JP2020084273A - Copper electrolytic refining method - Google Patents

Copper electrolytic refining method Download PDF

Info

Publication number
JP2020084273A
JP2020084273A JP2018221076A JP2018221076A JP2020084273A JP 2020084273 A JP2020084273 A JP 2020084273A JP 2018221076 A JP2018221076 A JP 2018221076A JP 2018221076 A JP2018221076 A JP 2018221076A JP 2020084273 A JP2020084273 A JP 2020084273A
Authority
JP
Japan
Prior art keywords
anode
passivation
copper
electrolytic
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018221076A
Other languages
Japanese (ja)
Other versions
JP7271917B2 (en
Inventor
和己 竹中
Kazumi Takenaka
和己 竹中
洋平 山口
Yohei Yamaguchi
洋平 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018221076A priority Critical patent/JP7271917B2/en
Publication of JP2020084273A publication Critical patent/JP2020084273A/en
Application granted granted Critical
Publication of JP7271917B2 publication Critical patent/JP7271917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

To provide a copper electrolytic refining method capable of suppressing the generation of anode passivation even under high load electrolytic conditions such as an electrolytic operation at high current density.SOLUTION: The copper electrolytic refining method is characterized in that, with a passivation suppression degree P calculated from the following equation 1 based on Cu quality, oxygen quality, Se quality, Ag quality and As quality in an anode and the specific gravity S of an electrolytic solution as parameters, the specific gravity S of the electrolytic solution is adjusted so that a passivation generation degree Q calculated from the following equation 2 reaches 0.005 or lower: [equation 1] P=([As]-0.5 [Ag])/([CuO]+n [CuSe]+X) and [equation 2] Q=S-0.0025×P-1.23.SELECTED DRAWING: None

Description

本発明は、銅電解精製方法に関し、特に、アノードにおける不働態現象の発生を防止することが可能な銅電解精製方法に関する。 The present invention relates to a copper electrolytic refining method, and more particularly to a copper electrolytic refining method capable of preventing the occurrence of a passive state phenomenon in an anode.

銅の製錬法は乾式法と湿式法に大別することができ、前者の乾式法は、一般的に図1に示すように銅精鉱からアノードを作製する乾式製錬工程と、得られたアノードから電気銅を作製する電解精製工程とから構成される。具体的には、先ず乾式製錬工程において、浮遊選鉱で得た銅精鉱に対して自熔炉での溶解と、その後段の転炉での酸化とにより粗銅を生成し、これを精製炉で精製して純度99%程度の精製粗銅を得る。この精製粗銅を鋳造機に流し込んで銅電解精製用の陽極板(以下、アノードと称する)を鋳造する。 Copper smelting methods can be broadly classified into dry methods and wet methods. The former dry methods are generally obtained by a dry smelting step of producing an anode from copper concentrate as shown in FIG. And an electrolytic refining process for producing electrolytic copper from the anode. Specifically, first, in the dry smelting process, the copper concentrate obtained by flotation is melted in a smelting furnace and oxidized in a subsequent converter to produce crude copper, which is then purified in a refining furnace. Purification to obtain purified crude copper having a purity of about 99%. This refined crude copper is poured into a casting machine to cast an anode plate for copper electrolytic refining (hereinafter referred to as an anode).

次に、電解精製工程において、上記鋳造で得た複数のアノードと、別途用意した複数の陰極板(以下、カソードと称する)とを、銅電解液を入れた電解槽内に互いに一定間隔をあけて一枚ずつ交互に配置する。そして、これらアノード及びカソードに通電することで、アノードから電解液中に銅イオンを溶出させると共にこれをカソードに電着させて銅品位99.99%以上の電気銅を作製する。 Next, in the electrolytic refining step, the plurality of anodes obtained by the casting and a plurality of separately prepared cathode plates (hereinafter, referred to as cathodes) are placed in an electrolytic cell containing a copper electrolytic solution at regular intervals. And arrange them one by one. Then, by energizing the anode and the cathode, copper ions are eluted from the anode into the electrolytic solution and electrodeposited on the cathode to produce electrolytic copper having a copper quality of 99.99% or more.

上記のアノードには、Ni、Sn、As、Sb、Bi等の不純物金属が含まれているため、上記電解の進行に伴って、これら不純物金属のイオンも銅イオンと同様に電解液中に溶出する。しかしながら、アノード中の不純物品位が高い場合や、電解液中の銅濃度や硫酸濃度が高い場合は、アノード表面に導電性のない酸化銅や硫酸銅結晶が析出し、その結果、アノード表面からの金属イオンの溶出を防げる現象(以下、アノード不働態化又は単に不働態化と称する)が発生することがあった。 Since the above-mentioned anode contains impurity metals such as Ni, Sn, As, Sb, and Bi, the ions of these impurity metals are eluted into the electrolytic solution in the same manner as copper ions as the electrolysis proceeds. To do. However, when the impurity quality in the anode is high, or when the copper concentration or sulfuric acid concentration in the electrolytic solution is high, non-conductive copper oxide or copper sulfate crystals are deposited on the anode surface, which results in A phenomenon that prevents the elution of metal ions (hereinafter referred to as anode passivation or simply passivation) may occur.

上記のアノード中の不純物によるアノード不働態化への影響を調べるため、該不純物の種類や量、それらの共存状態等について従来数多くの研究がなされてきた。例えば特許文献1には、銅電解精製工程におけるアノード不働態化に影響を及ぼすアノード中の不純物として、Ag、As、Pb、Bi、Sb、Sn、Se、Oが挙げられており、これらの各々の不純物品位に基づいてアノード不働態化が発生する可能性を評価する方法が提案されている。 In order to investigate the influence of the impurities in the anode on the passivation of the anode, many studies have been conducted on the types and amounts of the impurities, their coexistence state, and the like. For example, in Patent Document 1, Ag, As, Pb, Bi, Sb, Sn, Se, and O are listed as impurities in the anode that affect the passivation of the anode in the electrolytic copper refining process. A method for evaluating the possibility of anode passivation occurring based on the impurity quality of Al2O3 has been proposed.

また、特許文献2には、高電流密度で粗銅の電解精製を行うに際して、電解液の銅濃度を高くしてもアノード不働態化が容易に発生しないようにするため、電解液中の銅濃度と硫酸根濃度と電流密度とをかけ合わせた値が所定の値以下となるように該硫酸根濃度を調整する技術が開示されている。 Further, in Patent Document 2, in electrolytically refining crude copper at a high current density, in order to prevent anode passivation from occurring easily even if the copper concentration of the electrolytic solution is increased, the copper concentration in the electrolytic solution is There is disclosed a technique of adjusting the sulfate radical concentration so that the value obtained by multiplying the sulfate radical concentration and the current density is not more than a predetermined value.

特開2000−054181号公報Japanese Patent Laid-Open No. 2000-054181 特開2017−214612号公報JP, 2017-214612, A

上記特許文献1や2の技術により、銅の電解精製工程においてアノード不働態化の発生をある程度抑制することができると考えられるものの、高電流密度での電解操業などの高負荷の電解条件下では依然としてアノード不働態化が生じることがあった。本発明はかかる実情に鑑みてなされたものであり、高電流密度での電解操業等の高負荷電解条件下においてもアノード不働態化の発生を抑制することが可能な銅電解精製方法を提供することを目的とする。 Although it is considered that generation of anode passivation in the electrolytic refining process of copper can be suppressed to some extent by the techniques of Patent Documents 1 and 2 above, under high load electrolytic conditions such as electrolytic operation at high current density. Anode passivation could still occur. The present invention has been made in view of such circumstances, and provides a copper electrolytic refining method capable of suppressing the occurrence of anode passivation even under high load electrolysis conditions such as electrolytic operation at high current density. The purpose is to

本発明者らは高電流密度での電解操業等の高負荷電解条件下においてもアノード不働態化の発生を抑制する方法について鋭意検討を重ねた結果、アノード不働態化の発生は、アノードの不純物品位だけではなく、電解液の組成等の電解条件の影響を受けるとの知見を得た。例えば、電解液中の銅濃度や硫酸濃度が高ければ、アノード近傍では溶出した銅の影響で電解液中の硫酸銅が飽和溶解度に達し、その結果、硫酸銅結晶が析出してアノード不働態化が発生すると考えられる。 The inventors of the present invention have conducted extensive studies on a method for suppressing the generation of anode passivation even under high load electrolysis conditions such as electrolytic operation at high current density, and as a result, the occurrence of anode passivation is caused by the impurities in the anode. It was found that not only the quality but also the electrolytic conditions such as the composition of the electrolytic solution are affected. For example, if the concentration of copper or sulfuric acid in the electrolytic solution is high, the copper sulfate in the electrolytic solution reaches saturation solubility in the vicinity of the anode due to the effect of eluted copper, and as a result, copper sulfate crystals precipitate and passivate the anode. Is thought to occur.

そこで、アノード不働態化の発生を抑制しながら高電流密度下で安定した電解操業を継続するため、アノードの不純物品位及び電解液の物性の双方を調整すること、具体的にはアノードの不純物品位から算出した不働態化抑止度Pと電解液比重Sとをパラメータとして用いた管理指標に基づいて電解精製の操作条件を調整することで、上記高負荷条件下でも良好にアノード不働態化の発生を抑えうることを見出し本発明を完成するに至った。 Therefore, in order to continue stable electrolytic operation under high current density while suppressing the generation of anode passivation, it is necessary to adjust both the impurity quality of the anode and the physical properties of the electrolyte, specifically, the impurity quality of the anode. By adjusting the operating conditions for electrolytic refining on the basis of the control index using the passivation inhibition degree P and the electrolytic solution specific gravity S calculated from the above, the anode passivation is satisfactorily generated even under the above high load conditions. The inventors have found that the above can be suppressed and have completed the present invention.

すなわち、本発明に係る銅電解精製方法は、アノード中のCu品位、酸素品位、Se品位、Ag品位、及びAs品位に基づいて下記式1から算出した不働態化抑止度Pと、電解液の比重Sとをパラメータとして下記式2から算出した不働態化発生度Qが0.005以下となるように該電解液の比重Sを調整することを特徴としている。
[式1]
P=([As]−0.5・[Ag]Free)/([CuO]+n・[CuSe]+X)
[式2]
Q=S−0.0025×P−1.23
(但し、As/Seが0.2未満の場合、[Ag]Free=0、X=0.5・[Ag]、n=0とし、As/Seが0.2以上0.5未満の場合、[Ag]Free=0、X=0、n=0.5とし、As/Seが0.5以上1.0未満の場合、[Ag]Free=0.25、X=0、n=0.5とし、As/Seが1.0以上1.7未満の場合、[Ag]Free=([Ag]−[Se])、X=0、n=0.5とし、As/Seが1.7以上の場合、[Ag]Free=([Ag]−2・[Se])、X=0、n=1.0とする。ここで[A]は前記アノード中に含まれる物質Aの品位をその分子量で除した値であり、As/Seは該アノード中のAs品位をSe品位で除した値である。)
That is, the copper electrolytic refining method according to the present invention, the passivation inhibition degree P calculated from the following formula 1 based on Cu grade, oxygen grade, Se grade, Ag grade, and As grade in the anode, and the electrolytic solution It is characterized in that the specific gravity S of the electrolytic solution is adjusted so that the passivation occurrence degree Q calculated from the following equation 2 using the specific gravity S as a parameter is 0.005 or less.
[Formula 1]
P=([As]-0.5·[Ag] Free )/([Cu 2 O]+n·[Cu 2 Se]+X)
[Formula 2]
Q=S-0.0025×P-1.23
(However, if As/Se is less than 0.2, [Ag] Free =0, X=0.5·[Ag], n=0, and As/Se is 0.2 or more and less than 0.5. , [Ag] Free = 0, X = 0, n = 0.5, and As/Se is 0.5 or more and less than 1.0, [Ag] Free = 0.25, X = 0, n = 0. .5 and As/Se is 1.0 or more and less than 1.7, [Ag] Free =([Ag]-[Se]), X=0, n=0.5, and As/Se is 1 In the case of 0.7 or more, [Ag] Free =([Ag]-2·[Se]), X=0, n=1.0, where [A] is the substance A contained in the anode. (It is a value obtained by dividing the quality by its molecular weight, and As/Se is a value obtained by dividing the As quality in the anode by the Se quality.)

本発明によれば、高電流密度での電解操業等の高負荷電解条件下においてもアノード不働態化の発生を抑制することができるので、安定した操業を継続することができる。 According to the present invention, the occurrence of anode passivation can be suppressed even under high load electrolysis conditions such as electrolysis operation at high current density, so that stable operation can be continued.

本発明の銅電解精製方法が好適に適用される乾式銅精鉱法のブロックフロー図である。1 is a block flow diagram of a dry copper concentrate method to which a copper electrolytic refining method of the present invention is suitably applied.

以下、本発明の銅電解精製方法の実施形態として、例えば高電流密度操業等の高負荷の電解条件下においてもアノード不働態化の発生を抑制することが可能な電解精製方法について説明する。先ず不働態化抑止度Pについて説明し、次に該不働態化抑止度P及び電解液の比重Sをパラメータとして算出する不働態化発生度Qについて説明する。 Hereinafter, as an embodiment of the copper electrolytic refining method of the present invention, an electrolytic refining method capable of suppressing the occurrence of anode passivation even under a high load electrolysis condition such as a high current density operation will be described. First, the passivation inhibition degree P will be described, and then the passivation inhibition degree P and the passivation occurrence rate Q calculated using the specific gravity S of the electrolyte as a parameter will be described.

銅電解精製における不働態化現象は、電解槽中の電解液のうちアノードの近傍に存在する電解液でCuイオンが飽和状態となり、その結果、アノードからのCuの溶出が困難になるために生ずる。すなわち、銅電解精製が進むと、アノード近傍の電解液においては該アノードから溶出したCuイオンによって、Cuイオンの濃度勾配が生じる。また、アノード中の不純物の一部は溶出せずにアノード表面にスライム層を形成する。このスライム層はCuイオンの電解液中の拡散を防げるので、アノード近傍の電解液のCuイオン濃度は時間の経過に伴って徐々に増加する。 The passivation phenomenon in the electrolytic refining of copper occurs because the Cu ions are saturated in the electrolytic solution existing in the vicinity of the anode in the electrolytic solution in the electrolytic cell, and as a result, it becomes difficult to elute Cu from the anode. .. That is, as the copper electrolytic refining progresses, a Cu ion concentration gradient occurs in the electrolytic solution near the anode due to the Cu ions eluted from the anode. Moreover, a slime layer is formed on the surface of the anode without elution of some of the impurities in the anode. This slime layer prevents Cu ions from diffusing in the electrolytic solution, so that the Cu ion concentration of the electrolytic solution near the anode gradually increases with the passage of time.

そして、このCuイオン濃度の増加によって電解液中のCuSOの濃度が飽和濃度に達すれば、非溶解性で導電性のないCuSO・5HO結晶が不働態化層としてアノード表面に析出し、アノードの有効表面積が減少する。その結果、実質的な電流密度の上昇が生じるので、電解槽電圧の上昇や電極表面温度の上昇などの現象となって現れる不働態化が発生する。従って、上記不働態化現象の発現を防止するためには、当該アノードの近傍に存在する電解液においてCuイオンが飽和又は過飽和にならない条件を維持すれば良いことになる。 Then, when the concentration of CuSO 4 in the electrolytic solution reaches the saturation concentration due to the increase in the Cu ion concentration, insoluble CuSO 4 .5H 2 O crystals having no conductivity are deposited on the anode surface as a passivation layer. , The effective surface area of the anode is reduced. As a result, a substantial increase in current density occurs, resulting in passivation that appears as phenomena such as an increase in electrolytic cell voltage and an increase in electrode surface temperature. Therefore, in order to prevent the occurrence of the passivation phenomenon, it is only necessary to maintain the condition that the Cu ions are not saturated or supersaturated in the electrolytic solution existing in the vicinity of the anode.

また、アノード表面上に生成されるスライム層がCuイオンの拡散を妨げない性状を有していることが好ましい。このスライム層の性状は、アノード中のAs、Ag、酸素などの成分の影響を受けるので、アノード中のこれらAs、Ag、酸素などの成分が、不働態化現象の発現に間接的に影響を及ぼすことになる。更に、アノード表面上に生成したスライム層中にCu粒子が多く含まれていると不働態化現象が生じやすくなる。その理由は、スライム中のCu粒子の多くが一価Cuイオンから生成することから考えると、アノード中に一価Cu粒子が多ければ、間接的に電解液中のCuSOの濃度が飽和濃度に達しやすくなり、不働態化層を形成するCuSO・5HOが多く生成されることになるからである。 In addition, it is preferable that the slime layer formed on the surface of the anode has a property of not hindering diffusion of Cu ions. Since the properties of the slime layer are influenced by the components such as As, Ag and oxygen in the anode, these components such as As, Ag and oxygen in the anode indirectly influence the appearance of the passivation phenomenon. Will affect. Furthermore, if a large amount of Cu particles are contained in the slime layer formed on the anode surface, the passivation phenomenon easily occurs. The reason is that most of Cu particles in slime are generated from monovalent Cu ions. If there are many monovalent Cu particles in the anode, the concentration of CuSO 4 in the electrolytic solution indirectly becomes saturated. This is because CuSO 4 .5H 2 O that forms the passivation layer is easily produced and a large amount of CuSO 4 .5H 2 O is produced.

従って、アノード中の不純物にできるだけ一価Cuを生成するものが存在しないようにできれば、不働態化現象の発現を抑制できることになる。アノード中の不純物のうち、上記一価Cuイオン(Cu)に影響するものとして、O、Ag、Pb、Sb、Bi、Sn、As、及びSeを挙げることができる。すなわち、アノード中に存在する酸素(O)は、その一部が一価Cuイオンと結合してCuOの形態で存在するため、アノード中のCuOの濃度が高くなればなるほど、上記不働態化層の生成用の一価Cuイオンがより多く供給されることになる。 Therefore, if it is possible to prevent impurities in the anode that generate monovalent Cu as much as possible, the occurrence of the passivation phenomenon can be suppressed. Among the impurities in the anode, those that affect the monovalent Cu ion (Cu + ) include O, Ag, Pb, Sb, Bi, Sn, As, and Se. That is, since a part of oxygen (O) existing in the anode exists in the form of Cu 2 O by combining with monovalent Cu ions, the higher the concentration of Cu 2 O in the anode, the more More monovalent Cu ions for the formation of the passivation layer will be supplied.

Agが溶解して生ずるAgは、アノード中のセレン化物であるCuSeやCuAgSeと反応することにより一価Cuイオンを生ずる。従ってアノード中のAgのモル量からSeのモル量を減じた値、又はAgのモル量からSeのモル量の2倍量を減じた値が高いと、上記不働態化層の生成用として供給される一価Cuイオンの量が増大する。 Ag + generated by dissolution of Ag reacts with Cu 2 Se or CuAgSe that are selenides in the anode to generate monovalent Cu ions. Therefore, if the value obtained by subtracting the molar amount of Se from the molar amount of Ag in the anode or the value obtained by subtracting the molar amount of Se from the molar amount of Ag is twice, it is supplied for producing the passivation layer. The amount of monovalent Cu ions that are generated increases.

一方、Pb、Sb、Bi、及びSnは、アノード中で酸化物として酸素を固定する。従って、アノード中のこれらの不純物のモル量が多いと、上記不働態化層の生成用として供給される一価Cuイオンの量を抑制することができる。すなわち、アノードの単位質量当たりのCuOのモル量は下記に示す酸素バランスの式から導き出すことができる。
[CuO]=[OAnode]−([PbO]+[SbO]+[BiO]+[SnO])
On the other hand, Pb, Sb, Bi, and Sn fix oxygen as an oxide in the anode. Therefore, if the molar amount of these impurities in the anode is large, the amount of monovalent Cu ions supplied for producing the passivation layer can be suppressed. That is, the molar amount of Cu 2 O per unit mass of the anode can be derived from the oxygen balance equation shown below.
[Cu 2 O]=[O Anode ]-([PbO]+[SbO]+[BiO]+[SnO])

なお、本明細書中において[A]とは、不純物元素等の物質Aのアノード中の品位をその分子量で除した値である。また、OAnodeは、アノード中の全酸素を意味している。上記酸素バランスの式のように、Pb、Sb、Bi、及びSnは通常はアノード中で酸化物として存在しているので、アノードを定量分析して得たこれら元素の品位から換算したそれらの酸化物の品位をそれぞれの分子量で除することで上記の酸化物のモル量を算出することができる。 In the present specification, [A] is a value obtained by dividing the grade of substance A such as an impurity element in the anode by its molecular weight. Further, O Anode means total oxygen in the anode. As in the above oxygen balance equation, since Pb, Sb, Bi, and Sn usually exist as oxides in the anode, their oxidation converted from the grades of these elements obtained by quantitative analysis of the anode. The molar amount of the above oxide can be calculated by dividing the product quality by the respective molecular weights.

Asはアノードから溶出してV価まで酸化されることで発生するHイオンによりCuOの溶解を促進する。従って、アノード中のAsの品位が高いと、上記不働態化層として供給される一価Cuイオンの量を抑制することができる。前述したように、Seはアノード中でCuSe又はCuAgSeの形態で存在するため、一価Cuイオンを供給する。従って、アノード中のSeのモル濃度が高いと、上記不働態化層として供給される一価Cuイオンの量が増大する。なお、アノード中に存在するNi及びFeは不働態化にほとんど影響を及ぼさないので無視することができる。 As promotes dissolution of Cu 2 O by H + ions generated by elution from the anode and oxidation to V valence. Therefore, if the quality of As in the anode is high, the amount of monovalent Cu ions supplied as the passivation layer can be suppressed. As mentioned above, Se exists in the form of Cu 2 Se or CuAgSe in the anode and thus supplies monovalent Cu ions. Therefore, when the molar concentration of Se in the anode is high, the amount of monovalent Cu ions supplied as the passivation layer increases. It should be noted that Ni and Fe existing in the anode have almost no effect on the passivation and can be ignored.

上記にて説明したように、不働態化現象の発現の原因となる一価Cuイオンを供給するものとして、アノード中のCuO、CuSe、CuAgSe及びAgを挙げることができる。一方、不働態化現象の発現を抑制するものとして、Pb、Sb、Bi、Snに代表されるアノード内において酸素を固定するもの、及びアノード中のAsを挙げることができる。 As described above, Cu 2 O, Cu 2 Se, CuAgSe and Ag in the anode can be mentioned as the ones that supply the monovalent Cu ions that cause the manifestation of the passivation phenomenon. On the other hand, as a substance that suppresses the expression of the passivation phenomenon, a substance that fixes oxygen in the anode represented by Pb, Sb, Bi, and Sn and a substance that contains As in the anode can be mentioned.

上記の各種不純物のうち、Agのアノード中の固定形態は該アノード中のAg及びSeのモル比Ag/Seにより変化することが知られていることから、他の元素に支配されてないいわゆるフリーAgの形態のAgのモル量[Ag]Freeは、アノード中のAgのモル量からSeのモル量を減じた値、又はAgのモル量からSeのモル量の2倍を減じた値として求めることができる。一方、セレンは前述したようにセレン化物であるCuSeやCuAgSeとして存在することが知られているため、セレン化物がAgの溶解を支配し、ひいては不働態化の原因となる一価Cuの発生量に関係することとなる。更に、Asは自身の酸化により一価のCuを溶解し不働態化の発生を抑止すると考えられる。 Among the above-mentioned various impurities, it is known that the fixed form of Ag in the anode changes depending on the Ag/Se molar ratio Ag/Se in the anode. The molar amount of Ag in the form of Ag [Ag] Free is determined as the value obtained by subtracting the molar amount of Se from the molar amount of Ag in the anode or the value obtained by subtracting twice the molar amount of Se from the molar amount of Ag. be able to. On the other hand, since selenium is known to exist as Cu 2 Se and CuAgSe which are selenides as described above, the selenides dominate the dissolution of Ag, and thus the monovalent Cu that causes passivation is formed. It will be related to the amount generated. Further, As is considered to dissolve monovalent Cu by its own oxidation and suppress the occurrence of passivation.

そこで上記の各不純物元素又は化合物による一価Cuイオンの供給又は抑制を考慮に入れて、不働態化現象の生じにくさを表す指標として下記式1に示す不働態化抑止度Pを導入する。すなわち、銅電解精製に用いるアノードに含まれる不純物元素の品位をICP発光分光分析法等の定量分析法で求め、得られた値から算出した下記式1に示す不働態化抑止度Pができるだけ大きくなるように不純物濃度を管理するのが好ましい。
[式1]
P=([As]−0.5・[Ag]Free)/([CuO]+n・[CuSe]+X)
Therefore, taking into consideration the supply or suppression of the monovalent Cu ions by the above-mentioned impurity elements or compounds, the passivation inhibition degree P shown in the following formula 1 is introduced as an index showing the difficulty of the passivation phenomenon. That is, the quality of the impurity element contained in the anode used for copper electrolytic refining was obtained by a quantitative analysis method such as ICP emission spectroscopy, and the passivation inhibition degree P shown in the following formula 1 calculated from the obtained value was as large as possible. It is preferable to control the impurity concentration so that
[Formula 1]
P=([As]-0.5·[Ag] Free )/([Cu 2 O]+n·[Cu 2 Se]+X)

但し、As/Seが0.2未満の場合、[Ag]Free=0、X=0.5・[Ag]、n=0とし、As/Seが0.2以上0.5未満の場合、[Ag]Free=0、X=0、n=0.5とし、As/Seが0.5以上1.0未満の場合、[Ag]Free=0.25、X=0、n=0.5とし、As/Seが1.0以上1.7未満の場合、[Ag]Free=([Ag]−[Se])、X=0、n=0.5とし、As/Seが1.7以上の場合、[Ag]Free=([Ag]−2・[Se])、X=0、n=1.0とする。ここで、[A]は前記アノード中に含まれる物質Aの品位をその分子量で除した値であり、As/Seは該アノード中のAs品位をSe品位で除した値である。また、[CuO]は前述した酸素バランスの式から求めることができ、アノード中のSeはほぼ全てがCuSeとして存在するのでSeのモル濃度をそのままCuSeの濃度として用いることができる。 However, when As/Se is less than 0.2, [Ag] Free =0, X=0.5·[Ag], n=0, and when As/Se is 0.2 or more and less than 0.5, When [Ag] Free =0, X=0, n=0.5, and As/Se is 0.5 or more and less than 1.0, [Ag] Free =0.25, X=0, n=0. 5, and As/Se is 1.0 or more and less than 1.7, [Ag] Free =([Ag]-[Se]), X=0, n=0.5, and As/Se is 1. In the case of 7 or more, [Ag] Free =([Ag]-2·[Se]), X=0, and n=1.0. Here, [A] is a value obtained by dividing the quality of the substance A contained in the anode by its molecular weight, and As/Se is a value obtained by dividing the As quality in the anode by the Se quality. Further, [Cu 2 O] can be obtained from the above-mentioned oxygen balance formula, and since almost all Se in the anode exists as Cu 2 Se, the molar concentration of Se can be used as it is as the concentration of Cu 2 Se. it can.

本発明の実施形態の銅電解精製方法においては、上記にて求めたアノードの不働態化抑止度P及び電解液の比重Sをパラメータとして用いて算出した下記式2で示す不働態化発生度Qが、0.005以下となるように該電解液の比重S又は不働態化抑止度Pを調整する。これにより、不働態化現象の発生を抑えることができる。
[式2]
Q=S−0.0025×P−1.23
In the copper electrolytic refining method of the embodiment of the present invention, the passivation occurrence rate Q shown by the following formula 2 calculated using the above-obtained anode passivation inhibition degree P and the specific gravity S of the electrolytic solution as parameters. Is adjusted to be 0.005 or less, the specific gravity S or the passivation inhibition degree P of the electrolytic solution is adjusted. Thereby, the occurrence of the passivation phenomenon can be suppressed.
[Formula 2]
Q=S-0.0025×P-1.23

上記の電解液の比重Sの調整は、例えば電解液の銅濃度、硫酸濃度、ニッケル濃度などのうちの少なくともいずれかにより調整することができるが、その際、電解の操業効率を悪化させないように、通常設定される条件の範囲内で調整するのが好ましい。具体的には、電解液の銅濃度は、後述する高電流密度での電解では47〜51g/Lが望ましい。電解液の硫酸濃度は、高い方が電解液の浴抵抗が下がるため好ましいが、硫酸濃度が高すぎるとアノードの不働態化や電気銅の品質悪化を生じる惧れがあるので150〜210g/Lが望ましい。電解液のニッケル濃度は、高すぎると電解液の浴抵抗を増大させる上、硫酸ニッケル結晶が析出してスケーリング等のトラブルを生じる惧れがあるのでなるべく低い方が好ましい。浄液装置の能力、目標アノード品位、浄液コスト等が各電解設備によって異なるので最適値は異なるものの、一般的には17〜23g/Lが好ましい。 The specific gravity S of the electrolytic solution can be adjusted by, for example, at least one of the copper concentration, the sulfuric acid concentration, and the nickel concentration of the electrolytic solution, but at that time, so as not to deteriorate the operation efficiency of electrolysis. It is preferable to make adjustments within the range of normally set conditions. Specifically, the copper concentration of the electrolytic solution is preferably 47 to 51 g/L in the electrolysis at a high current density described later. A high sulfuric acid concentration in the electrolytic solution is preferable because the bath resistance of the electrolytic solution is lowered, but if the sulfuric acid concentration is too high, passivation of the anode and deterioration of the quality of electrolytic copper may occur, so 150 to 210 g/L. Is desirable. If the nickel concentration of the electrolytic solution is too high, the bath resistance of the electrolytic solution is increased, and nickel sulfate crystals may precipitate to cause problems such as scaling. Therefore, the nickel concentration is preferably as low as possible. Although the optimum value is different because the capacity of the purifying device, the target anode quality, the purifying cost, etc. differ depending on each electrolysis facility, 17-23 g/L is generally preferable.

本発明の実施形態の銅の電解精製において採用する電流密度は、電解槽など設備の数、必要な生産量、稼働率など電解操業条件から適宜決定することができる。工業的には、200〜400A/mの範囲が好適に採用されるが、上記の不働態化発生度Qを0.005以下に抑えることにより、より好適な280〜400A/mの範囲内、更に好適な350A/m以上400A/m以下の範囲内の電流密度においても不働態化現象の発生を抑えることができる。 The current density adopted in the electrolytic refining of copper according to the embodiment of the present invention can be appropriately determined from the electrolytic operating conditions such as the number of facilities such as an electrolytic cell, the required production amount, and the operating rate. Industrially, a range of 200 to 400 A/m 2 is preferably adopted, but a more preferable range of 280 to 400 A/m 2 by suppressing the passivation occurrence rate Q to 0.005 or less. among them, it is possible to suppress the occurrence of passivation phenomenon at a current density of more within the preferred 350A / m 2 or more 400A / m 2 or less.

電解液の液温は一般に高い方が好ましいが、工業的には、電解槽に使用できる材質の耐熱温度や操業時の安全性、使用するエネルギー効率などを考慮すると、電解液の温度は約60〜65℃が実用的な温度であり、80℃を超える高温で行う実用的な利点はほとんどない。なお、液温が50℃未満では銅の溶解度がきわめて低下し、不働態化が著しく加速されるので好ましくない。 Generally, it is preferable that the temperature of the electrolytic solution is high, but industrially, the temperature of the electrolytic solution is about 60 when considering the heat resistant temperature of the material that can be used in the electrolytic cell, the safety during operation, and the energy efficiency used. A temperature of ˜65° C. is a practical temperature, and there is almost no practical advantage of performing at a high temperature exceeding 80° C. If the liquid temperature is lower than 50° C., the solubility of copper is extremely lowered and the passivation is remarkably accelerated, which is not preferable.

不純物品位がそれぞれ異なる12種類のアノード試料1〜12を用意し、それらの各々に対して、ICP発光分光分析装置を用いて不純物の品位を求めた。そして、各アノードの単位質量当たりのCuOのモル量を前述した酸素バランスの式から導き出すと共に、前述した式1を用いて不働態化抑止度Pを計算した。その計算結果を表1に示す。 Twelve types of anode samples 1 to 12 having different impurity grades were prepared, and the impurity grades were determined for each of them by using an ICP emission spectroscopy analyzer. Then, the molar amount of Cu 2 O per unit mass of each anode was derived from the above equation of oxygen balance, and the passivation inhibition degree P was calculated using the above equation 1. The calculation results are shown in Table 1.

Figure 2020084273
Figure 2020084273

次に、各々のアノードを用いて、電解液比重Sを1.23〜1.24g/cm、電流密度183〜358A/m、電解液温度60〜66℃、電解液組成として、Cuが41〜50g/L、HSOが150〜205g/L、Niが0.6〜22g/Lの範囲内で銅電解を行った。その結果、試料3のアノードを用いた銅電解では電槽電圧が500mVを超えたため、不働態化現象発生したと考えられるが、それ以外の試料1〜2、及び4〜12のアノードを用いた銅電解では電槽電圧が500mVを超えることはなかった。これら試料1〜12のアノードの各々を用いて行った銅電解における不働態化抑止度P及び電解液比重Sを式2に代入して算出した不働態化発生度Qを電解条件と共に下記表2に示す。 Next, using each of the anodes, the electrolytic solution specific gravity S was 1.23-1.24 g/cm 3 , the current density was 183-358 A/m 2 , the electrolytic solution temperature was 60-66° C., and the electrolytic solution composition was Cu. Copper electrolysis was performed within the ranges of 41 to 50 g/L, H 2 SO 4 of 150 to 205 g/L, and Ni of 0.6 to 22 g/L. As a result, in the copper electrolysis using the anode of Sample 3, it is considered that the passivation phenomenon occurred because the cell voltage exceeded 500 mV, but the other anodes of Samples 1 to 2 and 4 to 12 were used. In the copper electrolysis, the cell voltage never exceeded 500 mV. The passivation occurrence degree Q calculated by substituting the passivation inhibition degree P and the electrolytic solution specific gravity S into the equation 2 in the copper electrolysis performed using each of the anodes of Samples 1 to 12 together with the electrolysis conditions is shown in Table 2 below. Shown in.

Figure 2020084273
Figure 2020084273

上記表2の結果から分かるように、試料1〜2、4〜12は不働態化発生度Qが0.005よりも小さいので、アノード不働態化が発生しなかった。一方、試料3は不働態化発生度Qが0.005よりも大きいので、アノード不働態化が発生した。すなわち、高電流密度下でのアノード不働態化を防止するために、アノードの不純物品位から求められる不働態化抑止度Pと、電解液比重Sとをパラメータとして算出した不働態化発生度Qを用いて電解条件を調整することにより、高電流密度操業においてもアノード不働態化の発生を効果的に抑制して安定した操業を継続できることが分かる。 As can be seen from the results of Table 2 above, since the passivation occurrence degree Q of Samples 1 to 2 and 4 to 12 was smaller than 0.005, the anode passivation did not occur. On the other hand, since the passivation occurrence rate Q of Sample 3 is larger than 0.005, anode passivation occurred. That is, in order to prevent the passivation of the anode at a high current density, the passivation inhibition degree P calculated from the impurity quality of the anode and the passivation occurrence rate Q calculated using the electrolytic solution specific gravity S as parameters are calculated. It can be seen that by adjusting the electrolysis conditions by using it, the occurrence of anode passivation can be effectively suppressed and stable operation can be continued even in high current density operation.

Claims (2)

アノード中のCu品位、酸素品位、Se品位、Ag品位、及びAs品位に基づいて下記式1から算出した不働態化抑止度Pと、電解液の比重Sとをパラメータとして下記式2から算出した不働態化発生度Qが0.005以下となるように該電解液の比重Sを調整することを特徴とする銅電解精製方法。
[式1]
P=([As]−0.5・[Ag]Free)/([CuO]+n・[CuSe]+X)
[式2]
Q=S−0.0025×P−1.23
(但し、As/Seが0.2未満の場合、[Ag]Free=0、X=0.5・[Ag]、n=0とし、As/Seが0.2以上0.5未満の場合、[Ag]Free=0、X=0、n=0.5とし、As/Seが0.5以上1.0未満の場合、[Ag]Free=0.25、X=0、n=0.5とし、As/Seが1.0以上1.7未満の場合、[Ag]Free=([Ag]−[Se])、X=0、n=0.5とし、As/Seが1.7以上の場合、[Ag]Free=([Ag]−2・[Se])、X=0、n=1.0とする。ここで[A]は前記アノード中に含まれる物質Aの品位をその分子量で除した値であり、As/Seは該アノード中のAs品位をSe品位で除した値である。)
The passivation inhibition degree P calculated from the following formula 1 based on the Cu grade, oxygen grade, Se grade, Ag grade, and As grade in the anode, and the specific gravity S of the electrolyte were calculated from the following formula 2 A copper electrolytic refining method, wherein the specific gravity S of the electrolytic solution is adjusted so that the passivation degree Q is 0.005 or less.
[Formula 1]
P=([As]-0.5·[Ag] Free )/([Cu 2 O]+n·[Cu 2 Se]+X)
[Formula 2]
Q=S-0.0025×P-1.23
(However, if As/Se is less than 0.2, [Ag] Free =0, X=0.5·[Ag], n=0, and As/Se is 0.2 or more and less than 0.5. , [Ag] Free = 0, X = 0, n = 0.5, and As/Se is 0.5 or more and less than 1.0, [Ag] Free = 0.25, X = 0, n = 0. .5 and As/Se is 1.0 or more and less than 1.7, [Ag] Free =([Ag]-[Se]), X=0, n=0.5, and As/Se is 1 In the case of 0.7 or more, [Ag] Free =([Ag]-2·[Se]), X=0, n=1.0, where [A] is the substance A contained in the anode. (It is a value obtained by dividing the quality by its molecular weight, and As/Se is a value obtained by dividing the As quality in the anode by the Se quality.)
前記銅電解精製の電流密度を350A/m以上400A/m以下で操業することを特徴とする、請求項1に記載の銅電解精製方法。 Characterized by operating the current density of the copper electrolytic refining at 350A / m 2 or more 400A / m 2 or less, the copper electrolytic refining method according to claim 1.
JP2018221076A 2018-11-27 2018-11-27 Copper electrolytic refining method Active JP7271917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018221076A JP7271917B2 (en) 2018-11-27 2018-11-27 Copper electrolytic refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018221076A JP7271917B2 (en) 2018-11-27 2018-11-27 Copper electrolytic refining method

Publications (2)

Publication Number Publication Date
JP2020084273A true JP2020084273A (en) 2020-06-04
JP7271917B2 JP7271917B2 (en) 2023-05-12

Family

ID=70906721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018221076A Active JP7271917B2 (en) 2018-11-27 2018-11-27 Copper electrolytic refining method

Country Status (1)

Country Link
JP (1) JP7271917B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625882A (en) * 1992-07-03 1994-02-01 Sumitomo Metal Mining Co Ltd Electrolytic refining method for copper
JP2000054181A (en) * 1998-08-06 2000-02-22 Sumitomo Metal Mining Co Ltd Method for electrolytically refining copper
CN105040035A (en) * 2015-09-17 2015-11-11 阳谷祥光铜业有限公司 Parallel jetting electrolysis technology and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625882A (en) * 1992-07-03 1994-02-01 Sumitomo Metal Mining Co Ltd Electrolytic refining method for copper
JP2000054181A (en) * 1998-08-06 2000-02-22 Sumitomo Metal Mining Co Ltd Method for electrolytically refining copper
CN105040035A (en) * 2015-09-17 2015-11-11 阳谷祥光铜业有限公司 Parallel jetting electrolysis technology and device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"GLOBAL SURVEY OF COPPER ELECTROREFINING OPERATIONS AND PRACTICES", COPPER 2013 DECEMVER 1-4,20213-SANTIAGO, CHILE. INTERNATIONAL COPPER CONFERENCE, VOLUME V BOOK 2, JPN7020000473, pages 67 - 107, ISSN: 0004931108 *
梅津 良昭 他: "銅電解液の密度および粘性に及ぼす共存硫酸塩の影響", 資源と素材, vol. 105 巻 9 号, JPN6022027241, 1989, pages 693 - 699, ISSN: 0004931109 *
渡 健太 他: "銅電解精製におけるアノードの不動態化に及ぼす液組成の影響", JOURNAL OF MMIJ, vol. 133 巻 10 号, JPN6022027243, 2017, pages 250 - 255, ISSN: 0004931110 *
阿部 辰一郎 他: "銅溶液中の硫酸濃度の陽極不働態化に及ぼす影響 銅陽極不働態化の研究 (第6報)", 日本鉱業会誌, vol. 98 巻 1127 号, JPN6022027244, 1981, pages 41 - 45, ISSN: 0004931111 *

Also Published As

Publication number Publication date
JP7271917B2 (en) 2023-05-12

Similar Documents

Publication Publication Date Title
CN101280430A (en) Preparation of hyperpure copper
JP4298712B2 (en) Method for electrolytic purification of copper
CA2860813C (en) System for power control in cells for electrolytic recovery of a metal
JP2013511623A (en) Method for cleaning anode slime from electrolytic lead-bismuth alloy
US4140596A (en) Process for the electrolytic refining of copper
KR20140108236A (en) A method for industrial copper electrorefining
US20220298661A1 (en) Copper electrorefining
Moskalyk et al. Anode effects in electrowinning
Nan et al. Hydrometallurgical process for extracting bismuth from by-product of lead smelting based on methanesulfonic acid system
US4053377A (en) Electrodeposition of copper
JP2020084273A (en) Copper electrolytic refining method
US4083761A (en) Arsenic removal from electrolytes with application of periodic reverse current
Yang et al. Experimental analysis of the performance of innovative circulation configurations for cleaner copper electrolysis
CA1126684A (en) Bipolar refining of lead
JP2000054181A (en) Method for electrolytically refining copper
JP4323297B2 (en) Method for producing electrolytic copper powder
JP2017214612A (en) Electrolytic refining method for copper
Markovic et al. Treatment of Waste Copper Electrolytes Using Insoluble and Soluble Anodes
Pradhan et al. Effect of zinc on the electrocrystallization of cobalt
Maatgi et al. The Influence of Different Parameters on the Electro Refining of Copper
JP7089862B2 (en) Copper electrorefining method
KÉKESI INVESTIGATION AND CHARACTERIZATION OF THE ANODIC AND CATHODIC PROCESSESOF TIN AND SN-AG-CU ALLOYS
JP5804920B2 (en) Electrolytic extraction of metals
SU1068546A1 (en) Method for preparing aluminium-silicon-manganese master alloy in aluminium electrolytic cell
JP3809558B2 (en) Aluminum alloy for cathode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230410

R150 Certificate of patent or registration of utility model

Ref document number: 7271917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150