JP6929320B2 - Electrolyzer and electrolysis method - Google Patents

Electrolyzer and electrolysis method Download PDF

Info

Publication number
JP6929320B2
JP6929320B2 JP2019069358A JP2019069358A JP6929320B2 JP 6929320 B2 JP6929320 B2 JP 6929320B2 JP 2019069358 A JP2019069358 A JP 2019069358A JP 2019069358 A JP2019069358 A JP 2019069358A JP 6929320 B2 JP6929320 B2 JP 6929320B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
electrolytic
drainage
electrolytic cell
liquid supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019069358A
Other languages
Japanese (ja)
Other versions
JP2020164966A (en
Inventor
大輔 手塚
大輔 手塚
明 會澤
明 會澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019069358A priority Critical patent/JP6929320B2/en
Priority to PCT/JP2020/014682 priority patent/WO2020204003A1/en
Priority to CN202080024892.2A priority patent/CN113631762B/en
Publication of JP2020164966A publication Critical patent/JP2020164966A/en
Application granted granted Critical
Publication of JP6929320B2 publication Critical patent/JP6929320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、電解装置及び電解方法に関する。 The present invention relates to an electrolyzer and an electrolyzer.

従来の電解装置では、電解槽の長手方向の一端側の下部から電解液が供給され、他端側の上部から電解液が排液される下入れ上抜き方式と呼ばれる電解液の給排液が行われてきた。電解槽内の液組成及び添加剤濃度を均一に保つことは、例えば電気銅の品質及び電解成績を向上させるために重要な技術の一つであり、これまで色々な方法が検討されている。 In the conventional electrolyzer, the electrolyte is supplied from the lower part on one end side in the longitudinal direction of the electrolytic cell, and the electrolyte is discharged from the upper part on the other end side. Has been done. Keeping the liquid composition and additive concentration in the electrolytic cell uniform is one of the important techniques for improving the quality of electrolytic copper and the electrolytic performance, for example, and various methods have been studied so far.

例えば、特開2007−204779号公報(特許文献1)には、電解槽の長手方向の一端側から電解液の上層部及び下層部へ電解液を給液し、反対側の端部側の液面上層部から排液する方法が提案されている。特開2015−209550号公報(特許文献2)には、電解槽の長手方向の一端の上部から電解液が側面に向けて給液され、他端の下部から排液される方法が提案されている。また、全く別の方法として、特開2014−189851号公報(特許文献3)及び特許第5227404号公報(特許文献4)には、電解槽の底や電解槽脇から電解液を給液する方法が提案されている。 For example, in Japanese Patent Application Laid-Open No. 2007-204779 (Patent Document 1), the electrolytic solution is supplied from one end side in the longitudinal direction of the electrolytic cell to the upper layer portion and the lower layer portion of the electrolytic solution, and the liquid on the opposite end side. A method of draining liquid from the upper layer has been proposed. Japanese Unexamined Patent Publication No. 2015-209550 (Patent Document 2) proposes a method in which the electrolytic solution is supplied toward the side surface from the upper part of one end in the longitudinal direction of the electrolytic cell and drained from the lower part of the other end. There is. Further, as a completely different method, Japanese Patent Application Laid-Open No. 2014-189851 (Patent Document 3) and Japanese Patent No. 5227404 (Patent Document 4) provide a method of supplying an electrolytic solution from the bottom of the electrolytic cell or the side of the electrolytic cell. Has been proposed.

特開2007−204779号公報JP-A-2007-204779 特開2015−209550号公報Japanese Unexamined Patent Publication No. 2015-209550 特開2014−189851号公報Japanese Unexamined Patent Publication No. 2014-189851 特許第5227404号公報Japanese Patent No. 5227404

しかしながら、電解が進むと電解槽内に液の濃度差が生まれ、電解槽底へいくほど比重の重い液が溜まる。給液口から給液された液は、電解槽底の液より比重が軽いため、特許文献1及び2に記載されるような下入れ上抜き方式の電解液の給排液を行った場合には、給液位置より下方に電解液や添加剤が供給されないデッドスペースが生じる。電解槽内に添加剤が供給されない領域が生じると電着物の表面が荒れる場合や、電解液が供給されないことによって液中の銅濃度が部分的に上昇して不動態化が起こりやすくなる場合がある。 However, as the electrolysis progresses, a difference in the concentration of the liquid is generated in the electrolytic cell, and the liquid having a heavier specific gravity accumulates toward the bottom of the electrolytic cell. The liquid supplied from the liquid supply port has a lighter specific gravity than the liquid at the bottom of the electrolytic cell. There is a dead space below the liquid supply position where the electrolyte and additives are not supplied. If there is a region in the electrolytic cell where the additive is not supplied, the surface of the electrodeposited material may become rough, or the copper concentration in the liquid may partially increase due to the absence of the electrolyte, and passivation may easily occur. be.

特許文献3に記載された発明では、電解槽の下方且つカソードの側方から電解液を供給し、電解槽の上部の電解液排出口から電解液を排液することで、排液側の電解槽底部の銅濃度上昇を防ぐことはできる。しかしながら、給液側は、従来と同様に上方から供給されているため、給液側の電解槽下方には電解液が供給されないデッドスペースが生じ、電解槽内の混合状態を十分に改善できているとはいえない。 In the invention described in Patent Document 3, the electrolytic solution is supplied from below the electrolytic cell and from the side of the cathode, and the electrolytic solution is discharged from the electrolytic cell discharge port at the upper part of the electrolytic cell, whereby electrolysis on the drain side is performed. It is possible to prevent an increase in the copper concentration at the bottom of the tank. However, since the liquid supply side is supplied from above as in the conventional case, a dead space in which the electrolytic solution is not supplied is generated below the electrolytic cell on the liquid supply side, and the mixed state in the electrolytic cell can be sufficiently improved. It cannot be said that there is.

特許文献4に記載された発明では、電解槽の底及び電解槽脇から電解液を供給することにより、電解槽内の電解液の混合状態を改善することができる。しかしながら、特許文献4では、電解液を下方から上方へと強制的に対流させることにより、殿物の巻き上げなどによるカソードの汚染の問題が発生するおそれがある。 In the invention described in Patent Document 4, the mixed state of the electrolytic cell in the electrolytic cell can be improved by supplying the electrolytic cell from the bottom of the electrolytic cell and the side of the electrolytic cell. However, in Patent Document 4, by forcibly convection of the electrolytic solution from the lower side to the upper side, there is a possibility that the problem of cathode contamination due to the hoisting of the ridge and the like may occur.

上記課題を鑑み、本開示は、殿物の巻き上げを抑制しながら電解槽内に給液される電解液の混合状態を改善することが可能な電解装置及び電解方法を提供する。 In view of the above problems, the present disclosure provides an electrolyzer and an electrolysis method capable of improving the mixed state of the electrolytic solution supplied into the electrolytic cell while suppressing the hoisting of the ridge.

本発明の実施の形態に係る電解装置は一実施態様において、電解液を収容する電解槽の長手方向に沿って互いに間隔を空けて配置された電極を電解液中に浸漬し、電解液を循環しながら電解処理する電解装置であって、電解槽の長手方向に延びる第1の側壁に沿って延び、互いに間隔を空けて配置された複数の給液口を有する給液配管と、給液配管を内部に収容するように第1の側壁に沿って延び、複数の給液口から供給される電解液を貯留し、該電解液を上部からオーバーフローさせて電解槽内へ供給する樋部と、第1の側壁と対向する第2の側壁に沿って延び、樋部よりも下方に配置され、互いに間隔を空けて配置された複数の排液口を備え、該排液口から電解槽内の電解液を排液する排液配管とを備える電解装置である。 In one embodiment, the electrolytic device according to the embodiment of the present invention circulates the electrolytic cell by immersing the electrodes arranged at intervals along the longitudinal direction of the electrolytic cell accommodating the electrolytic cell in the electrolytic cell. A liquid supply pipe that extends along a first side wall extending in the longitudinal direction of the electrolytic cell and has a plurality of liquid supply ports arranged at intervals from each other, and a liquid supply pipe. A gutter that extends along the first side wall so as to house the electrolyte, stores the electrolytes supplied from the plurality of liquid supply ports, overflows the electrolytes from the upper part, and supplies the electrolytes into the electrolytic cell. It has a plurality of drainage ports extending along the second side wall facing the first side wall, arranged below the gutter portion, and arranged at intervals from each other, and from the drainage port into the electrolytic cell. It is an electrolytic device provided with a drainage pipe for draining the electrolytic solution.

本発明の実施の形態に係る電解方法は一実施態様において、電解液を収容する電解槽の長手方向に沿って互いに間隔を空けて配置された電極を電解液中に浸漬し、電解液を循環しながら電解処理する電解方法であって、電解槽の長手方向に延びる第1の側壁に沿って延び、電解槽内に電解液を供給する複数の給液口を備える給液配管に電解液を供給し、給液配管を内部に収容するように第1の側壁に沿って延びる樋部内に給液配管から供給された電解液を収容し、収容した電解液を樋部の上部からオーバーフローさせて電解槽内へ供給し、第1の側壁と対向する第2の側壁に沿って延び、樋部よりも下方に配置され、互いに間隔を空けて配置された複数の排液口を備える排液配管から電解槽内の電解液を排液することを含む電解方法である。 In one embodiment of the electrolytic method according to the embodiment of the present invention, electrodes arranged at intervals along the longitudinal direction of an electrolytic cell accommodating the electrolytic cell are immersed in the electrolytic solution, and the electrolytic solution is circulated. This is an electrolytic method for performing electrolytic treatment while performing electrolytic treatment, in which the electrolytic solution is supplied to a liquid supply pipe provided with a plurality of liquid supply ports extending along a first side wall extending in the longitudinal direction of the electrolytic cell and supplying the electrolytic solution into the electrolytic cell. The electrolytic solution supplied from the liquid supply pipe is housed in a gutter extending along the first side wall so as to supply and house the liquid supply pipe inside, and the stored electrolyte solution overflows from the upper part of the gutter. A drainage pipe that supplies into the electrolytic cell, extends along the second side wall facing the first side wall, is arranged below the gutter, and has a plurality of drainage ports arranged at intervals from each other. It is an electrolytic method including draining the electrolytic solution in the electrolytic cell.

本開示によれば、殿物の巻き上げを抑制しながら電解槽内に給液される電解液の混合状態を改善することが可能な電解装置及び電解方法が提供できる。 According to the present disclosure, it is possible to provide an electrolyzer and an electrolyzing method capable of improving the mixed state of the electrolytic solution supplied into the electrolytic cell while suppressing the hoisting of the tongue.

本発明の実施の形態に係る電解装置の上面概略図である。It is a top view of the electrolysis apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る電解装置を側面からみた場合の給液配管と排液配管との位置関係を示す概略図である。It is the schematic which shows the positional relationship between the liquid supply pipe and the liquid drainage pipe when the electrolytic apparatus which concerns on embodiment of this invention is seen from the side. 排液ボックスと排液配管の電解槽内の配置位置を表す説明図である。It is explanatory drawing which shows the arrangement position in the electrolytic cell of a drainage box and a drainage pipe. 給液部と排液ボックスとを表す上面概略図である。It is a top view which shows the liquid supply part and the drainage box. 電解液が排液ボックスから給液部へと流れる様子を表す断面概略図である。It is sectional drawing which shows the state that the electrolytic solution flows from a drainage box to a liquid supply part.

以下、図面を参照しながら本発明の実施の形態に係る電解装置及び電解方法について説明する。なお、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、各構成部品の構造、配置及び手順等を下記のものに特定するものではない。 Hereinafter, the electrolysis apparatus and the electrolysis method according to the embodiment of the present invention will be described with reference to the drawings. The embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention includes the structure, arrangement, procedure, etc. of each component. Is not specified as the following.

(電解装置)
本発明の実施の形態に係る電解装置は、図1に示すように、電解液を収容するための直方体状の電解槽1を備える。電解槽1のサイズとしては、例えば、電解槽1の長さ(長手方向Xの内径)が5200〜5900mm、幅(短手方向Yの内径)が1095〜1110mm、深さが1275〜1510mmとなるように形成することができる。
(Electrolyzer)
As shown in FIG. 1, the electrolyzer according to the embodiment of the present invention includes a rectangular parallelepiped electrolytic cell 1 for accommodating an electrolytic solution. The size of the electrolytic cell 1 is, for example, a length (inner diameter in the longitudinal direction X) of 5200 to 5900 mm, a width (inner diameter in the lateral direction Y) of 1095 to 1110 mm, and a depth of 1275 to 1510 mm. Can be formed as follows.

電解槽1は、長手方向Xに平行な方向に延びる第1の側壁11と、第1の側壁11に対向する第2の側壁12と、長手方向Xの一端において第1の側壁11及び第2の側壁12に垂直に延びる第3の側壁13と、長手方向Xの他端において第1の側壁11及び第2の側壁12に垂直に延び、第3の側壁13に対向する第4の側壁14とを有する。 The electrolytic cell 1 includes a first side wall 11 extending in a direction parallel to the longitudinal direction X, a second side wall 12 facing the first side wall 11, and a first side wall 11 and a second side wall 11 at one end in the longitudinal direction X. A third side wall 13 extending perpendicularly to the side wall 12 and a fourth side wall 14 extending perpendicularly to the first side wall 11 and the second side wall 12 at the other end in the longitudinal direction X and facing the third side wall 13. And have.

電解槽1の第1の側壁11の上方には、電解槽1内に収容される電解液の液面もしくは液面近傍となる高さにおいて電解槽1の長手方向Xに沿って延びる給液配管2が配置されている。給液配管2は、電解槽1の第3の側壁13の上方に配置された給液部20に接続されている。給液部20は、図1(a)及び図1(b)に示す電解槽1の他に、電解槽1以外の他の電解槽に対しても電解液を給液することが可能な給液主管と、供給主管から給液配管2へ電解液を分岐させる分岐配管とを備えることができるが、この例に制限されないことは勿論である。 Above the first side wall 11 of the electrolytic cell 1, a liquid supply pipe extending along the longitudinal direction X of the electrolytic cell 1 at a liquid level of the electrolytic cell housed in the electrolytic cell 1 or at a height close to the liquid level. 2 is arranged. The liquid supply pipe 2 is connected to a liquid supply unit 20 arranged above the third side wall 13 of the electrolytic cell 1. The liquid supply unit 20 can supply the electrolytic solution to other electrolytic cells other than the electrolytic cell 1 in addition to the electrolytic cell 1 shown in FIGS. 1 (a) and 1 (b). A liquid main pipe and a branch pipe for branching the electrolytic solution from the supply main pipe to the liquid supply pipe 2 can be provided, but it is needless to say that the present invention is not limited to this example.

給液配管2は、電解液の供給流量を20〜100L/分となるように電解槽1内へ供給することが好ましい。電解液の供給流量が20L/分未満では添加剤が電解槽1内に行き渡る前に分解してしまい、電着した金属の平滑性が損なわれる場合や、不動態化を起こす場合がある。電解液の供給流量は電解効率の面から高い方が好ましいが、電解液の供給流量が100L/分を超えると、電解槽1内の殿物が巻き上げられてカソード板表面へ付着する場合がある。 The liquid supply pipe 2 preferably supplies the electrolytic solution into the electrolytic cell 1 so that the supply flow rate of the electrolytic solution is 20 to 100 L / min. If the supply flow rate of the electrolytic solution is less than 20 L / min, the additive may be decomposed before being distributed in the electrolytic cell 1, and the smoothness of the electrodeposited metal may be impaired or passivation may occur. The supply flow rate of the electrolytic solution is preferably high from the viewpoint of electrolytic efficiency, but if the supply flow rate of the electrolytic solution exceeds 100 L / min, the ridges in the electrolytic cell 1 may be rolled up and adhere to the surface of the cathode plate. ..

本実施形態に係る電解装置では、供給流量を20〜100L/分とすることで、殿物の巻き上げを抑制しながら電解槽1内に給液される電解液の混合状態をより改善することができ、より効率の高い電解精製を実施することができる。なお、電解液の供給流量は、30〜90L/分とすることが好ましく、30〜70L/分とすることがより好ましく、50〜70L/分とすることが更に好ましい。 In the electrolytic device according to the present embodiment, by setting the supply flow rate to 20 to 100 L / min, it is possible to further improve the mixed state of the electrolytic solution supplied into the electrolytic cell 1 while suppressing the hoisting of the ridge. It is possible to carry out more efficient electrolytic purification. The supply flow rate of the electrolytic solution is preferably 30 to 90 L / min, more preferably 30 to 70 L / min, and even more preferably 50 to 70 L / min.

給液配管2の上部には、長手方向Xに沿って複数の給液口21a、21b・・・21xが好ましくは等間隔に設けられている。複数の給液口21a、21b・・・21xの数は特に限定されない。図2に示すように、樋部4は、電解槽1の第1の側壁11の上方に配置され、給液配管2を内部に収容し、第1の側壁11の長手方向に沿って延びている。 A plurality of liquid supply ports 21a, 21b ... 21x are preferably provided at equal intervals on the upper portion of the liquid supply pipe 2 along the longitudinal direction X. The number of the plurality of liquid supply ports 21a, 21b ... 21x is not particularly limited. As shown in FIG. 2, the gutter portion 4 is arranged above the first side wall 11 of the electrolytic cell 1, accommodates the liquid supply pipe 2 inside, and extends along the longitudinal direction of the first side wall 11. There is.

樋部4は、給液配管2の複数の給液口21a、21b・・・21xから供給される電解液を貯留するために凹形状を有している。樋部4は、図1に示すように、第1の側壁11上に固定され、第1の側壁11の長手方向に沿って延びる第1の壁部42と、第1の壁部42と一定間隔を空けて対向する第2の壁部43と、第1の壁部42と第2の壁部43とを支える複数の梁部44と、図1からは見えない底面を備えることができる。 The gutter portion 4 has a concave shape for storing the electrolytic solution supplied from the plurality of liquid supply ports 21a, 21b ... 21x of the liquid supply pipe 2. As shown in FIG. 1, the gutter portion 4 is fixed on the first side wall portion 11 and is constant with the first wall portion 42 extending along the longitudinal direction of the first side wall portion 11 and the first wall portion 42. A second wall portion 43 facing each other at intervals, a plurality of beam portions 44 supporting the first wall portion 42 and the second wall portion 43, and a bottom surface invisible from FIG. 1 can be provided.

梁部44は、第1の壁部42と第2の壁部42との間に一定間隔を空けて第1の壁部42と第2の壁部43とを支えることができる程度の間隔を有して複数個配置されていればよく、梁部44の個数は特に限定されない。第1の壁部42と第2の壁部43との間の間隔は、電解槽1内に挿入される電極とぶつからない程度の間隔を有していれば特に限定されない。樋部4は、電解液に対して耐食性を有する材料、例えばステンレス鋼(SUS)、塩化ビニル、繊維強化プラスチック(FRP)等で形成されることができる。 The beam portion 44 has a certain distance between the first wall portion 42 and the second wall portion 42 so as to support the first wall portion 42 and the second wall portion 43. The number of the beam portions 44 is not particularly limited as long as they are provided and a plurality of the beam portions 44 are arranged. The distance between the first wall portion 42 and the second wall portion 43 is not particularly limited as long as it has a distance that does not collide with the electrode inserted into the electrolytic cell 1. The gutter portion 4 can be formed of a material having corrosion resistance to an electrolytic solution, for example, stainless steel (SUS), vinyl chloride, fiber reinforced plastic (FRP), or the like.

樋部4の上方には、複数の開口部41a、41b、41xが形成されている。電解液が給液配管2の複数の給液口21a、21b・・・21xから供給されて樋部4の内部に一時貯留される。樋部4の内部に貯留された電解液の一部は、開口部41a、41b、41xからオーバーフローして、電解槽1内へと流れる。 A plurality of openings 41a, 41b, 41x are formed above the gutter portion 4. The electrolytic solution is supplied from the plurality of liquid supply ports 21a, 21b ... 21x of the liquid supply pipe 2 and temporarily stored inside the gutter portion 4. A part of the electrolytic solution stored inside the gutter portion 4 overflows from the openings 41a, 41b, 41x and flows into the electrolytic cell 1.

このように、給液配管2から給液された電解液が、樋部4の内部で一旦、貯留されてから電解槽1内へと供給されることによって、細長い給液配管2内で生じる差圧が樋部4内で均一化されるため、電解液を電解槽1全体に渡って偏りなく供給することができる。また、樋部4内において一端電解液が貯留されることにより、電解液及び添加剤の成分を電解槽1の長手方向に沿って均一化することができるため、電解槽内に給液される電解液の混合状態を総全体に渡り改善することが可能となる。また、電解液がオーバーフローによって電解槽1内へ供給されることにより、樋部4内から樋部4外へ電解液を抜き出して排出するためのポンプ等の動力が不要となり、装置の簡素化が図れる。 As described above, the difference generated in the elongated liquid supply pipe 2 is caused by the electrolytic solution supplied from the liquid supply pipe 2 being temporarily stored inside the trough 4 and then supplied into the electrolytic cell 1. Since the pressure is made uniform in the trough portion 4, the electrolytic solution can be supplied evenly over the entire electrolytic cell 1. Further, since the electrolytic solution is once stored in the trough 4, the components of the electrolytic solution and the additive can be made uniform along the longitudinal direction of the electrolytic cell 1, so that the liquid is supplied into the electrolytic cell. It is possible to improve the mixed state of the electrolytic solution as a whole. Further, since the electrolytic solution is supplied into the electrolytic cell 1 by overflow, the power of a pump or the like for extracting and discharging the electrolytic solution from the inside of the gutter portion 4 to the outside of the gutter portion 4 becomes unnecessary, and the device can be simplified. It can be planned.

樋部4の開口部41a、41b、・・・41xの高さが電解液の液面に対して高すぎると、樋部4からオーバーフローした電解液が電解液の液面と衝突して気泡が発生し、電解に影響を及ぼす場合がある。一方、樋部4の開口部41a、41b、・・・41xの高さが電解液の液面よりも低いと、電解槽1内の電解液が樋部4側へと流れ込み、給液が円滑に進まない場合がある。樋部4の開口部41a、41b、・・・41xの高さは、電解液の液面から400mm以内の高さ、より好ましくは200mm以内の高さ、さらに好ましくは50mm以内の高さに配置されることが好ましい。 If the height of the openings 41a, 41b, ... 41x of the gutter portion 4 is too high with respect to the liquid level of the electrolytic solution, the electrolytic solution overflowing from the gutter portion 4 collides with the liquid level of the electrolytic solution and bubbles are generated. It may occur and affect electrolysis. On the other hand, when the heights of the openings 41a, 41b, ... 41x of the gutter portion 4 are lower than the liquid level of the electrolytic solution, the electrolytic solution in the electrolytic cell 1 flows into the gutter portion 4 side, and the liquid supply is smooth. It may not proceed to. The heights of the openings 41a, 41b, ... 41x of the gutter portion 4 are arranged at a height within 400 mm, more preferably within 200 mm, and further preferably within 50 mm from the liquid level of the electrolytic solution. It is preferable to be done.

電解槽1の深さ方向に沿った樋部4の幅は、給液配管2の管径や電解槽1の装置規模に応じて適宜変更することができる。図1の例では、深さ方向に沿った樋部4の幅は50〜100mmとする例が示されているが、樋部4に供給された電解液の圧の偏りをより均一化するために、樋部4の深さ方向に沿った樋部4の幅を100mmよりも大きくしてもよい。 The width of the gutter portion 4 along the depth direction of the electrolytic cell 1 can be appropriately changed according to the pipe diameter of the liquid supply pipe 2 and the device scale of the electrolytic cell 1. In the example of FIG. 1, an example in which the width of the gutter portion 4 along the depth direction is 50 to 100 mm is shown, but in order to make the pressure bias of the electrolytic solution supplied to the gutter portion 4 more uniform. In addition, the width of the gutter portion 4 along the depth direction of the gutter portion 4 may be made larger than 100 mm.

図2に示すように、給液配管2の下方には、第1の側壁11上に固定され、給液部20から給液された電解液を電解槽1の長手方向に沿って上流側から下流側へと供給する補助配管5が設けられている。補助配管5は、電解槽1の長手方向中央部に配置された供給部51、52を介して給液配管2の長手方向中央部に接続されている。給液部20から給液された電解液は、補助配管5の供給部51、52を介して給液配管2内に流入するようになっている。 As shown in FIG. 2, below the liquid supply pipe 2, the electrolytic solution fixed on the first side wall 11 and supplied from the liquid supply unit 20 is supplied from the upstream side along the longitudinal direction of the electrolytic cell 1. An auxiliary pipe 5 for supplying to the downstream side is provided. The auxiliary pipe 5 is connected to the central portion in the longitudinal direction of the liquid supply pipe 2 via the supply portions 51 and 52 arranged in the central portion in the longitudinal direction of the electrolytic cell 1. The electrolytic solution supplied from the liquid supply unit 20 flows into the liquid supply pipe 2 via the supply units 51 and 52 of the auxiliary pipe 5.

給液配管2へ供給される電解液は、給液部20に近い電解槽1の第3の側壁13側にある排液口31a側から多く流出し、第4の側壁14側にある排液口31xへ進むほど電解液が十分に流出しない場合がある。図2に示すように、補助配管5を介して給液配管2の長手方向中央部からも電解液が供給されることにより、給液配管2の長手方向中央部にも十分に電解液が供給されることとなるため、電解槽1全体に渡ってより均一に電解液を供給することができる。 A large amount of the electrolytic solution supplied to the liquid supply pipe 2 flows out from the drainage port 31a side on the third side wall 13 side of the electrolytic cell 1 near the liquid supply unit 20, and the drainage liquid on the fourth side wall 14 side. The electrolyte may not flow out sufficiently as it progresses to the mouth 31x. As shown in FIG. 2, the electrolytic solution is also supplied from the longitudinal central portion of the liquid supply pipe 2 via the auxiliary pipe 5, so that the electrolytic solution is sufficiently supplied to the longitudinal central portion of the liquid supply pipe 2. Therefore, the electrolytic solution can be supplied more uniformly over the entire electrolytic cell 1.

更に、最も電解液の供給量が少なくなる給液口21xが設けられた給液配管2の長手方向下流側の先端部には、第1の側壁11上において補助配管5の更に下方に固定され、第1の側壁11の長手方向に延び、先端部が給液配管2の先端部に接続された補助配管6が配置される。補助配管6の先端部には供給部61が設けられており、供給部61を介して給液部20から供給された電解液が補助配管6の先端部に供給される。これにより、補助配管6を介して給液配管2の長手方向先端部からも電解液が供給されることとなるため、電解槽1全体に渡ってより均一に電解液を供給することができる。 Further, at the tip of the liquid supply pipe 2 provided with the liquid supply port 21x that minimizes the supply amount of the electrolytic solution on the downstream side in the longitudinal direction, the liquid supply pipe 2 is fixed on the first side wall 11 further below the auxiliary pipe 5. , An auxiliary pipe 6 extending in the longitudinal direction of the first side wall 11 and having a tip connected to the tip of the liquid supply pipe 2 is arranged. A supply unit 61 is provided at the tip of the auxiliary pipe 6, and the electrolytic solution supplied from the liquid supply unit 20 via the supply unit 61 is supplied to the tip of the auxiliary pipe 6. As a result, the electrolytic solution is also supplied from the distal end portion of the liquid supply pipe 2 in the longitudinal direction via the auxiliary pipe 6, so that the electrolytic solution can be supplied more uniformly over the entire electrolytic cell 1.

電解槽1の第4の側壁14側上方には、電解槽1内の電解液を電解槽1外へ排出するための排液部30及び排液部30に接続された排液ボックス32が設けられている。排液ボックス32には、図3に示すように、複数の排液配管3a、3b、3cがそれぞれ接続されている。排液配管3a、3b、3cは、図2に示すように、給液配管2よりも下方に配置され、第2の側壁12上に固定されて第2の側壁12に沿って延び、互いに間隔を空けて電解槽1の長手方向に沿って配置された複数の排液口31a〜31xを備える。 Above the fourth side wall 14 side of the electrolytic cell 1, a drainage section 30 for discharging the electrolytic solution in the electrolytic cell 1 to the outside of the electrolytic cell 1 and a drainage box 32 connected to the drainage section 30 are provided. Has been done. As shown in FIG. 3, a plurality of drainage pipes 3a, 3b, and 3c are connected to the drainage box 32, respectively. As shown in FIG. 2, the drainage pipes 3a, 3b, and 3c are arranged below the liquid supply pipe 2, are fixed on the second side wall 12, extend along the second side wall 12, and are spaced from each other. A plurality of drainage ports 31a to 31x arranged along the longitudinal direction of the electrolytic cell 1 are provided.

図2の例では、電解槽1の上流側、即ち、給液部20に近い側の電解槽1内の電解液を排液可能な排液口31a、31b、31cを備える排液配管3aと、電解槽1の中央付近の電解液を排液可能な排液口31d、31e、31fを備える排液配管3bと、電解槽1の排液ボックス32に近い側の電解液を排液可能な排液口31g、31xを備える排液配管3cの3本の配管が上下に離間してそれぞれ配置される。しかしながら、排液配管3a、3b、3cの配置は図2の配置に限定されないことは勿論である。 In the example of FIG. 2, the drainage pipe 3a provided with the drainage ports 31a, 31b, 31c capable of draining the electrolytic solution in the electrolytic solution tank 1 on the upstream side of the electrolytic tank 1, that is, the side close to the liquid supply unit 20. , The drainage pipe 3b provided with the drainage ports 31d, 31e, 31f capable of draining the electrolytic solution near the center of the electrolytic tank 1 and the electrolytic solution on the side close to the drainage box 32 of the electrolytic tank 1 can be drained. Three drainage pipes 3c having drainage ports 31g and 31x are arranged vertically separated from each other. However, it goes without saying that the arrangement of the drainage pipes 3a, 3b, and 3c is not limited to the arrangement shown in FIG.

例えば、配管の長さが一番長い排液配管3aを、電解槽1の底部に最も近い位置に配置し、配管の長さが最も短い排液配管3cを、3つの排液配管3a、3b、3cの中で最も上部となるように配置することも可能であることは勿論である。 For example, the drainage pipe 3a having the longest pipe length is arranged at a position closest to the bottom of the electrolytic tank 1, and the drainage pipe 3c having the shortest pipe length is arranged into three drainage pipes 3a and 3b. Of course, it is also possible to arrange it so that it is the uppermost part of 3c.

排液配管3a、3b、3cは、それぞれ排液ボックス32に接続された一端側とは反対側の先端部に排液口31a〜31xがそれぞれ設けられている。図2に示すように排液配管3a、3b、3cの先端部に選択的に排液口31a〜31xが設けられることによって、一本の排液配管の全体に渡って排液口を均一に設ける場合に比べて、排液口31a〜31xが形成される領域の電解槽1の長手方向に沿った長さをそれぞれ短くすることができるため、圧力損失を小さくでき、排液口31a〜31xが配置された各領域の電解液をより効率的に排液しやすくなる。これにより、電解槽1の長手方向の排液ムラが生じにくくなる。 The drainage pipes 3a, 3b, and 3c are each provided with drainage ports 31a to 31x at the tip portions on the opposite side to the one end side connected to the drainage box 32, respectively. As shown in FIG. 2, by selectively providing the drainage ports 31a to 31x at the tips of the drainage pipes 3a, 3b, and 3c, the drainage ports are uniformly provided over the entire one drainage pipe. Compared with the case where the drainage ports 31a to 31x are formed, the lengths of the electrolytic tanks 1 along the longitudinal direction can be shortened, so that the pressure loss can be reduced and the drainage ports 31a to 31x can be reduced. It becomes easier to drain the electrolytic solution in each region where the is arranged more efficiently. As a result, uneven drainage of the electrolytic cell 1 in the longitudinal direction is less likely to occur.

なお、排液配管3a、3b、3cのそれぞれ最も先端部にある例えば排液口31a、31d、31gは排液ボックス32から最も遠い位置にあるため、排液配管3a、3b、3c内を流れる電解液の抵抗や圧力損失等により、十分に排液されない場合がある。図2に示すように、排液配管3a、3b、3cの排液口31a〜31xの先端部、即ち、排液口31cと排液口31d、排液口31fと排液口31gとが互いに上下に重なるように配置されることによって、排液配管3a、3b、3cの先端部においても十分に排液が行われるように構成することができる。これにより、電解槽1の長手方向の排液ムラを生じにくくすることができる。 Since the drainage ports 31a, 31d, and 31g at the most advanced portions of the drainage pipes 3a, 3b, and 3c are located farthest from the drainage box 32, they flow in the drainage pipes 3a, 3b, and 3c. Due to the resistance of the electrolytic solution, pressure loss, etc., the solution may not be sufficiently drained. As shown in FIG. 2, the tips of the drainage ports 31a to 31x of the drainage pipes 3a, 3b, and 3c, that is, the drainage port 31c and the drainage port 31d, and the drainage port 31f and the drainage port 31g are mutually connected. By arranging the drainage pipes 3a, 3b, and 3c so as to overlap each other, the drainage can be sufficiently performed even at the tip portions of the drainage pipes 3a, 3b, and 3c. This makes it possible to prevent uneven drainage of the electrolytic cell 1 in the longitudinal direction.

排液配管3a、3b、3cの管径は、給液配管2及び補助配管5、6の管径よりも大きくなるように構成されることが好ましい。給液配管2及び補助配管5、6の管径は同一であっても異なっていても構わない。排液配管3a、3b、3c側の管径を給液配管2の管径よりも大きくすることによって、排液ボックス32から電解液のヘッド圧差を利用して電解液を電解槽1外へ排出させる際に、排液配管3a、3b、3cの圧力損失の影響をより小さくすることができる。これにより、より円滑に給液配管2内に吸い上げられた電解液を電解槽1の外へ排出しやすくできる。 The pipe diameters of the drainage pipes 3a, 3b, and 3c are preferably configured to be larger than the pipe diameters of the liquid supply pipes 2 and the auxiliary pipes 5 and 6. The pipe diameters of the liquid supply pipe 2 and the auxiliary pipes 5 and 6 may be the same or different. By making the pipe diameters on the drainage pipes 3a, 3b, and 3c sides larger than the pipe diameter of the liquid supply pipe 2, the electrolytic solution is discharged from the drainage box 32 to the outside of the electrolytic solution tank 1 by utilizing the head pressure difference of the electrolytic solution. The influence of the pressure loss of the drainage pipes 3a, 3b, and 3c can be made smaller. As a result, the electrolytic solution sucked up in the liquid supply pipe 2 can be easily discharged to the outside of the electrolytic cell 1.

排液配管3a、3b、3cの管径は、給液配管2及び補助配管5、6の管径よりも1.5倍以上、より好ましくは2倍以上、更に好ましくは4倍以上大きくすることができる。 The pipe diameters of the drainage pipes 3a, 3b, and 3c should be 1.5 times or more, more preferably 2 times or more, still more preferably 4 times or more larger than the pipe diameters of the liquid supply pipes 2 and the auxiliary pipes 5 and 6. Can be done.

排液配管3a、3b、3cの高さは、底部に近づけすぎると電解槽1の底部の殿物などを巻き込んで排液口31a〜31xの詰まり或いは不具合等を生じさせる場合がある。排液口31a〜31xは、例えば、電解槽1内に収容される電極の下端部を起点に、上方に100mm、下方に300mmの範囲に配置されることが好ましく、より好ましくは上方に100mm、下方に100mmの範囲に配置される。 If the heights of the drainage pipes 3a, 3b, and 3c are too close to the bottom portion, the bottom portion of the electrolytic cell 1 may be caught in the heights of the drainage pipes 3a, 3b, and 3c, which may cause clogging or malfunction of the drainage ports 31a to 31x. The drainage ports 31a to 31x are preferably arranged in a range of 100 mm upward and 300 mm downward, more preferably 100 mm upward, starting from the lower end of the electrode housed in the electrolytic cell 1. It is arranged in a range of 100 mm below.

給液配管2が備える給液口21a、21a、21c・・・21xの開口面積よりも排液配管3a、3b、3cが備える排液口31a、31b・・・31xの開口面積が大きくなるように形成されていることが好ましい。排液口31a、31b・・・31xの開口面積を大きくとることによって、排液配管3a、3b、3c内の電解液を電解槽1外へ排出させる際の圧力損失の影響をより小さくすることができる。 The opening area of the drainage ports 31a, 31b ... 31x provided in the drainage pipes 3a, 3b, 3c is larger than the opening area of the liquid supply ports 21a, 21a, 21c ... 21x provided in the liquid supply pipe 2. It is preferably formed in. By increasing the opening area of the drainage ports 31a, 31b ... 31x, the influence of pressure loss when discharging the electrolytic solution in the drainage pipes 3a, 3b, 3c to the outside of the electrolytic cell 1 is further reduced. Can be done.

以下に限定されるものではないが、排液口31a〜31xの各開口面積を給液口21a〜21xの各開口面積に対して1〜400倍、より典型的には100〜200倍大きくすることができる。これにより、排液口31a〜31xから電解槽1内の電解液を効率よく排液することができる。給液口21a〜21x及び排液口31a〜31xの形状、穴径(スリット径)及び間隔は、電解槽1の大きさ等に応じて適宜調整することができる。 Although not limited to the following, each opening area of the drainage ports 31a to 31x is increased by 1 to 400 times, more typically 100 to 200 times, with respect to each opening area of the liquid supply ports 21a to 21x. be able to. As a result, the electrolytic solution in the electrolytic cell 1 can be efficiently drained from the drainage ports 31a to 31x. The shapes, hole diameters (slit diameters), and intervals of the liquid supply ports 21a to 21x and the liquid drainage ports 31a to 31x can be appropriately adjusted according to the size of the electrolytic cell 1.

図2に示すように、電解槽1の第4の側壁14側には、電解液を電解槽1外へ排液する排液部30が配置されている。排液部30には排液ボックス32が接続されている。 As shown in FIG. 2, a drainage unit 30 for draining the electrolytic solution to the outside of the electrolytic cell 1 is arranged on the fourth side wall 14 side of the electrolytic cell 1. A drainage box 32 is connected to the drainage unit 30.

図4に示すように、排液部30には、電解槽1内の電解液を排出するための排出口300が設けられている。図5に示すように、排出口300の下方には、電解液を電解槽1外へ排出するために排出口300に接続された排出配管301が設けられている。 As shown in FIG. 4, the drainage unit 30 is provided with a discharge port 300 for discharging the electrolytic solution in the electrolytic cell 1. As shown in FIG. 5, a discharge pipe 301 connected to the discharge port 300 is provided below the discharge port 300 in order to discharge the electrolytic solution to the outside of the electrolytic cell 1.

排液ボックス32は、図5に示す電解液の液面LSよりも下方となる底面32aを備える。底面32aには、図4に示すように、排液配管3a、3b、3cの出口3A、3B、3Cがそれぞれ接続されている。電解槽1から排液配管3a、3b、3c内に排液された電解液は、電解液の液面LSと排液ボックス32内の電解液の液面lsの高さの差Hにより汲み上げされる。 The drainage box 32 includes a bottom surface 32a below the liquid level LS of the electrolytic solution shown in FIG. As shown in FIG. 4, the bottom 32a is connected to the outlets 3A, 3B, and 3C of the drainage pipes 3a, 3b, and 3c, respectively. The electrolytic solution discharged from the electrolytic cell 1 into the drainage pipes 3a, 3b, and 3c is pumped up by the height difference H between the liquid level LS of the electrolytic solution and the liquid level ls of the electrolytic solution in the drainage box 32. NS.

排液部30と排液配管3a、3b、3cとの間に排液ボックス32が配置されることにより、ポンプ等の動力を使用せず、且つ電解槽1の底部に沈積する殿物の巻き込みを抑制しながら、電解槽1の下方から電解液を電解槽1の外部へ抜き出すことができる。 By arranging the drainage box 32 between the drainage portion 30 and the drainage pipes 3a, 3b, and 3c, the power of a pump or the like is not used, and the ridges deposited on the bottom of the electrolytic cell 1 are involved. The electrolytic solution can be drawn out of the electrolytic cell 1 from below the electrolytic cell 1 while suppressing the above.

排液ボックス32の電解液と接する側の側壁32bの上端部の高さは、電解槽1内の電解液の液面LSに対して数mm〜数十mm上方となるように配置されている。排液ボックス32は、電解槽1内に収容された電解液と接する側の側壁32bに、電解槽1内の電解液中の異物を排液ボックス32へ送るための切り欠き部33を備えることが好ましい。この切り欠き部33は、図4に示すように、電解槽1の上方側から下方側に向かってその開口幅AWが小さくなるような形状を有している。切り欠き部33の形状としては、V字形状、U字形状、台形形状等の種々の形状を取り得るが、具体的な形状は特に限定されない。 The height of the upper end of the side wall 32b on the side of the drainage box 32 in contact with the electrolytic solution is arranged so as to be several mm to several tens of mm above the liquid level LS of the electrolytic solution in the electrolytic cell 1. .. The drainage box 32 is provided with a notch 33 for sending foreign matter in the electrolyte solution in the electrolytic cell 1 to the drainage box 32 on the side wall 32b on the side in contact with the electrolytic solution housed in the electrolytic cell 1. Is preferable. As shown in FIG. 4, the cutout portion 33 has a shape in which the opening width AW decreases from the upper side to the lower side of the electrolytic cell 1. The shape of the cutout portion 33 may be various shapes such as a V-shape, a U-shape, and a trapezoidal shape, but the specific shape is not particularly limited.

電解槽1内には、電解を行うにつれて電解液の液面LSにゴミ等の異物が溜まる場合がある。この異物が電解槽1内に留まると、電解に悪影響を与える恐れがある。本発明の実施の形態に係る電解装置によれば、電解槽1の電解液の液面LS付近にたまるゴミなどの異物を含む電解液を切り欠き部33からオーバーフローさせて排出することができるため、電解槽1内の電解液の液面LS付近のゴミの滞留を抑制することができる。 Foreign matter such as dust may accumulate in the electrolytic cell 1 as the electrolysis is performed on the liquid level LS of the electrolytic solution. If this foreign matter stays in the electrolytic cell 1, it may adversely affect the electrolysis. According to the electrolytic device according to the embodiment of the present invention, the electrolytic solution containing foreign matter such as dust accumulated near the liquid level LS of the electrolytic cell in the electrolytic cell 1 can be overflowed from the notch 33 and discharged. , It is possible to suppress the retention of dust near the liquid level LS of the electrolytic solution in the electrolytic cell 1.

図4及び図5に示すように、排液ボックス32と排液部30との間には、排液ボックス32から排液部30へと流れる電解液を堰き止めるように配置された調整板35が配置されている。調整板35が配置されることにより、排液配管3(3a、3b、3c)を介して排液ボックス32内に回収された電解液が、調整板35の上端からオーバーフローして排液部30へと流れる。 As shown in FIGS. 4 and 5, an adjusting plate 35 is arranged between the drainage box 32 and the drainage section 30 so as to block the electrolytic solution flowing from the drainage box 32 to the drainage section 30. Is placed. By arranging the adjusting plate 35, the electrolytic solution collected in the draining box 32 via the draining pipe 3 (3a, 3b, 3c) overflows from the upper end of the adjusting plate 35 and drains the liquid portion 30. Flow to.

例えば、大きさの異なる調整板35を配置することにより、調整板35の排液ボックス32の底面32aからの高さhを変更することが可能である。調整板35の高さhを変更することにより、電解槽1内の電解液の液面LSと排液ボックス32内の電解液の液面lsとの高さの差Hを調整することができる。これにより、電解槽1内の電解液の液面LSとの電解液の液面lsとの高さの差Hによるヘッド圧差を調整して、どのような給液量であっても電解槽1内の電解液の液面LSの高さを一定に保つことができる。 For example, by arranging the adjusting plates 35 having different sizes, it is possible to change the height h of the adjusting plate 35 from the bottom surface 32a of the drainage box 32. By changing the height h of the adjusting plate 35, it is possible to adjust the height difference H between the liquid level LS of the electrolytic solution in the electrolytic cell 1 and the liquid level ls of the electrolytic solution in the drainage box 32. .. As a result, the head pressure difference due to the height difference H between the liquid level LS of the electrolytic solution and the liquid level ls of the electrolytic solution in the electrolytic cell 1 is adjusted, and the electrolytic cell 1 is supplied regardless of the amount of liquid supplied. The height of the liquid level LS of the electrolytic solution inside can be kept constant.

更に、排液ボックス32には、排液配管3a、3b、3cの出口3A、3B、3Cが接続された底面32aを複数の領域に分割するための分割壁37が排液ボックス32に設けられていることが好ましい。分割壁37を配置せずとも各出口3A、3B、3Cからそれぞれ排出される電解液の量を把握することは可能であるが、排液ボックス32に分割壁37が配置されることにより、各出口3A、3B、3Cからそれぞれ排出される電解液の量を目視により把握しやすくできる。 Further, the drainage box 32 is provided with a dividing wall 37 for dividing the bottom surface 32a to which the outlets 3A, 3B, and 3C of the drainage pipes 3a, 3b, and 3c are connected into a plurality of regions. Is preferable. Although it is possible to grasp the amount of the electrolytic solution discharged from each of the outlets 3A, 3B, and 3C without arranging the dividing wall 37, each of the divided walls 37 is arranged in the drainage box 32. The amount of electrolytic solution discharged from each of the outlets 3A, 3B, and 3C can be easily visually grasped.

電解装置は、図1〜図5に不図示の電解液の環流機構が設けられている。環流機構は、電解槽1の排液部30から排出された電解液にニカワやチオ尿素等の添加剤を追加するとともに、必要な成分調整と温度調整を行い、調整後の電解液を給液配管2から電解槽1内へと環流する。電解装置には不図示の給電機構が設けられている。給電機構は、電解槽1内の長手方向に沿って交互に配置されるアノード板とカソード板とを含む電極の間に直流電流を印加する電源装置と配線とを備えている。 The electrolytic apparatus is provided with a circulation mechanism of an electrolytic solution (not shown) shown in FIGS. 1 to 5. The recirculation mechanism adds additives such as nikawa and thiourea to the electrolytic solution discharged from the drainage unit 30 of the electrolytic cell 1, adjusts necessary components and adjusts the temperature, and supplies the adjusted electrolytic solution. It recirculates from the pipe 2 into the electrolytic cell 1. The electrolyzer is provided with a power feeding mechanism (not shown). The power feeding mechanism includes a power supply device and wiring for applying a direct current between the electrodes including the anode plate and the cathode plate which are alternately arranged along the longitudinal direction in the electrolytic cell 1.

アノード板及びカソード板の構成は特に限定されない。アノード板は電解精製もしくは電解採取を行う際の陽極となり、粗金属製の板材で構成される。カソード板は電解精製もしくは電解採取を行う際の陰極となり、導電性に優れた板状の金属で構成される。 The configuration of the anode plate and the cathode plate is not particularly limited. The anode plate serves as an anode for electrolytic refining or electrowinning, and is composed of a crude metal plate material. The cathode plate serves as a cathode for electrorefining or electrowinning, and is composed of a plate-shaped metal having excellent conductivity.

電解槽1内の電解液の混合状態を改善するために種々の検討が行われてきたが、電解槽1内の長手方向の一端側から長手方向の他端側へと電解液を流す従来の下入れ上抜き方式の電解装置では電解液供給方向上流側と下流側で電解液中の銅などの金属イオン濃度及び添加物の濃度に偏りが生じるとともに、電解が進むにつれて電解槽1の上部から底部へいくほど金属イオン濃度が高くなる傾向にあった。 Various studies have been conducted to improve the mixed state of the electrolytic cell in the electrolytic cell 1, but the conventional method of flowing the electrolytic cell from one end side in the longitudinal direction to the other end side in the longitudinal direction in the electrolytic cell 1. In the bottom-in / top-pull type electrolyzer, the concentration of metal ions such as copper and the concentration of additives in the electrolytic solution are biased between the upstream side and the downstream side in the electrolytic solution supply direction, and as the electrolysis progresses, from the upper part of the electrolytic cell 1. The metal ion concentration tended to increase toward the bottom.

本発明の実施の形態に係る電解装置によれば、電解槽1の幅(Y)方向、即ち、電解槽1の第1の側壁11側から第2の側壁12側へと電解液を供給するように構成するとともに、給液配管2の給液口21a、21b・・・23xの設置位置を、排液配管3a、3b、3cの排液口31a、31b・・・31xよりも相対的に上方となるように構成した、いわゆる、「横入れ上入れ下抜き方式」を採用する。その結果、電解槽1の底部の銅イオン濃度などの金属イオン濃度の上昇を効果的に抑制できるとともに、電解液中に含まれる種々の添加剤の濃度分布を電解槽1内全体でより均一化することができる。 According to the electrolyzer according to the embodiment of the present invention, the electrolytic solution is supplied from the width (Y) direction of the electrolytic cell 1, that is, from the first side wall 11 side to the second side wall 12 side of the electrolytic cell 1. The installation positions of the liquid supply ports 21a, 21b ... 23x of the liquid supply pipe 2 are relatively larger than those of the drainage ports 31a, 31b ... 31x of the liquid drainage pipes 3a, 3b and 3c. The so-called "horizontal insertion, top insertion, bottom removal method" is adopted, which is configured to be upward. As a result, an increase in metal ion concentration such as copper ion concentration at the bottom of the electrolytic cell 1 can be effectively suppressed, and the concentration distribution of various additives contained in the electrolytic cell is made more uniform throughout the electrolytic cell 1. can do.

さらに、電解槽1において上方から下方へと電解液を流すことにより、殿物の巻き上げの恐れも少なくなる。そのため、電解液の供給流量を大きくしても殿物の巻き上げを抑制しながら電解液の混合状態を改善することができ、電着物の電着効率も従来に比べて改善させることができる。さらに、電着物の表面性状に影響を及ぼすニカワなどの添加物を電解槽全体にわたって均一に行き渡らせることができるため、電解槽1全体において品質の揃った電着物が得られる。 Further, by flowing the electrolytic solution from the upper side to the lower side in the electrolytic cell 1, the risk of winding up the ridge is reduced. Therefore, even if the supply flow rate of the electrolytic solution is increased, the mixed state of the electrolytic solution can be improved while suppressing the hoisting of the ridge, and the electrodeposition efficiency of the electrodeposited object can be improved as compared with the conventional case. Further, since additives such as glue that affect the surface properties of the electrodeposited material can be uniformly distributed throughout the electrolytic cell, an electrodeposited material having uniform quality can be obtained in the entire electrolytic cell 1.

(電解方法)
本発明の実施の形態に係る電解装置を用いて電解液を電気分解することにより、複数のカソード板に銅などの金属を電着させることができる。以下においては、本発明の実施の形態に係る電解装置を用いて電気分解する例として粗銅を精錬する場合について説明する。
(Electrolysis method)
By electrolyzing the electrolytic solution using the electrolytic device according to the embodiment of the present invention, a metal such as copper can be electrodeposited on a plurality of cathode plates. In the following, a case of refining blister copper will be described as an example of electrolysis using the electrolytic device according to the embodiment of the present invention.

まず、例えば純度が99mass%程度の粗銅の板材をアノード板とし、純度が99.99mass%程度の銅の板材又はステンレス板をカソード板として、複数のアノード板と複数のカソード板とを交互に板厚方向に間隔を空けて、電極板の下端が電解槽1の底面から所定の間隔が空くように且つ電極板の側面が樋部4と接触しないように電解槽1内に配置する。 First, for example, a blister copper plate having a purity of about 99 mass% is used as an anode plate, a copper plate or a stainless steel plate having a purity of about 99.99 mass% is used as a cathode plate, and a plurality of anode plates and a plurality of cathode plates are alternately arranged. The electrode plates are arranged in the electrolytic cell 1 at intervals in the thickness direction so that the lower ends of the electrode plates are spaced apart from the bottom surface of the electrolytic cell 1 by a predetermined distance and the side surfaces of the electrode plates do not come into contact with the trough portion 4.

給液部20内に配置された給液主管に接続された給液配管2が備える複数の給液口21a、21b・・・23xから硫酸銅及び硫酸の混合水溶液にニカワやチオ尿素などの添加剤を添加した電解液を供給する。更に、補助配管5及び補助配管6から給液配管2の長手方向中央部及び先端部に電解液を供給する。給液配管2及び補助配管5、6により供給された電解液は樋部4内に貯留される。そして、樋部4内に貯留された電解液を樋部4の上部の開口部41a、41b・・・41xからオーバーフローさせて電解槽1内へ供給する。一方、排液ボックス32及び排液部30に接続された排液配管3a、3b、3cの複数の排液口31a、31b・・・31xから電解槽1内の電解液を排液し、不図示の環流機構によって、電解液を循環させる。 Addition of nikawa, thiourea, etc. to a mixed aqueous solution of copper sulfate and sulfuric acid from a plurality of liquid supply ports 21a, 21b ... 23x provided in the liquid supply pipe 2 connected to the liquid supply main pipe arranged in the liquid supply unit 20. The electrolytic solution to which the agent is added is supplied. Further, the electrolytic solution is supplied from the auxiliary pipe 5 and the auxiliary pipe 6 to the central portion and the tip portion in the longitudinal direction of the liquid supply pipe 2. The electrolytic solution supplied by the liquid supply pipe 2 and the auxiliary pipes 5 and 6 is stored in the gutter portion 4. Then, the electrolytic solution stored in the gutter portion 4 overflows from the openings 41a, 41b ... 41x at the upper part of the gutter portion 4 and is supplied into the electrolytic cell 1. On the other hand, the electrolytic solution in the electrolytic cell 1 is drained from the plurality of drainage ports 31a, 31b ... 31x of the drainage pipes 3a, 3b, 3c connected to the drainage box 32 and the drainage unit 30, and the electrolyte is not discharged. The electrolytic solution is circulated by the shown circulation mechanism.

給電機構を用いてアノード板とカソード板との間に直流電流を印加し、アノード板の銅を電解液中にイオンとして溶出させてカソード板へ電着させる。電解液は上述のようにして電解槽1の第1の側壁11にある樋部4の上方から電解液を電解槽1内へ供給し、第1の側壁11と対向する電解槽1の第2の側壁12の下方で電解液を排液配管3a、3b、3c内へ排液させるようにして液流を発生させる。 A direct current is applied between the anode plate and the cathode plate using a power feeding mechanism, and the copper of the anode plate is eluted as ions in the electrolytic solution and electrodeposited on the cathode plate. As described above, the electrolytic solution is supplied into the electrolytic cell 1 from above the gutter 4 on the first side wall 11 of the electrolytic cell 1, and the second side of the electrolytic cell 1 facing the first side wall 11 is supplied. A liquid flow is generated by draining the electrolytic solution into the drain pipes 3a, 3b, and 3c below the side wall 12.

排液配管3a、3b、3c内へ排液された電解液は、排液ボックス32により汲み上げられて、排液部30を介して排液される。電解槽1内の電解液の上層に浮遊するゴミなどの異物は、排液ボックス32が備える切り欠き部33から越流により排液ボックス32内へ収容され、電解槽1の外部へ排出される。 The electrolytic solution drained into the drainage pipes 3a, 3b, and 3c is pumped up by the drainage box 32 and drained through the drainage section 30. Foreign matter such as dust floating in the upper layer of the electrolytic cell in the electrolytic cell 1 is accommodated in the drainage box 32 by overflow from the notch 33 provided in the drainage box 32 and discharged to the outside of the electrolytic cell 1. ..

本発明の実施の形態に係る電解方法によれば、電解槽1の短手方向Yの一端から短手方向Yの他端側へ、且つ上方から下方へ向けて電解槽1の長手方向Xに沿った複数箇所から電解液を流すことにより、電解槽1の長手方向Xの一端側から他端側へと電解液を流す従来の方式と比べて、電解槽1内の電解液の混合状態をより良好にすることができる。 According to the electrolysis method according to the embodiment of the present invention, from one end of the short direction Y of the electrolytic cell 1 to the other end side of the short direction Y, and from the upper side to the lower side in the longitudinal direction X of the electrolytic cell 1. Compared with the conventional method in which the electrolytic cell is flown from one end side to the other end side in the longitudinal direction X of the electrolytic cell 1 by flowing the electrolytic solution from a plurality of locations along the line, the mixed state of the electrolytic cell in the electrolytic cell 1 is changed. Can be better.

特に、本発明の実施の形態に係る電解方法によれば、電解槽1下部の銅イオンなどの金属イオン濃度の上昇を抑制し、金属イオンを液中により均一に分散できるため、高い電流密度又は不純物濃度の高い材料をアノード板に用いて電解精製を実施した場合の不動態化現象をより効率的に抑制することが可能となる。 In particular, according to the electrolysis method according to the embodiment of the present invention, an increase in the concentration of metal ions such as copper ions in the lower part of the electrolytic cell 1 can be suppressed, and the metal ions can be more uniformly dispersed in the liquid, so that the current density is high or It is possible to more efficiently suppress the immobilization phenomenon when electrolytic purification is performed using a material having a high impurity concentration for the anode plate.

(その他の実施の形態)
本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態及び運用技術が明らかとなろう。
(Other embodiments)
Although the present invention has been described in accordance with the above embodiments, the statements and drawings that form part of this disclosure should not be understood to limit the invention. This disclosure will reveal to those skilled in the art various alternative embodiments and operational techniques.

給液配管2及び排液配管3a、3b、3cがそれぞれ備える給液口21a、21b・・・23x及び排液口31a、31b・・・31xの位置は、電解槽1内に浸漬されるアノード板及びカソード板が配置される位置との関係で調整することができる。例えば、給液配管2に設けられた複数の給液口21a、21b・・・23x及び排液配管3a、3b、3cに設けられた複数の排液口31a、31b・・・31xを、それぞれアノード板とカソード板との間に設けられた隙間に面するように設け、電解液をアノード板とカソード板との空間に供給するように構成することができる。このようにしてアノード板及びカソード板の表面に液流を発生させることにより、高い電流密度又は不純物濃度の高い材料をアノード板に用いて電解精製を実施した場合の不動態化現象をより効率的に抑制することが可能となる。 The positions of the liquid supply ports 21a, 21b ... 23x and the liquid drainage ports 31a, 31b ... 31x provided in the liquid supply pipe 2 and the liquid drainage pipes 3a, 3b, 3c, respectively, are the anodes immersed in the electrolytic cell 1. It can be adjusted in relation to the position where the plate and the cathode plate are arranged. For example, a plurality of liquid supply ports 21a, 21b ... 23x provided in the liquid supply pipe 2 and a plurality of liquid drainage ports 31a, 31b ... 31x provided in the liquid drainage pipes 3a, 3b, 3c, respectively. It can be provided so as to face the gap provided between the anode plate and the cathode plate, and the electrolytic solution can be supplied to the space between the anode plate and the cathode plate. By generating a liquid flow on the surfaces of the anode plate and the cathode plate in this way, the passivation phenomenon when electrolytic refining is performed using a material having a high current density or a high impurity concentration for the anode plate is more efficient. Can be suppressed.

電解槽1内に収容されるアノード板とカソード板との間の空間には、給液口21a、21b・・・23x及び排液口31a、31b・・・31xがそれぞれ1箇所ずつ配置されるだけでなく、アノード板とカソード板との間の空間の広さに対応して給液口21a、21b・・・23x及び排液口31a、31b・・・31xが空間内に複数配置されるようにしてもよい。また、電解液、特に添加剤の混合状態が悪化しやすい電解槽1の長手方向中央側から排液側の給液口21a、21b・・・23x及び排液口31a、31b・・・31xの個数を電解槽1の長手方向中央側から給液側の個数よりも多くするようにしてもよい。 In the space between the anode plate and the cathode plate housed in the electrolytic cell 1, one liquid supply port 21a, 21b ... 23x and one drainage port 31a, 31b ... 31x are arranged. Not only that, a plurality of liquid supply ports 21a, 21b ... 23x and drainage ports 31a, 31b ... 31x are arranged in the space according to the size of the space between the anode plate and the cathode plate. You may do so. Further, the liquid supply ports 21a, 21b ... 23x and the drainage ports 31a, 31b ... 31x from the central side in the longitudinal direction to the drainage side of the electrolytic cell 1 in which the mixed state of the electrolytic solution, particularly the additive, tends to deteriorate. The number may be larger than the number on the liquid supply side from the center side in the longitudinal direction of the electrolytic cell 1.

給液配管2及び排液配管3a、3b、3cがそれぞれ備える給液口21a、21b・・・23x及び排液口31a、31b・・・31xの各開口面積は、基本的には長手方向Xに沿ってそれぞれ等しい大きさとなる例を示しているが、電解槽1の長手方向X上流側と下流側で異なる開口面積を有していてもよい。給液配管2及び排液配管3a、3b、3cは複数の配管又は一の配管が長手方向に沿って枝状に分岐した配管を用いることができる。排液配管3a、3b、3cは複数本でなく1本で構成することも可能である。また、給液配管2を複数からなる配管で構成してもよいことは勿論である。 The opening areas of the liquid supply ports 21a, 21b ... 23x and the liquid drainage ports 31a, 31b ... 31x provided in the liquid supply pipe 2 and the liquid drainage pipes 3a, 3b, 3c, respectively, are basically X in the longitudinal direction. Although the examples showing the same size along the above, different opening areas may be provided in the longitudinal direction X upstream side and the downstream side of the electrolytic cell 1. As the liquid supply pipe 2 and the liquid drainage pipes 3a, 3b, and 3c, a plurality of pipes or a pipe in which one pipe is branched in a branch shape along the longitudinal direction can be used. The drainage pipes 3a, 3b, and 3c can be configured by one pipe instead of a plurality of pipes. Further, it goes without saying that the liquid supply pipe 2 may be composed of a plurality of pipes.

このように、本発明は上記の開示から妥当な特許請求の範囲の発明特定事項によって表されるものであり、実施段階においては、その要旨を逸脱しない範囲において変形し具体化し得る。 As described above, the present invention is represented by the matters specifying the invention within the scope of claims reasonable from the above disclosure, and at the implementation stage, it can be modified and embodied without departing from the gist thereof.

1…電解槽
2…給液配管
3(3a、3b、3c)…排液配管
4…樋部
5…補助配管
6…補助配管
11…第1の側壁
12…第2の側壁
13…第3の側壁
14…第4の側壁
20…給液部
21a〜21x…給液口
30…排液部
31a〜31x…排液口
32…排液ボックス
32…壁部
32a…底面
32b…側壁
33…切り欠き部
35…調整板
37…分割壁
41a〜41x…開口部
42…第1の壁部
43…第2の壁部
44…梁部
51、52、61…供給部
300…排出口
301…排出配管
1 ... Electrolyte tank 2 ... Liquid supply pipe 3 (3a, 3b, 3c) ... Drainage pipe 4 ... Hidden part 5 ... Auxiliary pipe 6 ... Auxiliary pipe 11 ... First side wall 12 ... Second side wall 13 ... Third side wall Side wall 14 ... Fourth side wall 20 ... Liquid supply section 21a to 21x ... Liquid supply port 30 ... Drainage section 31a to 31x ... Drainage port 32 ... Drainage box 32 ... Wall section 32a ... Bottom surface 32b ... Side wall 33 ... Notch Part 35 ... Adjusting plate 37 ... Dividing wall 41a to 41x ... Opening 42 ... First wall part 43 ... Second wall part 44 ... Beam part 51, 52, 61 ... Supply part 300 ... Discharge port 301 ... Discharge pipe

Claims (9)

電解液を収容する電解槽の長手方向に沿って互いに間隔を空けて配置された電極を電解液中に浸漬し、電解液を循環しながら電解処理する電解装置であって、
前記電解槽の長手方向に延びる第1の側壁に沿って延び、互いに間隔を空けて配置された複数の給液口を有する給液配管と、
前記給液配管を内部に収容するように前記第1の側壁に沿って延び、前記複数の給液口から供給される電解液を貯留し、該電解液をオーバーフローさせて前記電解槽内へ供給する樋部と、
前記第1の側壁と対向する第2の側壁に沿って延び、前記樋部よりも下方に配置され、互いに間隔を空けて配置された複数の排液口を備え、該排液口から前記電解槽内の電解液を排液する排液配管と
を備えることを特徴とする電解装置。
An electrolytic device in which electrodes arranged at intervals along the longitudinal direction of an electrolytic cell accommodating an electrolytic solution are immersed in the electrolytic solution and electrolyzed while circulating the electrolytic solution.
A liquid supply pipe extending along a first side wall extending in the longitudinal direction of the electrolytic cell and having a plurality of liquid supply ports arranged at intervals from each other.
It extends along the first side wall so as to accommodate the liquid supply pipe, stores the electrolytic solution supplied from the plurality of liquid supply ports, overflows the electrolytic solution, and supplies the electrolytic solution into the electrolytic cell. Hibe and
A plurality of drainage ports extending along a second side wall facing the first side wall, arranged below the gutter portion, and arranged at intervals from each other are provided, and the electrolysis is performed from the drainage port. An electrolytic device characterized by being provided with a drainage pipe for draining the electrolytic solution in the tank.
前記給液配管の長手方向中央部に接続され、前記給液配管に電解液を供給する補助配管を更に備える請求項1に記載の電解装置。 The electrolyzer according to claim 1, further comprising an auxiliary pipe connected to a central portion in the longitudinal direction of the liquid supply pipe and supplying an electrolytic solution to the liquid supply pipe. 前記給液配管の長手方向下流側の先端部に接続され、前記排液配管に電解液を供給する補助配管を更に備える請求項1又は2に記載の電解装置。 The electrolyzer according to claim 1 or 2, further comprising an auxiliary pipe connected to a tip on the downstream side in the longitudinal direction of the liquid supply pipe and supplying an electrolytic solution to the drainage pipe. 前記樋部が、前記電解液をオーバーフローさせるための開口部を備え、前記開口部が前記電解液の液面から50mm以内となる高さに配置されていることを含む請求項1〜3のいずれか1項に記載の電解装置。 Any of claims 1 to 3, wherein the gutter portion is provided with an opening for overflowing the electrolytic solution, and the opening is arranged at a height within 50 mm from the liquid surface of the electrolytic solution. The electrolyzer according to item 1. 前記電解液の液面よりも下方となる底面を備え、該底面に前記排液配管の出口が接続されており、前記排液配管内の電解液を汲み上げ可能な排液ボックスを更に備えることを特徴とする請求項1〜4のいずれか1項に記載の電解装置。 It is provided with a bottom surface below the liquid level of the electrolytic solution, an outlet of the drainage pipe is connected to the bottom surface, and a drainage box capable of pumping the electrolytic solution in the drainage pipe is further provided. The electrolyzer according to any one of claims 1 to 4. 前記排液ボックスが、前記電解槽内の電解液と接する側の側壁に、前記電解槽内の電解液中の異物を前記排液ボックスへ送るための切り欠き部を備えることを特徴とする請求項5に記載の電解装置。 The claim is characterized in that the drainage box is provided with a notch for sending foreign matter in the electrolytic solution in the electrolytic cell to the drainage box on a side wall on the side of the electrolytic cell in contact with the electrolytic solution. Item 5. The electrolyzer according to Item 5. 前記排液ボックス内の前記電解液を前記電解槽の外へと排出する排液部を備え、
前記排液ボックスと前記排液部との間に配置され、前記排液ボックス内の電解液の液面の高さと前記電解槽内の電解液の液面の高さの差を調整する調整板を更に備えることを特徴とする請求項5又は6に記載の電解装置。
A drainage unit for discharging the electrolytic solution in the drainage box to the outside of the electrolytic cell is provided.
An adjusting plate that is arranged between the drainage box and the drainage portion and adjusts the difference between the height of the electrolyte level in the drainage box and the height of the electrolyte level in the electrolytic cell. The electrolyzer according to claim 5 or 6, further comprising.
排液配管が少なくとも2本以上の配管を備えることを特徴とする請求項1〜7のいずれか1項に記載の電解装置。 The electrolyzer according to any one of claims 1 to 7, wherein the drainage pipe includes at least two or more pipes. 電解液を収容する電解槽の長手方向に沿って互いに間隔を空けて配置された電極を電解液中に浸漬し、電解液を循環しながら電解処理する電解方法であって、
前記電解槽の長手方向に延びる第1の側壁に沿って延び、前記電解槽内に電解液を供給する複数の給液口を備える給液配管に電解液を供給し、
前記給液配管を内部に収容し、前記第1の側壁に沿って延びる樋部内に前記給液配管から供給された電解液を貯留し、貯留した電解液を前記樋部の上部からオーバーフローさせて前記電解槽内へ供給し、
前記第1の側壁と対向する第2の側壁に沿って延び、前記樋部よりも下方に配置され、互いに間隔を空けて配置された複数の排液口を備える排液配管から前記電解槽内の電解液を排液すること
を含む電解方法。
This is an electrolytic method in which electrodes arranged at intervals along the longitudinal direction of an electrolytic cell containing an electrolytic solution are immersed in the electrolytic solution, and the electrolytic solution is circulated for electrolytic treatment.
The electrolytic solution is supplied to a liquid supply pipe provided with a plurality of liquid supply ports extending along a first side wall extending in the longitudinal direction of the electrolytic cell and supplying the electrolytic cell into the electrolytic cell.
The liquid supply pipe is housed inside, the electrolytic solution supplied from the liquid supply pipe is stored in a gutter extending along the first side wall, and the stored electrolytic solution is overflowed from the upper part of the gutter. Supply into the electrolytic cell
Inside the electrolytic cell from a drainage pipe having a plurality of drainage ports extending along a second side wall facing the first side wall, arranged below the gutter portion, and arranged at intervals from each other. An electrolysis method that involves draining the electrolyte.
JP2019069358A 2019-03-29 2019-03-29 Electrolyzer and electrolysis method Active JP6929320B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019069358A JP6929320B2 (en) 2019-03-29 2019-03-29 Electrolyzer and electrolysis method
PCT/JP2020/014682 WO2020204003A1 (en) 2019-03-29 2020-03-30 Electrolysis apparatus and electrolysis method
CN202080024892.2A CN113631762B (en) 2019-03-29 2020-03-30 Electrolysis apparatus and electrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019069358A JP6929320B2 (en) 2019-03-29 2019-03-29 Electrolyzer and electrolysis method

Publications (2)

Publication Number Publication Date
JP2020164966A JP2020164966A (en) 2020-10-08
JP6929320B2 true JP6929320B2 (en) 2021-09-01

Family

ID=72716801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019069358A Active JP6929320B2 (en) 2019-03-29 2019-03-29 Electrolyzer and electrolysis method

Country Status (1)

Country Link
JP (1) JP6929320B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587716B2 (en) * 1975-09-11 1983-02-10 三井金属鉱業株式会社 Denkaisou
JP3769948B2 (en) * 1998-11-02 2006-04-26 住友金属鉱山株式会社 Liquid level automatic control device for electrolytic cell
JP4055298B2 (en) * 1999-07-01 2008-03-05 住友金属鉱山株式会社 Electrolyzer level adjustment device
JP2002105684A (en) * 2000-09-29 2002-04-10 Dowa Mining Co Ltd Electrolytic method, and electrolytic tank used therefor
JP5522151B2 (en) * 2011-11-21 2014-06-18 住友金属鉱山株式会社 Weir for electrolytic cell
JP5835096B2 (en) * 2012-05-17 2015-12-24 住友金属鉱山株式会社 Electrolyte supply piping
JP6111931B2 (en) * 2013-08-22 2017-04-12 住友金属鉱山株式会社 Electrolyte supply method
JP6364920B2 (en) * 2014-04-23 2018-08-01 三菱マテリアル株式会社 Electrolytic refining method
CN104404575B (en) * 2014-11-28 2017-01-04 阳谷祥光铜业有限公司 Electrolytic etching of metal groove and electrolytic etching of metal technique
JP2017057508A (en) * 2017-01-04 2017-03-23 三菱マテリアル株式会社 Electrolytic refining method of metal, electrolytic refining apparatus

Also Published As

Publication number Publication date
JP2020164966A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP7150768B2 (en) Electrolysis apparatus and electrolysis method
JP7150769B2 (en) Electrolysis apparatus and electrolysis method
US7431810B2 (en) Apparatus for controlling flow in an electrodeposition process
US8454818B2 (en) Method for operating copper electrolysis cells
JP2017057508A (en) Electrolytic refining method of metal, electrolytic refining apparatus
JP6065706B2 (en) Electrolytic purification method of metal, electrolytic purification equipment
CA1140495A (en) Apparatus for the electrolytic recovery of metal
WO2020204003A1 (en) Electrolysis apparatus and electrolysis method
JP5085474B2 (en) Method for electrolytic purification of copper
JP6967032B2 (en) Electrolyzer and electrolysis method
JP2002105684A (en) Electrolytic method, and electrolytic tank used therefor
JP6929320B2 (en) Electrolyzer and electrolysis method
JP7002494B2 (en) Electrolyzer and electrolysis method
JP6364920B2 (en) Electrolytic refining method
JP6962960B2 (en) Electrolyzer and electrolysis method
JP4342522B2 (en) Method for homogenizing electrolyte concentration and electrolytic cell
JP2020164960A (en) Electrolyzer and electrolysis method
JP7309123B2 (en) Method for supplying electrolyte to electrolytic cell for electrorefining
JP2001081590A (en) High current density electrolysis method for copper
JPH0730688Y2 (en) Vertical electroplating equipment
JP2794815B2 (en) Gold electrolytic smelting equipment
JP2018168406A (en) Apparatus for electrolysis, and method for electrolysis using the same
JP2018168405A (en) Apparatus for electrolysis, and method for electrolysis using the same
JP2020128579A (en) Drain method of electrolytic solution in electrolytic refining
JPS6053117B2 (en) Copper electrolysis operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210810

R151 Written notification of patent or utility model registration

Ref document number: 6929320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151