JP2020164963A - Electrolyzer and electrolysis method - Google Patents

Electrolyzer and electrolysis method Download PDF

Info

Publication number
JP2020164963A
JP2020164963A JP2019069355A JP2019069355A JP2020164963A JP 2020164963 A JP2020164963 A JP 2020164963A JP 2019069355 A JP2019069355 A JP 2019069355A JP 2019069355 A JP2019069355 A JP 2019069355A JP 2020164963 A JP2020164963 A JP 2020164963A
Authority
JP
Japan
Prior art keywords
electrolytic solution
drainage
electrolytic
electrolytic cell
liquid supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019069355A
Other languages
Japanese (ja)
Other versions
JP7002494B2 (en
Inventor
大輔 手塚
Daisuke Tezuka
大輔 手塚
明 會澤
Akira Aizawa
明 會澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019069355A priority Critical patent/JP7002494B2/en
Priority to CN202080024892.2A priority patent/CN113631762B/en
Priority to PCT/JP2020/014682 priority patent/WO2020204003A1/en
Publication of JP2020164963A publication Critical patent/JP2020164963A/en
Application granted granted Critical
Publication of JP7002494B2 publication Critical patent/JP7002494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

To provide an electrolyzer and an electrolysis method, in which an electrolytic solution may be more uniformly supplied over the entire chamber so as to improve a mixed state of an electrolytic solution.SOLUTION: There is provided an electrolyzer in which electrodes arranged at intervals along the longitudinal direction of an electrolytic chamber 1 storing an electrolytic solution are immersed in the electrolytic solution so as to execute an electrolytic treatment while circulating the electrolytic solution. The electrolyzer comprises: a liquid supply pipe 2 that extends along a first side wall 11 of the electrolytic chamber 1 extending in the longitudinal direction and supplies the electrolytic solution from a plurality of liquid supply ports 21a to 21x arranged at intervals from each other toward a second side wall 12 of the electrolytic chamber 1 facing the first side wall 11; drainage pipes 3a, 3b, 3c that are arranged below the liquid supply pipe 2, extend along the second side wall 12 and drain the electrolytic solution from a plurality of liquid discharge ports 31a to 31x arranged at intervals from each other; and a drainage unit 30 that drains the electrolytic solution drained by the drainage pipes 3a, 3b, 3c to the outside of the electrolytic chamber 1. The drainage pipes 3a, 3b, 3c comprise two or more pipes along the longitudinal direction.SELECTED DRAWING: Figure 2

Description

本発明は、電解装置及び電解方法に関する。 The present invention relates to an electrolyzer and an electrolyzer.

従来の電解装置では、電解槽の長手方向の一端側の下部から電解液が供給され、他端側の上部から電解液が排液される下入れ上抜き方式と呼ばれる電解液の給排液が行われてきた。電解槽内の液組成及び添加剤濃度を均一に保つことは、例えば電気銅の品質及び電解成績を向上させるために重要な技術の一つであり、これまで色々な方法が検討されている。 In the conventional electrolytic cell, the electrolytic solution is supplied from the lower part on one end side in the longitudinal direction of the electrolytic cell, and the electrolytic solution is discharged from the upper part on the other end side. It has been done. Keeping the liquid composition and additive concentration in the electrolytic cell uniform is one of the important techniques for improving the quality of electrolytic copper and the electrolytic performance, for example, and various methods have been studied so far.

例えば、特開2007−204779号公報(特許文献1)には、電解槽の長手方向の一端側から電解液の上層部及び下層部へ電解液を給液し、反対側の端部側の液面上層部から排液する方法が提案されている。特開2015−209550号公報(特許文献2)には、電解槽の長手方向の一端の上部から電解液が側面に向けて給液され、他端の下部から排液される方法が提案されている。また、全く別の方法として、特開2014−189851号公報(特許文献3)及び特許第5227404号公報(特許文献4)には、電解槽の底や電解槽脇から電解液を給液する方法が提案されている。 For example, in Japanese Patent Application Laid-Open No. 2007-204779 (Patent Document 1), the electrolytic solution is supplied from one end side in the longitudinal direction of the electrolytic cell to the upper layer portion and the lower layer portion of the electrolytic cell, and the liquid on the opposite end side. A method of draining liquid from the upper layer has been proposed. Japanese Unexamined Patent Publication No. 2015-209550 (Patent Document 2) proposes a method in which an electrolytic solution is supplied toward a side surface from the upper part of one end in the longitudinal direction of an electrolytic cell and drained from the lower part of the other end. There is. Further, as a completely different method, Japanese Patent Application Laid-Open No. 2014-189851 (Patent Document 3) and Japanese Patent No. 5227404 (Patent Document 4) provide a method of supplying an electrolytic solution from the bottom of the electrolytic cell or the side of the electrolytic cell. Has been proposed.

特開2007−204779号公報JP-A-2007-204779 特開2015−209550号公報JP-A-2015-209550 特開2014−189851号公報Japanese Unexamined Patent Publication No. 2014-189851 特許第5227404号公報Japanese Patent No. 5227404

しかしながら、電解が進むと電解槽内に液の濃度差が生まれ、電解槽底へいくほど比重の重い液が溜まる。給液口から給液された液は、電解槽底の液より比重が軽いため、特許文献1及び2に記載されるような下入れ上抜き方式の電解液の給排液を行った場合には、給液位置より下方に電解液や添加剤が供給されないデッドスペースが生じる。電解槽内に添加剤が供給されない領域が生じると電着物の表面が荒れる場合や、電解液が供給されないことによって液中の銅濃度が部分的に上昇して不動態化が起こりやすくなる場合がある。 However, as the electrolysis progresses, a difference in the concentration of the liquid is generated in the electrolytic cell, and the liquid having a heavier specific gravity accumulates toward the bottom of the electrolytic cell. Since the liquid supplied from the liquid supply port has a lower specific gravity than the liquid at the bottom of the electrolytic cell, when the electrolyte liquid of the bottom-in / top-draining method as described in Patent Documents 1 and 2 is supplied / discharged. There is a dead space below the liquid supply position where the electrolyte and additives are not supplied. If there is a region in the electrolytic cell where no additive is supplied, the surface of the electrodeposited material may become rough, or the copper concentration in the liquid may partially increase due to the absence of the electrolyte, and passivation may easily occur. is there.

特許文献3に記載された発明では、電解槽の下方且つカソードの側方から電解液を供給し、電解槽の上部の電解液排出口から電解液を排液することで、排液側の電解槽底部の銅濃度上昇を防ぐことはできる。しかしながら、給液側は、従来と同様に上方から供給されているため、給液側の電解槽下方には電解液が供給されないデッドスペースが生じ、電解槽内の混合状態を十分に改善できているとはいえない。 In the invention described in Patent Document 3, the electrolytic solution is supplied from below the electrolytic cell and from the side of the cathode, and the electrolytic solution is discharged from the electrolytic cell discharge port at the upper part of the electrolytic cell, whereby electrolysis on the drain side is performed. It is possible to prevent an increase in the copper concentration at the bottom of the tank. However, since the liquid supply side is supplied from above as in the conventional case, a dead space in which the electrolytic solution is not supplied is generated below the electrolytic cell on the liquid supply side, and the mixed state in the electrolytic cell can be sufficiently improved. It cannot be said that there is.

特許文献4に記載された発明では、電解槽の底及び電解槽脇から電解液を供給することにより、電解槽内の電解液の混合状態を改善することができる。しかしながら、特許文献4では、電解液を下方から上方へと強制的に対流させることにより、殿物の巻き上げなどによるカソードの汚染の問題が発生するおそれがある。 In the invention described in Patent Document 4, the mixed state of the electrolytic cell in the electrolytic cell can be improved by supplying the electrolytic cell from the bottom of the electrolytic cell and the side of the electrolytic cell. However, in Patent Document 4, by forcibly convection of the electrolytic solution from the lower side to the upper side, there is a possibility that a problem of cathode contamination due to winding up of the palace may occur.

上記課題を鑑み、本開示は、槽内全体に渡ってより均一に電解液を給液でき、電解液の混合状態を改善することが可能な電解装置及び電解方法を提供する。 In view of the above problems, the present disclosure provides an electrolyzer and an electrolyzing method capable of more uniformly supplying the electrolytic solution over the entire tank and improving the mixed state of the electrolytic solution.

本発明の実施の形態に係る電解装置は一実施態様において、電解液を収容する電解槽の長手方向に沿って互いに間隔を空けて配置された電極を電解液中に浸漬し、電解液を循環しながら電解処理する電解装置であって、長手方向に延びる電解槽の第1の側壁に沿って延び、互いに間隔を空けて配置された複数の給液口から第1の側壁と対向する電解槽の第2の側壁側に向けて電解液を給液する給液配管と、給液配管よりも下方に配置され、第2の側壁に沿って延び、互いに間隔を空けて配置された複数の排液口から電解液を排液する排液配管と、排液配管により排液された電解液を電解槽外へ排液する排液部とを備え、排液配管が、長手方向に沿って少なくとも2本以上の配管を備える電解装置である。 In one embodiment, the electrolytic apparatus according to the embodiment of the present invention circulates the electrolytic solution by immersing electrodes arranged at intervals along the longitudinal direction of the electrolytic solution containing the electrolytic solution in the electrolytic solution. It is an electrolyzer that performs electrolysis treatment while being electrolyzed, and is an electrolyzer that extends along the first side wall of the electrolytic tank extending in the longitudinal direction and faces the first side wall from a plurality of liquid supply ports arranged at intervals from each other. A liquid supply pipe that supplies the electrolytic solution toward the second side wall side, and a plurality of discharges that are arranged below the liquid supply pipe, extend along the second side wall, and are arranged at intervals from each other. It is provided with a drainage pipe for draining the electrolytic solution from the liquid port and a drainage section for draining the electrolytic solution drained by the drainage pipe to the outside of the electrolytic tank, and the drainage pipe is at least along the longitudinal direction. It is an electrolyzer equipped with two or more pipes.

本発明の実施の形態に係る電解方法は一実施態様において、電解液を収容する電解槽の長手方向に沿って互いに間隔を空けて配置された電極を電解液中に浸漬し、電解液を循環しながら電解処理する電解方法であって、長手方向に延びる電解槽の第1の側壁に沿って延びる給液配管に設けられた複数の給液口から第1の側壁と対向する電解槽の第2の側壁側に向けて電解液を給液し、給液配管よりも下方に配置され、第2の側壁に沿って長手方向に延びる複数の排液配管の複数の排液口を介して電解液を排液し、排液配管によって排液された電解液を電解槽外へ排液することを含む電解方法である。 In one embodiment, the electrolysis method according to the embodiment of the present invention circulates the electrolytic solution by immersing the electrodes arranged at intervals along the longitudinal direction of the electrolytic solution containing the electrolytic solution in the electrolytic solution. A method of electrolyzing while electrolyzing, which is a method of electrolyzing an electrolytic tank that faces the first side wall from a plurality of liquid supply ports provided in a liquid supply pipe extending along the first side wall of the electrolytic tank extending in the longitudinal direction. The electrolytic solution is supplied toward the side wall side of 2, and electrolyzed through a plurality of drainage ports of a plurality of drainage pipes which are arranged below the liquid supply pipe and extend in the longitudinal direction along the second side wall. This is an electrolysis method including draining a liquid and draining the electrolytic liquid drained by the drain pipe to the outside of the electrolytic tank.

本開示によれば、槽内全体に渡ってより均一に電解液を給液でき、電解液の混合状態を改善することが可能な電解装置及び電解方法が提供できる。 According to the present disclosure, it is possible to provide an electrolyzer and an electrolyzing method capable of supplying an electrolytic solution more uniformly over the entire tank and improving a mixed state of the electrolytic solution.

本発明の実施の形態に係る電解装置の上面概略図である。It is a top view of the electrolysis apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る電解装置を側面からみた場合の給液配管と排液配管との位置関係を示す概略図である。It is the schematic which shows the positional relationship between the liquid supply pipe and the liquid drainage pipe when the electrolytic apparatus which concerns on embodiment of this invention is seen from the side. 給液配管が備える給液口及び排液配管が備える排液口を示す説明図である。It is explanatory drawing which shows the liquid supply port provided in the liquid supply pipe, and the drainage port provided in the drainage pipe. 排液ボックスと排液配管の電解槽内の配置位置を表す説明図である。It is explanatory drawing which shows the arrangement position in the electrolytic cell of a drainage box and a drainage pipe. 給液部と排液ボックスを表す上面概略図である。It is a top view which shows the liquid supply part and the drainage box. 電解液が排液ボックスから給液部へと流れる様子を表す断面概略図である。It is sectional drawing which shows the state that the electrolytic solution flows from a drainage box to a liquid supply part.

以下、図面を参照しながら本発明の実施の形態に係る電解装置及び電解方法について説明する。なお、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、各構成部品の構造、配置及び手順等を下記のものに特定するものではない。 Hereinafter, the electrolysis apparatus and the electrolysis method according to the embodiment of the present invention will be described with reference to the drawings. The embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention includes the structure, arrangement, procedure, etc. of each component. Is not specified as the following.

(電解装置)
本発明の実施の形態に係る電解装置は、図1に示すように、電解液を収容するための直方体状の電解槽1を備える。電解槽1のサイズとしては、例えば、電解槽1の長さ(長手方向Xの内径)が5200〜5900mm、幅(短手方向Yの内径)が1095〜1110mm、深さが1275〜1510mmとなるように形成することができる。
(Electrolyzer)
As shown in FIG. 1, the electrolyzer according to the embodiment of the present invention includes a rectangular parallelepiped electrolytic cell 1 for accommodating an electrolytic solution. The size of the electrolytic cell 1 is, for example, a length (inner diameter in the longitudinal direction X) of 5200 to 5900 mm, a width (inner diameter in the lateral direction Y) of 1095 to 1110 mm, and a depth of 1275 to 1510 mm. Can be formed as follows.

電解槽1は、長手方向Xに平行な方向に延びる第1の側壁11と、第1の側壁11に対向する第2の側壁12と、長手方向Xの一端において第1の側壁11及び第2の側壁12に垂直に延びる第3の側壁13と、長手方向Xの他端において第1の側壁11及び第2の側壁12に垂直に延び、第3の側壁13に対向する第4の側壁14とを有する。 The electrolytic cell 1 includes a first side wall 11 extending in a direction parallel to the longitudinal direction X, a second side wall 12 facing the first side wall 11, and a first side wall 11 and a second side wall 11 at one end in the longitudinal direction X. A third side wall 13 extending perpendicularly to the side wall 12 and a fourth side wall 14 extending perpendicularly to the first side wall 11 and the second side wall 12 at the other end of the longitudinal direction X and facing the third side wall 13. And have.

電解槽1の第1の側壁11の上方には、電解槽1内に収容される電解液の液面もしくは液面近傍となる高さにおいて電解槽1の長手方向Xに沿って延びる給液配管2が配置されている。給液配管2は、電解槽1の第3の側壁13の上方に配置された給液部20に接続されている。給液部20は、図1(a)及び図1(b)に示す電解槽1の他に、電解槽1以外の他の電解槽に対しても電解液を給液することが可能な給液主管と、供給主管から給液配管2へ電解液を分岐させる分岐配管とを備えることができるが、この例に制限されないことは勿論である。 Above the first side wall 11 of the electrolytic cell 1, a liquid supply pipe extending along the longitudinal direction X of the electrolytic cell 1 at the liquid level of the electrolytic cell contained in the electrolytic cell 1 or at a height close to the liquid level. 2 is arranged. The liquid supply pipe 2 is connected to a liquid supply unit 20 arranged above the third side wall 13 of the electrolytic cell 1. In addition to the electrolytic cell 1 shown in FIGS. 1 (a) and 1 (b), the liquid supply unit 20 can supply the electrolytic solution to other electrolytic cells other than the electrolytic cell 1. A liquid main pipe and a branch pipe for branching the electrolytic solution from the supply main pipe to the liquid supply pipe 2 can be provided, but of course, the present invention is not limited to this example.

給液配管2には、長手方向Xに沿って複数の給液口21a、21b・・・21xが好ましくは等間隔に設けられている。電解液の混合状態を改善するためには、複数の給液口21a、21b・・・21xは、電解液の液面から400mm以内の高さ、より好ましくは200mm以内の高さ、さらに好ましくは50mm以内の高さに配置されることが好ましい。 The liquid supply pipe 2 is preferably provided with a plurality of liquid supply ports 21a, 21b ... 21x along the longitudinal direction X at equal intervals. In order to improve the mixed state of the electrolytic solution, the plurality of liquid supply ports 21a, 21b ... 21x have a height within 400 mm, more preferably a height within 200 mm, and further preferably within 200 mm from the liquid level of the electrolytic solution. It is preferably arranged at a height of 50 mm or less.

給液配管2は、電解液の供給流量を20〜100L/分となるように電解槽1内へ供給することが好ましい。電解液の供給流量が20L/分未満では添加剤が電解槽1内に行き渡る前に分解してしまい、電着した金属の平滑性が損なわれる場合や、不動態化を起こす場合がある。電解液の供給流量は電解効率の面から高い方が好ましいが、電解液の供給流量が100L/分を超えると、電解槽1内の殿物が巻き上げられてカソード板表面へ付着する場合がある。 The liquid supply pipe 2 preferably supplies the electrolytic solution into the electrolytic cell 1 so that the supply flow rate of the electrolytic solution is 20 to 100 L / min. If the supply flow rate of the electrolytic solution is less than 20 L / min, the additive may be decomposed before being distributed in the electrolytic cell 1, and the smoothness of the electrodeposited metal may be impaired or passivation may occur. The supply flow rate of the electrolytic solution is preferably high from the viewpoint of electrolytic efficiency, but if the supply flow rate of the electrolytic solution exceeds 100 L / min, the ridges in the electrolytic cell 1 may be rolled up and adhere to the surface of the cathode plate. ..

本実施形態に係る電解装置では、供給流量を20〜100L/分とすることで、殿物の巻き上げを抑制しながら電解槽1内に給液される電解液の混合状態をより改善することができ、より効率の高い電解精製を実施することができる。なお、電解液の供給流量は、30〜90L/分とすることが好ましく、30〜70L/分とすることがより好ましく、50〜70L/分とすることが更に好ましい。 In the electrolytic device according to the present embodiment, by setting the supply flow rate to 20 to 100 L / min, it is possible to further improve the mixed state of the electrolytic solution supplied into the electrolytic cell 1 while suppressing the hoisting of the ridge. It is possible to carry out more efficient electrolytic purification. The supply flow rate of the electrolytic solution is preferably 30 to 90 L / min, more preferably 30 to 70 L / min, and even more preferably 50 to 70 L / min.

電解槽1の第4の側壁14側上方には、電解槽1内の電解液を電解槽1外へ排出するための排液部30及び排液部30に接続された排液ボックス32が設けられている。排液ボックス32には、図4に示すように、複数の排液配管3a、3b、3cがそれぞれ接続されている。排液配管3a、3b、3cは、図2に示すように、給液配管2よりも下方に配置され、第2の側壁12に沿って延び、互いに間隔を空けて電解槽1の長手方向に沿って配置された複数の排液口31a、31b・・・31f、31g、31h・・・31l、31m、31o・・・31xを備える。 Above the fourth side wall 14 side of the electrolytic cell 1, a drainage section 30 for discharging the electrolytic solution in the electrolytic cell 1 to the outside of the electrolytic cell 1 and a drainage box 32 connected to the drainage section 30 are provided. Has been done. As shown in FIG. 4, a plurality of drainage pipes 3a, 3b, and 3c are connected to the drainage box 32, respectively. As shown in FIG. 2, the drainage pipes 3a, 3b, and 3c are arranged below the liquid supply pipe 2, extend along the second side wall 12, and are spaced apart from each other in the longitudinal direction of the electrolytic cell 1. A plurality of drainage ports 31a, 31b ... 31f, 31g, 31h ... 31l, 31m, 31o ... 31x arranged along the line are provided.

図2の例では、電解槽1の上流側、即ち、給液部20に近い側の電解槽1内の電解液を排液可能な排液口31a〜31fを備える排液配管3aと、電解槽1の中央付近の電解液を排液可能な排液口31g〜31lを備える排液配管3bと、電解槽1の排液ボックス32に近い側の電解液を排液可能な排液口31m〜31xを備える排液配管3cの3本の配管が上下に離間してそれぞれ配置される例が記載されているが、この配置に限定されないことは勿論である。 In the example of FIG. 2, the drainage pipe 3a provided with the drainage ports 31a to 31f capable of draining the electrolytic solution in the electrolytic solution tank 1 on the upstream side of the electrolytic tank 1, that is, the side close to the liquid supply unit 20, and the electrolytic solution A drainage pipe 3b having a drainage port 31g to 31l capable of draining the electrolytic solution near the center of the tank 1 and a drainage port 31m capable of draining the electrolytic solution on the side close to the drainage box 32 of the electrolytic tank 1 An example is described in which three pipes of the drainage pipe 3c provided with ~ 31x are arranged vertically apart from each other, but it is needless to say that the arrangement is not limited to this.

例えば、配管の長さが一番長い排液配管3aを、電解槽1の底部に最も近い位置に配置し、配管の長さが最も短い排液配管3cを、3つの排液配管3a、3b、3cの中で最も上部となるように配置することも可能であることは勿論である。 For example, the drainage pipe 3a having the longest pipe length is arranged at a position closest to the bottom of the electrolytic cell 1, and the drainage pipe 3c having the shortest pipe length is arranged into three drainage pipes 3a and 3b. Of course, it is also possible to arrange it so that it is the uppermost part of 3c.

排液配管3a、3b、3cは、それぞれ排液ボックス32に接続された一端側とは反対側の先端部に排液口31a〜31xがそれぞれ設けられている。図2に示すように排液配管3a、3b、3cの先端部にのみ排液口31a〜31xが設けられることによって、一本の排液配管の全体に渡って排液口を均一に設ける場合に比べて、排液口31a〜31xが形成される領域の電解槽1の長手方向に沿った長さをそれぞれ短くすることができるため、圧力損失を小さくでき、排液口31a〜31xが配置された各領域の電解液をより効率的に排液しやすくなる。これにより、電解槽1長手方向の排液ムラが生じにくくなる。 The drainage pipes 3a, 3b, and 3c are each provided with drainage ports 31a to 31x at the tip portions on the opposite side to the one end side connected to the drainage box 32, respectively. When the drainage ports 31a to 31x are provided only at the tips of the drainage pipes 3a, 3b, and 3c as shown in FIG. 2, so that the drainage ports are uniformly provided over the entire one drainage pipe. Since the length of the electrolytic tank 1 in the region where the drainage ports 31a to 31x are formed can be shortened in the longitudinal direction, the pressure loss can be reduced and the drainage ports 31a to 31x are arranged. It becomes easier to drain the electrolytic solution in each region more efficiently. As a result, uneven drainage in the longitudinal direction of the electrolytic cell 1 is less likely to occur.

なお、排液配管3a、3b、3cの最も先端部分にある例えば排液口31a、31g、31m等は排液ボックス32から最も遠い位置にあるため、排液配管3a、3b、3c内を流れる電解液の抵抗や圧力損失等により、排液ボックス32側へ十分に排液されない場合がある。図2に示すように、排液配管3a、3b、3cの排液口31a〜31xの端部、即ち、排液口31fと排液口31g、排液口31lと排液口31mとが互いに上下に重なるように配置されることによって、排液配管3a、3b、3cの先端部においても十分に排液が行われるように構成することができる。これにより、電解槽1長手方向の排液ムラを生じにくくすることができる。 Since the drainage ports 31a, 31g, 31m and the like at the most tip portions of the drainage pipes 3a, 3b and 3c are located farthest from the drainage box 32, they flow in the drainage pipes 3a, 3b and 3c. Due to the resistance of the electrolytic solution, pressure loss, etc., the drainage box 32 may not be sufficiently drained. As shown in FIG. 2, the ends of the drainage ports 31a to 31x of the drainage pipes 3a, 3b, and 3c, that is, the drainage port 31f and the drainage port 31g, and the drainage port 31l and the drainage port 31m are mutually connected. By arranging the drainage pipes 3a, 3b, and 3c so as to overlap each other, the drainage can be sufficiently performed even at the tip portions of the drainage pipes 3a, 3b, and 3c. As a result, uneven drainage in the longitudinal direction of the electrolytic cell 1 can be prevented from occurring.

排液配管3a、3b、3cの管径は、給液配管2の管径よりも大きくなるように構成されることが好ましい。排液配管3a、3b、3c側の管径を給液配管2の管径よりも大きくすることによって、排液ボックス32から電解液のヘッド圧差を利用して電解液を電解槽1外へ排出させる際に、排液配管3a、3b、3cの圧力損失の影響をより小さくすることができる。これにより、より円滑に給液配管2内に吸い上げられた電解液を電解槽1の外へ排出しやすくできる。 The pipe diameters of the drainage pipes 3a, 3b, and 3c are preferably configured to be larger than the pipe diameter of the liquid supply pipe 2. By making the pipe diameters on the drainage pipes 3a, 3b, and 3c sides larger than the pipe diameter of the liquid supply pipe 2, the electrolytic solution is discharged from the drainage box 32 to the outside of the electrolytic solution tank 1 by utilizing the head pressure difference of the electrolytic solution. The influence of the pressure loss of the drainage pipes 3a, 3b, and 3c can be made smaller. As a result, the electrolytic solution sucked up in the liquid supply pipe 2 can be easily discharged to the outside of the electrolytic cell 1.

排液配管3a、3b、3cの管径は、給液配管2の管径よりも1.5倍以上、より好ましくは2倍以上、更に好ましくは4倍以上大きくすることができる。 The pipe diameter of the drainage pipes 3a, 3b, and 3c can be 1.5 times or more, more preferably 2 times or more, still more preferably 4 times or more larger than the pipe diameter of the liquid supply pipe 2.

排液配管3a、3b、3cの高さは、底部に近づけすぎると電解槽1の底部の殿物などを巻き込んで排液口31a〜31xの詰まり或いは不具合等を生じさせる場合がある。排液口31a〜31xは、例えば、電解槽1内に収容される電極の下端部を起点に、上方に100mm、下方に300mmの範囲に配置されることが好ましく、より好ましくは上方に100mm、下方に100mmの範囲に配置される。 If the heights of the drainage pipes 3a, 3b, and 3c are too close to the bottom portion, the bottom portion of the electrolytic cell 1 may be caught in the heights of the drainage pipes 3a, 3b, and 3c, which may cause clogging or malfunction of the drainage ports 31a to 31x. The drainage ports 31a to 31x are preferably arranged in a range of 100 mm upward and 300 mm downward, more preferably 100 mm upward, starting from the lower end of the electrode housed in the electrolytic cell 1. It is arranged in a range of 100 mm below.

図3に示すように、給液配管2が備える給液口21a、21a、21c・・・21xの開口面積よりも排液配管3a、3b、3cが備える排液口31a、31b・・・31xの開口面積が大きくなるように形成されていることが好ましい。排液口31a、31b・・・31xの開口面積を大きくとることによって、排液配管3a、3b、3c内の電解液を電解槽1外へ排出させる際の圧力損失の影響をより小さくすることができる。 As shown in FIG. 3, the drainage ports 31a, 31b ... 31x provided in the liquid drainage pipes 3a, 3b, 3c are larger than the opening areas of the liquid supply ports 21a, 21a, 21c ... 21x provided in the liquid supply pipe 2. It is preferable that the opening area is large. By increasing the opening area of the drainage ports 31a, 31b ... 31x, the influence of pressure loss when the electrolytic solution in the drainage pipes 3a, 3b, 3c is discharged to the outside of the electrolytic cell 1 is further reduced. Can be done.

以下に限定されるものではないが、排液口31a〜31xの各開口面積を給液口21a〜21xの各開口面積に対して1〜400倍、より典型的には100〜200倍大きくすることができる。これにより、排液口31a〜31xから電解槽1内の電解液を効率よく排液することができる。 Although not limited to the following, each opening area of the drainage ports 31a to 31x is increased by 1 to 400 times, more typically 100 to 200 times, with respect to each opening area of the liquid supply ports 21a to 21x. be able to. As a result, the electrolytic solution in the electrolytic cell 1 can be efficiently drained from the drainage ports 31a to 31x.

給液口21a〜21x及び排液口31a〜31xの形状、穴径(スリット径)及び間隔は、電解槽1の大きさ等に応じて適宜調整することができる。図3に示す例では、給液口21a、21b、21・・・21xは円形状又は楕円形状、矩形状を有し、互いに間隔d1を空けて配置されている。排液口31a、31b・・・31xは、スリット径d2を有する長円或いは略長方形状を有し、互いに間隔d3を空けて配置されている。 The shapes, hole diameters (slit diameters), and intervals of the liquid supply ports 21a to 21x and the liquid drainage ports 31a to 31x can be appropriately adjusted according to the size of the electrolytic cell 1. In the example shown in FIG. 3, the liquid supply ports 21a, 21b, 21 ... 21x have a circular shape, an elliptical shape, or a rectangular shape, and are arranged at a distance d1 from each other. The drainage ports 31a, 31b ... 31x have an oval shape or a substantially rectangular shape having a slit diameter d2, and are arranged at intervals d3 from each other.

以下に制限されないが、図3の例に示すように、給液配管2には、電解槽間隔d1が50mm間隔で穴径が5φの円又は楕円形状給液口21a、21b、21・・・21xが形成されている。排液配管3a、3b、3cの先端部には、幅10mm、スリット径(d2)400mmの長円形状又は略矩形形状の排液口31a、31b、・・・が、200mmの間隔d3を有してそれぞれ配置されている。 Although not limited to the following, as shown in the example of FIG. 3, in the liquid supply pipe 2, the electrolytic cell spacing d1 is 50 mm and the hole diameter is 5φ, which is a circular or elliptical liquid supply port 21a, 21b, 21 ... 21x is formed. At the tips of the drainage pipes 3a, 3b, and 3c, the drainage ports 31a, 31b, ... With a width of 10 mm and a slit diameter (d2) of 400 mm, which are oval or substantially rectangular, have an interval d3 of 200 mm. And each is arranged.

図2に示すように、電解槽1の第4の側壁14側には、電解液を電解槽1外へ排液する排液部30が配置されている。排液部30には排液ボックス32が接続されている。図5に示すように、排液部30には、電解槽1内の電解液を排出するための排出口300が設けられている。図6に示すように、排出口300の下方には、電解液を電解槽1外へ排出するために排出口300に接続された排出配管301が設けられている。 As shown in FIG. 2, a drainage unit 30 for draining the electrolytic solution to the outside of the electrolytic cell 1 is arranged on the fourth side wall 14 side of the electrolytic cell 1. A drainage box 32 is connected to the drainage unit 30. As shown in FIG. 5, the drainage unit 30 is provided with a discharge port 300 for discharging the electrolytic solution in the electrolytic cell 1. As shown in FIG. 6, a discharge pipe 301 connected to the discharge port 300 is provided below the discharge port 300 in order to discharge the electrolytic solution to the outside of the electrolytic cell 1.

排液ボックス32は、図6に示すように、電解液の液面LSよりも下方となる底面32aを備える。底面32aには、図5に示すように、排液配管3a、3b、3cの出口3A、3B、3Cがそれぞれ接続されている。電解槽1から排液配管3a、3b、3c内に排液された電解液は、電解液の液面LSと排液ボックス32内の電解液の液面lsの高さの差Hによるヘッド圧差により汲み上げされる。 As shown in FIG. 6, the drainage box 32 includes a bottom surface 32a that is below the liquid level LS of the electrolytic solution. As shown in FIG. 5, outlets 3A, 3B, and 3C of the drainage pipes 3a, 3b, and 3c are connected to the bottom surface 32a, respectively. The electrolytic solution discharged from the electrolytic cell 1 into the drainage pipes 3a, 3b, and 3c has a head pressure difference due to the height difference H between the liquid level LS of the electrolytic solution and the liquid level ls of the electrolytic solution in the drainage box 32. Is pumped up by.

排液部30と排液配管3a、3b、3cとの間に排液ボックス32が配置されることにより、ポンプ等の動力を使用せず、且つ電解槽1の底部に沈積する殿物の巻き込みを抑制しながら、電解槽1の下方から電解液を電解槽1の外部へ抜き出すことができる。 By arranging the drainage box 32 between the drainage portion 30 and the drainage pipes 3a, 3b, and 3c, the power of a pump or the like is not used, and the ridges deposited on the bottom of the electrolytic cell 1 are involved. The electrolytic solution can be drawn out of the electrolytic cell 1 from below the electrolytic cell 1 while suppressing the above.

排液ボックス32の電解液と接する側の側壁32bの上端部の高さは、電解槽1内の電解液の液面LSに対して数mm〜数十mm上方となるように配置されている。排液ボックス32は、電解槽1内に収容された電解液と接する側の側壁32bに、電解槽1内の電解液中の異物を排液ボックス32へ送るための切り欠き部33を備えることが好ましい。この切り欠き部33は、図4に示すように、電解槽1の上方側から下方側に向かってその開口幅AWが小さくなるような形状を有している。切り欠き部33の形状としては、V字形状、U字形状、台形形状等の種々の形状を取り得るが、具体的な形状は特に限定されない。 The height of the upper end of the side wall 32b on the side of the drainage box 32 in contact with the electrolytic solution is arranged so as to be several mm to several tens of mm above the liquid level LS of the electrolytic solution in the electrolytic cell 1. .. The drainage box 32 is provided with a notch 33 for sending foreign matter in the electrolytic solution in the electrolytic cell 1 to the drainage box 32 on the side wall 32b on the side in contact with the electrolytic cell housed in the electrolytic cell 1. Is preferable. As shown in FIG. 4, the cutout portion 33 has a shape in which the opening width AW of the electrolytic cell 1 decreases from the upper side to the lower side. The cutout portion 33 may have various shapes such as a V-shape, a U-shape, and a trapezoidal shape, but the specific shape is not particularly limited.

電解槽1内には、電解を行うにつれて電解液の液面LSにゴミ等の異物が溜まる場合がある。この異物が電解槽1内に留まると、電解に悪影響を与える恐れがある。本発明の実施の形態に係る電解装置によれば、電解槽1の電解液の液面LS付近にたまるゴミなどの異物を含む電解液を切り欠き部33からオーバーフローさせて排出することができるため、電解槽1内の電解液の液面LS付近のゴミの滞留を抑制することができる。 Foreign matter such as dust may accumulate in the electrolytic cell 1 as the electrolysis is performed on the liquid level LS of the electrolytic solution. If this foreign matter stays in the electrolytic cell 1, it may adversely affect the electrolysis. According to the electrolytic device according to the embodiment of the present invention, the electrolytic solution containing foreign matter such as dust accumulated near the liquid level LS of the electrolytic cell in the electrolytic cell 1 can be overflowed from the notch 33 and discharged. , It is possible to suppress the retention of dust near the liquid level LS of the electrolytic solution in the electrolytic cell 1.

図6に示すように、排液ボックス32と排液部30との間には、排液ボックス32から排液部30へと流れる電解液を堰き止めるように配置された調整板35が配置されている。調整板35が配置されることにより、排液配管3(3a、3b、3c)を介して排液ボックス32内に回収された電解液が、調整板35の上端からオーバーフローして排液部30へと流れる。 As shown in FIG. 6, an adjusting plate 35 arranged so as to block the electrolytic solution flowing from the drainage box 32 to the drainage section 30 is arranged between the drainage box 32 and the drainage section 30. ing. By arranging the adjusting plate 35, the electrolytic solution collected in the draining box 32 via the draining pipe 3 (3a, 3b, 3c) overflows from the upper end of the adjusting plate 35 and drains the liquid portion 30. Flow to.

例えば、大きさの異なる調整板35を配置することにより、調整板35の排液ボックス32の底面32aからの高さhを変更することが可能である。調整板35の高さhを変更することにより、電解槽1内の電解液の液面LSと排液ボックス32内の電解液の液面lsとの高さの差Hを調整することができる。これにより、電解槽1内の電解液の液面LSとの電解液の液面lsとの高さの差Hによるヘッド圧差を調整して、どのような給液量であっても電解槽1内の電解液の液面LSの高さを一定に保つことができる。 For example, by arranging the adjusting plates 35 having different sizes, it is possible to change the height h of the adjusting plate 35 from the bottom surface 32a of the drainage box 32. By changing the height h of the adjusting plate 35, it is possible to adjust the height difference H between the liquid level LS of the electrolytic solution in the electrolytic cell 1 and the liquid level ls of the electrolytic solution in the drainage box 32. .. As a result, the head pressure difference due to the height difference H between the liquid level LS of the electrolytic solution and the liquid level ls of the electrolytic solution in the electrolytic cell 1 is adjusted, and the electrolytic cell 1 is supplied regardless of the amount of liquid supplied. The height of the liquid level LS of the electrolytic solution inside can be kept constant.

図5に示すように、排液ボックス32には、排液配管3a、3b、3cの出口3A、3B、3Cが接続された底面32aを複数の領域に分割するための分割壁37が排液ボックス32に設けられていることが好ましい。分割壁37を配置せずとも各出口3A、3B、3Cからそれぞれ排出される電解液の量を把握することは可能であるが、排液ボックス32に分割壁37が配置されることにより、各出口3A、3B、3Cからそれぞれ排出される電解液の量を目視により把握しやすくできる。 As shown in FIG. 5, the drainage box 32 is provided with a dividing wall 37 for dividing the bottom surface 32a to which the outlets 3A, 3B, and 3C of the drainage pipes 3a, 3b, and 3c are connected into a plurality of regions. It is preferably provided in the box 32. Although it is possible to grasp the amount of the electrolytic solution discharged from each of the outlets 3A, 3B, and 3C without arranging the dividing wall 37, each of the divided walls 37 is arranged in the drainage box 32. The amount of electrolytic solution discharged from each of the outlets 3A, 3B, and 3C can be easily grasped visually.

図1の電解装置には不図示の電解液の環流機構が設けられている。環流機構は、電解槽1の排液部30から排出された電解液にニカワやチオ尿素等の添加剤を追加するとともに、必要な成分調整と温度調整を行い、調整後の電解液を給液配管2から電解槽1内へと環流する。電解装置には不図示の給電機構が設けられている。給電機構は、電解槽1内の長手方向に沿って交互に配置されるアノード板とカソード板とを含む電極の間に直流電流を印加する電源装置と配線とを備えている。 The electrolytic device of FIG. 1 is provided with a circulation mechanism of an electrolytic solution (not shown). The recirculation mechanism adds additives such as nikawa and thiourea to the electrolytic solution discharged from the drainage unit 30 of the electrolytic cell 1, adjusts necessary components and temperature, and supplies the adjusted electrolytic solution. It recirculates from the pipe 2 into the electrolytic cell 1. The electrolyzer is provided with a power feeding mechanism (not shown). The power feeding mechanism includes a power supply device and wiring for applying a direct current between electrodes including anode plates and cathode plates that are alternately arranged along the longitudinal direction in the electrolytic cell 1.

アノード板及びカソード板の構成は特に限定されない。アノード板は電解精製もしくは電解採取を行う際の陽極となり、粗金属製の板材で構成される。カソード板は電解精製もしくは電解採取を行う際の陰極となり、導電性に優れた板状の金属で構成される。 The configuration of the anode plate and the cathode plate is not particularly limited. The anode plate serves as an anode for electrolytic refining or electrowinning, and is composed of a crude metal plate material. The cathode plate serves as a cathode for electrolytic refining or electrowinning, and is composed of a plate-shaped metal having excellent conductivity.

電解槽1内の電解液の混合状態を改善するために種々の検討が行われてきたが、電解槽1内の長手方向の一端側から長手方向の他端側へと電解液を流す従来の下入れ上抜き方式の電解装置では電解液供給方向上流側と下流側で電解液中の銅などの金属イオン濃度及び添加物の濃度に偏りが生じるとともに、電解が進むにつれて電解槽1の上部から底部へいくほど金属イオン濃度が高くなる傾向にあった。 Various studies have been conducted to improve the mixed state of the electrolytic solution in the electrolytic tank 1, but the conventional method of flowing the electrolytic solution from one end side in the longitudinal direction to the other end side in the longitudinal direction in the electrolytic tank 1 has been carried out. In the bottom-in / top-pull type electrolyzer, the concentration of metal ions such as copper and the concentration of additives in the electrolytic solution are biased between the upstream side and the downstream side in the electrolytic solution supply direction, and as the electrolysis progresses, from the upper part of the electrolytic tank 1 The metal ion concentration tended to increase toward the bottom.

本発明の実施の形態に係る電解装置によれば、電解槽1の幅(Y)方向、即ち、電解槽1の第1の側壁11側から第2の側壁12側へと電解液を供給するように構成するとともに、給液配管2の給液口21a、21b・・・23xの設置位置を、排液配管3a、3b、3cの排液口31a、31b・・・31xよりも相対的に上方となるように構成した、いわゆる、「横入れ上入れ下抜き方式」を採用する。その結果、電解槽1の底部の銅イオン濃度などの金属イオン濃度の上昇を効果的に抑制できるとともに、電解液中に含まれる種々の添加剤の濃度分布を電解槽1内全体でより均一化することができる。 According to the electrolyzer according to the embodiment of the present invention, the electrolytic solution is supplied from the width (Y) direction of the electrolytic cell 1, that is, from the first side wall 11 side to the second side wall 12 side of the electrolytic cell 1. The installation positions of the liquid supply ports 21a, 21b ... 23x of the liquid supply pipe 2 are relatively larger than those of the drainage ports 31a, 31b ... 31x of the drainage pipes 3a, 3b and 3c. The so-called "horizontal insertion, top insertion, bottom removal method" is adopted, which is configured to be upward. As a result, an increase in the metal ion concentration such as the copper ion concentration at the bottom of the electrolytic cell 1 can be effectively suppressed, and the concentration distribution of various additives contained in the electrolytic cell is made more uniform throughout the electrolytic cell 1. can do.

さらに、電解槽1において上方から下方へと電解液を流すことにより、殿物の巻き上げの恐れも少なくなる。そのため、電解液の供給流量を大きくしても殿物の巻き上げを抑制しながら電解液の混合状態を改善することができ、電着物の電着効率も従来に比べて改善させることができる。さらに、電着物の表面性状に影響を及ぼすニカワなどの添加物を電解槽全体にわたって均一に行き渡らせることができるため、電解槽1全体において品質の揃った電着物が得られる。 Further, by flowing the electrolytic solution from the upper side to the lower side in the electrolytic cell 1, the risk of winding up the palace is reduced. Therefore, even if the supply flow rate of the electrolytic solution is increased, the mixed state of the electrolytic solution can be improved while suppressing the hoisting of the palace, and the electrodeposition efficiency of the electrodeposited object can be improved as compared with the conventional case. Further, since additives such as Nikawa, which affect the surface texture of the electrodeposited material, can be uniformly distributed throughout the electrolytic cell, an electrodeposited material having uniform quality can be obtained in the entire electrolytic cell 1.

(電解方法)
本発明の実施の形態に係る電解装置を用いて電解液を電気分解することにより、複数のカソード板に銅などの金属を電着させることができる。以下においては、本発明の実施の形態に係る電解装置を用いて電気分解する例として粗銅を精錬する場合について説明する。
(Electrolysis method)
By electrolyzing the electrolytic solution using the electrolytic device according to the embodiment of the present invention, a metal such as copper can be electrodeposited on a plurality of cathode plates. In the following, a case of refining blister copper will be described as an example of electrolysis using the electrolytic device according to the embodiment of the present invention.

まず、例えば純度が99mass%程度の粗銅の板材をアノード板とし、純度が99.99mass%程度の銅の板材又はステンレス板をカソード板として、複数のアノード板と複数のカソード板とを交互に板厚方向に間隔を空けて、電極板の下端が電解槽1の底面から所定の間隔が空くように電解槽1内に配置する。 First, for example, a blister copper plate having a purity of about 99 mass% is used as an anode plate, a copper plate having a purity of about 99.99 mass% or a stainless steel plate is used as a cathode plate, and a plurality of anode plates and a plurality of cathode plates are alternately arranged. The electrode plates are arranged in the electrolytic cell 1 so as to have a predetermined distance from the bottom surface of the electrolytic cell 1 at intervals in the thickness direction.

給液部20に接続された給液配管2の複数の給液口21a、21b・・・23xから硫酸銅及び硫酸の混合水溶液にニカワやチオ尿素などの添加剤を添加した電解液を供給し、排液ボックス32及び排液部30に接続された排液配管3a、3b、3cの複数の排液口31a、31b・・・31xから電解槽1内の電解液を排液し、不図示の環流機構によって、電解液を循環させる。 An electrolytic solution prepared by adding additives such as nikawa and thiourea to a mixed aqueous solution of copper sulfate and sulfuric acid is supplied from a plurality of liquid supply ports 21a, 21b ... 23x of the liquid supply pipe 2 connected to the liquid supply unit 20. , The electrolytic solution in the electrolytic tank 1 is drained from the plurality of drainage ports 31a, 31b ... 31x of the drainage pipes 3a, 3b, 3c connected to the drainage box 32 and the drainage unit 30, and is not shown. The electrolytic solution is circulated by the recirculation mechanism of.

給電機構を用いてアノード板とカソード板との間に直流電流を印加し、アノード板の銅を電解液中にイオンとして溶出させてカソード板へ電着させる。このとき、アノード板及びカソード板の側面と対向する電解槽1の第1の側壁11の上方から電解液を電解槽1内へ供給し、第1の側壁11と対向する電解槽1の第2の側壁12の下方で電解液を排液配管3a、3b、3c内へ排液させるように液流を発生させる。 A direct current is applied between the anode plate and the cathode plate using a power feeding mechanism, and the copper of the anode plate is eluted as ions in the electrolytic solution and electrodeposited on the cathode plate. At this time, the electrolytic solution is supplied into the electrolytic cell 1 from above the first side wall 11 of the electrolytic cell 1 facing the side surfaces of the anode plate and the cathode plate, and the second side wall 1 of the electrolytic cell 1 facing the first side wall 11 is supplied. A liquid flow is generated so as to drain the electrolytic solution into the drain pipes 3a, 3b, and 3c below the side wall 12.

排液配管3a、3b、3c内へ排液された電解液は、排液ボックス32により汲み上げられて、排液部30を介して排液される。電解槽1内の電解液の上層に浮遊するゴミなどの異物は、排液ボックス32が備える切り欠き部33から越流により排液ボックス32内へ収容され、電解槽1の外部へ排出される。 The electrolytic solution drained into the drainage pipes 3a, 3b, and 3c is pumped up by the drainage box 32 and drained through the drainage section 30. Foreign matter such as dust floating in the upper layer of the electrolytic cell in the electrolytic cell 1 is accommodated in the drainage box 32 by overflow from the notch 33 provided in the drainage box 32 and discharged to the outside of the electrolytic cell 1. ..

本発明の実施の形態に係る電解方法によれば、電解槽1の短手方向Yの一端から短手方向Yの他端側へ、且つ上方から下方へ向けて電解槽1の長手方向Xに沿った複数箇所から電解液を流すことにより、電解槽1の長手方向Xの一端側から他端側へと電解液を流す従来の方式と比べて、電解槽1内の電解液の混合状態をより良好にすることができる。 According to the electrolysis method according to the embodiment of the present invention, from one end of the short direction Y of the electrolytic cell 1 to the other end side of the short direction Y, and from the upper side to the lower side in the longitudinal direction X of the electrolytic cell 1. Compared with the conventional method of flowing the electrolytic solution from one end side to the other end side in the longitudinal direction X of the electrolytic cell 1 by flowing the electrolytic solution from a plurality of locations along the line, the mixed state of the electrolytic cell in the electrolytic cell 1 is changed. Can be better.

特に、本発明の実施の形態に係る電解方法によれば、電解槽1下部の銅イオンなどの金属イオン濃度の上昇を抑制し、金属イオンを液中により均一に分散できるため、高い電流密度又は不純物濃度の高い材料をアノード板に用いて電解精製を実施した場合の不動態化現象をより効率的に抑制することが可能となる。 In particular, according to the electrolysis method according to the embodiment of the present invention, an increase in the concentration of metal ions such as copper ions in the lower part of the electrolytic cell 1 can be suppressed, and the metal ions can be more uniformly dispersed in the liquid, so that the current density is high or It is possible to more efficiently suppress the passivation phenomenon when electrolytic purification is performed using a material having a high impurity concentration for the anode plate.

(その他の実施の形態)
本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態及び運用技術が明らかとなろう。
(Other embodiments)
Although the present invention has been described in accordance with the above embodiments, the statements and drawings that form part of this disclosure should not be understood to limit the invention. Various alternative embodiments and operational techniques will be apparent to those skilled in the art from this disclosure.

給液配管2及び排液配管3a、3b、3cがそれぞれ備える給液口21a、21b・・・23x及び排液口31a、31b・・・31xの位置は、電解槽1内に浸漬されるアノード板及びカソード板が配置される位置との関係で調整することができる。例えば、給液配管2に設けられた複数の給液口21a、21b・・・23x及び排液配管3a、3b、3cに設けられた複数の排液口31a、31b・・・31xを、それぞれアノード板とカソード板との間に設けられた隙間に面するように設け、電解液をアノード板とカソード板との空間に供給するように構成することができる。このようにしてアノード板及びカソード板の表面に液流を発生させることにより、高い電流密度又は不純物濃度の高い材料をアノード板に用いて電解精製を実施した場合の不動態化現象をより効率的に抑制することが可能となる。 The positions of the liquid supply ports 21a, 21b ... 23x and the liquid drainage ports 31a, 31b ... 31x provided in the liquid supply pipe 2 and the liquid drainage pipes 3a, 3b, 3c, respectively, are the anodes immersed in the electrolytic cell 1. It can be adjusted in relation to the position where the plate and the cathode plate are arranged. For example, a plurality of liquid supply ports 21a, 21b ... 23x provided in the liquid supply pipe 2 and a plurality of liquid drainage ports 31a, 31b ... 31x provided in the liquid drainage pipes 3a, 3b, 3c, respectively. It can be provided so as to face the gap provided between the anode plate and the cathode plate, and the electrolytic solution can be supplied to the space between the anode plate and the cathode plate. By generating a liquid flow on the surfaces of the anode plate and the cathode plate in this way, the passivation phenomenon when electrolytic refining is performed using a material having a high current density or a high impurity concentration for the anode plate is more efficient. Can be suppressed.

電解槽1内に収容されるアノード板とカソード板との間の空間には、給液口21a、21b・・・23x及び排液口31a、31b・・・31xがそれぞれ1箇所ずつ配置されるだけでなく、アノード板とカソード板との間の空間の広さに対応して給液口21a、21b・・・23x及び排液口31a、31b・・・31xが空間内に複数配置されるようにしてもよい。また、電解液、特に添加剤の混合状態が悪化しやすい電解槽1の長手方向中央側から排液側の給液口21a、21b・・・23x及び排液口31a、31b・・・31xの個数を電解槽1の長手方向中央側から給液側の個数よりも多くするようにしてもよい。 In the space between the anode plate and the cathode plate housed in the electrolytic cell 1, one liquid supply port 21a, 21b ... 23x and one drainage port 31a, 31b ... 31x are arranged. Not only that, a plurality of liquid supply ports 21a, 21b ... 23x and drainage ports 31a, 31b ... 31x are arranged in the space according to the size of the space between the anode plate and the cathode plate. You may do so. Further, the liquid supply ports 21a, 21b ... 23x and the drainage ports 31a, 31b ... 31x from the central side in the longitudinal direction to the drainage side of the electrolytic cell 1 in which the mixed state of the electrolytic solution, particularly the additive, tends to deteriorate. The number may be larger than the number on the liquid supply side from the center side in the longitudinal direction of the electrolytic cell 1.

給液配管2及び排液配管3a、3b、3cがそれぞれ備える給液口21a、21b・・・23x及び排液口31a、31b・・・31xの各開口面積は、基本的には長手方向Xに沿ってそれぞれ等しい大きさとなる例を示しているが、電解槽1の長手方向X上流側と下流側で異なる開口面積を有していてもよい。給液配管2及び排液配管3a、3b、3cは複数の配管又は一の配管が長手方向に沿って枝状に分岐した配管を用いることができる。 The opening areas of the liquid supply ports 21a, 21b ... 23x and the liquid drainage ports 31a, 31b ... 31x provided in the liquid supply pipe 2 and the liquid drainage pipes 3a, 3b, 3c, respectively, are basically X in the longitudinal direction. Although the examples showing the same size along the above, different opening areas may be provided in the longitudinal direction X upstream side and the downstream side of the electrolytic cell 1. As the liquid supply pipe 2 and the liquid drainage pipe 3a, 3b, 3c, a plurality of pipes or a pipe in which one pipe is branched in a branch shape along the longitudinal direction can be used.

このように、本発明は上記の開示から妥当な特許請求の範囲の発明特定事項によって表されるものであり、実施段階においては、その要旨を逸脱しない範囲において変形し具体化し得る。 As described above, the present invention is represented by the matters specifying the invention within the scope of claims reasonable from the above disclosure, and at the implementation stage, it can be modified and embodied without departing from the gist thereof.

1…電解槽
2…給液配管
3(3a、3b、3c)…排液配管
3A、3B、3C…出口
11…第1の側壁
12…第2の側壁
13…第3の側壁
14…第4の側壁
20…給液部
21a〜21x…給液口
30…排液部
31a〜31x…排液口
32…排液ボックス
32a…底面
32b…側壁
33…切り欠き部
35…調整板
37…分割壁
300…排出口
301…排出配管
1 ... Electrolytic cell 2 ... Liquid supply pipe 3 (3a, 3b, 3c) ... Drainage pipe 3A, 3B, 3C ... Outlet 11 ... First side wall 12 ... Second side wall 13 ... Third side wall 14 ... Fourth Side wall 20 ... Liquid supply part 21a to 21x ... Liquid supply port 30 ... Drainage part 31a to 31x ... Drainage port 32 ... Drainage box 32a ... Bottom surface 32b ... Side wall 33 ... Notch 35 ... Adjustment plate 37 ... Divided wall 300 ... Discharge port 301 ... Discharge piping

Claims (9)

電解液を収容する電解槽の長手方向に沿って互いに間隔を空けて配置された電極を前記電解液中に浸漬し、前記電解液を循環しながら電解処理する電解装置であって、
前記長手方向に延びる前記電解槽の第1の側壁に沿って延び、互いに間隔を空けて配置された複数の給液口から前記第1の側壁と対向する前記電解槽の第2の側壁側に向けて前記電解液を給液する給液配管と、
前記給液配管よりも下方に配置され、前記第2の側壁に沿って延び、互いに間隔を空けて配置された複数の排液口から前記電解液を排液する排液配管と、
前記排液配管により排液された前記電解液を前記電解槽外へ排液する排液部と
を備え、
前記排液配管が、前記長手方向に沿って少なくとも2本以上の配管を備えることを特徴とする電解装置。
An electrolytic device in which electrodes arranged at intervals along the longitudinal direction of an electrolytic cell containing an electrolytic solution are immersed in the electrolytic solution, and the electrolytic solution is circulated for electrolytic treatment.
From a plurality of liquid supply ports extending along the first side wall of the electrolytic cell extending in the longitudinal direction and arranged at intervals from each other, to the second side wall side of the electrolytic cell facing the first side wall. A liquid supply pipe that supplies the electrolytic solution toward the liquid
A drainage pipe arranged below the liquid supply pipe, extending along the second side wall, and draining the electrolytic solution from a plurality of drainage ports arranged at intervals from each other.
It is provided with a drainage unit for draining the electrolytic solution drained by the drainage pipe to the outside of the electrolytic cell.
An electrolyzer characterized in that the drainage pipe includes at least two or more pipes along the longitudinal direction.
前記電解液の液面よりも下方となる底面を備え、前記底面に前記排液配管の出口が接続され、前記排液配管内の前記電解液を汲み上げ可能な排液ボックスを更に備えることを特徴とする請求項1に記載の電解装置。 It is characterized by having a bottom surface below the liquid level of the electrolytic solution, the outlet of the drainage pipe being connected to the bottom surface, and a drainage box capable of pumping the electrolytic solution in the drainage pipe. The electrolytic apparatus according to claim 1. 前記排液配管が、長手方向上流側の電解液を回収可能な第1の配管と長手方向下流側の電解液を回収可能な第2の配管の少なくとも2本以上の配管を備えることを特徴とする請求項1に記載の電解装置。 The drainage pipe is characterized by including at least two or more pipes, a first pipe capable of recovering the electrolytic solution on the upstream side in the longitudinal direction and a second pipe capable of collecting the electrolytic solution on the downstream side in the longitudinal direction. The electrolyzer according to claim 1. 前記給液配管の管径よりも前記排液配管の管径が大きいことを特徴とする請求項1〜3のいずれか1項に記載の電解装置。 The electrolyzer according to any one of claims 1 to 3, wherein the diameter of the drainage pipe is larger than the diameter of the liquid supply pipe. 前記給液口の開口面積よりも前記排液口の開口面積が大きいことを特徴とする請求項1に記載の電解装置。 The electrolyzer according to claim 1, wherein the opening area of the drainage port is larger than the opening area of the liquid supply port. 前記排液ボックスが、前記電解液と接する側の側壁に、前記電解槽内の電解液中の異物を前記排液ボックスへ送るための切り欠き部を備えることを特徴とする請求項2に記載の電解装置。 2. The second aspect of the present invention, wherein the drainage box is provided with a notch on a side wall on the side in contact with the electrolytic solution for sending foreign matter in the electrolytic solution in the electrolytic cell to the drainage box. Electrolyzer. 前記排液ボックスと前記排液部との間に配置され、前記排液ボックス内の電解液の液面の高さと前記電解槽内の電解液の液面の高さの差を調整する調整板を更に備えることを特徴とする請求項2又は6に記載の電解装置。 An adjusting plate that is arranged between the drainage box and the drainage portion and adjusts the difference between the height of the electrolytic solution in the drainage box and the height of the electrolytic solution in the electrolytic cell. The electrolyzer according to claim 2 or 6, further comprising. 前記排液配管の出口が接続された前記底面を複数の領域に分割するための分割壁が前記排液ボックスに設けられていることを特徴とする請求項2、6、7のいずれか1項に記載の電解装置。 Any one of claims 2, 6 and 7, wherein a dividing wall for dividing the bottom surface to which the outlet of the drainage pipe is connected into a plurality of regions is provided in the drainage box. The electrolyzer according to. 電解液を収容する電解槽の長手方向に沿って互いに間隔を空けて配置された電極を前記電解液中に浸漬し、前記電解液を循環しながら電解処理する電解方法であって、
前記長手方向に延びる前記電解槽の第1の側壁に沿って延びる給液配管に設けられた複数の給液口から前記第1の側壁と対向する前記電解槽の第2の側壁側に向けて前記電解液を給液し、
前記給液配管よりも下方に配置され、前記第2の側壁に沿って前記長手方向に延びる複数の排液配管の複数の排液口を介して前記電解液を排液し、
前記排液配管によって排液された前記電解液を前記電解槽外へ排液すること
を含む電解方法。
This is an electrolytic method in which electrodes arranged at intervals along the longitudinal direction of an electrolytic cell containing an electrolytic solution are immersed in the electrolytic solution, and the electrolytic solution is circulated and electrolyzed.
From a plurality of liquid supply ports provided in the liquid supply pipe extending along the first side wall of the electrolytic cell extending in the longitudinal direction toward the second side wall side of the electrolytic cell facing the first side wall. Supply the electrolytic solution and
The electrolytic solution is drained through a plurality of drainage ports of a plurality of drainage pipes arranged below the liquid supply pipe and extending in the longitudinal direction along the second side wall.
An electrolysis method comprising draining the electrolytic solution discharged by the drainage pipe to the outside of the electrolytic cell.
JP2019069355A 2019-03-29 2019-03-29 Electrolyzer and electrolysis method Active JP7002494B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019069355A JP7002494B2 (en) 2019-03-29 2019-03-29 Electrolyzer and electrolysis method
CN202080024892.2A CN113631762B (en) 2019-03-29 2020-03-30 Electrolysis apparatus and electrolysis method
PCT/JP2020/014682 WO2020204003A1 (en) 2019-03-29 2020-03-30 Electrolysis apparatus and electrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019069355A JP7002494B2 (en) 2019-03-29 2019-03-29 Electrolyzer and electrolysis method

Publications (2)

Publication Number Publication Date
JP2020164963A true JP2020164963A (en) 2020-10-08
JP7002494B2 JP7002494B2 (en) 2022-01-20

Family

ID=72717097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019069355A Active JP7002494B2 (en) 2019-03-29 2019-03-29 Electrolyzer and electrolysis method

Country Status (1)

Country Link
JP (1) JP7002494B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587716B2 (en) * 1975-09-11 1983-02-10 三井金属鉱業株式会社 Denkaisou
JP2002105684A (en) * 2000-09-29 2002-04-10 Dowa Mining Co Ltd Electrolytic method, and electrolytic tank used therefor
JP2013108135A (en) * 2011-11-21 2013-06-06 Sumitomo Metal Mining Co Ltd Weir for electrolytic cell
JP2013237921A (en) * 2012-05-17 2013-11-28 Sumitomo Metal Mining Co Ltd Solution supply piping of electrolytic solution
JP2015040327A (en) * 2013-08-22 2015-03-02 住友金属鉱山株式会社 Electrolytic smelting installation and method of feeding electrolytic solution
JP2017057508A (en) * 2017-01-04 2017-03-23 三菱マテリアル株式会社 Electrolytic refining method of metal, electrolytic refining apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587716B2 (en) * 1975-09-11 1983-02-10 三井金属鉱業株式会社 Denkaisou
JP2002105684A (en) * 2000-09-29 2002-04-10 Dowa Mining Co Ltd Electrolytic method, and electrolytic tank used therefor
JP2013108135A (en) * 2011-11-21 2013-06-06 Sumitomo Metal Mining Co Ltd Weir for electrolytic cell
JP2013237921A (en) * 2012-05-17 2013-11-28 Sumitomo Metal Mining Co Ltd Solution supply piping of electrolytic solution
JP2015040327A (en) * 2013-08-22 2015-03-02 住友金属鉱山株式会社 Electrolytic smelting installation and method of feeding electrolytic solution
JP2017057508A (en) * 2017-01-04 2017-03-23 三菱マテリアル株式会社 Electrolytic refining method of metal, electrolytic refining apparatus

Also Published As

Publication number Publication date
JP7002494B2 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
JP2021120477A (en) Electrolysis device and electrolysis method
JP7150769B2 (en) Electrolysis apparatus and electrolysis method
US7431810B2 (en) Apparatus for controlling flow in an electrodeposition process
US8454818B2 (en) Method for operating copper electrolysis cells
JP2017057508A (en) Electrolytic refining method of metal, electrolytic refining apparatus
JP6065706B2 (en) Electrolytic purification method of metal, electrolytic purification equipment
JP2002105684A (en) Electrolytic method, and electrolytic tank used therefor
JP6967032B2 (en) Electrolyzer and electrolysis method
JP5085474B2 (en) Method for electrolytic purification of copper
WO2020204003A1 (en) Electrolysis apparatus and electrolysis method
JP7002494B2 (en) Electrolyzer and electrolysis method
JP6962960B2 (en) Electrolyzer and electrolysis method
JP6929320B2 (en) Electrolyzer and electrolysis method
JP6364920B2 (en) Electrolytic refining method
JP4342522B2 (en) Method for homogenizing electrolyte concentration and electrolytic cell
JP2020164960A (en) Electrolyzer and electrolysis method
JP7309123B2 (en) Method for supplying electrolyte to electrolytic cell for electrorefining
KR101325390B1 (en) Metal Foil Manufacturing Apparatus Comprising Perpendicular Type Cell
JP2790314B2 (en) Horizontal plating tank
JP2001081590A (en) High current density electrolysis method for copper
JPH0730688Y2 (en) Vertical electroplating equipment
JP2018168406A (en) Apparatus for electrolysis, and method for electrolysis using the same
JPS6053117B2 (en) Copper electrolysis operation method
JP2018168405A (en) Apparatus for electrolysis, and method for electrolysis using the same
JP2020128579A (en) Drain method of electrolytic solution in electrolytic refining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227

R151 Written notification of patent or utility model registration

Ref document number: 7002494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151