温度=20[℃]であり、冷媒温度ゾーンIIIから冷媒温度ゾーンIIへ切り替わるときの境界は冷媒温度=26[℃]であり、冷媒温度ゾーンIIから冷媒温度ゾーンIへ切り替わるときの境界は冷媒温度=30[℃]となっている。
逆に、前記冷媒温度が最高となる冷媒温度ゾーンIから冷媒温度の値が低くなる側に隣接する冷媒温度ゾーンIIへ切り替わるときの境界は冷媒温度=28[℃]である(言い替えれば、冷媒温度が高い状態から徐々に低下してきて28[℃]となると、冷媒温度ゾーンIから冷媒温度ゾーンIIに切り替わる)。同様に、冷媒温度ゾーンIIから冷媒温度ゾーンIIIへ切り替わるときの境界は冷媒温度=24[℃]であり、冷媒温度ゾーンIIIから冷媒温度ゾーンIVへ切り替わるときの境界は冷媒温度=18[℃]であり、冷媒温度ゾーンIVから冷媒温度ゾーンVへ切り替わるときの境界は冷媒温度=13[℃]となっている。なお、前記冷媒温度ゾーンI〜Vが、熱源指標に係わる複数の温度ゾーンに相当し、前記冷媒温度係数Xは、複数の温度ゾーンそれぞれに予め対応づけられた温度係数に相当する。
図6(b)に、前記冷媒温度ゾーンI〜Vのそれぞれと、前記冷媒温度係数Xの値との対応付けの一例を示す。図6(b)のテーブルに示すように、前記冷媒温度係数Xの値は、前記冷媒温度ゾーンIには40、前記冷媒温度ゾーンIIには36、前記冷媒温度ゾーンIIIには32、前記冷媒温度ゾーンIVには28、前記冷媒温度ゾーンVには26、がそれぞれ対応づけられている。すなわち、第1冷媒温度センサ42bの検出する冷媒温度が高いほど、冷媒温度係数Xが大きくなっている。
また、回転数係数Yは、冷房運転時における前記第1圧縮機43の回転数に係わる、複数の回転数ゾーンそれぞれに予め対応づけられている。図7(a)に、前記第1圧縮機43の回転数と、前記回転数ゾーンとの対応付けの一例を示す。
図7(a)のテーブルに示すように、前記圧縮機制御部61Aによる前記第1圧縮機43の回転数(すなわち詳細には回転数の制御値。前記圧縮機制御部61Aから目標吐出温度決定部61Baへ出力される)にそれぞれ対応づける回転数ゾーンとして、回転数が高いほうから低いほうへと向かう順に、3つの回転数ゾーン、すなわち、回転数ゾーンC、回転数ゾーンB、回転数ゾーンAが規定されている。
その際、各回転数ゾーンA〜Cどうしの境界にはヒステリシスが設けられており、前記回転数が低くなる方向に回転数ゾーンが切り替わる場合の各ゾーンどうしの境界と、前記回転数が高くなる方向に回転数ゾーンが切り替わる場合の各ゾーンどうしの境界とが異なる。すなわち、回転数の値が最低となる回転数ゾーンAから回転数の値が高くなる側に隣接する回転数ゾーンBへ切り替わるときの境界は回転数=40.0[rps]である(言い替えれば、第1圧縮機43の回転数が低い状態から徐々に上昇してきて40.0[rps]となると、回転数ゾーンAから回転数ゾーンBに切り替わる)。同様に、回転数ゾーンBから回転数ゾーンCへ切り替わるときの境界は回転数=60.0[rps]となっている。
逆に、前記回転数が最高となる回転数ゾーンCから回転数の値が低くなる側に隣接する回転数ゾーンBへ切り替わるときの境界は回転数=58.0[rps]である(言い替えれば、回転数が高い状態から徐々に低下してきて58.0[rps]となると、回転数ゾーンCから回転数ゾーンBに切り替わる)。同様に、回転数ゾーンBから回転数ゾーンAへ切り替わるときの境界は回転数=38.0[rps]となっている。
図7(b)に、前記回転数ゾーンA〜Cのそれぞれと、前記回転数係数Yの値との対応付けの一例を示す。図7(b)のテーブルに示すように、前記回転数係数Yの値は、前記回転数ゾーンAには0、前記回転数ゾーンBには0、前記回転数ゾーンCには2、がそれぞれ対応づけられている。すなわち、第1圧縮機43の回転数が高いほど、回転数係数Yが大きくなっている。
さらに、循環液温度係数Zは、前記メインリモコン60aの操作に対応した循環液の目標循環液温度に係わる、複数の循環液温度ゾーンそれぞれに予め対応づけられている。図8に、前記複数の循環液温度ゾーンのそれぞれと、前記循環液温度係数Zの値との対応付けの一例を示す。
図8のテーブルに示すように、メインリモコン60aの操作に対応した前記目標循環液温度に係わる循環液温度ゾーンとして、リモコン設定温度10度未満(但し図示の簡略化のため図中では「〜9」のように示す)、リモコン設定温度10度以上20度未満(但し図示の簡略化のため図中では「10〜19」のように示す)、リモコン設定温度20度以上(但し図示の簡略化のため図中では「20〜」のように示す)、の3つの循環液温度ゾーンが規定されている。
そして、図8のテーブルに示すように、前記循環液温度係数Zの値は、前記リモコン設定温度10度未満のゾーンには2、前記リモコン設定温度10度以上20度未満のゾーンには0、前記リモコン設定温度21度以上のゾーンには0がそれぞれ対応づけられている。すなわち、前記リモコン設定温度が低いほど、循環液温度係数Zが大きくなっている。
以上説明したように、本実施形態のヒートポンプ冷熱源機1によれば、前記冷媒の実吐出温度が目標吐出温度となるように前記第1膨張弁44の弁開度が制御される際、その目標吐出温度が、地中温度を推定可能な熱源指標としての、前記地中熱源熱交換器45から流出する冷媒の温度(前記第1冷媒温度センサ42bにより検出)を用いて、目標吐出温度決定部61Baによって決定される。これにより、前述の通常の手法とは異なり、熱源である地中の実際の温度状態を加味した前記目標吐出温度の設定を行うことができるので、ヒートポンプ冷熱源機1全体の効率を向上することができる。
この効果を、比較例を用いつつ図9により説明する。図9は、縦軸に、第1圧縮機43から吐出された第1冷媒C1の実吐出温度をとり、横軸に前記地中熱ヒートポンプユニット4のCOP(成績係数)をとった場合について、前述した手法により可変に設定される係数X,Y,Zを用いた本実施形態の場合と、係数X,Y,Zのうち冷媒温度係数Xを固定的に設定した比較例の場合とを、比較して示したグラフである。このときの地中熱ヒートポンプユニット4のCOPは、
COP=地中熱ヒートポンプユニット4の冷房能力[kW]/(第1圧縮機43の消費電力[kW]+地中熱制御装置61の消費電力[kW])・・式2
で表されるものである。なお、図示する例は、一例として、地中温度が20[℃]であった場合を示している。
図9に示すように、前記比較例の手法の場合には、実吐出温度が45〜42[℃]の範囲で制御され、COPは約4.3〜4.9に留まる。これに対し、前述した本実施形態においては、実吐出温度が33〜29[℃]の比較的低温の範囲で制御される結果、COPは約4.8〜5.5に達し、前記比較例よりも約0.5〜0.6、良好になっていることがわかる。
また、本実施形態では特に、前記熱源指標として、地中熱源熱交換器45から流出する冷媒温度を用いる。これにより、地中側の温度状態を精度よく把握し、適切な目標吐出温度の設定を行って確実に効率を向上することができる。
また、本実施形態では特に、前記図6〜9を用いて前述したように、熱源指標として、地中熱源熱交換器45から流出する冷媒温度と、第1圧縮機43の回転数と、メインリモコン60aでのユーザ操作に対応した目標循環液温度と、に対応して目標吐出温度が決定される。これにより、ユーザによる冷房能力の設定や第1ヒートポンプ回路40における第1圧縮機43の動作状態を加味した、さらに精度のよい目標吐出温度の設定を行うことができる。
また、本実施形態では特に、前記式1を用いて前述したように、冷媒温度ゾーンに対応づけられた冷媒温度係数X、第1圧縮機43の回転数ゾーンに対応づけられた回転数係数Y、循環液温度ゾーンに対応づけられた循環液温度係数Z、を用いた式によって目標吐出温度Toを算出する。これにより、簡素な演算で確実かつ迅速な減圧制御を実行することができる。
なお、本発明は上記実施形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能である。以下に、その各種の変形例について順を追って説明する。なお、以下の説明において、上記した本実施形態と同等の部分には同一の符号を付し、適宜、説明を省略又は簡略化する。
(1)熱源指標として地中往き温度を用いる場合
本変形例によるヒートポンプ冷熱源機1全体の回路構成を、前記図2に対応する図10に示す。図10において、本変形例では、前記地中熱循環回路20において、前記地中熱交換器23から前記地中熱配管21を介し前記地中熱源熱交換器45へ向かう熱媒H1の往き温度を検出する地中往き温度センサ92a(地中往き温度検出手段、この変形例における熱源指標検出手段に相当)が、前記地中熱循環ポンプ22と前記地中熱源熱交換器45との間に設けられている。
この場合、前記図4に対応する図11に示すように、膨張弁制御部61Bの目標吐出温度決定部61Baは、前述の地中熱源熱交換器45から流出する冷媒温度に代わる、前記地中往き温度センサ92aによる循環液Lの地中往き温度(この変形例における熱源指標に相当)と、既に述べた、第1圧縮機43の回転数、及び、メインリモコン60aでのユーザ操作に対応した目標循環液温度、とに基づいて、前記第1圧縮機43から吐出される冷媒の目標吐出温度を決定する。前記開度制御部61Bbは、前記実施形態と同様、前記第1冷媒吐出温度センサ42aにより検出される前記実吐出温度が、目標吐出温度決定部61Baにより決定された前記目標吐出温度となるように、前記第1膨張弁44の弁開度を制御する。
本変形例においては、熱源指標として地中熱交換器23からの熱媒往き温度を用いることにより、地中側の温度状態を精度よく把握し、適切な目標吐出温度の設定を行って確実に効率を向上することができる。
(2)熱源指標として地中戻り温度を用いる場合
本変形例によるヒートポンプ冷熱源機1全体の回路構成を、前記図2、図10に対応する図12に示す。図12において、本変形例では、前記地中熱循環回路20において、前記地中熱源熱交換器45から前記地中熱配管21を介し前記地中熱交換器23へ戻る熱媒H1の戻り温度を検出する地中戻り温度センサ92b(地中戻り温度検出手段、この変形例における熱源指標検出手段に相当)が、前記地中熱源熱交換器45と前記地中熱交換器23との間に設けられている。
この場合、前記図4、図11に対応する図13に示すように、膨張弁制御部61Bの目標吐出温度決定部61Baは、前述の地中熱源熱交換器45から流出する冷媒温度に代わる、前記地中戻り温度センサ92bによる循環液Lの地中戻り温度(この変形例における熱源指標に相当)と、既に述べた、第1圧縮機43の回転数、及び、メインリモコン60aでのユーザ操作に対応した目標循環液温度、とに基づいて、前記第1圧縮機43から吐出される冷媒の目標吐出温度を決定する。前記開度制御部61Bbは、前記実施形態と同様、前記第1冷媒吐出温度センサ42aにより検出される前記実吐出温度が、目標吐出温度決定部61Baにより決定された前記目標吐出温度となるように、前記第1膨張弁44の弁開度を制御する。
本変形例においては、熱源指標として地中熱交換器23への熱媒戻り温度を用いることにより、地中側の温度状態を精度よく把握し、適切な目標吐出温度の設定を行って確実に効率を向上することができる。
(3)熱源指標として凝縮器での凝縮温度を用いる場合
本変形例によるヒートポンプ冷熱源機1全体の回路構成を、前記図2、図10、図12に対応する図14に示す。図14において、本変形例では、前記第1ヒートポンプ回路40において、前記地中熱源熱交換器45内で凝縮する前記第1冷媒C1の凝縮温度を検出する凝縮温度センサ92c(凝縮温度検出手段、この変形例における熱源指標検出手段に相当)が、地中熱源熱交換器45の第1冷媒配管42側に設けられている。
この場合、前記図4、図11、図13に対応する図15に示すように、膨張弁制御部61Bの目標吐出温度決定部61Baは、前述の地中熱源熱交換器45から流出する冷媒温度に代わる、前記凝縮温度センサ92cによる前記凝縮温度(この変形例における熱源指標に相当)と、既に述べた、第1圧縮機43の回転数、及び、メインリモコン60aでのユーザ操作に対応した目標循環液温度、とに基づいて、前記第1圧縮機43から吐出される冷媒の目標吐出温度を決定する。前記開度制御部61Bbは、前記実施形態と同様、前記第1冷媒吐出温度センサ42aにより検出される前記実吐出温度が、目標吐出温度決定部61Baにより決定された前記目標吐出温度となるように、前記第1膨張弁44の弁開度を制御する。
本変形例においては、熱源指標として地中熱源熱交換器45内での冷媒凝縮温度を用いることにより、地中側の温度状態を精度よく把握し、適切な目標吐出温度の設定を行って確実に効率を向上することができる。
(4)ポンプ起動後に制御待機時間を設ける場合
すなわち、上記実施形態や(1)〜(3)の変形例による制御手法を実行する際、地中熱循環ポンプ22が起動した後、所定期間(例えば3分)が経過するのを待ってから、前記第1膨張弁44の弁開度を制御するようにしてもよい。これには以下のような意義がある。
すなわち、地中熱循環回路20では、通常、地上側に位置する地中熱源熱交換器45と地中熱交換器23とを接続する地中熱配管21においても、ある程度の長さの地上区間が存在する(例えば図1に示すa−b間の区間Labやc−d間の区間Lcd等)。あるいは、地中に配置されていてもその深さが浅く、外気の影響を受ける(すなわち厳密には地中のみと熱交換しているとは言えない)区間が存在する。地中熱配管21のうちそれらの区間に存在する熱媒H1は、地中の温度を正しく反映していないおそれがある。
本変形例では、上記に対応して、地中熱配管21の地中熱循環ポンプ22の起動後、前記所定期間が経過したのちに、前記第1冷媒吐出温度センサ42aにより検出される前記実吐出温度が、目標吐出温度決定部61Baにより決定された前記目標吐出温度となるように、先に説明した前記膨張弁制御部61B(特に開度制御部61Bb)による第1膨張弁44の開度制御を開始するようにする。これにより、熱媒H1の流動が進んで地中の温度を正しく反映するようになってから前述の制御が行われるので、前記のおそれを確実に回避した、精度のよい目標吐出温度の設定を確実に行うことができる。なお、地中熱循環ポンプ22を起動した後の前記所定時間(前記の例では3分)の間は、膨張弁制御部61Bの開度制御部61Bbにより、第1膨張弁44は所定の固定開度となるよう制御されるものである。
(5)その他
以上においては、端末循環回路30において、循環する循環液Lの流れに対して前記第1熱交換器41が前記第2熱交換器51よりも上流側に配設されている場合を例にとって説明したが、これに限られず、反対に前記第2熱交換器51が前記第1熱交換器41よりも上流側に配設されてもよい。さらには、端末循環回路30において前記第1熱交換器41と前記第2熱交換器51とが並列に接続されてもよい。
また、以上においては、前記地中又は前記比較的大容量の水源中に地中熱交換器23を設け、この地中熱交換器23で前記地中又は前記水源と熱交換した熱媒H1を、地中熱循環回路20において循環させたが、これに限られない。すなわち、このような循環回路を構成するのではなく、開放型の管路を地中熱循環ポンプ22に接続するようにしても良い。この場合、地中熱循環ポンプ22の上流側(ポンプ流入側)及び下流側(ポンプ流出側)がそれぞれ前述の湖沼、貯水池、河川、海、温泉、井戸等の水源(あるいは一定温度の水を供給する冷水器でもよい)に接続され、その水源等の水を前記地中熱循環ポンプ22で直接汲み上げて使用する。すなわち、前記水源等の水は、ポンプ上流側に接続された管路(上流側管路)を通じて前記地中熱循環ポンプ22に供給され、ポンプ下流側に接続された管路(下流側管路)へ吐出された後、その下流側管路に設けられた前記地中熱源熱交換器45に導かれて前記第1冷媒C1と熱交換を行った後、さらに前記下流側管路を通じて前記水源等に戻される。この場合、前記上流側管路に接続される水源等と前記下流側管路に接続される水源等は同一のものでもよいし、別々のものでもよい。なおこの場合、前記上流側管路及び下流側管路が、各請求項記載の熱源接続路に相当する。
また、以上においては、地中熱交換器23を1本だけ地中に設けた場合を例にとって説明しているが、これに限られず、地中熱交換器23は地中に複数設けられていてもよい。その場合、それら複数の地中熱交換器23は互いに並列に接続されていてもよいし、直列に接続されていてもよい。
また、以上においては、地中熱を用いた第1ヒートポンプ回路40と空気熱を用いた第2ヒートポンプ回路50とを備えた複合熱源型のヒートポンプ装置に本発明を適用した場合を例にとって説明したが、これに限られない。すなわち、地中熱を用いた第1ヒートポンプ回路40のみを備えた、単一熱源型のヒートポンプ装置に適用してもよい。逆に、第1ヒートポンプ回路40を含み3つ以上のヒートポンプ回路を備えた複合熱源型のヒートポンプ装置に適用してもよい。
1 ヒートポンプ冷熱源機
20 地中熱循環回路(熱源接続路)
21 地中熱配管(熱媒配管)
22 地中熱循環ポンプ(熱媒ポンプ)
23 地中熱交換器(熱源)
30 端末循環回路(負荷側回路)
31 負荷配管(循環液配管)
32 循環液循環ポンプ
34 戻り温水温度センサ
36 熱交換端末(負荷端末)
40 第1ヒートポンプ回路(ヒートポンプ回路)
41 第1熱交換器(負荷側熱交換器)
42 第1冷媒配管(冷媒配管)
42a 第1冷媒吐出温度センサ(吐出温度検出手段)
42b 第1冷媒温度センサ(冷媒温度検出手段、熱源指標検出手段)
43 第1圧縮機(圧縮機)
44 第1膨張弁(減圧手段)
45 地中熱源熱交換器(熱源側熱交換器)
60a メインリモコン(操作手段)
61Ba 目標吐出温度決定部(目標吐出温度決定手段)
61Bb 開度制御部(減圧制御手段)
92a 地中往き温度センサ(地中往き温度検出手段、熱源指標検出手段)
92b 地中戻り温度センサ(地中戻り温度検出手段、熱源指標検出手段)
92c 凝縮温度センサ(凝縮温度検出手段、熱源指標検出手段)
C1 第1冷媒
C2 第2冷媒
H1 熱媒
L 循環液
To 目標吐出温度
X 冷媒温度係数
Y 回転数係数
Z 循環液温度係数

Claims (3)

  1. 圧縮機、蒸発器として機能する負荷側熱交換器、減圧手段、及び、凝縮器として機能する熱源側熱交換器、を冷媒配管で接続して、ヒートポンプ回路を形成し、
    前記負荷側熱交換器、及び、負荷端末を、循環液配管で接続して、負荷側回路を形成し、
    前記熱源側熱交換器、及び、熱源を熱媒配管で接続して熱源接続路を形成した、ヒートポンプ冷熱源機において、
    前記ヒートポンプ回路において、前記圧縮機から吐出される冷媒の実吐出温度を検出する吐出温度検出手段と、
    前記熱源の温度を推定可能な熱源指標を検出する熱源指標検出手段と、
    前記熱源指標検出手段が検出した前記熱源指標に応じて、前記圧縮機から吐出される冷媒の目標吐出温度を決定する目標吐出温度決定手段と、
    前記吐出温度検出手段により検出される前記実吐出温度が、前記目標吐出温度決定手段が決定する前記目標吐出温度となるように、前記減圧手段の開度を制御する減圧制御手段と、
    を有し、
    前記目標吐出温度決定手段は、
    前記熱源指標検出手段が検出した前記熱源指標と、前記圧縮機の回転数と、前記負荷端末を操作可能な操作手段の操作に対応した循環液の目標循環液温度と、に応じて、
    記目標吐出温度Toを、
    前記熱源指標検出手段が検出する前記熱源指標に係わる複数の温度ゾーンそれぞれに予め対応づけられた温度係数Xと、前記圧縮機の回転数に係わる複数の回転数ゾーンそれぞれに予め対応づけられた回転数係数Yと、前記目標循環液温度に係わる複数の循環液温度ゾーンそれぞれに予め対応づけられた循環液温度係数Zと、を用いた式
    To=X+Y+Z
    により算出する
    ことを特徴とするヒートポンプ冷熱源機。
  2. 前記熱源接続路の前記熱媒配管に設けられた熱媒ポンプを有し、
    前記減圧制御手段は、
    前記熱媒ポンプが起動して所定期間が経過した後に、前記実吐出温度が前記目標吐出温度となるように前記減圧手段の開度を制御する
    ことを特徴とする請求項1記載のヒートポンプ冷熱源機。
  3. 前記熱源接続路は、
    前記熱源としての地中熱交換器と前記熱源側熱交換器とを前記熱媒配管で接続した地中熱循環回路であり、
    前記熱源指標検出手段は、
    前記熱源側熱交換器から前記熱媒配管を介し前記地中熱交換器へ戻る熱媒の戻り温度を検出する地中戻り温度検出手段、若しくは、
    前記地中熱交換器から前記熱媒配管を介し前記熱源側熱交換器へ向かう熱媒の往き温度を検出する地中往き温度検出手段、若しくは、
    前記熱源側熱交換器から前記冷媒配管を介し流出する前記冷媒の温度を検出する冷媒温度検出手段、若しくは、
    前記熱源側熱交換器内で凝縮する前記冷媒の凝縮温度を検出する凝縮温度検出手段、である
    ことを特徴とする請求項1又は請求項2記載のヒートポンプ冷熱源機。
JP2018056499A 2018-03-23 2018-03-23 ヒートポンプ冷熱源機 Active JP6933599B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018056499A JP6933599B2 (ja) 2018-03-23 2018-03-23 ヒートポンプ冷熱源機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018056499A JP6933599B2 (ja) 2018-03-23 2018-03-23 ヒートポンプ冷熱源機

Publications (2)

Publication Number Publication Date
JP2019168169A JP2019168169A (ja) 2019-10-03
JP6933599B2 true JP6933599B2 (ja) 2021-09-08

Family

ID=68106509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018056499A Active JP6933599B2 (ja) 2018-03-23 2018-03-23 ヒートポンプ冷熱源機

Country Status (1)

Country Link
JP (1) JP6933599B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110925937B (zh) * 2019-10-29 2020-11-27 珠海格力电器股份有限公司 一种空调的控制方法、终端设备和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267656A (ja) * 1990-03-19 1991-11-28 Daikin Ind Ltd 冷凍装置
JP2007040564A (ja) * 2005-08-01 2007-02-15 Daikin Ind Ltd 冷凍装置
JP5300806B2 (ja) * 2010-09-03 2013-09-25 三菱電機株式会社 ヒートポンプ装置
JP6143682B2 (ja) * 2014-01-08 2017-06-07 株式会社コロナ 複合熱源ヒートポンプ装置
JP6609195B2 (ja) * 2016-02-03 2019-11-20 株式会社コロナ ヒートポンプ装置

Also Published As

Publication number Publication date
JP2019168169A (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
JP5228023B2 (ja) 冷凍サイクル装置
JP5774225B2 (ja) 空気調和装置
JP5642207B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
JP5524571B2 (ja) ヒートポンプ装置
JP7096511B2 (ja) 冷凍サイクル装置
JP6943797B2 (ja) 地中熱ヒートポンプ装置
JP6231395B2 (ja) 複合熱源ヒートポンプ装置
JP5300806B2 (ja) ヒートポンプ装置
JP2009236403A (ja) 地熱利用ヒートポンプ装置
JP6609198B2 (ja) 複合熱源ヒートポンプ装置
JP2009264717A (ja) ヒートポンプ温水システム
JP7032993B2 (ja) ヒートポンプ熱源機
JP5889347B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
JP6933599B2 (ja) ヒートポンプ冷熱源機
JP5496161B2 (ja) 冷凍サイクルシステム
JP6574392B2 (ja) ヒートポンプ装置
JP5627564B2 (ja) 冷凍サイクルシステム
JP5479625B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
JP6143682B2 (ja) 複合熱源ヒートポンプ装置
JP6884213B2 (ja) 冷凍サイクル装置
JP6830296B2 (ja) 複合熱源ヒートポンプ装置
JP6695033B2 (ja) ヒートポンプ装置
JP6574393B2 (ja) 複合熱源ヒートポンプ装置
JP6695034B2 (ja) ヒートポンプ装置
JP2010038408A (ja) 室外熱交換器及びこれを搭載した冷凍サイクル装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200603

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210819

R150 Certificate of patent or registration of utility model

Ref document number: 6933599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150