JPH0625882A - Electrolytic refining method for copper - Google Patents

Electrolytic refining method for copper

Info

Publication number
JPH0625882A
JPH0625882A JP4199056A JP19905692A JPH0625882A JP H0625882 A JPH0625882 A JP H0625882A JP 4199056 A JP4199056 A JP 4199056A JP 19905692 A JP19905692 A JP 19905692A JP H0625882 A JPH0625882 A JP H0625882A
Authority
JP
Japan
Prior art keywords
copper
electrolysis
electrolyte
concn
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4199056A
Other languages
Japanese (ja)
Other versions
JP3158684B2 (en
Inventor
Hiroshi Sato
浩 佐藤
Koji Sakamoto
孝司 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP19905692A priority Critical patent/JP3158684B2/en
Publication of JPH0625882A publication Critical patent/JPH0625882A/en
Application granted granted Critical
Publication of JP3158684B2 publication Critical patent/JP3158684B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To stably produce electrolytic copper having decreased pinholes by specifying an electrolysis temp. and the amt. of the org. additives to be added and changing the copper concn., sulfuric acid concn. and nickel concn. of an electrolyte thereby adjusting the sp. gr. of the electrolyte. CONSTITUTION:The electrolysis temp. and the amt. of the org. additives to be added are specified and one among the copper concn., sulfuric acid concn. and nickel concn. of the electrolyte are changed to adjust the specific gravity of the electrolyte to the 1. 250 to 1.263 range in the electrolytic method for the copper at >=240 ampere/m<2> current density. The electrolysis temp. is specified to about 60 to 65 deg.C and the amt. of the org. additives is selected from the ranges of 50 to 100g/electrodeposition copper ton glue, 50 to 100g/ electrodeposition copper ton thiourea and 10 to 30g/electrodeposition copper ton. The adjustment of the copper concn. of the electrolyte is executed by adjusting the degree of removing the copper excessively chemically dissolved from the anode by a decopperization electrolysis method from the electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、銅の電解精製を行なう
方法に関し、特にピンホールの少ない電気銅の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for electrolytically refining copper, and more particularly to a method for producing electrolytic copper with few pinholes.

【0002】[0002]

【従来の技術】電気銅のピンホールとは、液中のエアー
又は、電解時のガス等によって発生した気泡がカソード
表面に付着し、そのまま周囲に銅が電着する為、泡の付
着部分が電着せずに図1に示した様な直径3mm程度、
深さ10mm程度の穴となって残ったものを言う。この
ピンホール中に電解液が残留して電気銅のイオウ含有量
を高くしたり、製品の外観が悪くなるので極力少ない事
が望ましい。
2. Description of the Related Art Electrolytic copper pinholes are bubbles formed by air in liquid or gas generated during electrolysis, which adheres to the surface of the cathode and copper is electrodeposited on the periphery as it is. Without electrodeposition, a diameter of about 3 mm as shown in Fig. 1,
It refers to the remaining holes that are about 10 mm deep. The electrolytic solution remains in the pinholes to increase the sulfur content of electrolytic copper and the appearance of the product is deteriorated, so it is desirable that the amount is as small as possible.

【0003】このピンホールの原因となる気泡の生成原
因は主に電解液の循環ポンプや循環槽でのエアーの巻き
込みによると考えられるがはっきりとは確定できておら
ず、その時々によりポンプの調整、給液量の調整、給、
排液温度の調整等種々の対応を行っていた。特に電解の
電流密度が240アンペア/m2 以上の高電流密度の電
解では、カソード表面での銅イオンの供給が不足しない
様にする為に、電解液の銅濃度を高めなければならな
く、結果的に電解液の粘性が高くなり、カソード表面に
付着した気泡が剥離し難くなって電気銅のピンホールが
多くなる傾向があった。
The cause of the bubbles causing the pinholes is thought to be mainly due to the entrainment of air in the electrolytic solution circulation pump or the circulation tank, but this has not been clearly determined, and the pump is adjusted depending on the occasion. , Adjustment of liquid supply, supply,
Various measures were taken such as adjusting the drainage temperature. Especially in electrolysis with high current density of 240 amperes / m 2 or more, the concentration of copper in the electrolytic solution must be increased in order to prevent insufficient supply of copper ions on the cathode surface. As a result, the viscosity of the electrolytic solution becomes high, the bubbles adhering to the cathode surface become difficult to peel off, and the number of pinholes in the electrolytic copper tends to increase.

【0004】一般に、特殊な有機質添加剤を添加して電
気銅の表面を平滑にすることが提案されているが(たと
えば特公昭61−33918号公報)、有機質添加剤が
高価である等の問題点があった。
Generally, it has been proposed to add a special organic additive to smooth the surface of electrolytic copper (for example, Japanese Examined Patent Publication No. 61-33918), but the problem is that the organic additive is expensive. There was a point.

【0005】[0005]

【発明が解決しようとする課題】本発明は、特に電流密
度が高い電解条件で電気銅の表面にピンホールが発生
し、それにより電気銅のS含有率が高くなる等があまり
生じない銅電解精製法を提案することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is directed to copper electrolysis in which pinholes are generated on the surface of electrolytic copper under electrolysis conditions where the current density is particularly high, so that the S content of electrolytic copper is not increased. The purpose is to propose a purification method.

【0006】[0006]

【課題を解決するための手段】本発明による銅電解精製
法は、電流密度が240アンペア/m2 以上の銅電解方
法において、電解温度および有機質添加剤添加量を一定
とし、電解液の銅濃度、硫酸濃度およびニッケル濃度の
うち1以上を調整して電解液の比重を1.250〜1.
263とする点に特徴がある。
The copper electrorefining method according to the present invention is a copper electrolysis method in which a current density is 240 amperes / m 2 or more, the electrolysis temperature and the amount of an organic additive added are constant, and the copper concentration in the electrolytic solution is constant. , One of the sulfuric acid concentration and the nickel concentration is adjusted so that the specific gravity of the electrolytic solution is 1.250 to 1.
The feature is that it is set to 263.

【0007】[0007]

【作用】電気銅のピンホールは、前記の通り電解液中の
気泡が陰極表面から離れ難い為に起り、従って電解液の
粘性が大きく影響すると考えられるが、実際の操業現場
で電解液の粘性を経続的に精度良く測定するのは困難な
ので、その代用特性として電解液の比重を電流密度が2
60アンペア/m2 で電解液温度(61.5℃)および
有機質添加剤(にかわ80g/電着銅トン、チオ尿素7
0g/電着銅トン、アビトン20g/電着銅トン)が一
定の電解条件下で測定しピンホールの発生率との関係を
調査したところ図2に示す通りの関係となることを見出
して本発明に至った。
[Function] Electrolytic copper pinholes occur because bubbles in the electrolytic solution are difficult to separate from the cathode surface as described above, and therefore the viscosity of the electrolytic solution is considered to have a large effect. Since it is difficult to measure the temperature continuously and accurately, the specific gravity of the electrolyte is 2
Electrolyte temperature (61.5 ° C.) at 60 amps / m 2 and organic additives (80 g glue / copper ton, thiourea 7)
0g / electrodeposited copper ton, abiton 20g / electrodeposited copper ton) was measured under a constant electrolysis condition, and the relationship with the pinhole occurrence rate was investigated, and it was found that the relationship is as shown in FIG. Invented.

【0008】電解液の比重が1.263を超える値では
電気銅のピンホール発生率が高くなってしまい、1.2
50未満の値では電解液の比重を低下させるのに電解液
の銅濃度等の調整をかなり行なわなければならず経済的
ではないので電解液の比重は1.250〜1.263で
ある必要がある。
If the specific gravity of the electrolytic solution exceeds 1.263, the rate of occurrence of pinholes in electrolytic copper becomes high, resulting in 1.2
When the value is less than 50, the specific gravity of the electrolytic solution must be adjusted to 1.250 to 1.263 because the copper concentration of the electrolytic solution must be adjusted considerably in order to reduce the specific gravity of the electrolytic solution, which is not economical. is there.

【0009】操業中に電解温度および有機質添加剤の種
類と添加量を変化させると図2に示した関係から大きく
ずれてしまうので、電解温度および有機質添加剤添加量
を一定とする必要がある。
If the electrolysis temperature and the type and addition amount of the organic additive are changed during the operation, the relationship shown in FIG. 2 is largely deviated, so that the electrolysis temperature and the addition amount of the organic additive must be constant.

【0010】電解温度および有機質添加剤の種類と添加
量は通常の電解において問題とならない様に選択すれば
良いが、適正な値としては、電解温度60〜65℃、ニ
カワ50〜100g/電着銅トン、チオ尿素50〜10
0g/電着銅トン、アビトン10〜30g/電着銅トン
である。
The electrolysis temperature and the type and amount of the organic additive may be selected so as not to cause a problem in the usual electrolysis, but proper values are as follows: electrolysis temperature 60 to 65 ° C., glue 50 to 100 g / electrodeposition Copper ton, Thiourea 50-10
0 g / ton of electrodeposited copper, 10-30 g of abiton / ton of electrodeposited copper.

【0011】電解液の比重を調節するに電解液の銅濃
度、硫酸濃度、ニッケル濃度を変化させて行なうのであ
るが、電解液の銅濃度はアノードから過剰に化学的に溶
解する銅を脱銅電解法等により電解液から除去する程度
を調整して実施する。又、電解液のニッケル濃度は電解
液からニッケル分を電気蒸発法等により硫酸ニッケルと
して除去する程度を調整して実施する。電解液中の硫酸
濃度は添加する硫酸量を調整して行なう。
The specific gravity of the electrolytic solution is adjusted by changing the copper concentration, the sulfuric acid concentration and the nickel concentration of the electrolytic solution. The copper concentration of the electrolytic solution is decopperization of copper that is chemically dissolved excessively from the anode. The degree of removal from the electrolytic solution is adjusted by an electrolytic method or the like. Further, the nickel concentration of the electrolytic solution is adjusted so that the nickel content is removed from the electrolytic solution as nickel sulfate by an electro-evaporation method or the like. The sulfuric acid concentration in the electrolytic solution is adjusted by adjusting the amount of sulfuric acid added.

【0012】電解液の銅濃度、硫酸濃度、ニッケル濃度
のいづれを調整して電解液の比重を調整しても良いが、
電解の状況を悪化させない様、通常実施される条件を選
択するのが良い。電解液の銅濃度は本発明のような高電
流密度での電解では47〜51g/lが望ましい。電解
液の硫酸濃度は高い方が電解液の浴抵抗が下がるため好
ましいが、余り高いとアノードの不動態化や電気銅の品
質悪化を生じる惧れがあるので150〜210g/lが
望ましい。電解液のニッケル濃度は高い方が電解液の浴
抵抗を増大させ、硫酸ニッケル結晶が晶出してスケーリ
ング等のトラブルが生じてしまう惧れもあるのでなるべ
く低い方が良いが、浄液装置の能力、目標アノード品
位、浄液コスト等が各電解設備によって異なるので明確
ではないが、17〜23g/lが望ましい。
The specific gravity of the electrolytic solution may be adjusted by adjusting any of the copper concentration, sulfuric acid concentration and nickel concentration of the electrolytic solution.
It is recommended to select the conditions that are usually carried out so as not to worsen the electrolysis situation. It is desirable that the copper concentration of the electrolytic solution is 47 to 51 g / l in electrolysis at a high current density as in the present invention. It is preferable that the concentration of sulfuric acid in the electrolytic solution is high because the bath resistance of the electrolytic solution is lowered, but if it is too high, passivation of the anode and deterioration of the quality of electrolytic copper may occur, so 150 to 210 g / l is desirable. The higher the nickel concentration of the electrolytic solution, the more the bath resistance of the electrolytic solution increases, and nickel sulfate crystals may crystallize out, which may cause problems such as scaling, so the lower the concentration is, the better. It is not clear because the target anode quality, the cleaning solution cost, etc. differ depending on each electrolysis facility, but 17 to 23 g / l is desirable.

【0013】[0013]

【実施例】精製炉で処理し、ターンテーブルで鋳造して
得られたアノードおよび種板電解で得られたカソードを
用いて下記の条件で電解を行なった。各試験においては
(試験期間は各1カ月である)電解温度および有機質添
加剤の種類、添加量は一定で電解液の比重が目標値にな
るように電解液の銅濃度、硫酸濃度、ニッケル濃度を調
整した。電解液の組成、比重(いずれも1カ月平均値で
ある)および電気銅のピンホール発生率の結果を表1に
示した。
[Examples] Electrolysis was performed under the following conditions using an anode obtained by processing in a refining furnace and cast on a turntable and a cathode obtained by seed plate electrolysis. In each test (the test period is one month each), the electrolytic temperature, the type of organic additive, the addition amount is constant, and the specific gravity of the electrolytic solution reaches the target value. Was adjusted. Table 1 shows the results of the composition of the electrolytic solution, the specific gravity (each is a one-month average value), and the occurrence rate of pinholes in electrolytic copper.

【0014】 電解条件 電解温度 61.5℃±0.5℃ 有機質添加剤添加量 にかわ 80g/電着銅トン チオ尿素 70g/電着銅トン アビトン 20g/電着銅トン 電流密度 260アンペア/m2 電解槽寸法 5.6m×1.25m×1.4m 槽数 256個 アノード枚数 50枚/槽 品位 Cu99.2%、Ni0.1〜0.3% 寸法 1.04m×1.03m×35cm 重量 370kg 枚数 51枚/槽 カソード寸法 1.07m×1.03m×0.7cm 重量 6.6kg 電気銅産出量 6000 トン/月 極間距離 105mmElectrolysis conditions Electrolysis temperature 61.5 ° C. ± 0.5 ° C. Organic additive addition amount 80 g / electrodeposited copper ton thiourea 70 g / deposited copper ton Abiton 20 g / electrodeposited copper ton Current density 260 amps / m 2 Electrolyzer size 5.6m × 1.25m × 1.4m Number of tanks 256 Number of anodes 50 / tank Quality Cu 99.2%, Ni 0.1 to 0.3% Dimensions 1.04m × 1.03m × 35cm Weight 370kg Number of sheets 51 sheets / tank Cathode size 1.07m × 1.03m × 0.7cm Weight 6.6kg Production rate of electrolytic copper 6000 tons / month Distance between poles 105mm

【0015】[0015]

【表1】 [Table 1]

【0016】表1において、比重は浮き秤式の比重計を
用いて、温度57〜62℃で測定した値であり、ピンホ
ール発生率とは1枚の電気銅にピンホールが10個以上
発生した枚数の占める割合を示したものである。
In Table 1, the specific gravity is a value measured at a temperature of 57 to 62 ° C. using a float balance type hydrometer, and the pinhole generation rate is 10 or more pinholes in one sheet of electrolytic copper. It shows the proportion of the number of sheets.

【0017】比較の為に、実施例と同じ電解条件で、電
解液の比重が本発明の特許請求の範囲から外れた試験の
結果を表1に示した。
For comparison, Table 1 shows the results of a test in which the specific gravity of the electrolytic solution was out of the scope of the claims of the present invention under the same electrolysis conditions as those of the examples.

【0018】表1の結果により、電解液の比重が本発明
の特許請求の範囲から外れた場合には電気銅のピンホー
ル発生率が高いことが判る。
From the results shown in Table 1, it is understood that when the specific gravity of the electrolytic solution is out of the scope of the claims of the present invention, the occurrence rate of pinholes in electrolytic copper is high.

【0019】[0019]

【発明の効果】以上のように、本発明により電気銅のピ
ンホールが激減し、ピンホールのない電気銅を安定して
生産することができ、電気銅の品質向上が図ることがで
きる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, the pinholes of electrolytic copper are drastically reduced, electrolytic copper without pinholes can be stably produced, and the quality of electrolytic copper can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】電気銅のピンホールの状態を示めす電気銅の断
面図である。
FIG. 1 is a cross-sectional view of electrolytic copper showing a state of electrolytic copper pinholes.

【図2】電解液の比重とピンホールの発生率との関係を
示めす図である。
FIG. 2 is a diagram showing the relationship between the specific gravity of an electrolytic solution and the occurrence rate of pinholes.

【符号の説明】[Explanation of symbols]

1 電着銅 2 種板 3 ピンホール 1 Electroplated copper 2nd class plate 3 Pinhole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電流密度が240アンペア/m2 以上の
銅電解方法において、電解温度および有機質添加剤添加
量を一定とし、電解液の銅濃度、硫酸濃度およびニッケ
ル濃度のうち1以上を調整して電解液の比重を1.25
0〜1.263とすることを特徴とする銅電解精製法。
1. In a copper electrolysis method having a current density of 240 amps / m 2 or more, the electrolysis temperature and the amount of organic additives added are kept constant, and at least one of the copper concentration, sulfuric acid concentration and nickel concentration of the electrolytic solution is adjusted. The specific gravity of the electrolyte is 1.25
The copper electrolytic refining method is characterized in that it is from 0 to 1.263.
JP19905692A 1992-07-03 1992-07-03 Copper electrorefining method Expired - Lifetime JP3158684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19905692A JP3158684B2 (en) 1992-07-03 1992-07-03 Copper electrorefining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19905692A JP3158684B2 (en) 1992-07-03 1992-07-03 Copper electrorefining method

Publications (2)

Publication Number Publication Date
JPH0625882A true JPH0625882A (en) 1994-02-01
JP3158684B2 JP3158684B2 (en) 2001-04-23

Family

ID=16401375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19905692A Expired - Lifetime JP3158684B2 (en) 1992-07-03 1992-07-03 Copper electrorefining method

Country Status (1)

Country Link
JP (1) JP3158684B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928957A (en) * 2010-10-04 2010-12-29 普宁市长欣五金有限公司 Method for electrolyzing refined copper at room temperature
JP2019026866A (en) * 2017-07-25 2019-02-21 国立大学法人九州大学 Electrorefining method of copper
JP2019085636A (en) * 2017-11-09 2019-06-06 Jx金属株式会社 Copper electrorefining method
JP2020084273A (en) * 2018-11-27 2020-06-04 住友金属鉱山株式会社 Copper electrolytic refining method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103726070A (en) * 2013-12-13 2014-04-16 金川集团股份有限公司 Copper electrolyte additive and application method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928957A (en) * 2010-10-04 2010-12-29 普宁市长欣五金有限公司 Method for electrolyzing refined copper at room temperature
JP2019026866A (en) * 2017-07-25 2019-02-21 国立大学法人九州大学 Electrorefining method of copper
JP2019085636A (en) * 2017-11-09 2019-06-06 Jx金属株式会社 Copper electrorefining method
JP2020084273A (en) * 2018-11-27 2020-06-04 住友金属鉱山株式会社 Copper electrolytic refining method

Also Published As

Publication number Publication date
JP3158684B2 (en) 2001-04-23

Similar Documents

Publication Publication Date Title
US4140596A (en) Process for the electrolytic refining of copper
US3864227A (en) Method for the electrolytic refining of copper
JP2002105684A (en) Electrolytic method, and electrolytic tank used therefor
JPH0625882A (en) Electrolytic refining method for copper
US2923671A (en) Copper electrodeposition process and anode for use in same
JP3882608B2 (en) Method and apparatus for electrolytic purification of high purity tin
US3799850A (en) Electrolytic process of extracting metallic zinc
US4923573A (en) Method for the electro-deposition of a zinc-nickel alloy coating on a steel band
CN1071382C (en) Polyacrylic acid additive for copper electrolytic purification and copper electrolytic metallurgy
US3755113A (en) Method for electrorefining of nickel
Lee et al. Evaluating and monitoring nucleation and growth in copper foil
EP0058506B1 (en) Bipolar refining of lead
US4490223A (en) Electrode for electrometallurgical processes
EP0335989B1 (en) Insoluble anode made of lead alloy
US1127966A (en) Deposition of iron.
AU558737B2 (en) Method of thiourea addition to electrolytic solutions useful
Zakiyya et al. Potentiodynamic Characteristics of Zinc Electrodeposition from Chloride Solution
SU1154378A1 (en) Method of electrolytic refining of copper and electrolyte for effecting same
US1461276A (en) Apparatus for the electrolytic production of metallic alloys in the form of paste orsludge
JP2570076B2 (en) Manufacturing method of high purity nickel
US1273432A (en) Composition for electrolytes for electrical etching.
JPS5913097A (en) Material for insoluble anode for electroplating
CA1046799A (en) Electrowinning of zinc using aluminum alloy
JP2015030901A (en) Electrolytic copper for plating and production method of the same
JPWO2020050418A1 (en) How to make electrolytic copper

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 12