JP2020164962A - Electrolyzer and electrolysis method - Google Patents

Electrolyzer and electrolysis method Download PDF

Info

Publication number
JP2020164962A
JP2020164962A JP2019069353A JP2019069353A JP2020164962A JP 2020164962 A JP2020164962 A JP 2020164962A JP 2019069353 A JP2019069353 A JP 2019069353A JP 2019069353 A JP2019069353 A JP 2019069353A JP 2020164962 A JP2020164962 A JP 2020164962A
Authority
JP
Japan
Prior art keywords
electrolytic
electrolytic solution
electrolytic cell
liquid supply
drainage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019069353A
Other languages
Japanese (ja)
Other versions
JP6967032B2 (en
Inventor
大輔 手塚
Daisuke Tezuka
大輔 手塚
明 會澤
Akira Aizawa
明 會澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019069353A priority Critical patent/JP6967032B2/en
Priority to CN202080024892.2A priority patent/CN113631762B/en
Priority to PCT/JP2020/014682 priority patent/WO2020204003A1/en
Publication of JP2020164962A publication Critical patent/JP2020164962A/en
Application granted granted Critical
Publication of JP6967032B2 publication Critical patent/JP6967032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

To provide an electrolyzer and an electrolysis method, in which an electrolytic solution may be more uniformly supplied over the entire chamber so as to improve a mixed state of the electrolytic solution.SOLUTION: There is provided an electrolyzer in which electrodes arranged at intervals along the longitudinal direction of an electrolytic chamber 1 storing an electrolytic solution are immersed in the electrolytic solution so as to an execute electrolytic treatment while circulating the electrolytic solution. The electrolyzer comprises: a liquid supply pipe 2 that extends along a first side wall 11 of the electrolytic chamber 1 extending in a direction X and supplies the electrolytic solution from a plurality of liquid supply ports 21a to 23x arranged at intervals from each other toward a second side wall 12 facing the first side wall 11; a drainage pipe 3 that is arranged below the liquid supply pipe 2, extends along the second side wall 12 and drains the electrolytic solution from a plurality of liquid discharge ports 31a to 31x arranged at intervals from each other; and a drainage unit 30 that drains the electrolytic solution drained by the drainage pipe 3 to the outside of the electrolytic chamber 1. The liquid supply pipe 2 comprises two or more pipes 21, 22 and 23 that may independently supply the electrolytic solution to at least the upstream side and the downstream side of the electrolytic chamber 1.SELECTED DRAWING: Figure 3

Description

本発明は、電解装置及び電解方法に関する。 The present invention relates to an electrolyzer and an electrolyzer.

従来の電解装置では、電解槽の長手方向の一端側の下部から電解液が供給され、他端側の上部から電解液が排液される下入れ上抜き方式と呼ばれる電解液の給排液が行われてきた。電解槽内の液組成及び添加剤濃度を均一に保つことは、例えば電気銅の品質及び電解成績を向上させるために重要な技術の一つであり、これまで色々な方法が検討されている。 In the conventional electrolytic cell, the electrolytic solution is supplied from the lower part on one end side in the longitudinal direction of the electrolytic cell, and the electrolytic solution is discharged from the upper part on the other end side. It has been done. Keeping the liquid composition and additive concentration in the electrolytic cell uniform is one of the important techniques for improving the quality of electrolytic copper and the electrolytic performance, for example, and various methods have been studied so far.

例えば、特開2007−204779号公報(特許文献1)には、電解槽の長手方向の一端側から電解液の上層部及び下層部へ電解液を給液し、反対側の端部側の液面上層部から排液する方法が提案されている。特開2015−209550号公報(特許文献2)には、電解槽の長手方向の一端の上部から電解液が側面に向けて給液され、他端の下部から排液される方法が提案されている。また、全く別の方法として、特開2014−189851号公報(特許文献3)及び特許第5227404号公報(特許文献4)には、電解槽の底や電解槽脇から電解液を給液する方法が提案されている。 For example, in Japanese Patent Application Laid-Open No. 2007-204779 (Patent Document 1), the electrolytic solution is supplied from one end side in the longitudinal direction of the electrolytic cell to the upper layer portion and the lower layer portion of the electrolytic cell, and the liquid on the opposite end side. A method of draining liquid from the upper layer has been proposed. Japanese Unexamined Patent Publication No. 2015-209550 (Patent Document 2) proposes a method in which an electrolytic solution is supplied toward a side surface from the upper part of one end in the longitudinal direction of an electrolytic cell and drained from the lower part of the other end. There is. Further, as a completely different method, Japanese Patent Application Laid-Open No. 2014-189851 (Patent Document 3) and Japanese Patent No. 5227404 (Patent Document 4) provide a method of supplying an electrolytic solution from the bottom of the electrolytic cell or the side of the electrolytic cell. Has been proposed.

特開2007−204779号公報JP-A-2007-204779 特開2015−209550号公報JP-A-2015-209550 特開2014−189851号公報Japanese Unexamined Patent Publication No. 2014-189851 特許第5227404号公報Japanese Patent No. 5227404

しかしながら、電解が進むと電解槽内に液の濃度差が生まれ、電解槽底へいくほど比重の重い液が溜まる。給液口から給液された液は、電解槽底の液より比重が軽いため、特許文献1及び2に記載されるような下入れ上抜き方式の電解液の給排液を行った場合には、給液位置より下方に電解液や添加剤が供給されないデッドスペースが生じる。電解槽内に添加剤が供給されない領域が生じると電着物の表面が荒れる場合や、電解液が供給されないことによって液中の銅濃度が部分的に上昇して不動態化が起こりやすくなる場合がある。 However, as the electrolysis progresses, a difference in the concentration of the liquid is generated in the electrolytic cell, and the liquid having a heavier specific gravity accumulates toward the bottom of the electrolytic cell. Since the liquid supplied from the liquid supply port has a lower specific gravity than the liquid at the bottom of the electrolytic cell, when the electrolyte liquid of the bottom-in / top-draining method as described in Patent Documents 1 and 2 is supplied / discharged. There is a dead space below the liquid supply position where the electrolyte and additives are not supplied. If there is a region in the electrolytic cell where no additive is supplied, the surface of the electrodeposited material may become rough, or the copper concentration in the liquid may partially increase due to the absence of the electrolyte, and passivation may easily occur. is there.

特許文献3に記載された発明では、電解槽の下方且つカソードの側方から電解液を供給し、電解槽の上部の電解液排出口から電解液を排液することで、排液側の電解槽底部の銅濃度上昇を防ぐことはできる。しかしながら、給液側は、従来と同様に上方から供給されているため、給液側の電解槽下方には電解液が供給されないデッドスペースが生じ、電解槽内の混合状態を十分に改善できているとはいえない。 In the invention described in Patent Document 3, the electrolytic solution is supplied from below the electrolytic cell and from the side of the cathode, and the electrolytic solution is discharged from the electrolytic cell discharge port at the upper part of the electrolytic cell, whereby electrolysis on the drain side is performed. It is possible to prevent an increase in the copper concentration at the bottom of the tank. However, since the liquid supply side is supplied from above as in the conventional case, a dead space in which the electrolytic solution is not supplied is generated below the electrolytic cell on the liquid supply side, and the mixed state in the electrolytic cell can be sufficiently improved. It cannot be said that there is.

特許文献4に記載された発明では、電解槽の底及び電解槽脇から電解液を供給することにより、電解槽内の電解液の混合状態を改善することができる。しかしながら、特許文献4では、電解液を下方から上方へと強制的に対流させることにより、殿物の巻き上げなどによるカソードの汚染の問題が発生するおそれがある。 In the invention described in Patent Document 4, the mixed state of the electrolytic cell in the electrolytic cell can be improved by supplying the electrolytic cell from the bottom of the electrolytic cell and the side of the electrolytic cell. However, in Patent Document 4, by forcibly convection of the electrolytic solution from the lower side to the upper side, there is a possibility that a problem of cathode contamination due to winding up of the palace may occur.

本発明者らは、殿物の巻き上げを抑制しながら電解槽内へ給液される電解液の混合状態を改善する有効な方法として、電解槽の長手方向の側壁上部に供給配管を配置し、長手方向反対側に対向する側壁の下部に排液配管を配置し、長手方向に沿って等間隔に設けられた複数の給液口から給液を行うことを検討した。しかしながら、給液配管の長さが長くなるにつれて給液配管の根元の方ほど電解液が多く供給され、配管の先端にいくほど給液量が少なくなり、槽内全体にわたって均一に給液できない場合があることが分かった。これにより、特に、電解液に添加される添加剤の濃度均一性が十分に得られない場合がある。 The present inventors have arranged a supply pipe in the upper part of the side wall in the longitudinal direction of the electrolytic cell as an effective method for improving the mixed state of the electrolytic cell supplied into the electrolytic cell while suppressing the hoisting of the drainage. It was considered that the drainage pipe was arranged at the lower part of the side wall facing the opposite side in the longitudinal direction, and the liquid was supplied from a plurality of liquid supply ports provided at equal intervals along the longitudinal direction. However, as the length of the liquid supply pipe becomes longer, more electrolytic solution is supplied toward the base of the liquid supply pipe, and the amount of liquid supply decreases toward the tip of the pipe, making it impossible to supply liquid uniformly throughout the tank. It turned out that there is. As a result, in particular, the concentration uniformity of the additive added to the electrolytic solution may not be sufficiently obtained.

上記課題を鑑み、本開示は、槽内全体に渡ってより均一に電解液を給液でき、電解液の混合状態を改善することが可能な電解装置及び電解方法を提供する。 In view of the above problems, the present disclosure provides an electrolyzer and an electrolyzing method capable of more uniformly supplying the electrolytic solution over the entire tank and improving the mixed state of the electrolytic solution.

本発明の実施の形態に係る電解装置は一実施態様において、電解液を収容する電解槽の長手方向に沿って互いに間隔を空けて配置された電極を電解液中に浸漬し、電解液を循環しながら電解処理する電解装置であって、長手方向に延びる電解槽の第1の側壁に沿って延び、互いに間隔を空けて配置された複数の給液口から第1の側壁と対向する電解槽の第2の側壁に向けて電解液を給液する給液配管と、給液配管よりも下方に配置され、第2の側壁に沿って延び、互いに間隔を空けて配置された複数の排液口から電解液を排液する排液配管と、排液配管によって排液された電解液を電解槽外へ排液する排液部とを備え、給液配管が、電解槽の少なくとも上流側及び下流側に対して電解液をそれぞれ独立して給液可能な2本以上の配管部を備えることを特徴とする電解装置である。 In one embodiment, the electrolytic apparatus according to the embodiment of the present invention circulates the electrolytic solution by immersing electrodes arranged at intervals along the longitudinal direction of the electrolytic solution containing the electrolytic solution in the electrolytic solution. It is an electrolyzer that performs electrolysis treatment while being electrolyzed, and is an electrolyzer that extends along the first side wall of the electrolytic tank that extends in the longitudinal direction and faces the first side wall from a plurality of liquid supply ports that are arranged at intervals from each other. A liquid supply pipe that supplies the electrolytic solution toward the second side wall, and a plurality of drainage pipes that are arranged below the liquid supply pipe, extend along the second side wall, and are arranged at intervals from each other. It is provided with a drainage pipe for draining the electrolytic solution from the mouth and a drainage section for draining the electrolytic solution drained by the drainage pipe to the outside of the electrolytic tank, and the liquid supply pipe is at least upstream of the electrolytic tank and The electrolytic apparatus is provided with two or more piping portions capable of independently supplying an electrolytic solution to the downstream side.

本発明の実施の形態に係る電解方法は一実施態様において、電解液中に浸漬し、電解液を循環しながら電解処理する電解方法であって、長手方向に延びる電解槽の第1の側壁に沿って延び、少なくとも電解槽の上流側及び下流側に対して電解液をそれぞれ独立して給液可能な2本以上の配管部を備える給液配管に設けられた複数の給液口から第1の側壁と対向する電解槽の第2の側壁側に向けて電解液を給液し、給液配管よりも下方に配置され、第2の側壁に沿って延び、互いに間隔を空けて配置された複数の排液口を備える排液配管内に電解液を排液し、排液配管内に排液された電解液を電解槽外へ排液することを含む電解方法である。 In one embodiment, the electrolysis method according to the embodiment of the present invention is an electrolysis method in which an electrolyzer is immersed in an electrolytic solution and electrolyzed while circulating the electrolytic solution, and is formed on a first side wall of an electrolytic tank extending in the longitudinal direction. First from a plurality of liquid supply ports provided in a liquid supply pipe having two or more piping portions extending along the line and capable of independently supplying the electrolytic solution to at least the upstream side and the downstream side of the electrolytic tank. The electrolytic solution was supplied toward the second side wall side of the electrolytic tank facing the side wall of the electrolytic solution, and was arranged below the liquid supply pipe, extended along the second side wall, and arranged at a distance from each other. This is an electrolysis method including draining an electrolytic solution into a drainage pipe provided with a plurality of drainage ports and draining the electrolytic solution drained into the drainage pipe to the outside of the electrolytic tank.

本開示によれば、槽内全体に渡ってより均一に電解液を給液でき、電解液の混合状態を改善することが可能な電解装置及び電解方法が提供できる。 According to the present disclosure, it is possible to provide an electrolyzer and an electrolyzing method capable of supplying an electrolytic solution more uniformly over the entire tank and improving a mixed state of the electrolytic solution.

図1(a)は、本発明の実施の形態に係る電解装置の上面概略図であり、図1(b)は、本発明の実施の形態に係る電解装置の断面概略図である。FIG. 1A is a schematic top view of the electrolyzer according to the embodiment of the present invention, and FIG. 1B is a schematic cross-sectional view of the electrolyzer according to the embodiment of the present invention. 給液配管を1本で構成した場合の電解液へ添加されるニカワ等の添加剤の電解槽1長手方向に沿った濃度分布のシミュレーション結果の例を表す説明図である。It is explanatory drawing which shows the example of the simulation result of the concentration distribution along the electrolytic cell 1 longitudinal direction of the additive such as Nikawa added to the electrolytic solution when the liquid supply pipe is composed of one. 本発明の実施の形態に係る給液配管の配置例を表す平面図である。It is a top view which shows the arrangement example of the liquid supply pipe which concerns on embodiment of this invention. 給液配管が備える給液口及び排液配管が備える排液口を示す説明図である。It is explanatory drawing which shows the liquid supply port provided in the liquid supply pipe, and the drainage port provided in the drainage pipe. 給液部と排液ボックスを表す断面概略図である。It is sectional drawing which shows the liquid supply part and the drainage box. 給液部と排液ボックスを表す上面概略図である。It is a top view which shows the liquid supply part and the drainage box. 排液ボックスが備える切り欠き部を表す側面概略図である。It is a side schematic view which shows the notch part provided in the drainage box. 図8(a)は、本実施例に係る電解槽の長手方向に沿った中央部断面Cu濃度分布のシミュレーション結果を示し、図8(b)は、本実施例に係る電解槽の中央部の電極間断面Cu濃度分布を表し、図8(c)は、本実施例に係る電解槽の長手方向に沿った中央部断面ニカワ濃度分布のシミュレーション結果を示し、図8(d)は、本実施例に係る電解槽の中央部の電極間断面ニカワ濃度分布を表す説明図である。FIG. 8 (a) shows the simulation result of the Cu concentration distribution in the central portion along the longitudinal direction of the electrolytic cell according to the present embodiment, and FIG. 8 (b) shows the simulation result of the central portion of the electrolytic cell according to the present embodiment. The cross-electrode Cu concentration distribution is shown, FIG. 8 (c) shows the simulation result of the central cross-section Nikawa concentration distribution along the longitudinal direction of the electrolytic cell according to the present embodiment, and FIG. 8 (d) shows the present implementation. It is explanatory drawing which shows the cross-electrode Nikawa concentration distribution of the central part of the electrolytic cell which concerns on an example. 本実施例に係る電解装置の電解槽内のニカワ濃度の濃度分布を表すイメージ図である。It is an image figure which shows the density distribution of the Nikawa concentration in the electrolytic cell of the electrolytic cell which concerns on this Example.

以下、図面を参照しながら本発明の実施の形態に係る電解装置及び電解方法について説明する。なお、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、各構成部品の構造、配置及び手順等を下記のものに特定するものではない。 Hereinafter, the electrolysis apparatus and the electrolysis method according to the embodiment of the present invention will be described with reference to the drawings. The embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention includes the structure, arrangement, procedure, etc. of each component. Is not specified as the following.

(電解装置)
本発明の実施の形態に係る電解装置は、図1(a)及び図1(b)に示すように、電解液を収容するための直方体状の電解槽1を備える。電解槽1のサイズとしては、例えば、電解槽1の長さ(長手方向Xの内径)が5200〜5900mm、幅(短手方向Yの内径)が1095〜1110mm、深さが1275〜1510mmとなるように形成することができる。
(Electrolyzer)
As shown in FIGS. 1 (a) and 1 (b), the electrolyzer according to the embodiment of the present invention includes a rectangular parallelepiped electrolytic cell 1 for accommodating the electrolytic solution. The size of the electrolytic cell 1 is, for example, a length (inner diameter in the longitudinal direction X) of 5200 to 5900 mm, a width (inner diameter in the lateral direction Y) of 1095 to 1110 mm, and a depth of 1275 to 1510 mm. Can be formed as follows.

電解槽1は、長手方向Xに平行な方向に延びる第1の側壁11と、第1の側壁11に対向する第2の側壁12と、長手方向Xの一端において第1の側壁11及び第2の側壁12に垂直に延びる第3の側壁13及び長手方向Xの他端において第1の側壁11及び第2の側壁12に垂直に延び、第3の側壁13に対向する第4の側壁14を有する。 The electrolytic cell 1 includes a first side wall 11 extending in a direction parallel to the longitudinal direction X, a second side wall 12 facing the first side wall 11, and a first side wall 11 and a second side wall 11 at one end in the longitudinal direction X. A third side wall 13 extending perpendicularly to the side wall 12 and a fourth side wall 14 extending perpendicularly to the first side wall 11 and the second side wall 12 at the other end in the longitudinal direction X and facing the third side wall 13. Have.

図1(b)に示すように、電解槽1の第1の側壁11の上方には、電解槽1内に収容される電解液の液面もしくは液面近傍となる高さにおいて電解槽1の長手方向Xに沿って延びる給液配管2が配置されている。給液配管2は、電解槽1の第3の側壁13の上方に配置された供給部20に接続されている。供給部20は、図1(a)及び図1(b)に示す電解槽1の他に、電解槽1以外の他の電解槽に対しても電解液を給液することが可能な給液主管と、供給主管から給液配管2へ電解液を分岐させる分岐配管とを備えることができるが、この例に制限されないことは勿論である。 As shown in FIG. 1 (b), above the first side wall 11 of the electrolytic cell 1, the electrolytic cell 1 is located at a height close to or near the liquid level of the electrolytic cell housed in the electrolytic cell 1. A liquid supply pipe 2 extending along the longitudinal direction X is arranged. The liquid supply pipe 2 is connected to a supply unit 20 arranged above the third side wall 13 of the electrolytic cell 1. The supply unit 20 can supply the electrolytic solution to other electrolytic cells other than the electrolytic cell 1 in addition to the electrolytic cell 1 shown in FIGS. 1 (a) and 1 (b). A main pipe and a branch pipe for branching the electrolytic solution from the supply main pipe to the liquid supply pipe 2 can be provided, but of course, the present invention is not limited to this example.

給液配管2には、長手方向Xに沿って複数の給液口21a、21b・・・21xが好ましくは等間隔に設けられている。電解液の混合状態を改善するためには、複数の給液口21a、21b・・・21xは、電解液面から400mm以内の高さ、より好ましくは200mm以内の高さ、さらに好ましくは50mm以内の高さに配置されることが好ましい。 The liquid supply pipe 2 is preferably provided with a plurality of liquid supply ports 21a, 21b ... 21x along the longitudinal direction X at equal intervals. In order to improve the mixed state of the electrolytic solution, the plurality of liquid supply ports 21a, 21b ... 21x have a height within 400 mm, more preferably a height within 200 mm, and further preferably within 50 mm from the electrolytic solution surface. It is preferably arranged at the height of.

給液配管2は、電解液の供給流量を20〜100L/分となるように電解槽1内へ供給することが好ましい。電解液の供給流量が20L/分未満では添加剤が電解槽1内に行き渡る前に分解してしまい、電着した金属の平滑性が損なわれる場合や、不動態化を起こす場合がある。電解液の供給流量は電解効率の面から高い方が好ましいが、電解液の供給流量が100L/分を超えると、電解槽1内の殿物が巻き上げられてカソード板表面へ付着する場合がある。 The liquid supply pipe 2 preferably supplies the electrolytic solution into the electrolytic cell 1 so that the supply flow rate of the electrolytic solution is 20 to 100 L / min. If the supply flow rate of the electrolytic solution is less than 20 L / min, the additive may be decomposed before being distributed in the electrolytic cell 1, and the smoothness of the electrodeposited metal may be impaired or passivation may occur. The supply flow rate of the electrolytic solution is preferably high from the viewpoint of electrolytic efficiency, but if the supply flow rate of the electrolytic solution exceeds 100 L / min, the ridges in the electrolytic cell 1 may be rolled up and adhere to the surface of the cathode plate. ..

本実施形態に係る電解装置では、電解液を第1の側壁11の上側から供給し、第2の側壁12の下側から排出する方式を採用するとともに、供給流量を20〜100L/分とすることで、殿物の巻き上げを抑制しながら電解槽1内に給液される電解液の混合状態をより改善することができ、より効率の高い電解精製を実施することができる。なお、電解液の供給流量は、30〜90L/分とすることが好ましく、30〜70L/分とすることがより好ましく、50〜70L/分とすることが更に好ましい。 In the electrolytic apparatus according to the present embodiment, a method is adopted in which the electrolytic solution is supplied from the upper side of the first side wall 11 and discharged from the lower side of the second side wall 12, and the supply flow rate is 20 to 100 L / min. As a result, it is possible to further improve the mixed state of the electrolytic solution supplied into the electrolytic cell 1 while suppressing the hoisting of the palace, and it is possible to carry out more efficient electrolytic refining. The supply flow rate of the electrolytic solution is preferably 30 to 90 L / min, more preferably 30 to 70 L / min, and even more preferably 50 to 70 L / min.

図1(b)に示すように、給液配管2は、長手方向に沿って全体に均等間隔に配置して給液口21a、21b・・・21xを備える1本の配管で構成することが可能である。しかしながら、給液配管2の長さが長くなると、給液配管2の上流側から多くの電解液が給液され、下流側先端部(図1(b)の給液口21x付近)からは十分に電解液が給液されていない場合がある。 As shown in FIG. 1 (b), the liquid supply pipe 2 may be composed of one pipe having liquid supply ports 21a, 21b ... 21x arranged at equal intervals as a whole along the longitudinal direction. It is possible. However, when the length of the liquid supply pipe 2 becomes long, a large amount of electrolytic solution is supplied from the upstream side of the liquid supply pipe 2, and the tip portion on the downstream side (near the liquid supply port 21x in FIG. 1B) is sufficient. The electrolyte may not be supplied to the machine.

図2は、給液配管2を1本で構成した場合の電解液へ添加されるニカワ等の添加剤の電解槽1長手方向に沿った濃度分布のシミュレーション結果の例を表す。図2に示すように、電解槽1長手方向の上流側から下流側に進むにつれて添加剤の濃度が低くなっており、電解槽1の第4の側壁14側の端部には、ほどんど添加剤が供給されない領域が生じる。 FIG. 2 shows an example of the simulation result of the concentration distribution of the additive such as Nikawa added to the electrolytic solution when the liquid supply pipe 2 is composed of one along the longitudinal direction of the electrolytic cell 1. As shown in FIG. 2, the concentration of the additive decreases from the upstream side to the downstream side in the longitudinal direction of the electrolytic cell 1, and the additive is almost added to the end of the electrolytic cell 1 on the fourth side wall 14 side. There will be areas where the agent is not supplied.

本発明の実施の形態に係る電解装置では、図3に示すように、給液配管2が、電解槽1の少なくとも上流側及び下流側に対し、電解液をそれぞれ独立して給液可能な2本以上の配管部21、22、23を備える。なお「上流側」とは、電解液を排液する第4の側壁14側を「下流側」とした場合に、相対的に上流側となる位置であり、典型的には第3の側壁13側を意味する。 In the electrolytic apparatus according to the embodiment of the present invention, as shown in FIG. 3, the liquid supply pipe 2 can independently supply the electrolytic solution to at least the upstream side and the downstream side of the electrolytic cell 1 2 It is provided with two or more piping portions 21, 22, and 23. The "upstream side" is a position that is relatively upstream when the fourth side wall 14 side for draining the electrolytic solution is the "downstream side", and is typically the third side wall 13. Means the side.

図3に示すように、複数の配管部21、22、23を長手方向に沿ってそれぞれ配置し、複数の配管部21、22、23からそれぞれ独立に電解液を排液することにより、図1(b)で示すような給液配管2を1本で構成する場合に比べて、電解液の混合状態を改善でき、電解液に添加される添加剤の槽内全体における濃度均一性をより向上させることが可能となる。 As shown in FIG. 3, a plurality of piping portions 21, 22 and 23 are arranged along the longitudinal direction, and the electrolytic solution is drained independently from the plurality of piping portions 21, 22 and 23, respectively. Compared with the case where the liquid supply pipe 2 as shown in (b) is composed of one, the mixed state of the electrolytic solution can be improved, and the concentration uniformity of the additive added to the electrolytic solution in the entire tank is further improved. It becomes possible to make it.

配管部21は、第3の側壁13の上方から下方へと延びる根本部(不図示)と、根本部から電解槽1内に収容される電解液の液面の高さ又は液面近傍となる高さにおいて、電解槽1の長手方向Xに沿って(図3の紙面左右方向)延びる先端部221を備える。配管部21は、長手方向Xに沿って給液口21a、21b・・・21xが配置されている。 The piping portion 21 has a root portion (not shown) extending downward from the upper side of the third side wall 13, and the height or vicinity of the liquid level of the electrolytic solution contained in the electrolytic cell 1 from the root portion. A tip portion 221 extending at a height along the longitudinal direction X of the electrolytic cell 1 (left-right direction on the paper surface in FIG. 3) is provided. In the piping portion 21, liquid supply ports 21a, 21b ... 21x are arranged along the longitudinal direction X.

配管部22は、第3の側壁13の上方から下方へと延び、更に電解槽1の長手方向Xに沿って電解槽1の下流側、即ち第4の側壁近傍まで延びる根本部222、電解槽1の下方から上方へ延びる中間部223、中間部223から電解液の液面もしくは液面近傍となる高さにおいて長手方向Xに沿って延びる先端部221を備える。先端部221には、長手方向Xに沿って給液口22a、22b・・・22xが配置されている。 The piping portion 22 extends from the upper side to the lower side of the third side wall 13, and further extends to the downstream side of the electrolytic cell 1 along the longitudinal direction X of the electrolytic cell 1, that is, to the vicinity of the fourth side wall, the root portion 222, the electrolytic cell. An intermediate portion 223 extending from the lower side to the upper portion of 1 and a tip portion 221 extending along the longitudinal direction X from the intermediate portion 223 at a height close to or near the liquid level of the electrolytic solution are provided. Liquid supply ports 22a, 22b ... 22x are arranged at the tip portion 221 along the longitudinal direction X.

配管部23は、配管部21と配管部22との中間に長手方向Xに沿って延びている。配管部23は、第3の側壁13の上方から下方へと延び、更に電解槽1の長手方向Xに沿って延びる根本部232、電解液の液面もしくは液面近傍となる高さに配置された先端部231、及び根本部232と先端部231との間を接続する中間部233を備える。先端部231には、長手方向Xに沿って給液口23a、23b・・・23xが配置されている。 The piping portion 23 extends along the longitudinal direction X between the piping portion 21 and the piping portion 22. The piping portion 23 is arranged at a height such that the root portion 232 extending from the upper side to the lower side of the third side wall 13 and further extending along the longitudinal direction X of the electrolytic cell 1 and the liquid level of the electrolytic solution or near the liquid level. It is provided with a tip portion 231 and an intermediate portion 233 connecting between the root portion 232 and the tip portion 231. Liquid supply ports 23a, 23b ... 23x are arranged at the tip portion 231 along the longitudinal direction X.

配管部21、22、23は、その端部同士が、電解槽1内において上下に一部重なる領域200、201を有することが好ましい。配管部21、22、23により、電解液の供給領域を少なくとも上流側と下流側とで分配することによって、図1(a)に示すような一本の給液配管2とする場合よりも各領域における電解液の供給液量をより均一にすることができる。その一方で、配管部21、22、23内においても電解液の給液状態にムラが生じる。特に、各配管部21、22、23の先端部分は、電解液の供給量が根本部分に比べて少なくなる傾向にある。 It is preferable that the piping portions 21, 22 and 23 have regions 200 and 201 in which the ends thereof partially overlap each other in the electrolytic cell 1. By distributing the electrolytic solution supply area at least on the upstream side and the downstream side by the piping portions 21, 22, and 23, each of them is more than the case where one liquid supply pipe 2 as shown in FIG. 1A is formed. The amount of the electrolytic solution supplied in the region can be made more uniform. On the other hand, the state of supplying the electrolytic solution becomes uneven even in the piping portions 21, 22, and 23. In particular, the tip portion of each of the piping portions 21, 22 and 23 tends to have a smaller supply amount of the electrolytic solution than the root portion.

本発明の実施の形態に係る電解装置によれば、図3に示すように、配管部21、22、23の端部同士が、電解槽1内において上下に一部重なるように配置されるため、配管部21、22、23の端部における電解液の供給不足の問題を複数の配管部21、22、23による供給で補って、所定の給液量を達成することができる。 According to the electrolyzer according to the embodiment of the present invention, as shown in FIG. 3, the ends of the piping portions 21, 22, and 23 are arranged so as to partially overlap each other in the electrolytic cell 1. The problem of insufficient supply of the electrolytic solution at the ends of the piping portions 21, 22 and 23 can be compensated by the supply by the plurality of piping portions 21, 22 and 23, and a predetermined liquid supply amount can be achieved.

領域200、201の大きさは、電解槽1の大きさや、配管部21、22、23を何本に分割するかによって変わってくるが、一の配管部21、22、23が備える給液口21a、21b・・・23xの総開口面積に対し、一の配管部21、22、23が他の配管部21、22、23と重なる領域200、201にある給液口21a、21b・・・23xの総開口面積の比が1/4以上、より好ましくは1/3以上、更に好ましくは1/2以上となるように配置されることができる。 The size of the areas 200 and 201 varies depending on the size of the electrolytic cell 1 and how many pipes 21, 22 and 23 are divided, but the liquid supply port provided in one pipe 21, 22 and 23. 21a, 21b ... 23x The liquid supply ports 21a, 21b ... In the regions 200, 201 where one piping portion 21, 22, 23 overlaps with the other piping portions 21, 22, 23 with respect to the total opening area. It can be arranged so that the ratio of the total opening area of 23x is 1/4 or more, more preferably 1/3 or more, still more preferably 1/2 or more.

或いは、各配管部21、22、23の電解液が出る部分の長さの1/4以上、更には1/3、よりさらには1/2以上の長さとなるように、第1の側壁11の上下で配管部21、22、23同士を重ね合わせ、領域200、201を形成することにより、給液配管2が1本の場合に比べて、電解槽1全体に渡ってより均一な給液が行える。領域200、201の長手方向Xの長さは互いに異なっていてもよい。 Alternatively, the first side wall 11 has a length of 1/4 or more, further 1/3, or even 1/2 or more of the length of each of the piping portions 21, 22, and 23 where the electrolytic solution is discharged. By superimposing the piping portions 21, 22, and 23 on the upper and lower sides of the above and forming the regions 200 and 201, the liquid supply is more uniform over the entire electrolytic cell 1 as compared with the case where the liquid supply pipe 2 is one. Can be done. The lengths of the regions 200 and 201 in the longitudinal direction X may be different from each other.

図1(b)に示すように、電解槽1の第2の側壁12の下方側には、長手方向Xに沿って延びる排液配管3が配置されている。排液配管3は配管等で構成することができる。排液配管3には、長手方向Xに沿って複数の排液口31a、31b・・・31xが互いに所定の間隔を有して設けられている。複数の排液口31a、31b・・・31xは、複数の給液口21a、21b・・・23xよりも相対的に下方となるように、好ましくは等間隔に配置されている。このように、第1の側壁11側から第2の側壁12側へ向けて、電解液を上方から下方へ流すように給液配管2及び排液配管3が配置されることによって、電解液が上方から下方へと流れるため、電解槽1の底部に沈積する殿物の巻き上げを抑制しながら、電解液の混合状態、特に電解液中の金属イオンや添加剤の混合状態をより良好にすることができる。 As shown in FIG. 1B, a drainage pipe 3 extending along the longitudinal direction X is arranged on the lower side of the second side wall 12 of the electrolytic cell 1. The drainage pipe 3 can be composed of a pipe or the like. The drainage pipe 3 is provided with a plurality of drainage ports 31a, 31b ... 31x at predetermined intervals along the longitudinal direction X. The plurality of drainage ports 31a, 31b ... 31x are preferably arranged at equal intervals so as to be relatively lower than the plurality of liquid supply ports 21a, 21b ... 23x. In this way, the liquid supply pipe 2 and the liquid drainage pipe 3 are arranged so that the electrolytic solution flows from the upper side to the lower side from the first side wall 11 side to the second side wall 12 side, so that the electrolytic solution is released. Since it flows from the upper side to the lower side, it is necessary to improve the mixed state of the electrolytic solution, particularly the mixed state of the metal ions and additives in the electrolytic cell, while suppressing the hoisting of the deposits on the bottom of the electrolytic cell 1. Can be done.

複数の排液口31a、31b・・・31xは、底部に近づけすぎると電解槽1の底部の殿物などを巻き込んで排液口31a、31b・・・31xの詰まり或いは不具合等を生じさせる場合がある。排液口31a、31b・・・31xは、例えば、電解槽1内に収容される電極の下端部を起点に、上方に100mm、下方に300mmの範囲に配置されることが好ましく、より好ましくは上方に100mm、下方に100mmの範囲に配置される。 When the plurality of drainage ports 31a, 31b ... 31x are too close to the bottom, the drainage ports 31a, 31b ... 31x may be clogged or malfunction due to the involvement of the bottom ridge of the electrolytic cell 1. There is. The drainage ports 31a, 31b ... 31x are preferably arranged in a range of 100 mm upward and 300 mm downward, starting from the lower end of the electrode housed in the electrolytic cell 1, for example, more preferably. It is arranged in a range of 100 mm above and 100 mm below.

図4に示すように、給液口21a、21b、21c・・・の開口面積よりも排液口31a、31b、・・・の開口面積が大きくなるように形成されていることが好ましい。排液口31a、31b、・・・の開口面積を大きくとることによって、排液配管3内の電解液を電解槽1外へ排出させる際の圧力損失の影響をより小さくすることができる。以下に限定されるものではないが、排液口31a、31b、・・・の各開口面積を給液口21a、21b、21c・・・の各開口面積を1〜400倍、より典型的には100〜200倍大きくすることができる。これにより、排液口31a、31b、・・・から電解槽1内の電解液を効率よく排液することができる。 As shown in FIG. 4, it is preferable that the opening areas of the drainage ports 31a, 31b, ... Are larger than the opening areas of the liquid supply ports 21a, 21b, 21c ... By increasing the opening area of the drainage ports 31a, 31b, ..., The influence of pressure loss when the electrolytic solution in the drainage pipe 3 is discharged to the outside of the electrolytic cell 1 can be further reduced. Although not limited to the following, the opening areas of the drainage ports 31a, 31b, ... Are more typically 1 to 400 times the opening areas of the liquid supply ports 21a, 21b, 21c ... Can be 100 to 200 times larger. As a result, the electrolytic solution in the electrolytic cell 1 can be efficiently drained from the drainage ports 31a, 31b, ....

排液配管3の管径は、給液配管2の管径よりも大きく形成されることが好ましい。排液配管3側の管径を給液配管2の管径よりも大きくすることによって、排液ボックス32から電解液のヘッド圧差を利用して電解液を電解槽1外へ排出させる際に、排液配管3の圧力損失の影響をより小さくすることができる。これにより、より円滑に給液配管2内に吸い上げられた電解液を電解槽1の外へ排出しやすくできる。 The pipe diameter of the liquid drainage pipe 3 is preferably formed larger than the pipe diameter of the liquid supply pipe 2. By making the pipe diameter on the drainage pipe 3 side larger than the pipe diameter of the liquid supply pipe 2, when the electrolytic solution is discharged from the drainage box 32 to the outside of the electrolytic tank 1 by utilizing the head pressure difference of the electrolytic solution. The influence of the pressure loss of the drainage pipe 3 can be made smaller. As a result, the electrolytic solution sucked up in the liquid supply pipe 2 can be easily discharged to the outside of the electrolytic cell 1.

排液配管3の管径は、給液配管2の管径よりも1.5倍以上、より好ましくは2倍以上、更に好ましくは4倍以上大きくすることができる。 The pipe diameter of the drainage pipe 3 can be 1.5 times or more, more preferably 2 times or more, still more preferably 4 times or more larger than the pipe diameter of the liquid supply pipe 2.

給液配管2及び排液配管3の管径、給液口21a、21b、21c・・・及び排液口31a、31b、・・・の形状、穴径(スリット径)及び間隔は、電解槽1の大きさ等に応じて適宜調整することができる。図4に示す例では、給液口21a、21b、21c・・・は円形状又は楕円形状を有し、互いに間隔d1を空けて配置されている。排液口31a、31b、・・・は、スリット径d2を有する長円或いは略長方形状を有し、互いに間隔d3を空けて配置されている。 The pipe diameters of the liquid supply pipe 2 and the liquid drainage pipe 3, the shapes, hole diameters (slit diameters), and intervals of the liquid supply ports 21a, 21b, 21c ... And the liquid drainage ports 31a, 31b, ... It can be appropriately adjusted according to the size of 1. In the example shown in FIG. 4, the liquid supply ports 21a, 21b, 21c ... Have a circular shape or an elliptical shape, and are arranged at intervals d1 from each other. The drainage ports 31a, 31b, ... Have an oval shape or a substantially rectangular shape having a slit diameter d2, and are arranged at intervals d3 from each other.

以下に制限されないが、図4の例では、給液配管2には、間隔d1が50mm間隔で穴径が5φの円又は楕円形状の給液口21a、21b、21c・・・が形成されている。排液配管3には、幅10mm、スリット径(d2)400mmの長円形状又は略矩形形状の排液口31a、31b、・・・が、200mmの間隔d3を有して配置されている。 Although not limited to the following, in the example of FIG. 4, in the liquid supply pipe 2, circular or elliptical liquid supply ports 21a, 21b, 21c, ... With an interval d1 of 50 mm and a hole diameter of 5φ are formed. There is. In the drainage pipe 3, elliptical or substantially rectangular drainage ports 31a, 31b, ... With a width of 10 mm and a slit diameter (d2) of 400 mm are arranged with an interval d3 of 200 mm.

図1(a)及び図1(b)に示すように、電解槽1の第4の側壁14には、電解液を電解槽1外へ排液する排液部30が配置されている。排液部30には、図1(a)に示すように、その上部に電解槽1内の電解液を排出するための排出口300が設けられている。排液口31aの下方には、図5に示すように、電解液を電解槽1外へ排出するために排出口300に接続された排出配管301が設けられている。 As shown in FIGS. 1A and 1B, a drainage unit 30 for draining the electrolytic solution to the outside of the electrolytic cell 1 is arranged on the fourth side wall 14 of the electrolytic cell 1. As shown in FIG. 1A, the drainage unit 30 is provided with a discharge port 300 for discharging the electrolytic solution in the electrolytic cell 1 above the drainage unit 30. As shown in FIG. 5, a discharge pipe 301 connected to the discharge port 300 is provided below the drain port 31a in order to discharge the electrolytic solution to the outside of the electrolytic cell 1.

図1(b)に示すように、排液ボックス32は、排液部30と排液配管3との間に接続されている。排液ボックス32は、図5に示すように、電解液の液面LSよりも下方となる底面32aを備える。底面32aには、排液配管3の出口3Aが接続されている。電解槽1から排液配管3内に排液された電解液は、電解液の液面LSと排液ボックス32内の電解液の液面lsの高さの差Hによるヘッド圧差により汲み上げされる。 As shown in FIG. 1 (b), the drainage box 32 is connected between the drainage unit 30 and the drainage pipe 3. As shown in FIG. 5, the drainage box 32 includes a bottom surface 32a that is below the liquid level LS of the electrolytic solution. The outlet 3A of the drainage pipe 3 is connected to the bottom surface 32a. The electrolytic solution discharged from the electrolytic cell 1 into the drainage pipe 3 is pumped up by the head pressure difference due to the height difference H between the liquid level LS of the electrolytic solution and the liquid level ls of the electrolytic solution in the drainage box 32. ..

排液部30と排液配管3との間に排液ボックス32が配置されることにより、ポンプ等の動力を使用せず、且つ電解槽1の底部に沈積する殿物の巻き込みを抑制しながら、電解槽1の下方から電解液を電解槽1の外部へ抜き出すことができる。 By arranging the drainage box 32 between the drainage portion 30 and the drainage pipe 3, the power of a pump or the like is not used, and the entrainment of the deposits on the bottom of the electrolytic cell 1 is suppressed. , The electrolytic solution can be drawn out of the electrolytic cell 1 from below the electrolytic cell 1.

排液ボックス32の電解液と接する側の側壁32bの上端部の高さは、電解槽1内の電解液の液面LSに対して数mm〜数十mm上方となるように配置されている。排液ボックス32は、電解槽1内に収容された電解液と接する側の側壁32bに、電解槽1内の電解液中の異物を排液ボックス32へ送るための切り欠き部33を備えることが好ましい。この切り欠き部33は、図5に示すように、電解槽1の上方側から下方側に向かってその開口幅AWが小さくなるような形状を有している。切り欠き部33の形状としては、例えば図7に示すようなV字形状、U字形状、台形形状等の種々の形状を取り得るが、具体的な形状は特に限定されない。 The height of the upper end of the side wall 32b on the side of the drainage box 32 in contact with the electrolytic solution is arranged so as to be several mm to several tens of mm above the liquid level LS of the electrolytic solution in the electrolytic cell 1. .. The drainage box 32 is provided with a notch 33 for sending foreign matter in the electrolytic solution in the electrolytic cell 1 to the drainage box 32 on the side wall 32b on the side in contact with the electrolytic cell housed in the electrolytic cell 1. Is preferable. As shown in FIG. 5, the cutout portion 33 has a shape in which the opening width AW decreases from the upper side to the lower side of the electrolytic cell 1. The shape of the cutout portion 33 may be various shapes such as a V-shape, a U-shape, and a trapezoidal shape as shown in FIG. 7, but the specific shape is not particularly limited.

電解槽1内には、電解を行うにつれて電解液面LSにゴミ等の異物が溜まる場合がある。この異物が電解槽1内に留まると、電解に悪影響を与える恐れがある。本発明の実施の形態に係る電解装置によれば、電解槽1の電解液面LS付近にたまるゴミなどの異物を含む電解液を切り欠き部33からオーバーフローさせて排出することができるため、電解槽1内の電解液の液面LS付近のゴミの滞留を抑制することができる。 In the electrolytic cell 1, foreign matter such as dust may accumulate on the electrolytic solution surface LS as the electrolysis is performed. If this foreign matter stays in the electrolytic cell 1, it may adversely affect the electrolysis. According to the electrolyzer according to the embodiment of the present invention, the electrolytic solution containing foreign matter such as dust accumulated in the vicinity of the electrolytic cell surface LS of the electrolytic cell 1 can be overflowed from the notch 33 and discharged. It is possible to suppress the retention of dust near the liquid level LS of the electrolytic solution in the tank 1.

図5に示すように、排液ボックス32と排液部30との間には、排液ボックス32から排液部30へと流れる電解液を堰き止めるように配置された調整板35が配置されている。調整板35が配置されることにより、排液配管3を介して排液ボックス32内に回収された電解液が、調整板35の上端からオーバーフローして排液部30へと流れる。 As shown in FIG. 5, an adjusting plate 35 arranged so as to block the electrolytic solution flowing from the drainage box 32 to the drainage section 30 is arranged between the drainage box 32 and the drainage section 30. ing. By arranging the adjusting plate 35, the electrolytic solution collected in the draining box 32 via the draining pipe 3 overflows from the upper end of the adjusting plate 35 and flows to the draining portion 30.

例えば、大きさの異なる調整板35を配置することにより、調整板35の排液ボックス32の底面32aからの高さhを変更することが可能である。調整板35の高さhを変更することにより、電解槽1内の電解液の液面LSと排液ボックス32内の電解液の液面lsとの高さの差Hを調整することができる。これにより、電解槽1内の電解液の液面LSとの電解液の液面lsとの高さの差Hによるヘッド圧差を調整して、どのような給液量であっても電解槽1内の電解液の液面LSの高さを一定に保つことができる For example, by arranging the adjusting plates 35 having different sizes, it is possible to change the height h of the adjusting plate 35 from the bottom surface 32a of the drainage box 32. By changing the height h of the adjusting plate 35, it is possible to adjust the height difference H between the liquid level LS of the electrolytic solution in the electrolytic cell 1 and the liquid level ls of the electrolytic solution in the drainage box 32. .. As a result, the head pressure difference due to the height difference H between the liquid level LS of the electrolytic solution and the liquid level ls of the electrolytic solution in the electrolytic cell 1 is adjusted, and the electrolytic cell 1 is supplied regardless of the amount of liquid supplied. The height of the liquid level LS of the electrolytic solution inside can be kept constant.

図1の電解装置には不図示の電解液の環流機構が設けられている。環流機構は、電解槽1の排液部30から排出された電解液にニカワやチオ尿素等の添加剤を追加するとともに、必要な成分調整と温度調整を行い、調整後の電解液を給液口21a、21b、21c・・・21xから電解槽1内へと環流する。電解装置には不図示の給電機構が設けられている。給電機構は、電解槽1内の長手方向に沿って交互に配置されるアノード板とカソード板とを含む電極の間に直流電流を印加する電源装置と配線とを備えている。 The electrolytic device of FIG. 1 is provided with a circulation mechanism of an electrolytic solution (not shown). The recirculation mechanism adds additives such as nikawa and thiourea to the electrolytic solution discharged from the drainage unit 30 of the electrolytic cell 1, adjusts necessary components and temperature, and supplies the adjusted electrolytic solution. Circulation flows from the ports 21a, 21b, 21c ... 21x into the electrolytic cell 1. The electrolyzer is provided with a power feeding mechanism (not shown). The power feeding mechanism includes a power supply device and wiring for applying a direct current between electrodes including anode plates and cathode plates that are alternately arranged along the longitudinal direction in the electrolytic cell 1.

アノード板及びカソード板の構成は特に限定されない。アノード板は電解精製もしくは電解採取を行う際の陽極となり、粗金属製の板材で構成される。カソード板は電解精製もしくは電解採取を行う際の陰極となり、導電性に優れた板状の金属で構成される。 The configuration of the anode plate and the cathode plate is not particularly limited. The anode plate serves as an anode for electrolytic refining or electrowinning, and is composed of a crude metal plate material. The cathode plate serves as a cathode for electrolytic refining or electrowinning, and is composed of a plate-shaped metal having excellent conductivity.

電解槽1内の電解液の混合状態を改善するために種々の検討が行われてきたが、電解槽1内の長手方向の一端側から長手方向の他端側へと電解液を流す従来の下入れ上抜き方式の電解装置で、は電解液供給方向上流側と下流側で電解液中の銅などの金属イオン濃度及び添加物の濃度に偏りが生じるとともに、電解が進むにつれて電解槽1の上部から底部へいくほど金属イオン濃度が高くなる傾向にあった。 Various studies have been conducted to improve the mixed state of the electrolytic solution in the electrolytic tank 1, but the conventional method of flowing the electrolytic solution from one end side in the longitudinal direction to the other end side in the longitudinal direction in the electrolytic tank 1 has been carried out. In the bottom-in top-pull type electrolyzer, the concentration of metal ions such as copper and the concentration of additives in the electrolytic solution are biased on the upstream side and the downstream side in the electrolytic solution supply direction, and as the electrolysis progresses, the electrolytic tank 1 The metal ion concentration tended to increase from the top to the bottom.

本発明の実施の形態に係る電解装置によれば、電解槽1の幅(X)方向、即ち、電解槽1の第1の側壁11側から第2の側壁12側へと電解液を供給するように構成するとともに、第1の側壁11側の給液口21a、21b・・・23xの設置位置が第2の側壁12側の排液口31a、31b・・・31xよりも相対的に上方となるように構成した、いわゆる、「横入れ上入れ下抜き方式」を採用する。その結果、電解槽1の底部の銅イオン濃度などの金属イオン濃度の上昇を効果的に抑制できるとともに、電解液中に含まれる種々の添加剤の濃度分布を電解槽1内全体でより均一化することができる。 According to the electrolyzer according to the embodiment of the present invention, the electrolytic solution is supplied from the width (X) direction of the electrolytic cell 1, that is, from the first side wall 11 side to the second side wall 12 side of the electrolytic cell 1. The installation positions of the liquid supply ports 21a, 21b ... 23x on the first side wall 11 side are relatively above the drainage ports 31a, 31b ... 31x on the second side wall 12 side. The so-called "horizontal insertion, top insertion, bottom removal method" is adopted. As a result, an increase in the metal ion concentration such as the copper ion concentration at the bottom of the electrolytic cell 1 can be effectively suppressed, and the concentration distribution of various additives contained in the electrolytic cell is made more uniform throughout the electrolytic cell 1. can do.

さらに、電解槽1において上方から下方へと電解液を流すことにより、殿物の巻き上げの恐れも少なくなる。そのため、電解液の供給流量を大きくしても殿物の巻き上げを抑制しながら電解液の混合状態を改善することができ、電着物の電着効率も従来に比べて改善させることができる。さらに、電着物の表面性状に影響を及ぼすニカワなどの添加物を電解槽全体にわたって均一に行き渡らせることができるため、電解槽1全体において品質の揃った電着物が得られる。 Further, by flowing the electrolytic solution from the upper side to the lower side in the electrolytic cell 1, the risk of winding up the palace is reduced. Therefore, even if the supply flow rate of the electrolytic solution is increased, the mixed state of the electrolytic solution can be improved while suppressing the hoisting of the palace, and the electrodeposition efficiency of the electrodeposited object can be improved as compared with the conventional case. Further, since additives such as Nikawa, which affect the surface texture of the electrodeposited material, can be uniformly distributed throughout the electrolytic cell, an electrodeposited material having uniform quality can be obtained in the entire electrolytic cell 1.

更に、給液配管2を複数の配管部21、22、23に分け、それぞれの配管部21、22、23で給液できる区間を給液配管2を一本で構成する場合よりも短くすることによって、電解槽1の長手方向全体にわたってより均一に電解液を供給することができる。特に、電解液に添加する添加剤を電解槽1の長手方向全体に供給することができるため、表面の荒れの少ないより高品質な電着物が得られるようになる。 Further, the liquid supply pipe 2 is divided into a plurality of pipe parts 21, 22 and 23, and the section where the liquid can be supplied by the respective pipe parts 21, 22 and 23 is shorter than the case where the liquid supply pipe 2 is configured by one. Therefore, the electrolytic solution can be supplied more uniformly over the entire longitudinal direction of the electrolytic cell 1. In particular, since the additive added to the electrolytic solution can be supplied to the entire longitudinal direction of the electrolytic cell 1, a higher quality electrodeposited product with less surface roughness can be obtained.

更に、配管部21、22、23の端部同士が、電解槽1内において一部上下に重なるように配置されることにより、配管の先端部分の給液量の少ない部分を複数の配管部21、22、23で補完することができ、槽全体にわたってほぼ均一に給液できるようになる。 Further, the ends of the piping portions 21, 22, and 23 are arranged so as to partially overlap each other in the electrolytic cell 1, so that the portion of the tip portion of the piping where the amount of liquid supplied is small can be divided into a plurality of piping portions 21. , 22 and 23 can be complemented, and the liquid can be supplied almost uniformly over the entire tank.

(電解方法)
本発明の実施の形態に係る電解装置を用いて電解液を電気分解することにより、複数のカソード板に銅などの金属を電着させることができる。以下においては、本発明の実施の形態に係る電解装置を用いて電気分解する例として粗銅を精錬する場合について説明する。
(Electrolysis method)
By electrolyzing the electrolytic solution using the electrolytic device according to the embodiment of the present invention, a metal such as copper can be electrodeposited on a plurality of cathode plates. In the following, a case of refining blister copper will be described as an example of electrolysis using the electrolytic device according to the embodiment of the present invention.

まず、例えば純度が99mass%程度の粗銅の板材をアノード板とし、純度が99.99mass%程度の銅の板材又はステンレス板をカソード板として、複数のアノード板と複数のカソード板とを交互に板厚方向に間隔を空けて、電極板の下端が電解槽1の底面から所定の間隔が空くように電解槽1内に配置する。電解槽1の第1の側壁11上には図4に示すように、電解槽1の長手方向上流側に電解液を供給する配管部21と、長手方向下流側に電解液を供給する配管部22と、中間部に電解液を供給する配管部23を含む給液配管2を配置し、各配管部21、22、23が備える複数の給液口21a、21b・・・23xから硫酸銅及び硫酸の混合水溶液にニカワやチオ尿素などの添加剤を添加した電解液を供給し、環流機構によって、電解液を循環させる。 First, for example, a blister copper plate having a purity of about 99 mass% is used as an anode plate, a copper plate having a purity of about 99.99 mass% or a stainless steel plate is used as a cathode plate, and a plurality of anode plates and a plurality of cathode plates are alternately arranged. The electrode plates are arranged in the electrolytic cell 1 so as to have a predetermined distance from the bottom surface of the electrolytic cell 1 at intervals in the thickness direction. As shown in FIG. 4, on the first side wall 11 of the electrolytic cell 1, a piping portion 21 for supplying the electrolytic solution to the upstream side in the longitudinal direction of the electrolytic cell 1 and a piping portion for supplying the electrolytic solution to the downstream side in the longitudinal direction are provided. A liquid supply pipe 2 including a pipe portion 23 for supplying the electrolytic solution is arranged in the intermediate portion, and copper sulfate and copper sulfate are provided from a plurality of liquid supply ports 21a, 21b ... 23x provided in the respective piping portions 21, 22, 23. An electrolytic solution prepared by adding additives such as Nikawa and thiourea to a mixed aqueous solution of sulfuric acid is supplied, and the electrolytic solution is circulated by a circulation mechanism.

給電機構を用いてアノード板とカソード板との間に直流電流を印加し、アノード板の銅を電解液中にイオンとして溶出させてカソード板へ電着させる。このとき、アノード板及びカソード板の側面と対向する電解槽1の第1の側壁11の上方から電解液を電解槽1内へ供給し、第1の側壁11と対向する電解槽1の第2の側壁12の下方で電解液を排液配管3内へ排液させるようにして液流を発生させる。 A direct current is applied between the anode plate and the cathode plate using a power feeding mechanism, and the copper of the anode plate is eluted as ions in the electrolytic solution and electrodeposited on the cathode plate. At this time, the electrolytic solution is supplied into the electrolytic cell 1 from above the first side wall 11 of the electrolytic cell 1 facing the side surfaces of the anode plate and the cathode plate, and the second side wall 1 of the electrolytic cell 1 facing the first side wall 11 is supplied. A liquid flow is generated by draining the electrolytic solution into the drainage pipe 3 below the side wall 12.

排液配管3内へ排液された電解液は、排液ボックス32により汲み上げられて、排液部30を介して排液される。電解槽1内の電解液の上層に浮遊するゴミなどの異物は、排液ボックス32が備える切り欠き部33から越流により排液ボックス32内へ収容され、電解槽1の外部へ排出される。 The electrolytic solution drained into the drainage pipe 3 is pumped up by the drainage box 32 and drained through the drainage section 30. Foreign matter such as dust floating in the upper layer of the electrolytic cell in the electrolytic cell 1 is accommodated in the drainage box 32 by overflow from the notch 33 provided in the drainage box 32 and discharged to the outside of the electrolytic cell 1. ..

本発明の実施の形態に係る電解方法によれば、電解槽1の短手方向Yの一端から短手方向Yの他端側へ、且つ上方から下方へ向けて電解槽1の長手方向Xに沿った複数箇所から電解液を流すことにより、電解槽1の長手方向Xの一端側から他端側へと電解液を流す従来の方式と比べて、電解槽1内の電解液の混合状態をより良好にすることができる。 According to the electrolysis method according to the embodiment of the present invention, from one end of the short direction Y of the electrolytic cell 1 to the other end side of the short direction Y, and from the upper side to the lower side in the longitudinal direction X of the electrolytic cell 1. Compared with the conventional method of flowing the electrolytic solution from one end side to the other end side in the longitudinal direction X of the electrolytic cell 1 by flowing the electrolytic solution from a plurality of locations along the line, the mixed state of the electrolytic cell in the electrolytic cell 1 is changed. Can be better.

特に、本発明の実施の形態に係る電解方法によれば、電解槽1下部の銅イオンなどの金属イオン濃度の上昇を抑制し、金属イオンを液中により均一に分散できるため、高い電流密度又は不純物濃度の高い材料をアノード板に用いて電解精製を実施した場合の不動態化現象をより効率的に抑制することが可能となる。 In particular, according to the electrolysis method according to the embodiment of the present invention, an increase in the concentration of metal ions such as copper ions in the lower part of the electrolytic cell 1 can be suppressed, and the metal ions can be more uniformly dispersed in the liquid, so that the current density is high or It is possible to more efficiently suppress the passivation phenomenon when electrolytic purification is performed using a material having a high impurity concentration for the anode plate.

(その他の実施の形態)
本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態及び運用技術が明らかとなろう。
(Other embodiments)
Although the present invention has been described in accordance with the above embodiments, the statements and drawings that form part of this disclosure should not be understood to limit the invention. Various alternative embodiments and operational techniques will be apparent to those skilled in the art from this disclosure.

給液配管2及び排液配管3がそれぞれ備える給液口21a、21b・・・23x及び排液口31a、31b・・・31xの位置は、電解槽1内に浸漬されるアノード板及びカソード板が配置される位置との関係で調整することができる。例えば、給液配管2に設けられた複数の給液口21a、21b・・・23x及び排液配管3に設けられた複数の排液口31a、31b・・・31xを、それぞれアノード板とカソード板との間に設けられた隙間に面するように設け、電解液をアノード板とカソード板との空間に供給するように構成することができる。このようにしてアノード板及びカソード板の表面に液流を発生させることにより、高い電流密度又は不純物濃度の高い材料をアノード板に用いて電解精製を実施した場合の不動態化現象をより効率的に抑制することが可能となる。 The positions of the liquid supply ports 21a, 21b ... 23x and the liquid drainage ports 31a, 31b ... 31x provided in the liquid supply pipe 2 and the liquid drainage pipe 3 are the anode plate and the cathode plate immersed in the electrolytic cell 1. Can be adjusted in relation to the position where is placed. For example, a plurality of liquid supply ports 21a, 21b ... 23x provided in the liquid supply pipe 2 and a plurality of drainage ports 31a, 31b ... 31x provided in the liquid drainage pipe 3 are provided with an anode plate and a cathode, respectively. It can be provided so as to face the gap provided between the plates and the electrolytic solution can be supplied to the space between the anode plate and the cathode plate. By generating a liquid flow on the surfaces of the anode plate and the cathode plate in this way, the passivation phenomenon when electrolytic refining is performed using a material having a high current density or a high impurity concentration for the anode plate is more efficient. Can be suppressed.

電解槽1内に収容されるアノード板とカソード板との間の空間には、給液口21a、21b・・・23x及び排液口31a、31b・・・31xがそれぞれ1箇所ずつ配置されるだけでなく、アノード板とカソード板との間の空間の広さに対応して給液口21a、21b・・・23x及び排液口31a、31b・・・31xが空間内に複数配置されるようにしてもよい。また、電解液、特に添加剤の混合状態が悪化しやすい電解槽1の長手方向中央側から排液側の給液口21a、21b・・・23x及び排液口31a、31b・・・31xの個数を電解槽1の長手方向中央側から給液側の個数よりも多くするようにしてもよい。 In the space between the anode plate and the cathode plate housed in the electrolytic cell 1, one liquid supply port 21a, 21b ... 23x and one drainage port 31a, 31b ... 31x are arranged. Not only that, a plurality of liquid supply ports 21a, 21b ... 23x and drainage ports 31a, 31b ... 31x are arranged in the space according to the size of the space between the anode plate and the cathode plate. You may do so. Further, the liquid supply ports 21a, 21b ... 23x and the drainage ports 31a, 31b ... 31x from the central side in the longitudinal direction to the drainage side of the electrolytic cell 1 in which the mixed state of the electrolytic solution, particularly the additive, tends to deteriorate. The number may be larger than the number on the liquid supply side from the center side in the longitudinal direction of the electrolytic cell 1.

給液配管2及び排液配管3がそれぞれ備える給液口21a、21b・・・23x及び排液口31a、31b・・・31xの各開口面積は、基本的には長手方向Xに沿ってそれぞれ等しい大きさとなる例を示しているが、電解槽1の長手方向X上流側と下流側で異なる開口面積を有していてもよい。 The opening areas of the liquid supply ports 21a, 21b ... 23x and the liquid drainage ports 31a, 31b ... 31x provided in the liquid supply pipe 2 and the liquid drainage pipe 3, respectively, are basically along the longitudinal direction X, respectively. Although an example in which the sizes are the same is shown, different opening areas may be provided in the longitudinal direction X upstream side and the downstream side of the electrolytic cell 1.

給液配管2及び排液配管3は複数の配管又は一の配管が長手方向に沿って枝状に分岐した配管を用いることができる。排液配管3が複数本配置される場合は、排液配管3の出口のそれぞれが独立して排液ボックス32に接続されることができる。 As the liquid supply pipe 2 and the liquid drainage pipe 3, a plurality of pipes or a pipe in which one pipe is branched in a branch shape along the longitudinal direction can be used. When a plurality of drainage pipes 3 are arranged, each of the outlets of the drainage pipes 3 can be independently connected to the drainage box 32.

このように、本発明は上記の開示から妥当な特許請求の範囲の発明特定事項によって表されるものであり、実施段階においては、その要旨を逸脱しない範囲において変形し具体化し得る。 As described above, the present invention is represented by the matters specifying the invention within the scope of claims reasonable from the above disclosure, and at the implementation stage, it can be modified and embodied without departing from the gist thereof.

以下に本発明の実施例を比較例とともに示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供されるものであり、本発明が限定されることを意図するものではない。 Examples of the present invention are shown below together with comparative examples, but these examples are provided for a better understanding of the present invention and its advantages, and are not intended to limit the present invention. Absent.

図4に示す構成を有する3本の配管部を備える給液配管を設置した電解槽に対して、各電解槽内に複数のアノード板とカソード板を電解槽の長手方向に沿って交互に互いに間隔を空けて電解液中に浸漬し、電流密度350A/m2、給液量43L/min(電解槽内滞留時間2.5時間)で電解を実施し、電解槽中央部分における断面Cu濃度分布及びニカワ濃度分布を評価した。 For an electrolytic cell in which a liquid supply pipe having three piping portions having the configuration shown in FIG. 4 is installed, a plurality of anode plates and cathode plates are alternately provided in each electrolytic cell along the longitudinal direction of the electrolytic cell. Immerse in the electrolytic cell at intervals, perform electrolysis at a current density of 350 A / m 2 and a supply amount of 43 L / min (residence time in the electrolytic cell 2.5 hours), and distribute the Cu concentration in the cross section in the central part of the electrolytic cell. And the Nikawa concentration distribution was evaluated.

図8(a)、図8(b)に示すように、実施例によれば、槽内で比較的均一なCu濃度分布を得ることができていた。図8(c)、図8(d)に示すように、ニカワ濃度分布も槽長手方向全体に渡って均一となり、ニカワが添加されないデッドスペースの存在はみられなかった。 As shown in FIGS. 8 (a) and 8 (b), according to the examples, a relatively uniform Cu concentration distribution could be obtained in the tank. As shown in FIGS. 8 (c) and 8 (d), the nikawa concentration distribution was uniform over the entire longitudinal direction of the tank, and no dead space to which nikawa was added was observed.

図9は、電解槽の給液側、中央、排液側の液面からそれぞれ50mm(上)、525mm(中)、1050mm(下)の合計9点で実施し、給液ニカワ濃度を1.00とした場合の各サンプリング地点の相対的な濃度比を表す。 FIG. 9 was carried out at a total of 9 points of 50 mm (top), 525 mm (middle), and 1050 mm (bottom) from the liquid levels on the liquid supply side, the center, and the drainage side of the electrolytic cell, respectively, and the liquid supply nikawa concentration was 1. It represents the relative concentration ratio of each sampling point when it is set to 00.

図9の「給液」は、図1の電解装置の第3の側壁13側に対応し、「排液」は、図1の電解装置の第4の側壁14側に対応する。図9からわかるように、実施例では、電解槽下部へニカワが行きわたらない領域は生じておらず、電解槽内の電解液に添加されるニカワの混合状態を改善することができていた。 The “liquid supply” in FIG. 9 corresponds to the third side wall 13 side of the electrolytic device of FIG. 1, and the “drainage” corresponds to the fourth side wall 14 side of the electrolytic device of FIG. As can be seen from FIG. 9, in the example, there was no region where the nikawa did not reach the lower part of the electrolytic cell, and the mixed state of the nikawa added to the electrolytic solution in the electrolytic cell could be improved.

1…電解槽
2…給液配管
3…排液配管
3A…出口
11…第1の側壁
12…第2の側壁
13…第3の側壁
14…第4の側壁
20…給液部
21、22、23…配管部
21a〜23x…給液口
24…本管
30…排液部
31a〜31x…排液口
32a…底面
32b…側壁
32…排液ボックス
33…切り欠き部
35…調整板
200、201…領域
221、231…先端部
222、232…根本部
223、233…中間部
300…排出口
301…排出配管
1 ... Electrolytic cell 2 ... Liquid supply pipe 3 ... Drainage pipe 3A ... Outlet 11 ... First side wall 12 ... Second side wall 13 ... Third side wall 14 ... Fourth side wall 20 ... Liquid supply parts 21, 22, 23 ... Piping section 21a to 23x ... Liquid supply port 24 ... Main pipe 30 ... Drainage section 31a to 31x ... Drainage port 32a ... Bottom surface 32b ... Side wall 32 ... Drainage box 33 ... Notch 35 ... Adjustment plate 200, 201 ... Areas 221 and 231 ... Tip portion 222, 232 ... Root portion 223, 233 ... Intermediate portion 300 ... Discharge port 301 ... Discharge pipe

Claims (6)

電解液を収容する電解槽の長手方向に沿って互いに間隔を空けて配置された電極を前記電解液中に浸漬し、前記電解液を循環しながら電解処理する電解装置であって、
前記長手方向に延びる前記電解槽の第1の側壁に沿って延び、互いに間隔を空けて配置された複数の給液口から前記第1の側壁と対向する前記電解槽の第2の側壁に向けて前記電解液を給液する給液配管と、
前記給液配管よりも下方に配置され、前記第2の側壁に沿って延び、互いに間隔を空けて配置された複数の排液口から前記電解液を排液する排液配管と、
前記排液配管によって排液された前記電解液を前記電解槽外へ排液する排液部と
を備え、
前記給液配管が、前記電解槽の少なくとも上流側及び下流側に対して前記電解液をそれぞれ独立して給液可能な2本以上の配管部を備えることを特徴とする電解装置。
An electrolytic device in which electrodes arranged at intervals along the longitudinal direction of an electrolytic cell containing an electrolytic solution are immersed in the electrolytic solution, and the electrolytic solution is circulated for electrolytic treatment.
A plurality of liquid supply ports extending along the first side wall of the electrolytic cell extending in the longitudinal direction and arranged at intervals from each other toward the second side wall of the electrolytic cell facing the first side wall. And the liquid supply pipe that supplies the electrolytic solution
A drainage pipe arranged below the liquid supply pipe, extending along the second side wall, and draining the electrolytic solution from a plurality of drainage ports arranged at intervals from each other.
It is provided with a drainage unit for draining the electrolytic solution discharged by the drainage pipe to the outside of the electrolytic cell.
An electrolyzer characterized in that the liquid supply pipe includes two or more pipe portions capable of independently supplying the electrolytic liquid to at least the upstream side and the downstream side of the electrolytic cell.
前記配管部の端部同士が、電解槽内において一部重なるように配置されていることを含む請求項1に記載の電解装置。 The electrolyzer according to claim 1, wherein the ends of the piping portions are arranged so as to partially overlap each other in the electrolytic cell. 一の配管部が備える前記給液口の総開口面積に対し、前記一の配管部が他の配管部と重なる領域にある前記給液口の総開口面積の比が、1/4以上となるように配置されていることを含む請求項1又は2に記載の電解装置。 The ratio of the total opening area of the liquid supply port in the region where the one piping part overlaps with the other piping part is 1/4 or more with respect to the total opening area of the liquid supply port provided in one piping part. The electrolyzer according to claim 1 or 2, which comprises being arranged in such a manner. 前記給液配管の管径よりも前記排液配管の管径が大きいことを特徴とする請求項1〜3のいずれか1項に記載の電解装置。 The electrolyzer according to any one of claims 1 to 3, wherein the diameter of the drainage pipe is larger than the diameter of the liquid supply pipe. 前記排液部と前記排液配管とに接続され、前記電解液の液面よりも下方となる底面を備え、前記底面に前記排液配管の出口が接続され、前記排液配管内の前記電解液を汲み上げ可能な排液ボックスを更に備えることを特徴とする請求項1〜4のいずれか1項に記載の電解装置。 The drainage portion is connected to the drainage pipe and has a bottom surface below the liquid level of the electrolytic solution. The outlet of the drainage pipe is connected to the bottom surface, and the electrolysis in the drainage pipe is provided. The electrolyzer according to any one of claims 1 to 4, further comprising a drainage box capable of pumping liquid. 電解液を収容する電解槽の長手方向に沿って互いに間隔を空けて配置された電極を前記電解液中に浸漬し、前記電解液を循環しながら電解処理する電解方法であって、
前記長手方向に延びる前記電解槽の第1の側壁に沿って延び、少なくとも前記電解槽の上流側及び下流側に対して前記電解液をそれぞれ独立して給液可能な2本以上の配管部を備える給液配管に設けられた複数の給液口から前記第1の側壁と対向する前記電解槽の第2の側壁側に向けて前記電解液を給液し、
前記給液配管よりも下方に配置され、前記第2の側壁に沿って延び、互いに間隔を空けて配置された複数の排液口を備える排液配管内に前記電解液を排液し、
前記排液配管内に排液された前記電解液を前記電解槽外へ排液すること
を含む電解方法。
This is an electrolytic method in which electrodes arranged at intervals along the longitudinal direction of an electrolytic cell containing an electrolytic solution are immersed in the electrolytic solution, and the electrolytic solution is circulated and electrolyzed.
Two or more piping portions extending along the first side wall of the electrolytic cell extending in the longitudinal direction and capable of independently supplying the electrolytic cell to at least the upstream side and the downstream side of the electrolytic cell. The electrolytic solution is supplied from a plurality of liquid supply ports provided in the liquid supply pipes provided toward the second side wall side of the electrolytic cell facing the first side wall.
The electrolytic solution is drained into a drainage pipe having a plurality of drainage ports arranged below the liquid supply pipe, extending along the second side wall, and arranged at intervals from each other.
An electrolysis method comprising draining the electrolytic solution discharged into the drainage pipe to the outside of the electrolytic cell.
JP2019069353A 2019-03-29 2019-03-29 Electrolyzer and electrolysis method Active JP6967032B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019069353A JP6967032B2 (en) 2019-03-29 2019-03-29 Electrolyzer and electrolysis method
CN202080024892.2A CN113631762B (en) 2019-03-29 2020-03-30 Electrolysis apparatus and electrolysis method
PCT/JP2020/014682 WO2020204003A1 (en) 2019-03-29 2020-03-30 Electrolysis apparatus and electrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019069353A JP6967032B2 (en) 2019-03-29 2019-03-29 Electrolyzer and electrolysis method

Publications (2)

Publication Number Publication Date
JP2020164962A true JP2020164962A (en) 2020-10-08
JP6967032B2 JP6967032B2 (en) 2021-11-17

Family

ID=72717093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019069353A Active JP6967032B2 (en) 2019-03-29 2019-03-29 Electrolyzer and electrolysis method

Country Status (1)

Country Link
JP (1) JP6967032B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070835A1 (en) 2020-09-30 2022-04-07 ボンドテック株式会社 Substrate bonding method and substrate bonding system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587716B2 (en) * 1975-09-11 1983-02-10 三井金属鉱業株式会社 Denkaisou
JP2002105684A (en) * 2000-09-29 2002-04-10 Dowa Mining Co Ltd Electrolytic method, and electrolytic tank used therefor
JP2013108135A (en) * 2011-11-21 2013-06-06 Sumitomo Metal Mining Co Ltd Weir for electrolytic cell
JP2013237921A (en) * 2012-05-17 2013-11-28 Sumitomo Metal Mining Co Ltd Solution supply piping of electrolytic solution
JP2015040327A (en) * 2013-08-22 2015-03-02 住友金属鉱山株式会社 Electrolytic smelting installation and method of feeding electrolytic solution
JP2017057508A (en) * 2017-01-04 2017-03-23 三菱マテリアル株式会社 Electrolytic refining method of metal, electrolytic refining apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587716B2 (en) * 1975-09-11 1983-02-10 三井金属鉱業株式会社 Denkaisou
JP2002105684A (en) * 2000-09-29 2002-04-10 Dowa Mining Co Ltd Electrolytic method, and electrolytic tank used therefor
JP2013108135A (en) * 2011-11-21 2013-06-06 Sumitomo Metal Mining Co Ltd Weir for electrolytic cell
JP2013237921A (en) * 2012-05-17 2013-11-28 Sumitomo Metal Mining Co Ltd Solution supply piping of electrolytic solution
JP2015040327A (en) * 2013-08-22 2015-03-02 住友金属鉱山株式会社 Electrolytic smelting installation and method of feeding electrolytic solution
JP2017057508A (en) * 2017-01-04 2017-03-23 三菱マテリアル株式会社 Electrolytic refining method of metal, electrolytic refining apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070835A1 (en) 2020-09-30 2022-04-07 ボンドテック株式会社 Substrate bonding method and substrate bonding system

Also Published As

Publication number Publication date
JP6967032B2 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
JP2021120478A (en) Electrolysis device and electrolysis method
JP7150768B2 (en) Electrolysis apparatus and electrolysis method
US7431810B2 (en) Apparatus for controlling flow in an electrodeposition process
US8454818B2 (en) Method for operating copper electrolysis cells
JP2017057508A (en) Electrolytic refining method of metal, electrolytic refining apparatus
JP6065706B2 (en) Electrolytic purification method of metal, electrolytic purification equipment
JP6967032B2 (en) Electrolyzer and electrolysis method
WO2020204003A1 (en) Electrolysis apparatus and electrolysis method
JP5085474B2 (en) Method for electrolytic purification of copper
JP2002105684A (en) Electrolytic method, and electrolytic tank used therefor
JP3150370U (en) Electrolytic plating equipment
JP6962960B2 (en) Electrolyzer and electrolysis method
JP7002494B2 (en) Electrolyzer and electrolysis method
JP6929320B2 (en) Electrolyzer and electrolysis method
JP6364920B2 (en) Electrolytic refining method
JP4342522B2 (en) Method for homogenizing electrolyte concentration and electrolytic cell
JP2020164960A (en) Electrolyzer and electrolysis method
JP7309123B2 (en) Method for supplying electrolyte to electrolytic cell for electrorefining
JP2790314B2 (en) Horizontal plating tank
KR101325390B1 (en) Metal Foil Manufacturing Apparatus Comprising Perpendicular Type Cell
CN215183564U (en) Production equipment for medium-high voltage anode foil
JPH0730688Y2 (en) Vertical electroplating equipment
JPS59116398A (en) Horizontal type electroplating cell
JP2018168406A (en) Apparatus for electrolysis, and method for electrolysis using the same
JP2018168405A (en) Apparatus for electrolysis, and method for electrolysis using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211022

R151 Written notification of patent or utility model registration

Ref document number: 6967032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151