JP2002105684A - Electrolytic method, and electrolytic tank used therefor - Google Patents
Electrolytic method, and electrolytic tank used thereforInfo
- Publication number
- JP2002105684A JP2002105684A JP2000298730A JP2000298730A JP2002105684A JP 2002105684 A JP2002105684 A JP 2002105684A JP 2000298730 A JP2000298730 A JP 2000298730A JP 2000298730 A JP2000298730 A JP 2000298730A JP 2002105684 A JP2002105684 A JP 2002105684A
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic
- electrolyte
- electrolytic cell
- electrolysis
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、銅の電解精製等の電解
において電解槽内で交互に対向して配置され、かつ並列
に通電されたアノード、カソード(両者を極板という)
間において電解液を強制的に通液させて各極板間におけ
る電解液の濃度均質化・液入替えを促進させることによ
り、アノードの不働態化防止等をはかる効率的な電解方
法及びこれに使用する電解槽に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anode and a cathode which are alternately arranged in an electrolytic cell and are energized in parallel in electrolysis such as electrolytic refining of copper (both are called electrode plates).
Efficient electrolysis method for preventing the passivation of the anode, etc. by forcibly passing the electrolytic solution between the electrodes to promote the homogenization of the concentration of the electrolytic solution between the electrode plates and the replacement of the liquid, and the use in this method The present invention relates to an electrolytic cell to be used.
【0002】[0002]
【従来の技術】電解、例えば銅の電解精製では、電解目
的金属である銅を主成分とし不純物を含有するアノード
と、銅を電着させるカソードとを、電解槽中に交互に対
向して配置し、かつ、電気的に並列に接続して、電解液
で満たし、直流電流を通じることにより、アノード中の
銅及びそれより卑な元素を電解液中に溶解させ、電解液
中の銅及びそれより貴な元素をカソードに電着させる。
この時、アノード表面近傍の電解液は銅濃度が高いので
液比重が大きくなって下降し、逆にカソード表面近傍の
電解液は銅濃度が低いため液比重が小さくなって上昇す
る、いわゆる濃度対流を起す。これによりアノ−ド表面
近傍や、電解槽底部には銅濃度の高い電解液が存在し、
また、電解槽底部は底面からの熱放散により電解液温が
低下しやすい。2. Description of the Related Art In electrolysis, for example, electrolytic refining of copper, an anode containing copper as an electrolysis target metal as a main component and containing impurities, and a cathode for electrodepositing copper are alternately arranged in an electrolytic cell. And electrically connected in parallel, filled with an electrolytic solution, and passed a direct current, thereby dissolving the copper in the anode and the more noble elements in the electrolytic solution, Electrodeposit more noble elements on the cathode.
At this time, the electrolytic solution near the anode surface has a high copper concentration, so that the specific gravity of the solution is large, and the electrolytic solution near the cathode surface has a low copper concentration, and the specific gravity of the electrolytic solution is small, so that the concentration is increased. Cause As a result, an electrolytic solution having a high copper concentration exists near the anode surface and at the bottom of the electrolytic cell.
Also, the temperature of the electrolytic solution tends to decrease at the bottom of the electrolytic cell due to heat dissipation from the bottom surface.
【0003】このような銅濃度が高い、また、液温が低
いという悪条件の電解液中にあるアノードは、不働態化
しやすい。すなわち、アノード表面近傍の電解液中の銅
濃度が過飽和となって、アノード表面やこれに接するス
ライム層内に硫酸銅等が析出して固形物被膜が形成され
アノードからの銅の溶出が不可能となることが考えられ
る。電解精製での電解液中における電解目的金属の濃度
は、アノード表面が最も高く、カソード表面が最も低
い。概して、両極の表面にごく接近した領域で急激な濃
度変化があり、その間の液相の濃度勾配は極めて緩慢で
ある。ここでアノード不働態化にはアノードに起因する
場合(例えばアノードが不純物を多量に含有する場合)、
電解条件に起因する場合(例えば高電流密度電解)、電解
液に起因する場合等があるが、電解液に起因する場合の
発生機構としては、アノード近傍における電解液温低下
や緩慢な電解液の流れにより、アノード表面若しくはス
ライム層内において電解液中に溶存する銅の濃度が過飽
和となって硫酸銅等が析出して、表面に薄膜を形成し、
アノードからの銅の溶出が進まなくなることによるとさ
れる。このようなアノード不働態化の防止対策として、
電解液を昇温する、電解液中の銅濃度を低くする、通液
量を増加させる、という提案がなされている。[0003] An anode in an electrolytic solution under such a bad condition that the copper concentration is high and the liquid temperature is low is easily passivated. In other words, the concentration of copper in the electrolyte near the anode surface becomes supersaturated, and copper sulfate and the like precipitate on the anode surface and the slime layer in contact with the anode to form a solid film, so that copper cannot be eluted from the anode. It is considered that The concentration of the target metal in the electrolytic solution in the electrolytic refining is highest on the anode surface and lowest on the cathode surface. Generally, there is a sharp concentration change in the region very close to the surface of the bipolar, during which the concentration gradient of the liquid phase is very slow. Here, when the anode passivation is caused by the anode (for example, when the anode contains a large amount of impurities),
There are cases where it is caused by electrolysis conditions (for example, high current density electrolysis) and cases where it is caused by the electrolytic solution. By the flow, the concentration of copper dissolved in the electrolytic solution on the anode surface or in the slime layer becomes supersaturated, and copper sulfate or the like precipitates, forming a thin film on the surface,
It is considered that the elution of copper from the anode does not proceed. As a measure to prevent such passivation of the anode,
Proposals have been made to raise the temperature of the electrolytic solution, lower the copper concentration in the electrolytic solution, and increase the flow rate.
【0004】しかし、電解液の昇温には加熱コストの増
加が不可避であり、また銅の電解精製において電解液中
の銅濃度を低下させればカソードにおける電着組織が粗
くなって電解液中の不純物を巻き込んで品質が低下しや
すいので、特に高電流密度電解においては電解液の銅濃
度を高く維持することがのぞまれている。さらに通液量
の増加は電着金属の品質低下の原因となるスライムの巻
き込み現象を誘発するため通液量の増加には限界があ
る。また、電極表面における電解液の流速を上げる方策
に関し、電解液の環流に着目したものとして、電解槽内
で電解に起因して電極を周回するように発生する流れを
妨げないように給排液口の位置を定めた、特開平10-183
389号の例があるが、各極板間において電解液を確実に
均等に強制的に通液させるものではなく、また、不働態
化に影響する銅濃度のむらを抑制することに関する実質
的な開示はない。また従来から極板に平行方向に電解液
を通液するサイド環流方法も実施されているが、それら
は基本的に極板間においては層流であって、先に述べた
濃度対流に作用する程の攪拌を起こすものではなく、不
働態化の防止対策としては不充分なものであった。[0004] However, an increase in the heating cost is inevitable for raising the temperature of the electrolytic solution, and if the concentration of copper in the electrolytic solution is reduced in the electrolytic refining of copper, the electrodeposition structure at the cathode becomes coarse and the electrolytic solution in the electrolytic solution is reduced. Therefore, it is desired that the copper concentration of the electrolytic solution be kept high especially in high current density electrolysis because the impurities are easily involved and the quality is easily deteriorated. Further, an increase in the flow rate induces a slime entrainment phenomenon which causes a deterioration in the quality of the electrodeposited metal, and thus there is a limit to the increase in the flow rate. In addition, regarding the measures to increase the flow rate of the electrolyte on the electrode surface, focusing on the reflux of the electrolyte, the supply and discharge of the liquid is performed so as not to obstruct the flow generated around the electrode due to electrolysis in the electrolytic cell. JP-A-10-183 with the position of the mouth determined
Although there is an example of No. 389, it does not reliably and forcibly flow the electrolyte between each electrode plate, and also substantially discloses the suppression of uneven copper concentration affecting passivation. There is no. Conventionally, a side recirculation method in which an electrolytic solution is passed in a direction parallel to the electrode plates has also been implemented. However, these are basically laminar flows between the electrodes and act on the concentration convection described above. It did not cause agitation to a moderate degree, and was insufficient as a measure for preventing passivation.
【0005】[0005]
【発明が解決しようとする課題】本発明の課題は、アノ
ード及びカソード間の電解液について、特にアノード表
面近傍に局所的あるいは全体的に発生する銅等電解目的
金属の高濃度領域を解消し、両極板間全体の濃度分布を
均質化してアノードの不働態化を防止する電解方法、及
びこれに使用する電解槽を提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to eliminate the high concentration region of an electrolytic object metal such as copper which is locally or entirely generated in the vicinity of the anode surface with respect to the electrolyte between the anode and the cathode. It is an object of the present invention to provide an electrolysis method for homogenizing the concentration distribution across the both electrode plates to prevent the passivation of the anode, and to provide an electrolytic cell used for the electrolysis method.
【0006】[0006]
【課題を解決するための手段】各極板間の電解液に人為
的な流れを起こして、各極板間の電解液を機械的に攪拌
することにより、各極板間の電解液中の溶存成分、特に
電解目的金属の濃度むらを解消してアノードの不働態化
を防止すべく種々検討した結果、本発明に至った。Means for Solving the Problems An artificial flow is caused in the electrolyte between the plates, and the electrolyte between the plates is mechanically agitated. As a result of various investigations to eliminate the unevenness of the concentration of dissolved components, particularly the concentration of the metal for the purpose of electrolysis, and to prevent passivation of the anode, the present invention was achieved.
【0007】すなわち、本発明は、第1に、電解槽中に
複数のアノード、複数のカソードが交互に対向して配置
され、かつ、並列に通電された各極板間において該極板
の平面と平行方向に電解液を吐出して通液させ電解する
ことを特徴とする電解方法であり、第2に、隣合う両極
板間においてその一方側面の上部近傍間の部位から他方
側面の下部近傍間の部位に向けて電解液を吐出して通液
させ電解する、第1の電解方法であり、第3に、電解液
の吐出速度が0.2m/秒以上である、第1または2の電
解方法であり、第4に、電解が銅の電解精製である、第
1〜3のいずれかの電解方法であり、第5に、電解槽中
に複数のアノード、複数のカソードが交互に対向して配
置され、かつ、並列に通電される各極板間において該極
板の平面と平行方向に電解液を吐出する給液口が配設さ
れたことを特徴とする電解槽であり、第6に、前記給液
口が、隣合う両極板間におけるその一方側面の上部近傍
間の部位において、他方側面の下部近傍間の部位に配設
された排液口に向けて電解液を吐出する給液口である、
第5の電解槽であり、第7に、前記排液口が、前記給液
口と対向する電解槽側壁下部において該給液口全数に対
向して一体化または分割されて槽内に配設された、第6
の電解槽であり、第8に、電解槽の側壁上部の一カ所以
上に排液口が配設された、第5〜7のいずれかの電解槽
であり、第9に、電解槽が銅の電解精製用電解槽であ
る、第5〜8のいずれかの電解槽である。That is, the present invention firstly provides that a plurality of anodes and a plurality of cathodes are alternately arranged in an electrolytic cell, and that a plane Secondly, the electrolytic solution is discharged by passing an electrolytic solution in a direction parallel to the direction of the electrolytic solution, and secondly, from the portion between the upper portion of one side surface and the lower portion of the other side surface between the adjacent electrode plates. A first electrolytic method in which an electrolytic solution is discharged toward a portion between the first and second electrolytic cells to allow the electrolytic solution to pass therethrough for electrolysis, and thirdly, the first or second electrolytic method in which the discharge speed of the electrolytic solution is 0.2 m / sec or more. Fourth, any one of the first to third electrolysis methods, wherein the electrolysis is electrolytic refining of copper. Fifth, a plurality of anodes and a plurality of cathodes are alternately opposed in an electrolytic cell. Parallel to the plane of the plates between the plates, which are arranged in parallel and are energized in parallel. A liquid supply port for discharging an electrolytic solution is provided in the electrolytic cell, and sixthly, the liquid supply port is provided between adjacent two electrode plates at a portion between upper portions of one side surface and near an upper portion thereof. , Is a liquid supply port that discharges the electrolyte toward a liquid discharge port disposed at a portion between the lower portion and the vicinity of the other side surface,
Seventh, a seventh electrolytic cell, wherein the drainage port is integrated or divided in the lower part of the side wall of the electrolytic cell opposite to the liquid supply port so as to face the entire number of the liquid supply ports, and is disposed in the cell. Done, sixth
Eighth, any one of Fifth to Seventh electrolysis tanks in which a drain port is provided at one or more locations on the upper side wall of the electrolysis tank. Ninth, the electrolysis tank is made of copper. The electrolytic cell for electrolytic refining of any one of the fifth to eighth electrolytic cells.
【0008】本明細書中において、電解液が吐出される
極板平面との「平行方向」とは、「幾何学的に厳密な平
行方向」の場合のみならず、「ほぼ平行方向」の場合も
包含する概念であり、好ましくは、対向する両極板の一
方側面の上部近傍間の部位からの電解液の吐出方向の中
心線が他方側面の下部近傍間の部位に達するまでの間に
おいて両極板いずれにも交差しない場合をいう。給液口
は各極板間に一カ所以上配設するのが好ましい。また、
排液口は、(1)各極板間において給液口と対向して電
解液中に一カ所以上配設されることが好ましく(特に極
板の下端レベル以下が好ましい、また、槽内の給液口全
数に対向して一体化または分割されて給液口と対向する
電解槽内側壁下部に配置されるのが好ましい)、(2)
各極板間において電解槽液面近傍部の電解液を排出すべ
く給液口と対向または隣接する電解槽側壁の上部に配設
することも好ましく、(3)さらに好ましくは(1)と
(2)を併設するとよい。本明細書中では、実施例等に
おいて銅の電解精製の場合について記載しているが、こ
れは本発明の一つの例示であって、本発明はこれらに限
定されるものではなく、銅以外の鉛、ビスマス、金、銀
等の金属の電解精製、また液中に溶存する亜鉛等の金属
の電解採取、さらにはメッキ等の広範な電解を包含する
ものである。In the present specification, the term “parallel direction” with respect to the plane of the electrode plate from which the electrolyte is discharged is not only a “strictly geometrically parallel direction” but also a “substantially parallel direction”. It is a concept that also encompasses the bipolar plates, preferably until the center line in the discharge direction of the electrolyte from the portion between the upper portions of the one side surface of the opposing bipolar plates reaches the portion between the lower portions of the other side surface. It means the case that does not cross any of them. It is preferable to provide one or more liquid supply ports between each electrode plate. Also,
The drainage port is preferably provided at one or more places in the electrolyte opposite to the liquid supply port between each electrode plate (especially at the lower end level of the electrode plate or less, and (It is preferable to be integrated or divided so as to face all the liquid supply ports, and to be arranged at the lower part of the inner wall of the electrolytic cell facing the liquid supply ports), (2)
It is also preferable to dispose the electrolytic solution near the liquid surface of the electrolytic bath between the electrode plates at the upper part of the side wall of the electrolytic bath opposite to or adjacent to the liquid supply port. (3) More preferably, (1) and ( 2) should be added. In the present specification, the case of electrolytic refining of copper is described in Examples and the like, but this is one example of the present invention, and the present invention is not limited to these. It encompasses a wide range of electrolysis such as electrolytic refining of metals such as lead, bismuth, gold, and silver, electrowinning of metals such as zinc dissolved in a liquid, and plating.
【0009】極板平面と平行な面内において吐出される
電解液の吐出方向は、水平方向、上方向、下方向、斜め
上方向、斜め下方向のいずれでもよいが、好ましくは両
極板の一方側面の上部近傍間の部位から他方側面の下方
へ30〜75度斜め下向きの吐出がよく、さらに好まし
くは一方側面の上部近傍間の部位から他方側面の下部近
傍間の部位への斜め下向き(下向き対角線方向)に吐出
することにより各極板間の電解液を最も効果的に排出し
て新しい電解液と入れ替えることができる。給液口から
の電解液の吐出速度については、各極板間での電解液滞
留を解消し電解液の入れ替えを確実にするため、また、
各極板間の電解液に攪拌流を発生させ電解液濃度むらを
解消して均質化させるため、0.2m/秒以上の吐出速度
が必要である。0.2m/秒未満の吐出速度では極板間全
体で攪拌ができないので、極板間の電解液濃度を均質化
するという目的を達成することができず、極板間の電解
液の滞留の一掃も困難である。The direction of discharge of the electrolyte discharged in a plane parallel to the plane of the electrode plate may be any of a horizontal direction, an upward direction, a downward direction, an obliquely upward direction, and an obliquely downward direction. Discharge is preferably performed at an angle of 30 to 75 degrees downward from the portion near the upper portion of the side surface to the lower portion on the other side, and more preferably, obliquely downward (downward) from the portion near the upper portion of one side to the portion near the lower portion of the other side. By discharging in the diagonal direction), the electrolyte between the electrode plates can be discharged most effectively and replaced with a new electrolyte. Regarding the discharge speed of the electrolyte from the liquid supply port, in order to eliminate the stagnation of the electrolyte between each electrode plate and to ensure the replacement of the electrolyte,
A discharge speed of 0.2 m / sec or more is necessary in order to generate a stirring flow in the electrolyte between the electrode plates to eliminate and homogenize the electrolyte concentration unevenness. At a discharge speed of less than 0.2 m / sec, stirring cannot be performed over the entire area between the electrodes, so that the purpose of homogenizing the concentration of the electrolyte between the electrodes cannot be achieved. Cleaning is also difficult.
【0010】[0010]
【実施例】次に実施例を用いて本発明を更に説明する。Next, the present invention will be further described with reference to examples.
【0011】[実施例1]まず、電解槽の設計にあたり、
効率よく各極板間の電解液を攪拌でき、かつアノードス
ライムの剥離・沈降を促進することを基本条件として上
入れ下抜きの対角線方向の電解液吐出による環流方法を
採用することにした。次いで、極板間を想定し、縦18
00mm、横900mm、幅30mmの透明アクリル板製
水槽を作成し、槽内においてその一方の側面上部に様々
な給液口、他方の側面下部に排液口を設置して白い背景
にしたうえで、水槽内にあらかじめ透明溶液をはってお
き、ここに同じ比重の黒色半透明液を試験毎に給液方向
・吐出速度を変え、それぞれ定速供給して液の入れ替わ
る様子を時系列で観察した。その様子の一例を図1に示
す。すなわち、直径10mmの直管ノズルから、60度
斜め下向きに吐出速度0.3m/秒で吐出した場合であっ
て、図1のa、b、c、dはそれぞれ、吐出開始15秒
後、30秒後、1分後、2分後の各時点における液の入
れ替わる様子である。これらの試験から、給液口の設置
角度は水平方向に対して斜め下向き30から75度、更
には下向き対角線方向に設けた排液口に向けた場合がよ
り好ましいことを見出した。すなわち、斜め下向き30
度未満、75度超の場合とも局部的に液の滞留する領域
を生じ、液の入れ替えに要する時間は30度以上75度
以下の場合に比べて著しく長くなる。また、吐出角度・
速度等の具体的な数値は電解槽および電極の形状によっ
て異なるが、前述の極間寸法をもつ試験電解槽では吐出
方向が斜め下向き60度において吐出速度について0.
2m/秒 以上、好ましくは0.3〜1.0m/秒が必要で
あり、沈降するスライムの巻き込み防止や、実際の電解
工程における給排液設備の観点から、吐出速度0.3m/
秒が総合的にもっとも効率がよいことを確認した。[Example 1] First, in designing an electrolytic cell,
As a basic condition that the electrolyte solution between the electrode plates can be efficiently stirred and the separation and settling of the anode slime is promoted, a recirculation method in which the electrolyte solution is discharged in a diagonal direction in which the electrolyte is discharged upward and downward is adopted. Next, the vertical 18
Create a water tank made of transparent acrylic plate of 00 mm, 900 mm in width and 30 mm in width. In the tank, various liquid supply ports are installed on the upper side of one side, and the drainage port is installed on the lower side of the other side. A transparent solution is placed in the water tank in advance, and the black semi-transparent liquid of the same specific gravity is changed in the liquid supply direction and discharge speed for each test, and the liquid is supplied at a constant speed and the liquid exchange is observed in chronological order. did. One example of such a situation is shown in FIG. That is, this is a case where a straight pipe nozzle having a diameter of 10 mm is discharged obliquely downward at an angle of 60 degrees at a discharge speed of 0.3 m / sec, and a, b, c, and d in FIG. It is a state in which the liquid is replaced at each point in time after one second, one minute, and two minutes. From these tests, it was found that the installation angle of the liquid supply port is more preferably 30 to 75 degrees obliquely downward with respect to the horizontal direction, and more preferably the liquid supply port is directed to a drain port provided diagonally downward. That is, the oblique downward direction 30
When the temperature is less than 75 degrees or more than 75 degrees, a region where the liquid stays locally occurs, and the time required for the replacement of the solution is significantly longer than that in the case of 30 degrees or more and 75 degrees or less. In addition, the discharge angle
Specific numerical values such as the speed vary depending on the shape of the electrolytic cell and the electrode. However, in the test electrolytic cell having the above-described gap between the electrodes, the discharge speed is set to 0.
2 m / sec or more, preferably 0.3 to 1.0 m / sec is required. From the viewpoint of preventing entrainment of settling slime and supply / drainage equipment in an actual electrolytic process, the discharge speed is 0.3 m / sec.
Seconds were found to be the most efficient overall.
【0012】これによって決定した電解槽を作成し、実
際の電解過程で従来の環流方式による電解槽(従来槽)と
本発明環流法に係る試験槽により同じ銅濃度46 g/lの
給液を用いて、電解槽上部基準点(電解液面より120
mm上方)から下方400mm、800mm、1200mmに
つき各3点、液面直下、カソード直下各1点におけるカ
ソード表面近傍の極板間の平面方向の電解液中銅濃度分
布を測定した。その結果をそれぞれ表1及び表2に示
す。なお、ここで用いた従来槽は、図2に示すとおり、
極板平面に対して平行な電解槽側壁の一方の中央部の下
部に給液口が、他方の中央部の上部に排液口がそれぞれ
設けられたものであり、一方、試験槽は、図3に示すと
おり、隣合う各極板間において両極板の一方側面の上部
近傍間の部位に給液口が、他方側面の下部近傍間の部位
に排液口がそれぞれ設けたものである(ただし全排液口
を一体化した)。電解液の銅濃度分布については、従来
槽では極板間9点の平均値が48.3g/l 、普遍標準偏
差が0.76g/lであるのに対し、本発明の試験槽では
極板間9点平均値が51.1g/l、普遍標準偏差が0.
29g/lとなっており、ばらつきの尺度となる普遍標準
偏差を平均値で割ったCp値で比較すると、前者は1.
57%、後者は0.57%であり、本発明試験槽では従
来槽に比較して銅濃度むらを大幅に低下させることがで
きた。また、この電解液濃度の均質化については極板間
に留まらず、極板間直下についても試験槽の方が9点平
均値により近く、攪拌の効果が底部に近いところまで及
ぶことが判明した。また本発明の試験槽による電着の品
質について代表的な不純物である銀についてみれば5g/
tであり、従来槽の場合の10g/tより改善された(な
お、銅のアノード中の銀品位は7000g/tであった。
以下同じ)。An electrolytic cell determined in this way is prepared, and in the actual electrolysis process, the same supply of copper having a concentration of 46 g / l is supplied to the electrolytic cell by the conventional reflux method (conventional cell) and the test tank according to the reflux method of the present invention. Using the reference point at the upper part of the electrolytic cell (120
mm), the copper concentration distribution in the electrolyte in the plane direction between the plates near the cathode surface was measured at three points at 400 mm, 800 mm, and 1200 mm below, one point immediately below the liquid surface, and one point immediately below the cathode. The results are shown in Tables 1 and 2, respectively. The conventional tank used here is as shown in FIG.
A liquid supply port is provided at the lower part of one central part of the side wall of the electrolytic cell parallel to the plane of the electrode plate, and a liquid discharge port is provided at the upper part of the other central part. As shown in FIG. 3, a liquid supply port is provided between adjacent adjacent electrode plates at a portion between the upper portions of one side surface of the two electrode plates, and a liquid discharge port is provided at a portion between the lower portions of the other side surface (provided that they are provided). All drains are integrated). Regarding the copper concentration distribution of the electrolytic solution, the average value at 9 points between the electrode plates in the conventional tank was 48.3 g / l and the universal standard deviation was 0.76 g / l, while the electrode plate in the test tank of the present invention was The average value of 9 points was 51.1 g / l, and the universal standard deviation was 0.
When compared with the Cp value obtained by dividing the universal standard deviation, which is a measure of variation, by the average value, the former was 1.g / l.
57% and 0.57% for the latter, and the test tank of the present invention was able to significantly reduce the unevenness of the copper concentration as compared with the conventional tank. In addition, regarding the homogenization of the electrolyte concentration, it was found that the test tank was closer to the 9-point average value just below the gap between the electrodes, and that the stirring effect was extended to a position near the bottom just below the gap between the electrodes. . Regarding the quality of silver which is a typical impurity with respect to the quality of electrodeposition by the test tank of the present invention, 5 g / g
t, which is improved from 10 g / t in the conventional tank (the silver grade in the copper anode was 7000 g / t).
same as below).
【0013】[0013]
【表1】 [Table 1]
【0014】[0014]
【表2】 [Table 2]
【0015】特筆すべきは、給液濃度に比較して極板間
の電解液銅濃度平均値は従来槽で2g/l、試験槽では 5
g/l高い。これは従来槽では先に述べたように、アノー
ドから溶出した銅分がアノード及びその表面に付着残留
しているスライム層の近傍で下降流を形成するのに対
し、試験層では人為的な攪拌により、アノード近傍から
カソード近傍まで拡散されたものと推定される。It should be noted that the average value of the electrolytic copper concentration between the electrode plates is 2 g / l in the conventional tank and 5 in the test tank as compared with the supply liquid concentration.
g / l higher. This is because, as described above, in the conventional tank, the copper component eluted from the anode forms a downward flow near the anode and the slime layer remaining on the surface of the anode, whereas in the test layer, artificial stirring occurs. Thus, it is estimated that the gas was diffused from the vicinity of the anode to the vicinity of the cathode.
【0016】[実施例2]表1及び2において、電解槽表
層付近の銅濃度は試験槽の方が低いが、これはカソード
近傍で銅濃度が希薄になった電解液が比重が小さくなっ
たことで電解液面近傍部に集まり、電解液の上抜きが不
充分だったため残留したものと解った。銅濃度の低下は
カソードでの電着性状を荒らす原因となるので、図4に
示すように、電解液面近傍の液が流出するように、実施
例1の試験槽(図3)にさらに、電解槽側壁上部、具体的
には従来槽と同様に極板平面に対して平行な電解槽壁の
一方の中央部の上部にも排液口を設置した場合、電解液
の銅濃度分布が表3に示すように改善された。電着品位
は代表的不純物の銀について4g/tであった。Example 2 In Tables 1 and 2, the copper concentration near the surface layer of the electrolytic cell was lower in the test tank, but the specific gravity of the electrolytic solution having a reduced copper concentration near the cathode became smaller. As a result, it was found that the solution gathered in the vicinity of the surface of the electrolyte and remained because the extraction of the electrolyte was insufficient. Since the decrease in the copper concentration causes the electrodeposition property at the cathode to be roughened, as shown in FIG. 4, the liquid near the electrolyte surface flows out into the test tank of Example 1 (FIG. 3). If a drain outlet is also installed on the upper part of the side wall of the electrolytic cell, specifically, on the upper part of one central part of the electrolytic cell wall parallel to the plane of the electrode plate as in the conventional cell, the copper concentration distribution of the electrolytic solution is shown. As shown in FIG. The electrodeposition quality was 4 g / t for a typical impurity silver.
【0017】[0017]
【表3】 [Table 3]
【0018】[実施例3]電解槽内の電解液の銅濃度分布
の改善と、電着品質の維持が確認されたので、不働態化
が発生する可能性について評価するため、通常の操業で
は1枚のアノードにつき、電流密度230 A/m2で13
日間の電解を2回行うところ、試験槽(図4に示された
実施例2の試験槽)、従来槽(図2に示された実施例1
の従来槽)とも2回目の電解において電流密度を340
A/m2迄上昇して9日間の電解を行ったところ、従来槽
では8日目にアノード不働態化が進行して電解を続ける
ためには電流密度を低下する措置を実施せざるを得なく
なったのに対し、試験槽では不働態化に至らず、340
A/m2で9日間の電解を行うことができた。2回目の槽
電圧の推移を表4に示す。2回目電着品位は銀について
従来槽で16g/t、試験槽で5g/tであった。Example 3 Since the improvement of the copper concentration distribution of the electrolytic solution in the electrolytic cell and the maintenance of the electrodeposition quality were confirmed, the possibility of passivation was evaluated. 13 per current density of 230 A / m 2 per anode
When the electrolysis is performed twice a day, the test tank (the test tank of Example 2 shown in FIG. 4) and the conventional tank (Example 1 shown in FIG. 2)
The current density was 340 in the second electrolysis
When the electrolysis was performed for 9 days at a rate of up to A / m 2 , in the conventional cell, anode passivation progressed on the 8th day, and in order to continue electrolysis, measures had to be taken to reduce the current density. In contrast, the test tank did not passivate,
Electrolysis could be performed at A / m 2 for 9 days. Table 4 shows the transition of the second tank voltage. The second electrodeposition quality of silver was 16 g / t in the conventional tank and 5 g / t in the test tank.
【0019】[0019]
【表4】 [Table 4]
【0020】[0020]
【発明の効果】本発明の電解方法、電解槽を採用するこ
とにより、各極板間に電解液を強制的に通液させること
ができて極板間の通液量むらを防止でき、従来の長手方
向やサイドからの環流方式に比べて極板間における電解
目的金属の濃度分布を均質化し、アノード近傍の液中銅
濃度を低下させることを可能とし、さらには銀等の不純
物を多量に含有するアノードを使用する場合や高電流密
度電解の場合でもアノードを不働態化させずに、高純度
の電着金属を得ることができる。電解目的金属以外に、
特に銀等の貴金属を多量に含有する銅アノードの電解精
製では、不働態化が特に懸念され、これまで電流密度を
低下させて電解せざるをえなかったが、本発明によれ
ば、不働態化を防止でき、電流密度を上昇させて操業を
あげることが可能となった。さらには、銀等の不純物を
さらに高濃度で含有する銅アノードの電解も可能となっ
た。By employing the electrolysis method and the electrolytic cell of the present invention, it is possible to forcibly flow the electrolyte between the respective electrodes, and to prevent unevenness in the flow between the electrodes. Compared to the reflux method from the longitudinal direction or the side, the concentration distribution of the target metal for electrolysis between the electrode plates can be homogenized, and the copper concentration in the liquid near the anode can be reduced. Even when a contained anode is used or in the case of high current density electrolysis, a high purity electrodeposited metal can be obtained without passivating the anode. In addition to electrolysis metal,
In particular, in the electrolytic refining of a copper anode containing a large amount of a noble metal such as silver, passivation is of particular concern, so far it has been necessary to reduce the current density and perform electrolysis. It has become possible to increase the current density and increase operation. Furthermore, electrolysis of a copper anode containing a higher concentration of impurities such as silver has become possible.
【図1】給液方法を決定するために行った吐出試験の図
である。FIG. 1 is a diagram of a discharge test performed to determine a liquid supply method.
【図2】実施例1において使用した従来槽全体およびそ
の給液口・排液口の位置関係を示す図である。FIG. 2 is a view showing the entire conventional tank used in Example 1 and the positional relationship between a liquid supply port and a liquid discharge port thereof.
【図3】実施例1において使用した本発明に係る試験槽
全体およびその給液口・排液口の位置関係を示す図であ
る。FIG. 3 is a view showing the entire test tank used in Example 1 and the positional relationship between a liquid supply port and a liquid discharge port thereof according to the present invention.
【図4】実施例2において使用した本発明に係る試験槽
全体およびその給液口・排液口の位置関係を示す図であ
る。FIG. 4 is a view showing the entire test tank used in Example 2 and the positional relationship between a liquid supply port and a liquid discharge port thereof according to the present invention.
1 電解槽 2 極板 3 給液口 4 排液口 DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 Electrode plate 3 Supply port 4 Drain port
───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡部 毅 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 本田 敦士 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 木村 隆幸 東京都千代田区丸の内1丁目8番2号 小 坂製錬株式会社内 Fターム(参考) 4K058 AA07 AA11 BA21 BB03 FA30 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takeshi Watanabe 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Atsushi Honda 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Same as above (72) Inventor Takayuki Kimura 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Kosaka Smelting Co., Ltd. F-term (reference) 4K058 AA07 AA11 BA21 BB03 FA30
Claims (9)
ードが交互に対向して配置され、かつ、並列に通電され
た各極板間において該極板の平面と平行方向に電解液を
吐出して通液させ電解することを特徴とする電解方法。1. A plurality of anodes and a plurality of cathodes are alternately arranged in an electrolytic cell so as to face each other, and an electrolytic solution is discharged in a direction parallel to the plane of the plates between the plates which are energized in parallel. An electrolytic method characterized in that the solution is passed through and electrolyzed.
上部近傍間の部位から他方側面の下部近傍間の部位に向
けて電解液を吐出して通液させ電解する、請求項1記載
の電解方法。2. The electrolysis according to claim 1, wherein an electrolytic solution is discharged from a portion between the vicinity of the upper portion of one side surface to a portion between the vicinity of the lower portion of the other side surface between the adjacent two electrode plates, and the electrolytic solution is allowed to flow therethrough for electrolysis. Method.
ある、請求項1または2記載の電解方法。3. The electrolysis method according to claim 1, wherein the discharge speed of the electrolytic solution is 0.2 m / sec or more.
3のいずれかに記載の電解方法。4. The method according to claim 1, wherein the electrolysis is copper electrorefining.
3. The electrolysis method according to any one of 3.
ードが交互に対向して配置され、かつ、並列に通電され
る各極板間において該極板の平面と平行方向に電解液を
吐出する給液口が配設されたことを特徴とする電解槽。5. A plurality of anodes and a plurality of cathodes are alternately arranged in an electrolytic cell so as to be opposed to each other, and an electrolytic solution is discharged in a direction parallel to the plane of the plates between the plates which are energized in parallel. An electrolytic cell characterized in that a liquid supply port is provided.
その一方側面の上部近傍間の部位において、他方側面の
下部近傍間の部位に配設された排液口に向けて電解液を
吐出する給液口である、請求項5記載の電解槽。6. The liquid supply port is configured such that the electrolyte is supplied to a drain port provided between a portion near an upper portion of one side surface between two adjacent electrode plates and a portion between a portion near a lower portion of the other side surface. The electrolytic cell according to claim 5, which is a liquid supply port for discharging.
解槽側壁下部において該給液口全数に対向して一体化ま
たは分割されて槽内に配設された、請求項6記載の電解
槽。7. The liquid discharge port is integrated or divided in the lower part of the side wall of the electrolytic cell opposite to the liquid supply port so as to face the entire number of the liquid supply ports, and is disposed in the cell. Electrolytic cell.
が配設された、請求項5〜7のいずれかに記載の電解
槽。8. The electrolytic cell according to claim 5, wherein a drain port is provided at one or more locations on the upper side wall of the electrolytic cell.
請求項5〜8のいずれかに記載の電解槽。9. The electrolytic cell is an electrolytic cell for electrolytic refining of copper.
The electrolytic cell according to claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000298730A JP2002105684A (en) | 2000-09-29 | 2000-09-29 | Electrolytic method, and electrolytic tank used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000298730A JP2002105684A (en) | 2000-09-29 | 2000-09-29 | Electrolytic method, and electrolytic tank used therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002105684A true JP2002105684A (en) | 2002-04-10 |
Family
ID=18780654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000298730A Pending JP2002105684A (en) | 2000-09-29 | 2000-09-29 | Electrolytic method, and electrolytic tank used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002105684A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010537051A (en) * | 2007-08-27 | 2010-12-02 | メットトップ ゲーエムベーハー | How to operate a copper electrolytic cell |
JP2013036074A (en) * | 2011-08-05 | 2013-02-21 | Jx Nippon Mining & Metals Corp | Method of producing indium hydroxide and compound including indium hydroxide |
JP2013216934A (en) * | 2012-04-06 | 2013-10-24 | Sumitomo Metal Mining Co Ltd | Method for producing electrolytic copper powder, method for producing copper ii oxide fine powder, and method for feeding copper ion of aqueous copper sulfate solution |
CN103572320A (en) * | 2013-11-22 | 2014-02-12 | 中国环境科学研究院 | Method for in site reduction of passivation solution carried by electrolytic manganese negative plate |
CN103695967A (en) * | 2013-12-31 | 2014-04-02 | 湖南省桂阳银星有色冶炼有限公司 | Method for resisting lead ion depletion of lead electrolyte |
JP2015209550A (en) * | 2014-04-23 | 2015-11-24 | 三菱マテリアル株式会社 | Electrolytic refining method |
JP2020029581A (en) * | 2018-08-21 | 2020-02-27 | 国立大学法人九州大学 | Electrolytic refining method of copper |
WO2020204003A1 (en) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | Electrolysis apparatus and electrolysis method |
JP2020164962A (en) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | Electrolyzer and electrolysis method |
JP2020164961A (en) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | Electrolyzer and electrolysis method |
JP2020164960A (en) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | Electrolyzer and electrolysis method |
JP2020164963A (en) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | Electrolyzer and electrolysis method |
JP2020164966A (en) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | Electrolyzer and electrolysis method |
JP2021120478A (en) * | 2020-01-30 | 2021-08-19 | Jx金属株式会社 | Electrolysis device and electrolysis method |
JP2021120477A (en) * | 2020-01-30 | 2021-08-19 | Jx金属株式会社 | Electrolysis device and electrolysis method |
-
2000
- 2000-09-29 JP JP2000298730A patent/JP2002105684A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010537051A (en) * | 2007-08-27 | 2010-12-02 | メットトップ ゲーエムベーハー | How to operate a copper electrolytic cell |
JP2013036074A (en) * | 2011-08-05 | 2013-02-21 | Jx Nippon Mining & Metals Corp | Method of producing indium hydroxide and compound including indium hydroxide |
JP2013216934A (en) * | 2012-04-06 | 2013-10-24 | Sumitomo Metal Mining Co Ltd | Method for producing electrolytic copper powder, method for producing copper ii oxide fine powder, and method for feeding copper ion of aqueous copper sulfate solution |
CN103572320A (en) * | 2013-11-22 | 2014-02-12 | 中国环境科学研究院 | Method for in site reduction of passivation solution carried by electrolytic manganese negative plate |
CN103572320B (en) * | 2013-11-22 | 2016-05-18 | 中国环境科学研究院 | A kind of original position is cut down the method that electrolytic manganese negative plate is carried under one's arms passivating solution |
CN103695967A (en) * | 2013-12-31 | 2014-04-02 | 湖南省桂阳银星有色冶炼有限公司 | Method for resisting lead ion depletion of lead electrolyte |
JP2015209550A (en) * | 2014-04-23 | 2015-11-24 | 三菱マテリアル株式会社 | Electrolytic refining method |
JP2020029581A (en) * | 2018-08-21 | 2020-02-27 | 国立大学法人九州大学 | Electrolytic refining method of copper |
JP7048941B2 (en) | 2018-08-21 | 2022-04-06 | 国立大学法人九州大学 | Copper electrolytic refining method |
JP2020164961A (en) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | Electrolyzer and electrolysis method |
JP2020164962A (en) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | Electrolyzer and electrolysis method |
JP2020164960A (en) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | Electrolyzer and electrolysis method |
JP2020164963A (en) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | Electrolyzer and electrolysis method |
JP2020164966A (en) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | Electrolyzer and electrolysis method |
CN113631762A (en) * | 2019-03-29 | 2021-11-09 | Jx金属株式会社 | Electrolysis apparatus and electrolysis method |
JP7002494B2 (en) | 2019-03-29 | 2022-01-20 | Jx金属株式会社 | Electrolyzer and electrolysis method |
WO2020204003A1 (en) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | Electrolysis apparatus and electrolysis method |
CN113631762B (en) * | 2019-03-29 | 2024-03-01 | Jx金属株式会社 | Electrolysis apparatus and electrolysis method |
JP2021120478A (en) * | 2020-01-30 | 2021-08-19 | Jx金属株式会社 | Electrolysis device and electrolysis method |
JP2021120477A (en) * | 2020-01-30 | 2021-08-19 | Jx金属株式会社 | Electrolysis device and electrolysis method |
JP7150768B2 (en) | 2020-01-30 | 2022-10-11 | Jx金属株式会社 | Electrolysis apparatus and electrolysis method |
JP7150769B2 (en) | 2020-01-30 | 2022-10-11 | Jx金属株式会社 | Electrolysis apparatus and electrolysis method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002105684A (en) | Electrolytic method, and electrolytic tank used therefor | |
FI60039B (en) | ELEKTROKEMISK ANORDNING | |
AU2008291662B2 (en) | Method for operating copper electrolysis cells | |
JP7150768B2 (en) | Electrolysis apparatus and electrolysis method | |
JP7150769B2 (en) | Electrolysis apparatus and electrolysis method | |
CN1263900C (en) | Method and device for regulation of concentration of metal ions in electrolyte and use thereof | |
US4134806A (en) | Metal anodes with reduced anodic surface and high current density and their use in electrowinning processes with low cathodic current density | |
JP2010065263A (en) | Method for electrolytically refining copper | |
JP5898346B2 (en) | Operation method of anode and electrolytic cell | |
JP4342522B2 (en) | Method for homogenizing electrolyte concentration and electrolytic cell | |
US3799850A (en) | Electrolytic process of extracting metallic zinc | |
JP7048941B2 (en) | Copper electrolytic refining method | |
JP7146174B2 (en) | Electrolyte drainage method in electrorefining | |
JP7023156B2 (en) | How to recover metallic indium | |
JP7186950B2 (en) | Electrolyte supply/drainage method | |
JP3158684B2 (en) | Copper electrorefining method | |
JP7002494B2 (en) | Electrolyzer and electrolysis method | |
JP2018168406A (en) | Apparatus for electrolysis, and method for electrolysis using the same | |
JP6962960B2 (en) | Electrolyzer and electrolysis method | |
JP2000054181A (en) | Method for electrolytically refining copper | |
JP7309123B2 (en) | Method for supplying electrolyte to electrolytic cell for electrorefining | |
JP2001081590A (en) | High current density electrolysis method for copper | |
JPH10183389A (en) | Electrolytic cell and copper electrolysis operation method using the same | |
JP2020164960A (en) | Electrolyzer and electrolysis method | |
Filzwieser et al. | FAQS WITH REGARDS TO OPERATING A CU ER TANKHOUSE ABOVE 400 A/m2 USING METTOP-BRX TECHNOLOGY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040217 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040318 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060802 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081021 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090304 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090331 |