JP4342522B2 - Method for homogenizing electrolyte concentration and electrolytic cell - Google Patents

Method for homogenizing electrolyte concentration and electrolytic cell Download PDF

Info

Publication number
JP4342522B2
JP4342522B2 JP2006022234A JP2006022234A JP4342522B2 JP 4342522 B2 JP4342522 B2 JP 4342522B2 JP 2006022234 A JP2006022234 A JP 2006022234A JP 2006022234 A JP2006022234 A JP 2006022234A JP 4342522 B2 JP4342522 B2 JP 4342522B2
Authority
JP
Japan
Prior art keywords
electrolyte
electrolytic cell
electrolytic
liquid supply
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006022234A
Other languages
Japanese (ja)
Other versions
JP2007204779A (en
Inventor
茂 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2006022234A priority Critical patent/JP4342522B2/en
Publication of JP2007204779A publication Critical patent/JP2007204779A/en
Application granted granted Critical
Publication of JP4342522B2 publication Critical patent/JP4342522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、電解液の濃度均質化方法及び電解槽に関し、さらに詳しくは、金属の電解精錬における電解液中の金属イオン濃度の不均一化を防止するための電解液の濃度均質化方法及び電解槽に関する。   The present invention relates to an electrolytic solution concentration homogenizing method and an electrolytic cell, and more particularly, an electrolytic solution concentration homogenizing method and electrolysis for preventing non-uniformity of metal ion concentration in an electrolytic solution in metal electrolytic refining. Regarding the tank.

電解精錬は電極反応を利用した精錬法で、還元反応に必要なエネルギーを電気エネルギーの形で供給し、燃料、還元剤、酸化剤等を使用しないことから極めて純度の高い金属を得ることができる精錬法である。そして、陽極に粗金属を用い、アノード反応が目的金属の溶解反応である場合を電解精製という。電解精錬及び電解精製は、一般に、電解液が溜められた直方体形状の電解槽の中に複数の陰極種板(カソード板)及び耳付き型陽極(アノード板)を交互に平行になるようにして浸漬し、直流電流を流すことによって陽極側から目的金属を電解液中に溶解させ、陰極上に析出させることによって行われる。例えば、銅の精製の場合には、通常、陽極陰極共にそれぞれ20枚から50枚程度を1組として配置した電解槽を縦方向及び横方向に複数隣接して設置することにより行われ、電解槽の総数は数百槽にも及ぶ。   Electrolytic refining is a refining method that uses an electrode reaction, supplying the energy required for the reduction reaction in the form of electric energy, and using no fuel, reducing agent, oxidant, etc., so that a highly pure metal can be obtained. It is a refining method. The case where a crude metal is used for the anode and the anode reaction is a dissolution reaction of the target metal is called electrolytic purification. In electrolytic refining and electrolytic refining, in general, a plurality of cathode seed plates (cathode plates) and eared anodes (anode plates) are alternately arranged in parallel in a rectangular parallelepiped electrolytic cell in which an electrolytic solution is stored. It is carried out by immersing and applying a direct current to dissolve the target metal in the electrolytic solution from the anode side and deposit it on the cathode. For example, in the case of refining copper, it is usually carried out by installing a plurality of electrolytic cells in which about 20 to 50 anodes and cathodes are arranged as a set, adjacent to each other in the vertical and horizontal directions. The total number of water reaches several hundred tanks.

電解液中では、陽極表面近くの電解液は陽極から金属イオンが溶解してくるため金属イオンの濃度が高くなり液比重が大きくなって下降する。一方、陰極種板の表面近くの電解液は金属イオンが陰極種板上に析出してくるので金属イオンの濃度が薄くなり液比重が小さくなって上昇する。従って、電解液上層部の濃度が次第に低下すると共に下層部の濃度が次第に濃くなることから電解液の濃度が不均一になる傾向があった。そこで、電解液中や両電極表面上での電解条件が局所的に変化しないようにするため電解槽内の電解液はたえず循環させ、組成や温度の均一化を図ることが必要となる。そのため、電解槽内の電解液の一部を抜き取ってその組成を調整しつつ、再び電解槽内へ供給することを連続的に行っている。この電解液の排液と給液とが適切に行われないと電解槽内の電解液の組成や温度分布等に偏りが生じて電解液の条件が場所によって不均一になる。例えば、電解液を電解槽の一端側の上部から給液(上入れ)しつつ、それと反対側の端部の上部から排液(上抜き)すると、電解液は電解槽の上層部を流れるのみで、電解槽の底部の電解液は滞留したままになることから、従来は、電解液は電解槽の長手方向の一端側の下部から給液(下入れ)しつつ、それと反対側の端部の上部から排液(上抜き)が行われていた(例えば、特開平10−183389号公報(特許文献1))。   In the electrolyte, the electrolyte near the anode surface dissolves metal ions from the anode, so that the concentration of metal ions increases and the liquid specific gravity increases and falls. On the other hand, in the electrolyte solution near the surface of the cathode seed plate, metal ions are deposited on the cathode seed plate, so that the concentration of the metal ions decreases and the specific gravity of the liquid decreases and rises. Therefore, since the concentration of the upper part of the electrolytic solution gradually decreases and the concentration of the lower part gradually increases, the concentration of the electrolytic solution tends to be non-uniform. Therefore, in order to prevent the electrolytic conditions in the electrolytic solution and the surfaces of both electrodes from changing locally, it is necessary to constantly circulate the electrolytic solution in the electrolytic cell to make the composition and temperature uniform. For this reason, a part of the electrolytic solution in the electrolytic cell is extracted and the composition is adjusted, and then the electrolytic solution is continuously supplied into the electrolytic cell. If drainage and supply of the electrolyte are not performed appropriately, the composition of the electrolyte in the electrolytic bath, the temperature distribution, etc. will be biased, and the electrolyte conditions will become uneven depending on the location. For example, if the electrolyte is supplied (upper) from the top of one end of the electrolytic cell and drained (up) from the upper end of the opposite side, the electrolyte will only flow through the upper layer of the electrolytic cell. Since the electrolyte solution at the bottom of the electrolytic cell remains, the electrolyte solution is conventionally supplied from the lower part of one end side in the longitudinal direction of the electrolytic cell. The drainage (upper drainage) was carried out from the upper part (for example, Unexamined-Japanese-Patent No. 10-183389 (patent document 1)).

電解液の濃度が均一でないと陰極種板に目的金属が均一に析出しないため高品位の金属を得ることができず製品とならない。また、陽極付近の金属イオンの濃度が濃くなると陽極表面に金属塩が析出し陽極からの金属イオンの溶解を阻害する等の問題も生じる。そのため、例えば、特開2002−105684号公報(特許文献2)では、電解液を陰極板及び陽極板の平面と平行方向、且つ、上入れ下抜きの対角線方向へ吐出させて電解する電解方法を開示している。   If the concentration of the electrolytic solution is not uniform, the target metal does not deposit uniformly on the cathode seed plate, so that a high-quality metal cannot be obtained and the product is not produced. In addition, when the concentration of metal ions in the vicinity of the anode becomes high, a metal salt is deposited on the surface of the anode, which causes problems such as inhibiting the dissolution of metal ions from the anode. Therefore, for example, in Japanese Patent Laid-Open No. 2002-105684 (Patent Document 2), an electrolysis method is performed in which an electrolytic solution is discharged in a direction parallel to the planes of the cathode plate and the anode plate and in a diagonal direction of top and bottom. Disclosure.

特開平10−183389号公報Japanese Patent Laid-Open No. 10-183389 特開2002−105684号公報JP 2002-105684 A

電解槽の長手方向の端面下部側から電解液を給液し、それとは反対側の端面の上部から排液する下入れ上抜きの場合、給液側では電解液は主に電解槽の底部側を流れるために給液側の端面近傍の液表面付近の金属イオンの濃度は特に低下しやすい。
しかし、金属イオンの濃度を維持しようとして給液量を多くするとその液流によって電解槽底部に沈殿しているアノードスライムを巻き上げやすくなる。アノードスライムが陰極に付着してしまうと目的金属が汚染されて製品にならなくなる。
例えば、表1A)のように、液表面の銅濃度が、25〜35g/lと低下すると、電気銅のAs、Sb、Biが、電気銅の平均的な通常の値に対し、2倍から100倍以上の悪い値となる。
また、この対策として、給液量を増加し、流速を上げると表1のB)の如く、Pb,Se,Te等の不純物が、2倍から10倍悪い値となる。これは、給液量の増加によるアノードスライムの巻き上げによるものと思われる。

Figure 0004342522
When the electrolyte is supplied from the lower side of the end face in the longitudinal direction of the electrolytic cell and drained from the top of the opposite end surface, the electrolyte is mainly on the bottom side of the electrolytic cell. Therefore, the concentration of metal ions in the vicinity of the liquid surface near the end surface on the liquid supply side is particularly likely to decrease.
However, if the amount of liquid supply is increased in order to maintain the concentration of metal ions, it becomes easier to wind up the anode slime precipitated at the bottom of the electrolytic cell due to the liquid flow. If the anode slime adheres to the cathode, the target metal will be contaminated and will not become a product.
For example, as shown in Table 1A), when the copper concentration on the liquid surface is reduced to 25 to 35 g / l, As, Sb, and Bi of electrolytic copper are reduced from twice the average normal value of electrolytic copper. It becomes a bad value of 100 times or more.
Further, as a countermeasure, when the amount of liquid supplied is increased and the flow rate is increased, impurities such as Pb, Se, Te, etc. become 2 to 10 times worse as shown in B) of Table 1. This is thought to be due to the winding up of the anode slime due to the increase in the liquid supply amount.
Figure 0004342522

一方、引用文献2に示された給液方法は、これまでとは全く異なる位置に給液口及び排液口を改めて設置する必要があり生産を停止して大掛かりな改修を施さねばならずコストがかかり且つ面倒である。   On the other hand, the liquid supply method shown in the cited document 2 requires the installation of a liquid supply port and a liquid discharge port at positions completely different from the conventional ones, and the production must be stopped to make a major repair. Is cumbersome and cumbersome.

そこで、本発明は、これらの問題点を解決し、電解槽への給液を下入れ給液によって発生する給液側の電解液上層部付近における金属イオンの濃度低下を改善し、電解液の上層部に位置する陰極板への電着を良好とすることが可能な電解液の濃度均質化方法及び電解槽を提供することを目的とする。   Therefore, the present invention solves these problems, improves the decrease in the concentration of metal ions in the vicinity of the upper part of the electrolyte solution on the supply side generated by lowering the supply solution to the electrolytic cell, and It is an object of the present invention to provide an electrolytic solution concentration homogenization method and an electrolytic cell capable of improving electrodeposition on a cathode plate located in an upper layer portion.

上記課題を解決するために請求項1に記載の本発明は、電解槽内に貯えられた電解液中に陰極板と陽極板が当該電解槽の両側壁に掛止された状態で交互に浸漬されている電解槽の長手方向の一端側の内壁面に配置され上部側及び下部側が開放した内部空間を有すると共に、電解槽内の上層部側へ電解液を供給するために直径が10〜30mmで、電解液面から30〜70mmの深さに位置するようにして電解槽の幅方向に沿って複数箇所に設けられた孔部を有する給液ポケットの上部開口部から電解液を供給することにより孔部から給液量の3〜5%を電解液の上層部へ、それ以外を下部開口部から電解液の下層部へそれぞれ新たな電解液を供給しつつ、それとは反対側の端部近傍の液面上層部から排液することを特徴とする電解液の濃度均質化方法を提供する。 The present invention of claim 1 in order to solve the above problems, the electrolytic solution which is stored in the electrolytic cell, alternately in a state in which the cathode plate and the anode plate is hooked on the side walls of the electrolyzer is arranged on the inner wall surface of the one longitudinal end of the electrolytic cell is immersed, together with the upper side and the lower side have the internal space which is open, in diameter for supplying the electrolytic solution to the upper portion of the electrolytic cell The electrolyte solution is 10-30 mm, and is located at a depth of 30-70 mm from the electrolyte surface, and the electrolyte solution is supplied from the upper opening of the liquid supply pocket having holes provided at a plurality of locations along the width direction of the electrolytic cell. By supplying 3 to 5% of the supplied amount from the hole to the upper layer of the electrolyte, and supplying the other from the lower opening to the lower layer of the electrolyte, the opposite side The electrolyte concentration is characterized by draining from the upper surface of the liquid surface near the edge of the electrolyte. To provide a uniform method.

上記課題を解決するために請求項4に記載の本発明は、電解槽内に貯えられた電解液中に陰極板と陽極板が当該電解槽の両側壁に掛止された状態で交互に浸漬されている電解槽の長手方向の一端側の内壁面に配置され、上部側及び下部側が開放した内部空間を有すると共に、電解槽内の上層部側へ電解液を供給するために直径が10〜30mmで、電解液面から30〜70mmの深さに位置するようにして電解槽の幅方向に沿って複数箇所に設けられた孔部を有する給液ポケットであって、上部開口部から電解液を供給することにより孔部から給液量の3〜5%を電解液の上層部へ、それ以外を下部開口部から電解液の下層部へそれぞれ新たな電解液を供給する給液ポケットを備えた給液手段と、そして、給液手段が設けられた側とは反対側の電解槽の端部側に配置され、電解液を液面上層部から排液する排液手段とを備えてなることを特徴とする電解槽を提供する。 The present invention according to claim 4 in order to solve the above problems, the electrolytic solution which is stored in the electrolytic cell, alternately in a state in which the cathode plate and the anode plate is hooked on the side walls of the electrolyzer It is disposed on the inner wall surface on one end side in the longitudinal direction of the immersed electrolytic cell, has an internal space where the upper side and the lower side are open, and has a diameter of 10 in order to supply the electrolytic solution to the upper layer side in the electrolytic cell. A liquid supply pocket having holes provided at a plurality of locations along the width direction of the electrolytic cell so as to be located at a depth of 30 to 70 mm from the electrolyte surface, and electrolysis from the upper opening. A liquid supply pocket for supplying new electrolyte from the hole to the upper part of the electrolyte and supplying the other from the lower opening to the lower part of the electrolyte by supplying the liquid a liquid supply means comprising, and, contrary to the liquid supply means are provided side Disposed at the end portion side of the electrolyzer, providing an electrolytic cell, characterized by comprising a drainage means for draining the electrolyte from the liquid level upper layer.

本発明に係る電解液の濃度均質化方法及び電解槽によれば、電解槽の長手方向の一端部側から電解液の上層部と下層部のそれぞれへ電解液を給液することとしたのでこれまで金属イオンの濃度の低下が起こりやすかった電解槽の給液側端部付近の電解液上層部も給液濃度に近づけることができるという効果がある。これにより、電解液上層部の金属イオンの電着も良好となり目的金属の品質を向上させることができるという効果がある。   According to the electrolytic solution concentration homogenizing method and the electrolytic cell according to the present invention, the electrolytic solution is supplied from one end side in the longitudinal direction of the electrolytic cell to each of the upper layer part and the lower layer part of the electrolytic solution. Thus, there is an effect that the electrolyte solution upper layer portion near the liquid supply side end of the electrolytic cell, in which the metal ion concentration is likely to decrease, can be brought close to the liquid supply concentration. Thereby, the electrodeposition of the metal ions in the upper part of the electrolytic solution is improved, and the quality of the target metal can be improved.

また、本発明に係る電解液の濃度均質化方法及び電解槽によれば、電解液の液面付近の金属イオン濃度の低下を防ぐために給液量を無理に増やす必要がないので電解槽底部に沈殿しているアノードスライムの巻き上げを防止でき、より高品位の金属を生産できるという効果がある。   In addition, according to the electrolytic solution concentration homogenizing method and the electrolytic cell according to the present invention, it is not necessary to increase the amount of liquid supply to prevent a decrease in the metal ion concentration near the surface of the electrolytic solution. There is an effect that it is possible to prevent the precipitation of the precipitated anode slime and to produce a higher quality metal.

以下、本発明に係る電解液の濃度均質化方法及び電解槽の好ましい一実施形態について図面を参照しつつ詳細に説明する。図1は本発明に係る電解液の濃度均質化方法を実施するための電解槽の一例を示す側面断面図、図2は平面図である。   Hereinafter, a preferred embodiment of an electrolytic solution concentration homogenizing method and an electrolytic cell according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a side sectional view showing an example of an electrolytic cell for carrying out the concentration homogenization method for an electrolytic solution according to the present invention, and FIG. 2 is a plan view.

図示された電解槽1は、上部が開放された直方体形状をなしており、外側にコンクリート製の外槽1aと、その内側に合成樹脂製の内槽1bが配置されて構成されている。そして、電解槽1の内部には電解液3が蓄えられている。電解液3中には、陽極板Aと陰極板Kが交互に平行になるように並べて配置されている。陽極板Aは、例えば銅精製の場合、銅を鋳造することによって形成されており、上部側の左右の両端部に外側に突き出すようにして形成された図示しない耳部を備え、この両耳部を電解槽1の両側壁に掛止し、且つ、電解槽1の側壁上部に配線された図示しない電極に接触させるようにして電解液3中に浸漬されている。一方、陰極板Kは、例えば、長方形をした薄いSUS板の上部を図示しない金属製のリボンにより図示しない電極支持用竿に吊り下げられ、この図示しない電極支持用竿を電解槽1の両側壁に掛止すると共に、電解槽1の側壁上部に配線された図示しない電極に接触させるようにして電解液3中に浸漬されている。これにより、陽極板A及び陽極に直流電流を流すことによって陽極板A側から目的金属を電解液中に溶解させ、陰極板K上に析出させることによって目的金属の精製が行われる。   The illustrated electrolytic cell 1 has a rectangular parallelepiped shape with an open top, and is configured such that a concrete outer tub 1a is disposed on the outer side and a synthetic resin inner tub 1b is disposed on the inner side. An electrolytic solution 3 is stored inside the electrolytic cell 1. In the electrolytic solution 3, anode plates A and cathode plates K are arranged side by side so as to be alternately parallel. For example, in the case of copper refining, the anode plate A is formed by casting copper. The anode plate A includes ears (not shown) formed so as to protrude outward at both left and right ends on the upper side. Is immersed in the electrolytic solution 3 so as to be hooked on both side walls of the electrolytic cell 1 and in contact with an electrode (not shown) wired on the upper side of the side wall of the electrolytic cell 1. On the other hand, the cathode plate K is suspended from an electrode support rod (not shown) by a metal ribbon (not shown) on a thin SUS plate having a rectangular shape, for example. And is immersed in the electrolytic solution 3 so as to be in contact with an electrode (not shown) wired on the upper side wall of the electrolytic cell 1. Thus, the target metal is purified by dissolving the target metal in the electrolytic solution from the anode plate A side by flowing a direct current through the anode plate A and the anode and depositing it on the cathode plate K.

電解槽1の長手方向の一方側の端部10(図1及び図2における左側の端部)には成分調整された電解液を給液するための給液手段である給液ポケット20が配置されている。そして、それとは反対側の電解槽1の端部12側には、図1に示すように、電解液3をその上層部から排液するための排液路30が立設されている。   A liquid supply pocket 20 which is a liquid supply means for supplying the electrolytic solution whose component has been adjusted is disposed at one end 10 (the left end in FIGS. 1 and 2) in the longitudinal direction of the electrolytic cell 1. Has been. And as shown in FIG. 1, the drainage path 30 for draining the electrolyte solution 3 from the upper layer part is standingly arranged in the edge part 12 side of the electrolytic cell 1 on the opposite side.

給液ポケット20は、上部側及び下部側が開放した内部に空間部を有する四角筒形状をなしており、その一面が電解槽1の端部10側の樹脂槽側の内槽1bに固定されている。そして、上部開口部21側から電解液3を供給することにより下部開口部22側から電解槽1内に新鮮な電解液3が給液されるようになっている。給液ポケット20は、さらに図4に示すように、その表面に孔部23が穿設されており、給液される電解液3の一部が孔部23から流出するようになっており、この孔部23からも電解槽1内に新たな電解液3が給液されるようになっている。これにより、電解液3の上層部にも給液された電解液3が流れるので液面近くの金属イオン濃度を給液濃度に近づけることができる。   The liquid supply pocket 20 has a rectangular tube shape having a space inside the open upper and lower sides, and one surface thereof is fixed to the inner tank 1b on the resin tank side on the end 10 side of the electrolytic cell 1. Yes. Then, by supplying the electrolytic solution 3 from the upper opening 21 side, the fresh electrolytic solution 3 is supplied into the electrolytic cell 1 from the lower opening 22 side. As shown in FIG. 4, the liquid supply pocket 20 further has a hole 23 formed on the surface thereof, and a part of the supplied electrolyte 3 flows out of the hole 23. A new electrolytic solution 3 is supplied into the electrolytic cell 1 also from the hole 23. Thereby, since the supplied electrolyte 3 flows also in the upper layer part of the electrolyte 3, the metal ion concentration near the liquid surface can be brought close to the supply concentration.

電解槽1内の上層部側への給液量は、全体の給液量に対して約3〜5%となるようにすることが好ましい。そのため、給液ポケット20に設ける孔部23は、少なくとも1箇所、好ましくは電解槽1の幅方向に沿って複数個所に設けるのがよい。そして、孔部23は、電解槽1内に蓄えられた電解液3の液面から約30〜70mmの深さに位置するように配置することが好ましい。また、孔部23のサイズは直径約10〜30mm程度が好ましい。孔部23をこのように形成することにより給液量の3〜5%を電解槽1の上層部側に給液することが可能となる。   The amount of liquid supplied to the upper layer side in the electrolytic cell 1 is preferably about 3 to 5% with respect to the total amount of liquid supplied. Therefore, the hole 23 provided in the liquid supply pocket 20 is preferably provided at least at one place, preferably at a plurality of places along the width direction of the electrolytic cell 1. And it is preferable to arrange | position the hole part 23 so that it may be located in the depth of about 30-70 mm from the liquid level of the electrolyte solution 3 stored in the electrolytic cell 1. FIG. The size of the hole 23 is preferably about 10 to 30 mm in diameter. By forming the hole 23 in this manner, 3 to 5% of the liquid supply amount can be supplied to the upper layer side of the electrolytic cell 1.

以上のような構成を備えた電解槽1により銅の精製を行った結果を図5に示す。これは、給液ポケット20側から順に配設された陽極板A(アノード)の数とその位置における電解液3の上層部の銅濃度との関係について示したグラフである。本発明に係る電解液の濃度均質化方法及び電解槽の実施前(改善前)に比べて実施後(改善後)における銅濃度がいずれの場所でも高くなっているが、給液ポケット20に近い側において銅濃度の上昇率が高くなっており、濃度の不均衡が改善されていることがわかる。また、電解液3は、陽極板A及び陰極板Kの両側(図2に示された矢印)方向からも流れることから、従来は、あまり幅広の電極板を使用するとその流れを阻害してしまい更なる濃度不均一を招くおそれがあるため使用できなかったが、本発明によればそのような電解液3の濃度風均一化を防止できるので幅広の電極板を使用することができ、これまでより増産を図ることが可能となる。   The result of refining copper by the electrolytic cell 1 having the above configuration is shown in FIG. This is a graph showing the relationship between the number of anode plates A (anodes) arranged in order from the liquid supply pocket 20 side and the copper concentration of the upper layer portion of the electrolytic solution 3 at that position. The copper concentration after implementation (after improvement) is higher than that before implementation (before improvement) of the electrolytic solution concentration homogenization method and the electrolytic cell according to the present invention, but close to the supply pocket 20 On the side, the increase rate of the copper concentration is high, and it can be seen that the concentration imbalance is improved. In addition, since the electrolyte 3 also flows from both sides of the anode plate A and the cathode plate K (arrows shown in FIG. 2), conventionally, if a very wide electrode plate is used, the flow is obstructed. Although it could not be used because it may cause further concentration non-uniformity, according to the present invention, it is possible to use such a wide electrode plate because it is possible to prevent such uniform concentration of the electrolyte 3 from being generated. It is possible to increase production.

外槽1aの幅サイズ:1,110mm
内槽1bの幅サイズ:1,060mm
陰極板Kのサイズ :1050mm×960mm
上記の条件において銅の電解精製を行い、そのときの給液ポケット20に設ける孔部23と液面からの深さ約20〜30mmの液面上層部の銅濃度との関係について実験により確かめた。その結果を以下に示す。尚、孔部23の直径はいずれも20mmとした。

孔の数(給液量(%)) 給液側上部のCu(g/l)
0 31.8 比較例1
1(1%) 36.0 本発明1
2(2%) 37.7 本発明2
3(3%) 42.4 本発明3

上記の如く、孔を空けると、給液側上部の銅濃度が、上昇し、特に本発明3に示すように、3個開けた場合、給液量が3%となり、望ましい銅濃度40g/l以上と成った。
Width of outer tank 1a: 1,110mm
Inner tank 1b width size: 1,060 mm
Size of cathode plate K: 1050 mm × 960 mm
Copper was subjected to electrolytic refining under the above conditions, and the relationship between the hole 23 provided in the liquid supply pocket 20 at that time and the copper concentration in the upper portion of the liquid surface having a depth of about 20 to 30 mm from the liquid surface was confirmed by experiments. . The results are shown below. The diameter of each hole 23 was 20 mm.

Number of holes (Liquid supply amount (%)) Cu on the liquid supply side
0 31.8 Comparative Example 1
1 (1%) 36.0 Invention 1
2 (2%) 37.7 Invention 2
3 (3%) 42.4 Invention 3

As described above, when a hole is made, the copper concentration at the upper part of the liquid supply side increases. In particular, as shown in the present invention 3, when three holes are opened, the liquid supply amount is 3%, and the desired copper concentration is 40 g / l. That's it.

以上のように、孔部23を電解槽1の幅方向に沿って複数設けることにより電解液3の上層部における銅濃度の低下が防止されることが分かる。   As described above, it can be seen that by providing a plurality of holes 23 along the width direction of the electrolytic cell 1, a decrease in the copper concentration in the upper layer portion of the electrolytic solution 3 is prevented.

本発明に係る電解槽の一実施形態を示す側面断面図である。It is side surface sectional drawing which shows one Embodiment of the electrolytic cell which concerns on this invention. 図1に示した電解槽の平面図である。It is a top view of the electrolytic cell shown in FIG. 給液ポケットの正面図である。It is a front view of a liquid supply pocket. 給液ポケットの斜視図である。It is a perspective view of a liquid supply pocket. 電解液上層部における孔部と銅濃度の関係を示したグラフである。It is the graph which showed the relationship between the hole part in an electrolyte upper layer part, and copper concentration.

符号の説明Explanation of symbols

1 電解槽
1a 外槽
1b 内槽
3 電解液
10 電解槽端部
12 電解槽端部
20 給液ポケット
21 上部開口部
23 孔部
30 排液路
A 陽極板
K 陰極板
DESCRIPTION OF SYMBOLS 1 Electrolytic tank 1a Outer tank 1b Inner tank 3 Electrolytic solution 10 Electrolytic cell end 12 Electrolytic cell end 20 Liquid supply pocket 21 Upper opening 23 Hole 30 Drainage path A Anode plate K Cathode plate

Claims (2)

電解槽内に貯えられた電解液中に陰極板と陽極板が当該電解槽の両側壁に掛止された状態で交互に浸漬されている当該電解槽の長手方向の一端側の内壁面に配置され上部側及び下部側が開放した内部空間を有すると共に、電解槽内の上層部側へ電解液を供給するために直径が10〜30mmで、電解液面から30〜70mmの深さに位置するようにして電解槽の幅方向に沿って複数箇所に設けられた孔部を有する給液ポケットの上部開口部から電解液を供給することにより前記孔部から給液量の3〜5%を前記電解液の上層部へ、それ以外を下部開口部から前記電解液の下層部へそれぞれ新たな電解液を供給しつつ、それとは反対側の端部近傍の液面上層部から排液することを特徴とする電解液の濃度均質化方法。 In the electrolyte stored in the electrolytic cell , the cathode plate and the anode plate are alternately immersed in a state of being hooked on both side walls of the electrolytic cell. It is arranged, as well as have the internal space in which the upper side and the lower side opened, with a diameter to supply electrolyte to the upper portion of the electrolytic cell is 10 to 30 mm, a depth of 30~70mm from the electrolyte surface 3-5% of the amount of liquid supplied from the hole by supplying the electrolyte from the upper opening of the liquid supply pocket having holes provided at a plurality of locations along the width direction of the electrolytic cell so as to be positioned While supplying new electrolyte to the upper layer of the electrolyte and from the lower opening to the lower layer of the electrolyte, the other is drained from the upper surface near the end opposite to the electrolyte. A method for homogenizing the concentration of an electrolytic solution. 電解槽内に貯えられた電解液中に陰極板と陽極板が当該電解槽の両側壁に掛止された状態で交互に浸漬されている当該電解槽の長手方向の一端側の内壁面に配置され、上部側及び下部側が開放した内部空間を有すると共に、電解槽内の上層部側へ電解液を供給するために直径が10〜30mmで、電解液面から30〜70mmの深さに位置するようにして電解槽の幅方向に沿って複数箇所に設けられた孔部を有する給液ポケットであって、上部開口部から電解液を供給することにより前記孔部から給液量の3〜5%を前記電解液の上層部へ、それ以外を下部開口部から前記電解液の下層部へそれぞれ新たな電解液を供給する給液ポケットを備えた給液手段と、そして、
前記給液手段が設けられた側とは反対側の前記電解槽の端部側に配置され、電解液を液面上層部から排液する排液手段と、
を備えてなることを特徴とする電解槽。
In the electrolyte stored in the electrolytic cell , the cathode plate and the anode plate are alternately immersed in a state of being hooked on both side walls of the electrolytic cell. It has an internal space where the upper side and the lower side are open and has a diameter of 10 to 30 mm and a depth of 30 to 70 mm from the electrolyte surface in order to supply the electrolyte to the upper layer side in the electrolytic cell. to way along the width direction of the electrolytic cell a supply fluid pocket having a hole provided in a plurality of locations, 3 of the liquid supply amount from the hole by supplying the electrolytic solution from the upper opening A liquid supply means having a liquid supply pocket for supplying 5% of the electrolyte to the upper layer of the electrolyte and the other from the lower opening to the lower layer of the electrolyte ; and
A drainage means disposed on the end side of the electrolytic cell opposite to the side on which the liquid supply means is provided, and drains the electrolyte from the upper surface of the liquid surface;
An electrolytic cell comprising:
JP2006022234A 2006-01-31 2006-01-31 Method for homogenizing electrolyte concentration and electrolytic cell Active JP4342522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006022234A JP4342522B2 (en) 2006-01-31 2006-01-31 Method for homogenizing electrolyte concentration and electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006022234A JP4342522B2 (en) 2006-01-31 2006-01-31 Method for homogenizing electrolyte concentration and electrolytic cell

Publications (2)

Publication Number Publication Date
JP2007204779A JP2007204779A (en) 2007-08-16
JP4342522B2 true JP4342522B2 (en) 2009-10-14

Family

ID=38484498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022234A Active JP4342522B2 (en) 2006-01-31 2006-01-31 Method for homogenizing electrolyte concentration and electrolytic cell

Country Status (1)

Country Link
JP (1) JP4342522B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6364920B2 (en) * 2014-04-23 2018-08-01 三菱マテリアル株式会社 Electrolytic refining method
JP2018168405A (en) * 2017-03-29 2018-11-01 Jx金属株式会社 Apparatus for electrolysis, and method for electrolysis using the same

Also Published As

Publication number Publication date
JP2007204779A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP7150768B2 (en) Electrolysis apparatus and electrolysis method
CN101397691B (en) Apparatus and technology for controlling and improving plating solution PH value on fingerprint resistant production chain
JP2017057508A (en) Electrolytic refining method of metal, electrolytic refining apparatus
AU2008291662A1 (en) Method for operating copper electrolysis cells
JP2021120478A (en) Electrolysis device and electrolysis method
JP6065706B2 (en) Electrolytic purification method of metal, electrolytic purification equipment
JP2002105684A (en) Electrolytic method, and electrolytic tank used therefor
JP4342522B2 (en) Method for homogenizing electrolyte concentration and electrolytic cell
JP5085474B2 (en) Method for electrolytic purification of copper
JP6364920B2 (en) Electrolytic refining method
US20240060202A1 (en) Optimized method and device for insoluble anode acid sulfate copper electroplating process
JP3903120B2 (en) Copper sulfate plating method
WO2020204003A1 (en) Electrolysis apparatus and electrolysis method
US3799850A (en) Electrolytic process of extracting metallic zinc
JP7002494B2 (en) Electrolyzer and electrolysis method
JP7048941B2 (en) Copper electrolytic refining method
JP2020164962A (en) Electrolyzer and electrolysis method
CN110382744B (en) Metal inert anode for the production of aluminium by electrolysis of a melt
JP7023156B2 (en) How to recover metallic indium
JP6507060B2 (en) Liquid level adjustment device
JP7309123B2 (en) Method for supplying electrolyte to electrolytic cell for electrorefining
JP6929320B2 (en) Electrolyzer and electrolysis method
JP6962960B2 (en) Electrolyzer and electrolysis method
JP7146174B2 (en) Electrolyte drainage method in electrorefining
JPS62139900A (en) Electrolytic plating device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4342522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140717

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250