JP2020128579A - Drain method of electrolytic solution in electrolytic refining - Google Patents

Drain method of electrolytic solution in electrolytic refining Download PDF

Info

Publication number
JP2020128579A
JP2020128579A JP2019021885A JP2019021885A JP2020128579A JP 2020128579 A JP2020128579 A JP 2020128579A JP 2019021885 A JP2019021885 A JP 2019021885A JP 2019021885 A JP2019021885 A JP 2019021885A JP 2020128579 A JP2020128579 A JP 2020128579A
Authority
JP
Japan
Prior art keywords
electrolytic
drainage
electrolytic solution
solution
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019021885A
Other languages
Japanese (ja)
Other versions
JP7146174B2 (en
Inventor
秀樹 大原
Hideki Ohara
秀樹 大原
浅野 聡
Satoshi Asano
聡 浅野
次郎 中西
Jiro Nakanishi
次郎 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019021885A priority Critical patent/JP7146174B2/en
Publication of JP2020128579A publication Critical patent/JP2020128579A/en
Application granted granted Critical
Publication of JP7146174B2 publication Critical patent/JP7146174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

To provide a drain method of electrolytic solution in electrolytic refining, capable of improving productivity through homogenizing a copper ion concentration in the electrolytic solution in an electrolytic bath and suppressing passivation of an anode, when performing the electrolytic refining of copper with high current density.SOLUTION: In a drain method of electrolytic solution from an electrolytic bath that performs electrolytic refining of a metal, there is provided a piping for drainage in which one end side is immersed as a suction port in the electrolytic solution stored in the electrolytic bath from upward of the electrolytic bath, and the other side is connected to a pump for drainage that can control a flow rate. The drain method of electrolytic solution changes an installation position of the suction port of the piping for drainage so as to suck and drain the electrolytic solution from an arbitrary position ranging from a bottom of the electrolytic bath to a vicinity of a liquid level of the electrolytic solution.SELECTED DRAWING: Figure 2

Description

本発明は、電解精製における電解液の排液方法に関する。 The present invention relates to a method of draining an electrolytic solution in electrolytic refining.

工業的に実施されている電解精製として、主なものに銅の電解精製が挙げられる。この銅の電解精製では、硫酸銅を主成分とする電解液を装入した電解槽の中に、銅製錬の乾式工程で製造された粗銅からなる陽極板(以下、アノードと称する。)と、銅もしくはステンレスやチタンなどで作られた陰極板(以下、カソードと称する。)を交互に一定間隔で対向するように配置し、一定の値の電流を通電して行われる。
この通電によりアノードは電解液中に銅イオンとして溶出し、カソード上では銅イオンが電析する。同時に、アノードに含有されたニッケルやアンチモンやヒ素などの不純物、金や銀などの貴金属元素等は電解液中に溶出しなかったり、溶出してもカソードに電析しなかったりするので、カソード上には高純度な銅(電気銅)が得られる特徴がある。
As the electrolytic refining carried out industrially, electrolytic refining of copper is mentioned as the main one. In this electrolytic refining of copper, an anode plate (hereinafter, referred to as an anode) made of crude copper produced in a dry process of copper smelting is placed in an electrolytic cell charged with an electrolytic solution containing copper sulfate as a main component, A cathode plate made of copper, stainless steel, titanium, or the like (hereinafter, referred to as a cathode) is arranged so as to be opposed to each other at regular intervals, and a constant current is applied.
By this energization, the anode is eluted as copper ions in the electrolytic solution, and the copper ions are electrodeposited on the cathode. At the same time, impurities such as nickel, antimony and arsenic contained in the anode, noble metal elements such as gold and silver do not elute in the electrolytic solution, and even if they elute, they do not deposit on the cathode. Has the characteristic that high-purity copper (electrolytic copper) can be obtained.

しかしながら、このような反応を阻害する要因にアノードの不動態化がある。アノードの不動態化は、アノード表面に硫酸銅の結晶が析出することを主原因として生じる。硫酸銅結晶は非電導性であるため、電流が流れなくなり、製品である高純度な銅(電気銅)の生産を妨げる。
アノード不動態化の主原因である硫酸銅結晶の析出は、アノード表面で溶出した銅イオンがアノード近傍にて硫酸銅の溶解度を超過することにより結晶化することで生じる。通常は、銅と硫酸のイオン濃度が硫酸銅の溶解度を超過しない条件で生産(精製)を行うが、近年の銅需要の高まりにより、より短時間に大量の銅を生産するよう求められている。
However, a factor that hinders such a reaction is passivation of the anode. The passivation of the anode is caused mainly by the precipitation of copper sulfate crystals on the surface of the anode. Since the copper sulfate crystal is non-conductive, no current flows, which hinders the production of high-purity copper (electrolytic copper) as a product.
The precipitation of copper sulfate crystals, which is the main cause of anode passivation, occurs when the copper ions eluted on the anode surface exceed the solubility of copper sulfate in the vicinity of the anode and are crystallized. Normally, production (refining) is performed under the condition that the ion concentration of copper and sulfuric acid does not exceed the solubility of copper sulfate, but due to the recent increase in demand for copper, it is required to produce a large amount of copper in a shorter time. ..

ここで銅の生産量、すなわち電析量は、「通電時間×通電する電極面積×(単位面積あたりの)電流密度」という関係で表される。通電時間は常時通電に近いため延長の余地が小さく、電極の面積は、設備の更新を伴うことなく変更することが難しい。そのため、電流密度を上昇させる取り組みがなされている。 Here, the amount of copper produced, that is, the amount of electrodeposition, is represented by the relationship of “current-carrying time×electrode area for current-carrying×current density (per unit area)”. Since the energization time is close to the constant energization, there is little room for extension, and it is difficult to change the electrode area without renewing the equipment. Therefore, efforts have been made to increase the current density.

しかし、電流密度を上昇させると、銅の溶解速度が増加するため、アノードが不動態化する問題が生じた。
一方、一般的な電解槽内の銅イオン濃度は均一ではなく、濃度勾配を持つ。特許文献1に見られるように、電解槽内の下部では銅イオン濃度が高く、電解槽内の上部では銅イオン濃度が低い。このため、アノードの不動態化は電極の上部よりも電極の下部で発生しやすい。
However, when the current density is increased, the dissolution rate of copper is increased, which causes a problem of passivation of the anode.
On the other hand, the copper ion concentration in a general electrolytic cell is not uniform and has a concentration gradient. As seen in Patent Document 1, the copper ion concentration is high in the lower part of the electrolytic cell and the copper ion concentration is low in the upper part of the electrolytic cell. Therefore, passivation of the anode is more likely to occur at the bottom of the electrode than at the top of the electrode.

このような背景から、以前より、電解槽内の銅イオン濃度を均一化する取り組みがなされてきた。
特許文献2や特許文献3に見られるような手法は、電解槽内に撹拌羽根を浸漬し、専用のモーター等で槽内の液を撹拌し、銅イオン濃度を均一化するものであるが、装置が非常に煩雑になることから、大規模な生産には不向きであった。
Against this background, efforts have been made to make the copper ion concentration in the electrolytic cell uniform.
The method as seen in Patent Document 2 and Patent Document 3 is to dip a stirring blade in an electrolytic bath and stir the liquid in the bath with a dedicated motor or the like to make the copper ion concentration uniform. Since the equipment becomes very complicated, it was not suitable for large-scale production.

また、特許文献4に見られるような手法は、電解槽の上部から給液し、電解槽の下部から排液するものであるが、電解槽内の上部で銅イオン濃度が低くなってしまい、カソードの表面性状が悪化するという問題があった。銅イオン濃度は低い場合も問題があるため、槽内で均一化するのが重要である。
さらに、特許文献4には次のような手法も見られる。電解槽の上部および下部から給液し、電解槽の上部から排液するものであるが、こちらは一般的な電解槽と同様に電解槽内の下部で銅イオン濃度が高くなり、銅イオン濃度均一化の効果はわずかなものであった。
Further, the method as seen in Patent Document 4 is to supply the liquid from the upper part of the electrolytic cell and drain the liquid from the lower part of the electrolytic cell, but the copper ion concentration becomes low in the upper part in the electrolytic cell, There is a problem that the surface quality of the cathode is deteriorated. Since there is a problem even when the copper ion concentration is low, it is important to make it uniform in the tank.
Further, the following technique is also found in Patent Document 4. Liquid is supplied from the upper and lower parts of the electrolyzer and drained from the upper part of the electrolyzer. However, as in a general electrolyzer, the copper ion concentration increases in the lower part of the electrolyzer, and the copper ion concentration increases. The effect of homogenization was slight.

また、特許文献5〜7に見られるような手法は、一つ一つの給液もしくは排液口径が小さくなることで、難溶性物質の付着により短期間に閉塞してしまう、もしくは想定した流量が維持できない問題があった。その閉塞を解消する対策として清掃作業が有効であるものの、清掃作業を行う前には電解槽から強酸性等の人体に有害な電解液を抜き出して閉塞した配管を露出させる必要がある。そのため、清掃作業の間や電解液を抜き出す作業の間は生産を停止することになるので、速やかに作業を終えることが求められるが、閉塞している配管を利用した電解液の抜き出しは容易ではなく、速やかに抜き出すことが難しかった。 Further, in the methods as seen in Patent Documents 5 to 7, the diameter of each liquid supply or drainage is reduced, so that the adhesion of the sparingly soluble substance causes blockage in a short time, or the assumed flow rate is There was a problem that could not be maintained. Although cleaning work is effective as a measure to eliminate the blockage, before performing the cleaning work, it is necessary to extract an electrolytic solution harmful to the human body such as strong acidity from the electrolytic cell to expose the blocked pipe. Therefore, since the production is stopped during the cleaning work or the work of extracting the electrolytic solution, it is necessary to finish the work promptly, but it is not easy to extract the electrolytic solution using the blocked pipe. However, it was difficult to extract quickly.

特公昭60−45127号公報Japanese Patent Publication No. 60-45127 特開2017−048438号公報JP, 2017-048438, A 特許3952766号公報Japanese Patent No. 3952766 特許6065706号公報Japanese Patent No. 6065706 特開2002−105684号公報JP 2002-105684A 特許4342522号公報Japanese Patent No. 4342522 特開昭52−33824号公報JP-A-52-33824

本発明は、粗銅を高電流密度で電解精製して電気銅を得るのに際して、電解槽内の電解液における銅イオン濃度を均一化し、アノードの不動態化を抑制可能とし、さらに整備が容易で、且つ簡素化した設備で良好な生産効率を維持する電解液の電解槽からの排液方法を提供するものである。 The present invention, when electrolytically refining crude copper at a high current density to obtain electrolytic copper, the concentration of copper ions in the electrolytic solution in the electrolytic cell is made uniform, passivation of the anode can be suppressed, and further maintenance is easy. The present invention also provides a method for draining an electrolytic solution from an electrolytic cell, which maintains good production efficiency with simplified equipment.

通常、銅の電解精製を行う際に発生するアノードの不動態化は、アノード表面で溶出した銅イオンがアノード近傍で硫酸銅の溶解度に達することで非電導性の硫酸銅結晶皮膜が生成することにより生じ、一般的な銅の電解精製手法では、電解槽内の下部で銅イオン濃度が高くなるため、アノードの不動態化は電極の下部で優先的に発生しやすい。 Usually, the passivation of the anode that occurs during the electrolytic refining of copper is that the copper ions eluted on the surface of the anode reach the solubility of copper sulfate near the anode to form a non-conductive copper sulfate crystal film. In a general copper electrolytic refining method, the copper ion concentration is high in the lower part of the electrolytic cell, so that the passivation of the anode is likely to occur preferentially in the lower part of the electrode.

このように、電極の下部で不動態化が発生すると、電極の上部に電流が集中するため、電極上部での電流密度、そして溶出速度が上昇し、電極の上部でも不動態化が発生しやすくなる。
アノードの不動態化は、このように連鎖的に進行するため、発生源となる電極下部での不動態化を抑制することが肝要であり、アノードの不動態化を抑制するためには、電解液中の銅イオン濃度を均一化することが重要である。
そこで、本発明者らは、電解液の排液方法を変更することで、電解槽内の電解液濃度を均一化可能なことを見出し、本発明の完成に至った。
Thus, when passivation occurs at the lower part of the electrode, the current concentrates on the upper part of the electrode, so the current density at the upper part of the electrode and the elution rate increase, and passivation easily occurs at the upper part of the electrode. Become.
Since the passivation of the anode proceeds in a chain-like manner as described above, it is important to suppress the passivation at the lower part of the electrode, which is the generation source. It is important to make the copper ion concentration in the liquid uniform.
Therefore, the present inventors have found that it is possible to make the concentration of the electrolytic solution in the electrolytic cell uniform by changing the method of discharging the electrolytic solution, and have completed the present invention.

本発明の第1の発明は、金属の電解精製を行なう電解槽からの電解液の排液方法であって、前記電解槽の上方から前記電解槽に貯留されている電解液中に、一端側を吸引口として浸漬し、他端側が、流量制御可能な排液用ポンプに接続している排液用配管を備え、前記排液用配管の前記吸引口の設置位置を変えることで、電解槽の槽底から電解液液面付近までの任意の位置から、前記電解液を吸引、排液することを特徴とする電解精製における電解液の排液方法である。 A first aspect of the present invention is a method of draining an electrolytic solution from an electrolytic cell for electrolytically refining a metal, wherein one end side is in the electrolytic solution stored in the electrolytic cell from above the electrolytic cell. As a suction port, the other end side is provided with a drainage pipe connected to a drainage pump whose flow rate is controllable, and by changing the installation position of the suction port of the drainage pipe, the electrolytic cell The method for draining an electrolytic solution in electrolytic refining is characterized in that the electrolytic solution is sucked and discharged from an arbitrary position from the tank bottom to the vicinity of the electrolytic solution surface.

本発明の第2の発明は、第1の発明における排液用ポンプによる排液流量を、前記電解槽に供給される電解液の給液流量以下に制御することで、前記排液用ポンプからの排液と同時に、液面からのオーバーフローによる排液を可能とすることを特徴とする電解精製における電解液の排液方法。 A second invention of the present invention controls the drainage flow rate of the drainage pump of the first invention to be equal to or less than the supply flowrate of the electrolytic solution supplied to the electrolytic cell, A method for draining an electrolytic solution in electrolytic refining, which enables draining due to overflow from the liquid surface simultaneously with the draining of the electrolytic solution.

本発明の第3の発明は、第1及び第2の発明における排液用ポンプが、サイフォンの原理を利用した手動式ポンプであることを特徴とする電解精製における電解液の排液方法である。 A third invention of the present invention is a method for draining an electrolytic solution in electrolytic refining, wherein the drainage pump in the first and second inventions is a manual pump utilizing the siphon principle. ..

本発明の第4の発明は、第1から第3の発明おける電解槽が、電極表面を平行に配置した複数の電極を備え、前記電極表面の法線方向の電解槽壁の一方側に電解液を電解槽内に供給する給液口を備え、他方側の電解槽壁に電解槽内の電解液を、吸引する移動自在の吸引口を有することを特徴とする電解精製における電解液の排液方法である。 In a fourth aspect of the present invention, the electrolytic cell according to any one of the first to third aspects includes a plurality of electrodes whose electrode surfaces are arranged in parallel, and the electrolytic cell is electrolyzed on one side of an electrolytic cell wall in a direction normal to the electrode surface. Discharge of electrolytic solution in electrolytic refining characterized by having a supply port for supplying the solution into the electrolytic cell and having a movable suction port for sucking the electrolytic solution in the electrolytic cell on the other side electrolytic cell wall It is a liquid method.

本発明の第5の発明は、第2の発明における吸引口からの電解液の排液量の比率が、前記電解槽からの総排液量の25%以上、75%以下であることを特徴とする電解精製における電解液の排液方法である。 A fifth aspect of the present invention is characterized in that the ratio of the amount of electrolytic solution drained from the suction port in the second aspect is 25% or more and 75% or less of the total amount of drained liquid from the electrolytic cell. Is a method of draining the electrolytic solution in the electrolytic refining.

本発明の第6の発明は、第1から第5の発明における吸引口が、電解槽内深さに対し、槽底から10%以上の位置に設置されることを特徴とする電解精製における電解液の排液方法である。 A sixth invention of the present invention is characterized in that the suction port according to the first to fifth inventions is installed at a position of 10% or more from the bottom of the electrolytic bath with respect to the depth inside the electrolytic bath. This is the liquid drainage method.

本発明の第7の発明は、第4〜第6の発明における給液口及び吸引口における流速を2.5cm/s以下とすることを特徴とする電解精製における電解液の排液方法である。 A seventh invention of the present invention is a method for draining an electrolytic solution in electrolytic refining, characterized in that the flow velocity at the liquid supply port and the suction port in the fourth to sixth inventions is 2.5 cm/s or less. ..

本発明によれば、高電流密度で銅の電解精製を行う際に、電解槽内の電解液における銅イオン濃度を均一化することができる。これによって、アノードの不動態化を抑制し、生産性を向上させることができる。 According to the present invention, when electrolytically refining copper at a high current density, the copper ion concentration in the electrolytic solution in the electrolytic cell can be made uniform. Thereby, passivation of the anode can be suppressed and productivity can be improved.

一般的な銅の電解精製における電解液の排液方法を用いた電解槽を示す図である。It is a figure which shows the electrolytic cell which used the drainage method of the electrolyte solution in the general electrolytic refining of copper. 本実施の形態による電解液の排液方法を用いた電解槽を示す図である。It is a figure which shows the electrolytic cell which used the drainage method of the electrolyte solution by this Embodiment. 本実施の形態に用いられる排液装置Aを示す図で、(a)は伸縮する中間部13を備えた排液装置Aの例で、中間部13が縮んでいる状態、(b)は中間部13が伸びている状態、(c)は吸引配管12aを固定具14で固定することで吸引口12の位置を変化する形式の排液装置Aで、上部位置に吸引口12が設置される場合、(d)は下部位置又は中部位置に吸引口12が設置される場合を示す図である。FIG. 3 is a diagram showing a drainage device A used in the present embodiment, where (a) is an example of the drainage device A having an intermediate portion 13 that expands and contracts, the intermediate portion 13 is in a contracted state, and (b) is an intermediate portion. A state in which the portion 13 is extended, (c) is a drainage device A of a type in which the position of the suction port 12 is changed by fixing the suction pipe 12a with a fixture 14, and the suction port 12 is installed at the upper position. In this case, (d) is a diagram showing a case where the suction port 12 is installed at the lower position or the middle position.

電解液の排液方法を適正化することにより、電解槽内の電解液濃度を均一化可能な本実施の形態の具体的な内容を、実施例を交えて詳細に説明する。
一般的な銅の電解精製における電解液の給液および排液方法は、アノード3とカソード4を交互に、かつ表面が平行に向かい合うように配置した電極5の表面の法線方向に存在する電解槽壁w側の電極の下端部よりも下方に、給液口30から給液し、給液側の電解槽壁wとは対向する電解槽壁wの上部に設けた排液口31より排出されるものである(図1参照)。図1において、100は従来の電解槽、2は電解液、2aは電解液液面、3はアノード、4はカソード、5はカソードとアノードで構成される電極で、右側がカソード表面、左側がアノード表面とする配置の電極、及び右側がアノード表面、左側がカソード表面とする配置の電極で構成され、30aは電解液を給液するための給液配管である。
Specific contents of the present embodiment in which the concentration of the electrolytic solution in the electrolytic cell can be made uniform by optimizing the drainage method of the electrolytic solution will be described in detail with reference to examples.
In the general electrolytic refining of copper, a method of supplying and discharging an electrolytic solution is as follows. lower than the lower end portion of the tank wall w 1 side of the electrode, and supply fluid from the liquid supply ports 30, the liquid supply side of the electrolytic cell walls w 1 and drainage port provided in the upper part of the opposite electrolytic cell wall w 2 is It is discharged from 31 (see FIG. 1). In FIG. 1, 100 is a conventional electrolytic cell, 2 is an electrolytic solution, 2a is an electrolytic solution surface, 3 is an anode, 4 is a cathode, 5 is an electrode composed of a cathode and an anode, the right side is the cathode surface, and the left side is An electrode arranged as an anode surface, an electrode arranged on the right side as an anode surface and an electrode arranged as a cathode surface on the left side, and 30a is a liquid supply pipe for supplying an electrolytic solution.

このような従来の給液および排液方法では、電解槽100内に保有される電解液の深さ方向(破線矢印方向)において、重力による銅イオン濃度の濃度勾配が生じる。例えば、約9mの電解槽に約30L/minで給液し、約300A/mの電流密度で電気分解すれば、数日間の電気分解にて電極の上部と下部で銅イオン濃度は約10g/Lの差が生じる。
銅の電解精製は約60℃で実施されており、60℃における硫酸銅の飽和溶液中銅イオン濃度は158g/Lである。ただし実務的には、通電時の浴抵抗を低減するために硫酸を添加することが行われている。電解液が硫酸と硫酸銅および水のみで形成され、温度を60℃、硫酸濃度を200g/Lとすると、硫酸銅の溶解度は低下し、飽和溶液中銅イオン濃度は95g/Lまで低下する。
In such a conventional liquid supply and drainage method, a concentration gradient of the copper ion concentration due to gravity occurs in the depth direction (the direction of the broken line arrow) of the electrolytic solution held in the electrolytic cell 100. For example, if the solution is supplied to an electrolytic cell of about 9 m 3 at about 30 L/min and electrolyzed at a current density of about 300 A/m 2 , the copper ion concentration at the upper and lower parts of the electrode will be about several days after electrolysis. A difference of 10 g/L occurs.
The electrolytic refining of copper is carried out at about 60° C., and the copper ion concentration in a saturated solution of copper sulfate at 60° C. is 158 g/L. However, practically, sulfuric acid is added to reduce the bath resistance during energization. When the electrolytic solution is formed only of sulfuric acid, copper sulfate and water, and the temperature is 60° C. and the sulfuric acid concentration is 200 g/L, the solubility of copper sulfate is lowered and the copper ion concentration in the saturated solution is lowered to 95 g/L.

さらに濃度勾配は鉛直方向だけでなく、水平方向にも生じる。即ち、アノード表面では銅が溶出するので、アノードに近づくほど、そして電流密度が大きいほど銅イオン濃度は高くなる。具体的例を挙げると、電解液を液面で採取して銅イオン濃度が50g/Lの場合、アノード近傍ではそれより45g/L高い銅イオン濃度まで溶出させることができる。鉛直方向の濃度勾配で10g/Lほど高い電極の下端部側付近は、60g/Lであるから、アノード近傍において銅イオン濃度が35g/Lだけ溶出したところで飽和し、上昇すると結晶が生成するようになる。このため、電極の下端部側では、アノードの不動態化が発生しやすい。また、実際の電解液では、不純物が含まれるため、飽和溶液中銅イオン濃度が95g/Lよりも低い状態で飽和することとなり、更にアノードの不動態化が発生しやすい状況となる。 Furthermore, the concentration gradient occurs not only in the vertical direction but also in the horizontal direction. That is, since copper is eluted on the surface of the anode, the closer to the anode and the higher the current density, the higher the copper ion concentration. As a specific example, when the electrolytic solution is collected on the liquid surface and the copper ion concentration is 50 g/L, it is possible to elute up to a copper ion concentration 45 g/L higher than that in the vicinity of the anode. The vicinity of the lower end of the electrode, which has a vertical concentration gradient as high as about 10 g/L, is 60 g/L, and therefore, when the copper ion concentration is eluted by 35 g/L in the vicinity of the anode, it saturates, and crystals rise when it rises. become. Therefore, passivation of the anode is likely to occur on the lower end side of the electrode. In addition, since the actual electrolytic solution contains impurities, it is saturated when the copper ion concentration in the saturated solution is lower than 95 g/L, and the passivation of the anode is likely to occur.

この状況を緩和する要素として、電解液の給液がある。適度な濃度の電解液を給液することで、電解液を目標の濃度に近づけることができる。たとえば給液口30から濃度の低い電解液を供給することにより、電極の下端部側付近の電解液を希釈する。電極の下端部側付近では銅イオン濃度が高いが、いま給液より約10g/L高いとすると、60℃における両者の密度差は約0.01g/cmである。そのため、電解槽底部Bo側に給液した電解液は、上昇流を形成し、その後、電解槽の上部に設けた上部排液口31まで移動し、排液される。このような流れでは、給液した電解液が、電極間に十分に拡散しないため、上述のように電解槽の深さ方向において銅イオン濃度の濃度勾配を抑制する働きは限定的である。 As a factor for alleviating this situation, there is a supply of an electrolytic solution. By supplying the electrolytic solution having an appropriate concentration, the electrolytic solution can be brought close to the target concentration. For example, by supplying a low-concentration electrolytic solution from the liquid supply port 30, the electrolytic solution near the lower end side of the electrode is diluted. The copper ion concentration is high near the lower end of the electrode, but if the concentration is higher than the supply liquid by about 10 g/L, the density difference between the two at about 60° C. is about 0.01 g/cm 3 . Therefore, the electrolytic solution supplied to the electrolysis tank bottom Bo side forms an upward flow, and then moves to the upper drainage port 31 provided at the upper part of the electrolytic bath and is drained. In such a flow, since the supplied electrolytic solution does not sufficiently diffuse between the electrodes, the function of suppressing the concentration gradient of the copper ion concentration in the depth direction of the electrolytic cell is limited as described above.

そこで、このような銅イオン濃度の濃度勾配を抑制する手段として、電解液の排液方法及び給液方法に着目して検討した。
その結果、銅イオン濃度の濃度勾配を抑制するには、給液した電解液を電極間に十分に分散させることが重要であることを見出し、本発明に係る電解液の電解槽からの排液方法が得られた。
即ち、電解槽の上方から、電解槽に貯留されている電解液中に、一端側を吸引口として浸漬し、他端側が、流量制御可能な排液用ポンプに接続している排液配管を備え、その排液配管の前記排液の開口部に相当する吸引口の設置位置を変えることで、電解槽底部Boから電解液液面2a付近までの任意の位置から、電解液を吸引、排液することができる。
これにより、銅イオン濃度の濃度勾配が抑制可能となる。さらに、排液用ポンプによる排液流量を、電解槽に供給される電解液の給液流量以下で制御することで、排液用ポンプからの排液と同時に、電解液液面2aからのオーバーフローによる排液が可能となる。
Therefore, as means for suppressing such a concentration gradient of the copper ion concentration, the drainage method and the liquid supply method of the electrolytic solution were focused and studied.
As a result, in order to suppress the concentration gradient of the copper ion concentration, it was found that it is important to sufficiently disperse the supplied electrolytic solution between the electrodes, and drainage of the electrolytic solution according to the present invention from the electrolytic cell. The method was obtained.
That is, from the upper part of the electrolytic cell, in the electrolytic solution stored in the electrolytic cell, one end side is immersed as a suction port, and the other end side is connected to a drainage pump whose flow rate is controllable. By changing the installation position of the suction port corresponding to the opening of the drainage of the drainage pipe, the electrolyte is sucked and discharged from an arbitrary position from the electrolytic cell bottom Bo to the vicinity of the electrolyte level 2a. Can be liquefied.
Thereby, the concentration gradient of the copper ion concentration can be suppressed. Further, by controlling the drainage flow rate by the drainage pump to be equal to or less than the feed rate of the electrolyte solution supplied to the electrolytic cell, the drainage pump simultaneously drains the electrolyte solution and overflows the electrolyte solution surface 2a. It becomes possible to drain the liquid.

また、閉塞に対しては、排液配管の設置位置を変えることにより、電解液を抜き出す時間をかけることなく清掃などを行うことができ、難溶性物質が付着した配管やポンプPは、生産とは切り離した環境で、整備、清掃等のメンテナンスが可能となり、使用寿命や性能の低下を防ぐことができ、生産効率を落とすことなく金属の電解精製を継続することを可能とする。
また、整備および清掃が困難な場合は、直ぐにポンプを廃棄、交換することも出来る。
For blockage, by changing the installation position of the drainage pipe, it is possible to perform cleaning without taking time to extract the electrolytic solution. In the separated environment, maintenance such as maintenance and cleaning can be performed, service life and performance deterioration can be prevented, and it is possible to continue electrolytic refining of metal without lowering production efficiency.
In addition, if maintenance and cleaning are difficult, the pump can be immediately discarded or replaced.

このような本発明に係る具体的な実施態様の一例は、図2に示すように流量制御可能な排液ポンプPと、そのポンプPに一端が連結し、他端(吸引口12)が電解液上方から電解液中に浸漬され、その浸漬位置を自在に調節可能な吸引配管12aを組み合わせた排液装置Aを備えた電解槽1を用いて排液操作を行なうことで、電解液を放出する排液口(図2では吸引口12)の電解槽内の電解液中の深さを、適宜調整でき、また、吸引配管12a内に難溶性物質が生成した場合も、その配管やポンプを新規なものに取り換えることで、すぐに排液操作の再開を可能とし、電解精製による銅の生産を遅滞なく再開することが出来る。
さらに、排液装置Aからの排液と、既存の上部排液口11からの排液を排液樋11aにより合流させて纏めて外部に排出可能となり、排液処理の手間や設備の簡素化が可能となっている。
An example of such a specific embodiment according to the present invention is such that a flow rate controllable drainage pump P is connected as shown in FIG. 2, one end of which is connected to the pump P and the other end (suction port 12) is electrolyzed. The electrolytic solution is discharged by performing the drainage operation using the electrolytic cell 1 which is immersed in the electrolytic solution from above the solution and is equipped with the drainage device A in which the suction pipe 12a whose adjustable immersion position is freely adjustable is combined. The depth of the drainage port (the suction port 12 in FIG. 2) in the electrolytic solution in the electrolytic cell that can be adjusted can be adjusted appropriately, and even when a hardly soluble substance is generated in the suction pipe 12a, the pipe or pump is By replacing it with a new one, the drainage operation can be restarted immediately, and the production of copper by electrolytic refining can be restarted without delay.
Further, the drainage from the drainage device A and the drainage from the existing upper drainage port 11 can be merged by the drainage gutter 11a to be collectively discharged to the outside, which simplifies the drainage process and equipment. Is possible.

排液装置Aは、流量制御が可能なポンプPと、そのポンプPに連結した吸引配管12aと、ポンプPにより吸引した電解液を排液樋11aに排出する排液配管12bを備え、その吸引配管12aはポンプPとの連結部の反対側に吸引口12が開口され、電解液中の所定位置まで浸漬される。電解槽内の電解液は吸引配管12aから吸引され、上部排液口11に連なる排液樋11aで、上部排液口11からの排液と混ざり合い、電解槽外に排出される。 The drainage device A includes a pump P capable of controlling the flow rate, a suction pipe 12a connected to the pump P, and a drain pipe 12b for discharging the electrolytic solution sucked by the pump P to a drain gutter 11a. The pipe 12a has a suction port 12 opened on the side opposite to the connecting portion with the pump P, and is immersed to a predetermined position in the electrolytic solution. The electrolytic solution in the electrolytic bath is sucked through the suction pipe 12a, mixed with the drainage from the upper drainage port 11a in the drainage gutter 11a connected to the upper drainage port 11, and discharged to the outside of the electrolytic bath.

この排液装置Aは、図3(a)、(b)、または(c)、(d)に示すような機構を有している。即ち、電解槽1に排液装置Aを設置した際に、吸引配管12aの電解液中に浸漬されている先端部の吸引口12の位置を、可動範囲δ内で変更できる機構である。この機構によって、電解槽底部Boからの距離を、適宜設定可能となっている。なお、排液装置Aは、図3に示す形式にこだわらず電解槽内の電解液を種々の液位から吸引して排出可能な機構を備えていれば良い。 This drainage device A has a mechanism as shown in FIG. 3(a), (b), or (c), (d). In other words, when the drainage device A is installed in the electrolytic bath 1, the position of the suction port 12 at the tip portion immersed in the electrolytic solution of the suction pipe 12a can be changed within the movable range δ. With this mechanism, the distance from the electrolytic cell bottom portion Bo can be appropriately set. The drainage device A is not limited to the type shown in FIG. 3 and may be provided with a mechanism capable of sucking and discharging the electrolytic solution in the electrolytic cell from various liquid levels.

図3(a)、(b)に示す排液装置Aは、蛇腹のように伸縮可能な中間部13を備えることで、吸引配管12aの長さを変える機構を有する装置である。
又、図3(c)、(d)に示す排液装置Aは、電解槽に取付、固定する固定具14を備え、固定具14は吸引配管12aを電解槽の深さ方向に異なる位置で把持する機構を有する装置である。
図3(a)、(b)に示す排液装置A、図3(c)、(d)に示す排液装置Aのどちらであっても、吸引配管12aの少なくとも一部を動かすことによって、吸引口12を電解槽底部域Sを含む所定位置に配置することができる。
The drainage device A shown in FIGS. 3A and 3B is a device having a mechanism that changes the length of the suction pipe 12a by including the intermediate portion 13 that can expand and contract like a bellows.
Further, the drainage device A shown in FIGS. 3(c) and 3(d) is provided with a fixture 14 that is attached to and fixed to the electrolytic bath, and the fixture 14 has suction pipes 12a at different positions in the depth direction of the electrolytic bath. The device has a gripping mechanism.
In both of the drainage device A shown in FIGS. 3A and 3B and the drainage device A shown in FIGS. 3C and 3D, by moving at least a part of the suction pipe 12a, The suction port 12 can be arranged at a predetermined position including the electrolytic bath bottom area S.

さらに、この排液装置Aで使用する流量制御が可能なポンプPとしては、サイフォンの原理を利用した手動式(サイフォン式排液)ポンプが、電力供給なくとも流量が保たれる点で好ましい。このようなサイフォンの原理を使用するポンプの場合、吸引配管12aの管径や吸引口12の開口径を変化させることによって流量が調節可能であるが、予め配管の直径や開口径の最適化を行うことが望ましい。 Further, as the pump P capable of controlling the flow rate used in the drainage device A, a manual type (siphon type drainage) pump utilizing the siphon principle is preferable in that the flow rate can be maintained without power supply. In the case of a pump using such a siphon principle, the flow rate can be adjusted by changing the pipe diameter of the suction pipe 12a and the opening diameter of the suction port 12, but the diameter of the pipe and the opening diameter can be optimized in advance. It is desirable to do.

ところで、図2に示す本発明の実施態様において、排液の全部を全て電解槽底部域Sから排出すると、電極上部(電解液面側)付近の銅イオン濃度が低下してカソードの表面性状や純度を悪化させることがあるため、電解槽底部域Sからの排液、即ち吸引口12を用いた電解液の排出は、全排液量の75%以下とするのが良い。また、電解槽底部域Sからの排液量が少ないと、給液した電解液を電極間に十分に分散させる効果に乏しいことから、電解槽底部域Sからの排液は全排液量の25%以上とするのが良い。 By the way, in the embodiment of the present invention shown in FIG. 2, when all the drainage is discharged from the electrolytic cell bottom region S, the copper ion concentration near the electrode upper part (electrolyte surface side) decreases, and the surface properties of the cathode and Since the purity may be deteriorated, the drainage of the electrolytic solution from the bottom area S of the electrolytic cell, that is, the drainage of the electrolytic solution using the suction port 12 is preferably 75% or less of the total drainage amount. Further, if the amount of liquid drained from the electrolytic bath bottom region S is small, the effect of sufficiently dispersing the supplied electrolytic solution between the electrodes is poor, so the amount of drained liquid from the electrolytic bath bottom region S is less than the total amount of drained liquid. It is better to be 25% or more.

また、カソードの純度は、アノードスライムの巻き込みによっても悪化する。このアノードスライムとは、銅の電解精製時にアノードで溶解しない不溶解性の物質を指す。
アノードスライムは、アノード表面から脱落し、電解槽底部Boに沈積する。電解槽底部域Sからの排液を電解槽底部Boに近い位置で実施すると、電解槽底部Boに沈積したアノードスライムを電極間に巻き上げ、カソードの不純物濃度を上昇させる。電解槽底部域Sからの排液を行なう場合、吸引口12の位置を、電解槽底部Boから電解槽内深さの10%以上の位置とすることで、アノードスライムの巻き上げが抑制できた。
Further, the purity of the cathode is deteriorated by the inclusion of the anode slime. The anode slime refers to an insoluble substance that does not dissolve in the anode during electrolytic refining of copper.
The anode slime drops off from the surface of the anode and deposits on the bottom Bo of the electrolytic cell. When the drainage from the electrolyzer bottom area S is carried out at a position close to the electrolyzer bottom Bo, the anode slime deposited on the electrolyzer bottom Bo is rolled up between the electrodes to raise the impurity concentration of the cathode. When the liquid is drained from the electrolyzer bottom area S, by setting the position of the suction port 12 at a position that is 10% or more of the depth inside the electrolyzer from the electrolyzer bottom Bo, the winding of the anode slime can be suppressed.

さらに、電解槽底部域Sからの排液では、例えば排液装置Aの吸引口12を電解槽の底部側、即ち下部側になるように排液装置Aを設置する際には、その下部排液口となる吸引口12付近における流速が速いと、局所的にアノードスライムを巻き上げ、カソードの不純物濃度を上昇させる。
そこで下部排液口となる吸引口12の大きさを、電解液(排液)が排液口を通過する流速が、2.5cm/s以下となるように設定したことで、これによりアノードスライムの巻き上げが抑制された。さらに給液口10においても同様に、給液口の大きさを、給液口の通過時の流速が、2.5cm/s以下となるように設定したことで、アノードスライムの巻き上げが抑制された。
Further, when the drainage device A is installed such that the suction port 12 of the drainage device A is located on the bottom side, that is, the lower side of the electrolysis bath, the drainage from the bottom region S of the electrolytic bath is performed. When the flow velocity near the suction port 12 which is the liquid port is high, the anode slime is locally rolled up, and the impurity concentration of the cathode is increased.
Therefore, the size of the suction port 12 serving as the lower drainage port is set so that the flow velocity of the electrolytic solution (drainage liquid) passing through the drainage port is 2.5 cm/s or less. Winding up of was suppressed. Further, also in the liquid supply port 10, similarly, the size of the liquid supply port is set so that the flow velocity at the time of passing through the liquid supply port is 2.5 cm/s or less, whereby the winding of the anode slime is suppressed. It was

1 電解槽
2 電解液
2a 電解液液面
3 アノード
4 カソード
5 電極
5u 電極下端部
10、30 給液口
10a、30a 給液配管
11、31 上部排液口
11a 排液樋
12 吸引口
12a 吸引配管
12b 排液配管
13 中間部
14 固定具
100 電解槽
A 排液装置
Bo 電解槽底部
P (サイフォン式排液)ポンプ
S 電解槽底部域
ho 排液口の高さ
、w 電解槽壁(電極面の法線方向の槽壁)
δ 可動範囲
1 Electrolyzer 2 Electrolyte 2a Electrolyte Liquid Level 3 Anode 4 Cathode 5 Electrode 5u Electrode Lower Ends 10, 30 Liquid Supply Ports 10a, 30a Liquid Supply Pipes 11, 31 Upper Drain Port 11a Drain Trough 12 Suction Port 12a Suction Pipe 12b Drainage pipe 13 Intermediate part 14 Fixture 100 Electrolysis tank A Drainage device Bo Electrolysis tank bottom P (Siphon type drainage) pump S Electrolysis tank bottom area ho Ho drainage height w 1 , w 2 Electrolyte wall ( (Tank wall in the direction normal to the electrode surface)
δ movable range

Claims (7)

金属の電解精製を行なう電解槽からの電解液の排液方法であって、
前記電解槽の上方から前記電解槽に貯留されている電解液中に、一端側を吸引口として浸漬し、他端側が、流量制御可能な排液用ポンプに接続している排液用配管を備え、
前記排液用配管の前記吸引口の設置位置を変えることで、電解槽の槽底から電解液液面付近までの任意の位置から、前記電解液を吸引、排液することを特徴とする電解精製における電解液の排液方法。
A method for draining an electrolytic solution from an electrolytic cell for electrolytically refining a metal,
In the electrolytic solution stored in the electrolytic bath from above the electrolytic bath, one end side is immersed as a suction port, and the other end side is a drainage pipe connected to a drainage pump whose flow rate is controllable. Prepare,
By changing the installation position of the suction port of the drainage pipe, the electrolytic solution is sucked and drained from any position from the bottom of the electrolytic cell to the vicinity of the electrolytic solution surface. Method of draining electrolyte in purification.
前記排液用ポンプによる排液流量を、前記電解槽に供給される電解液の給液流量以下に制御することで、前記排液用ポンプからの排液と同時に、液面からのオーバーフローによる排液を可能とすることを特徴とする請求項1に記載の電解精製における電解液の排液方法。 The drainage flow rate of the drainage pump is controlled to be equal to or lower than the feed rate of the electrolyte solution supplied to the electrolytic cell, so that the drainage pump drains the drainage fluid at the same time as the drainage flow rate overflow The method for draining an electrolytic solution in electrolytic refining according to claim 1, wherein the electrolytic solution is made liquid. 前記排液用ポンプが、サイフォンの原理を利用した手動式ポンプであることを特徴とする請求項1又は2に記載の電解精製における電解液の排液方法。 The drainage method of an electrolytic solution in electrolytic refining according to claim 1 or 2, wherein the drainage pump is a manual pump utilizing a siphon principle. 前記電解槽が、電極表面を平行に配置した複数の電極を備え、
前記電極表面の法線方向の電解槽壁の一方側に、電解液を電解槽内に供給する給液口を備え、
他方側の電解槽壁に電解槽内の電解液を、吸引する移動自在の吸引口を有することを特徴とする請求項1〜3のいずれか1項に記載の電解精製における電解液の排液方法。
The electrolytic cell comprises a plurality of electrodes having electrode surfaces arranged in parallel,
On one side of the electrolytic cell wall in the normal direction of the electrode surface, a liquid supply port for supplying an electrolytic solution into the electrolytic cell is provided,
The drainage of the electrolytic solution in the electrolytic refining according to any one of claims 1 to 3, wherein the electrolytic cell in the electrolytic cell has a movable suction port for sucking the electrolytic solution in the electrolytic cell on the other side. Method.
前記吸引口からの電解液の排液量の比率が、前記電解槽からの総排液量の25%以上、75%以下であることを特徴とする請求項2に記載の電解精製における電解液の排液方法。 The electrolytic solution in electrolytic refining according to claim 2, wherein the ratio of the amount of electrolytic solution drained from the suction port is 25% or more and 75% or less of the total amount of drained liquid from the electrolytic cell. Drainage method. 前記吸引口が、電解槽内深さに対し、槽底から10%以上の位置に設置されることを特徴とする請求項1〜5のいずれか1項に記載の電解精製における電解液の排液方法。 The drainage of the electrolytic solution in the electrolytic refining according to any one of claims 1 to 5, wherein the suction port is installed at a position of 10% or more from the bottom of the electrolytic bath with respect to the depth of the electrolytic bath. Liquid method. 前記給液口及び前記吸引口における流速を2.5cm/s以下とすることを特徴とする請求項4〜6のいずれか1項に記載の電解精製における電解液の排液方法。 The drainage method of the electrolytic solution in the electrolytic refining according to any one of claims 4 to 6, wherein the flow rates at the liquid supply port and the suction port are 2.5 cm/s or less.
JP2019021885A 2019-02-08 2019-02-08 Electrolyte drainage method in electrorefining Active JP7146174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019021885A JP7146174B2 (en) 2019-02-08 2019-02-08 Electrolyte drainage method in electrorefining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019021885A JP7146174B2 (en) 2019-02-08 2019-02-08 Electrolyte drainage method in electrorefining

Publications (2)

Publication Number Publication Date
JP2020128579A true JP2020128579A (en) 2020-08-27
JP7146174B2 JP7146174B2 (en) 2022-10-04

Family

ID=72175302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019021885A Active JP7146174B2 (en) 2019-02-08 2019-02-08 Electrolyte drainage method in electrorefining

Country Status (1)

Country Link
JP (1) JP7146174B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045127B2 (en) * 1980-02-13 1985-10-08 小名浜製錬株式会社 Method for producing copper sulfate
JPH0310100A (en) * 1989-06-07 1991-01-17 Nkk Corp Method and device for removing ferric ion and iron hydroxide sludge in iron-based electroplating solution
JPH08277483A (en) * 1995-04-06 1996-10-22 Sumitomo Metal Mining Co Ltd Production of electrolytic copper

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045127B2 (en) * 1980-02-13 1985-10-08 小名浜製錬株式会社 Method for producing copper sulfate
JPH0310100A (en) * 1989-06-07 1991-01-17 Nkk Corp Method and device for removing ferric ion and iron hydroxide sludge in iron-based electroplating solution
JPH08277483A (en) * 1995-04-06 1996-10-22 Sumitomo Metal Mining Co Ltd Production of electrolytic copper

Also Published As

Publication number Publication date
JP7146174B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
AU2008291662B2 (en) Method for operating copper electrolysis cells
JP7398395B2 (en) Improvements in copper electrorefining
JP7150768B2 (en) Electrolysis apparatus and electrolysis method
EP2479316A1 (en) Electrolytic bath for recovering valuable metals, with increased contact specific surface area
JP2002105684A (en) Electrolytic method, and electrolytic tank used therefor
JP5085474B2 (en) Method for electrolytic purification of copper
CN210367939U (en) Metal gallium circulation electrolysis equipment
JP2015040327A (en) Electrolytic smelting installation and method of feeding electrolytic solution
CN102108531B (en) Impurity removing method for nickel electroplating solution and impurity removing equipment thereof
JP2020128579A (en) Drain method of electrolytic solution in electrolytic refining
JP5898346B2 (en) Operation method of anode and electrolytic cell
JP6364920B2 (en) Electrolytic refining method
JP2013107042A (en) Operation method of electric evaporation tank
KR101426373B1 (en) Apparatus to Plate Substrate
JP4342522B2 (en) Method for homogenizing electrolyte concentration and electrolytic cell
JP7186950B2 (en) Electrolyte supply/drainage method
JP7211143B2 (en) Method for producing sulfuric acid solution
KR101884396B1 (en) Non-ferrous metal electrolytic smelting system using plural electrolytic solution supply pipe and discharge pipe
KR101884400B1 (en) Non-ferrous metal electrolytic smelting system equipped with sludge treatment device under the electrolytic cell
JP7048941B2 (en) Copper electrolytic refining method
JP7309123B2 (en) Method for supplying electrolyte to electrolytic cell for electrorefining
CN218059253U (en) Circulation device of electrolytic cell
JP7002494B2 (en) Electrolyzer and electrolysis method
JP7188239B2 (en) Method for producing electrolytic cell and acid solution
JPH0625882A (en) Electrolytic refining method for copper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220904

R150 Certificate of patent or registration of utility model

Ref document number: 7146174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150