JP4323297B2 - Method for producing electrolytic copper powder - Google Patents

Method for producing electrolytic copper powder Download PDF

Info

Publication number
JP4323297B2
JP4323297B2 JP2003402726A JP2003402726A JP4323297B2 JP 4323297 B2 JP4323297 B2 JP 4323297B2 JP 2003402726 A JP2003402726 A JP 2003402726A JP 2003402726 A JP2003402726 A JP 2003402726A JP 4323297 B2 JP4323297 B2 JP 4323297B2
Authority
JP
Japan
Prior art keywords
electrolytic
copper
anode
copper powder
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003402726A
Other languages
Japanese (ja)
Other versions
JP2005163096A (en
JP2005163096A5 (en
Inventor
靖 成澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2003402726A priority Critical patent/JP4323297B2/en
Publication of JP2005163096A publication Critical patent/JP2005163096A/en
Publication of JP2005163096A5 publication Critical patent/JP2005163096A5/ja
Application granted granted Critical
Publication of JP4323297B2 publication Critical patent/JP4323297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

この発明は、有害物質として規制強化が進められている鉛を極力減少させた電解銅粉の製造方法に関する。   The present invention relates to a method for producing electrolytic copper powder in which lead that is being reinforced as a hazardous substance is reduced as much as possible.

電解銅粉は、粉末冶金製品、導電性ペースト等の電子部品材料として使用されている。一般に、電解銅粉には、鉛が100を超える量〜1000wtppm程度含まれている。
近年、地球環境への配慮から有害物質の規制強化の動きが世界的に進行しており、人体にも有害であるため、製造物での使用量削減が求められている。
Electrolytic copper powder is used as electronic component materials such as powder metallurgy products and conductive pastes. Generally, the electrolytic copper powder contains lead in an amount exceeding 100 to about 1000 wtppm.
In recent years, the movement of tightening regulations on harmful substances has progressed globally due to consideration for the global environment, and since it is also harmful to the human body, there is a need to reduce the amount used in products.

電解銅粉は、銅イオンを含む硫酸酸性の電解液に陽極と陰極を浸漬し、これに直流電流を流して電気分解を行い、陰極表面に粉末状に銅を析出させて製造されている。
電解銅粉の工業的製造は、電気銅地金又はこれを溶解・鋳造した板状の銅を陽極として電気分解を行い、銅板、ステンレス板、チタン板等で作製された陰極表面に析出した粉末状の銅を、機械的又は電気的方法により掻き落として回収し、その後洗浄・防錆・乾燥・篩別工程を経て、製品化されている(例えば、非特許文献1、2参照)。
第2回最新の粉末冶金技術講座テキスト、社団法人粉体粉末冶金協会配付、昭和59年9月26日、国立教育会館 第5回新粉末冶金入門講座テキスト、社団法人粉体粉末冶金協会配付、平成9年12月1日、2日、東京都城南地域中小企業振興センター
The electrolytic copper powder is manufactured by immersing an anode and a cathode in a sulfuric acid electrolytic solution containing copper ions, causing a direct current to flow through the electrolyte and performing electrolysis to deposit copper in a powder form on the cathode surface.
The industrial production of electrolytic copper powder is performed by electrolysis using electrolytic copper ingot or plate-like copper melted and cast as an anode, and powder deposited on the cathode surface made of copper plate, stainless steel plate, titanium plate, etc. The copper is scraped off and recovered by a mechanical or electrical method, and then processed through washing, rust prevention, drying and sieving processes (for example, see Non-Patent Documents 1 and 2).
Textbook of the 2nd latest powder metallurgy technology, distributed by the Japan Society of Powder and Powder Metallurgy, September 26, 1984, National Education Hall Textbook for the 5th Introduction to New Powder Metallurgy, distributed by the Powder and Powder Metallurgy Association, December 1st and 2nd, 1997 Jonan area SME Promotion Center

電解銅粉の製造工程においては、陽極の銅が電解により溶出する際の電流効率と、電解液から陰極に銅が析出する際の電流効率を比較すると、陰極での電流効率が低くなる。
そのため、電解液中の銅イオン濃度が時間の経過とともに増加するため、銅イオン濃度を一定に保つためには、何らかの手段で銅イオン濃度を下げる必要がある。
In the production process of the electrolytic copper powder, the current efficiency at the cathode is lowered when the current efficiency at the time when copper of the anode is eluted by electrolysis and the current efficiency at the time of copper precipitation from the electrolyte to the cathode.
Therefore, since the copper ion concentration in the electrolytic solution increases with time, it is necessary to lower the copper ion concentration by some means in order to keep the copper ion concentration constant.

このような電解銅粉製造方法において、電解液中に増加する銅イオンを下げる(脱銅電解)方法として、陽極に不溶性電極を使用した電解槽(脱銅電解槽)に電解液を流し、電気分解を行い、電解液中の銅イオンを陰極に析出させることで、液中の銅イオン濃度を下げている(電解採取)。
この時に使用される不溶性電極としては、通常鉛又は鉛合金製電極が使用されている。
In such an electrolytic copper powder production method, as a method of lowering the copper ions that increase in the electrolytic solution (copper removal electrolysis), the electrolytic solution is passed through an electrolytic cell (decopper electrolytic cell) using an insoluble electrode as the anode, Decomposition is performed, and the copper ion concentration in the liquid is lowered by depositing copper ions in the electrolytic solution on the cathode (electrolytic collection).
As the insoluble electrode used at this time, an electrode made of lead or a lead alloy is usually used.

不溶性電極としての鉛(鉛合金)陽極は、本来電解液に不溶であるが、表面に形成された酸化物層等が電解液中に剥離・落下して電解液中に浮遊するということが起こる。鉛中には不純物としてアンチモン(Sb)も含有されている。
この鉛酸化物等が浮遊した電解液が、銅粉を製造する電解槽に供給されるため、これらの不純物が電解槽中の陰極に析出する銅の中に巻き込まれてしまう。したがって、電解銅粉中には鉛及びこれに付随するアンチモンが不純物として混入するという問題が発生する。
そして、混入する鉛の量は脱銅電解を行なう頻度等によって変動するため、電解銅粉中への不純物量としても変化するが、概ね100を超え〜1000wtppm程度に含有されるという問題がある。
従来はこの程度の鉛等の含有は、特に問題とならなかったが、上記のような環境汚染問題から、これをさらに低減させる必要が生じてきた。
The lead (lead alloy) anode as an insoluble electrode is essentially insoluble in the electrolyte, but the oxide layer, etc. formed on the surface peels off and falls into the electrolyte and floats in the electrolyte. . Antimony (Sb) is also contained in lead as an impurity.
Since the electrolytic solution in which the lead oxide or the like is suspended is supplied to the electrolytic cell for producing the copper powder, these impurities are caught in the copper deposited on the cathode in the electrolytic cell. Therefore, there arises a problem that lead and antimony associated therewith are mixed as impurities in the electrolytic copper powder.
And since the quantity of lead mixed changes with the frequency etc. which perform copper removal electrolysis, although it changes also as an impurity quantity in electrolytic copper powder, there exists a problem that it contains from about 100 to about 1000 wtppm.
Conventionally, such a content of lead or the like has not been a problem in particular, but due to the above-mentioned environmental pollution problem, it has become necessary to further reduce this.

本発明は、上記の銅粉の中に鉛が含有されるのを防止するために、電解の際に使用する不溶性陽極として鉛又は鉛合金の電極を使用しないことによって、鉛の混入を抑制する技術を提供することを目的とする。   In order to prevent lead from being contained in the copper powder, the present invention suppresses lead contamination by not using a lead or lead alloy electrode as an insoluble anode used in electrolysis. The purpose is to provide technology.

本発明は、
1)電気銅を陽極とする3〜20槽の電解槽と1槽の脱銅槽を用いる電解銅粉の製造において、前記電解槽における電解液のCu濃度を5〜15g/l、硫酸(HSO)濃度を70〜120g/l、電流密度を、陰極:8〜12A/dm、陽極:8〜12A/dm、液温30〜45°Cで電解すると共に、脱銅槽において貴金属の酸化物、貴金属酸化物と弁金属酸化物との混晶又は貴金属酸化物と他の金属酸化物との混晶を表面に焼成被覆した弁金属板からなる不溶性電極を陽極として電解し、不純物である鉛の含有量が10wtppm以下である電解銅粉を製造することを特徴とする電解銅粉の製造方法
2)脱銅槽で電解する際、脱銅槽の電流密度を高くする以外、その前の電解槽における電解と同一の条件で電解することを特徴とする上記1)記載の電解銅粉の製造方法、を提供する。
The present invention
1) In the production of electrolytic copper powder using 3 to 20 electrolytic baths with electrolytic copper as an anode and one copper removal bath, the Cu concentration of the electrolytic solution in the electrolytic bath is 5 to 15 g / l, sulfuric acid (H 2 SO 4 ) with a concentration of 70 to 120 g / l, current density of cathode: 8 to 12 A / dm 2 , anode: 8 to 12 A / dm 2 , and liquid temperature of 30 to 45 ° C. Electrolysis using a noble metal oxide, an insoluble electrode made of a valve metal plate having a surface coated with a mixed crystal of a noble metal oxide and a valve metal oxide or a mixed crystal of a noble metal oxide and another metal oxide, as an anode, A method for producing electrolytic copper powder characterized by producing electrolytic copper powder having an impurity lead content of 10 wtppm or less. 2) When performing electrolysis in a copper removal tank, the current density in the copper removal tank is increased, Electrolysis under the same conditions as the electrolysis in the previous electrolytic cell A method for producing an electrolytic copper powder as described in 1) above is provided.

本発明は、脱銅電解槽において使用する不溶性陽極として鉛又は鉛合金を使用しないため、電極由来の高濃度の鉛汚染がなくなり、鉛を殆ど含有しない銅粉が製造できるという優れた効果を有する。   The present invention does not use lead or a lead alloy as an insoluble anode used in a copper removal electrolysis tank, and therefore has an excellent effect that high-concentration lead contamination derived from an electrode is eliminated and copper powder containing almost no lead can be produced. .

本発明の電解銅粉の製造に際しては、電解工程において、貴金属の酸化物等を表面に焼成被覆したチタン等の弁金属板からなる不溶性電極を陽極として使用する。この不溶性金属電極は、一般にDSEと呼ばれており、チタン等の弁金属基体上に白金族等の貴金属酸化物、同貴金属酸化物と他の金属酸化物との混晶、または同貴金属酸化物と弁金属酸化物との混晶を被覆した不溶性金属電極である。
特に、本発明においては、電解銅粉の製造に際し、不溶性陽極を陽極とする脱銅槽に、このDSEを使用する。
In the production of the electrolytic copper powder of the present invention, an insoluble electrode made of a valve metal plate such as titanium having a surface coated with a noble metal oxide or the like is used as an anode in the electrolysis process. This insoluble metal electrode is generally called DSE, and is a noble metal oxide such as a platinum group on a valve metal substrate such as titanium, a mixed crystal of the noble metal oxide and another metal oxide, or the noble metal oxide. And an insoluble metal electrode coated with a mixed crystal of valve metal oxide.
In particular, in the present invention, when producing electrolytic copper powder, this DSE is used in a copper removal tank having an insoluble anode as an anode.

これによって、電解銅粉中の不純物である鉛の含有量を100wtppm以下、さらには10wtppm以下を達成することができる。
電気銅を陽極とする電解槽(普通槽)の個数は、特に制限されないが、通常3槽〜20槽程度で実施する。不溶性陽極DSEを陽極とする脱銅槽は、通常1槽で構成し、電解日数は工業的には3〜4日サイクル(1サイクルで普通槽の陽極(電気銅)を入れ替える)程度である。
電解槽における電解液のCu濃度は、通常5〜15g/l、硫酸(HSO)濃度は、70〜120g/l、電流密度は、陰極:8〜12A/dm、陽極:8〜12A/dmで実施する。また、液温30〜45°C、で実施する。
また、脱銅槽の電解条件については、電流密度を普通槽より高くする以外は普通槽と同様である。
電解により析出した樹枝状の銅粉は、通常の工程である水洗、中和、乾燥工程を経て、銅粉を得る。
As a result, the content of lead as an impurity in the electrolytic copper powder can be 100 wtppm or less, and further 10 wtppm or less.
The number of electrolytic baths (ordinary baths) using electrolytic copper as an anode is not particularly limited, but is usually about 3 to 20 baths. The copper removal tank using the insoluble anode DSE as an anode is usually constituted by one tank, and the number of days of electrolysis is about 3 to 4 days industrially (the anode (electrocopper) of the normal tank is replaced in one cycle).
The Cu concentration of the electrolytic solution in the electrolytic cell is usually 5 to 15 g / l, the sulfuric acid (H 2 SO 4 ) concentration is 70 to 120 g / l, the current density is cathode: 8 to 12 A / dm 2 , anode: 8 to Perform at 12 A / dm 2 . Moreover, it implements at the liquid temperature of 30-45 degreeC.
Moreover, about the electrolytic condition of a copper removal tank, it is the same as that of a normal tank except making a current density higher than a normal tank.
The dendritic copper powder deposited by electrolysis obtains copper powder through the usual steps of water washing, neutralization and drying.

次に、本発明の実施例について説明する。なお、本実施例はあくまで一例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、実施例以外の態様あるいは変形を全て包含するものである。   Next, examples of the present invention will be described. In addition, a present Example is an example to the last, and is not restrict | limited to this example. That is, all aspects or modifications other than the embodiments are included within the scope of the technical idea of the present invention.

(実施例1)
電気銅を陽極とする電解槽(普通槽)16槽と不溶性陽極を陽極とする脱銅槽1槽で構成し、電解銅粉を製造した。
脱銅槽の不溶性陽極として、貴金属の酸化物等を表面に焼成被覆したチタン等の弁金属板からなる不溶性電極であるDSE(ペルメレック電極社製)を使用して10日間電解を行った。
電解槽における電解液のCu濃度は10±2g/l、硫酸(HSO)濃度は90±20g/l、電流密度は陰極:9A/dm、陽極:9A/dmとした。また、液温35〜45°Cで実施した。
また、脱銅槽の電解条件は、電流密度10A/dmとし、他は上記普通槽と同様にした。
電解により析出した樹枝状の銅粉は、通常の水洗、中和、乾燥工程を経て、銅粉を得た。このようにして製造された電解銅粉中のPb含有量は、普通槽及び脱銅槽ともに、通常で1wtppm以下であり、最大でも3wtppmであった。なお、電解液中のPb量は、<0.1mg/lであった。
Example 1
Electrolytic copper powder was produced by comprising 16 electrolytic baths (ordinary baths) with electrolytic copper as an anode and 1 copper removal bath with an insoluble anode as an anode.
Electrolysis was carried out for 10 days using DSE (manufactured by Permerek Electrode Co., Ltd.), which is an insoluble electrode made of a valve metal plate made of titanium or the like having a surface coated with a precious metal oxide or the like as an insoluble anode in a copper removal tank.
The Cu concentration of the electrolytic solution in the electrolytic cell was 10 ± 2 g / l, the sulfuric acid (H 2 SO 4 ) concentration was 90 ± 20 g / l, and the current density was cathode: 9 A / dm 2 and anode: 9 A / dm 2 . Moreover, it implemented at the liquid temperature of 35-45 degreeC.
Moreover, the electrolytic conditions of the copper removal tank were set to a current density of 10 A / dm 2 , and the others were the same as those of the normal tank.
Dendritic copper powder deposited by electrolysis obtained copper powder through normal water washing, neutralization, and drying steps. The Pb content in the electrolytic copper powder produced in this manner was usually 1 wtppm or less in both the ordinary tank and the copper removal tank, and was 3 wtppm at the maximum. The amount of Pb in the electrolytic solution was <0.1 mg / l.

(実施例2)
電気銅を陽極とする電解槽(普通槽)6槽と不溶性陽極を陽極とする脱銅槽1槽で構成し、電解銅粉を製造した。
実施例1と同様に、脱銅槽の不溶性陽極として、貴金属の酸化物等を表面に焼成被覆したチタン等の弁金属板からなる不溶性電極であるDSE(ペルメレック電極社製)を使用して10日間電解を行った。
電解槽における電解液のCu濃度は5±2g/l、硫酸(HSO)濃度は90±20g/l、電流密度は陰極:9A/dm、陽極:9A/dmとした。また、液温30〜40°C、電解電圧 〜 /1槽で実施した。また、脱銅槽の電解条件は、電流密度10A/dmとし、他は同様とした。
電解により析出した樹枝状の銅粉は、実施例1と同様に、通常の水洗、中和、乾燥工程を経て、銅粉を得た。このようにして製造された電解銅粉中のPb含有量は、普通槽及び脱銅槽ともに、通常で1wtppm以下であり、最大でも3wtppmであった。なお、電解液中のPb量は、<0.1mg/lであった。
(Example 2)
The electrolytic copper powder was manufactured by comprising 6 electrolytic baths (ordinary baths) using electrolytic copper as an anode and 1 copper removal bath using an insoluble anode as an anode.
In the same manner as in Example 1, DSE (manufactured by Permerek Electrode Co., Ltd.), which is an insoluble electrode made of a valve metal plate made of titanium or the like having a surface coated with a precious metal oxide or the like, was used as the insoluble anode of the copper removal tank. Electrolysis was performed for days.
The Cu concentration of the electrolytic solution in the electrolytic cell was 5 ± 2 g / l, the sulfuric acid (H 2 SO 4 ) concentration was 90 ± 20 g / l, and the current density was cathode: 9 A / dm 2 and anode: 9 A / dm 2 . Moreover, it implemented by liquid temperature 30-40 degreeC, electrolysis voltage ~ / 1 tank. Moreover, the electrolysis conditions of the copper removal tank were the same as the current density of 10 A / dm 2 .
Similarly to Example 1, the dendritic copper powder deposited by electrolysis was subjected to normal water washing, neutralization, and drying steps to obtain copper powder. The Pb content in the electrolytic copper powder produced in this manner was usually 1 wtppm or less in both the ordinary tank and the copper removal tank, and was 3 wtppm at the maximum. The amount of Pb in the electrolytic solution was <0.1 mg / l.

(比較例1)
電気銅を陽極とする電解槽(普通槽)16槽と不溶性陽極を陽極とする脱銅槽1槽で構成し、電解銅粉を製造した。
脱銅槽の不溶性陽極として、Pb電極を使用して10日間電解を行った。
電解槽における電解条件及び脱銅槽の電解条件は、上記脱銅槽の陽極以外は、全て実施例1と同一の条件とした。
電解により析出した樹枝状の銅粉を、実施例1同様に、通常の水洗、中和、乾燥工程を経て、銅粉を得た。電解銅粉中のPb含有量は、脱銅槽で平均397wtppm、最大912wtppmであり、普通槽で平均52wtppm以下であり、最大86wtppmであった。このように、Pb電極を使用した場合は、実施例1に比べてPb含有量が増加した。
(Comparative Example 1)
Electrolytic copper powder was produced by comprising 16 electrolytic baths (ordinary baths) with electrolytic copper as an anode and 1 copper removal bath with an insoluble anode as an anode.
Electrolysis was performed for 10 days using a Pb electrode as an insoluble anode in the copper removal tank.
The electrolytic conditions in the electrolytic tank and the electrolytic conditions in the copper removal tank were the same as those in Example 1 except for the anode of the copper removal tank.
The dendritic copper powder deposited by electrolysis was subjected to normal water washing, neutralization, and drying steps in the same manner as in Example 1 to obtain copper powder. The Pb content in the electrolytic copper powder was an average of 397 wtppm in the copper removal tank and a maximum of 912 wtppm, an average of 52 wtppm or less in the normal tank, and a maximum of 86 wtppm. Thus, when the Pb electrode was used, the Pb content was increased as compared with Example 1.

(比較例2)
電気銅を陽極とする電解槽(普通槽)6槽と不溶性陽極を陽極とする脱銅槽1槽で構成し、電解銅粉を製造した。
脱銅槽の不溶性陽極として、Pb電極を使用して3週間電解を行った。電解槽における電解条件及び脱銅槽の電解条件は、上記脱銅槽の陽極以外は、全て実施例2と同一の条件とした。
電解により析出した樹枝状の銅粉を、実施例2同様に、通常の水洗、中和、乾燥工程を経て、銅粉を得た。電解銅粉中のPb含有量は、脱銅槽で平均6510wtppm、最大8600wtppmであり、普通槽で平均112wtppm以下であり、最大166wtppmであった。このように、Pb電極を使用した場合は、実施例2に比べて著しくPb含有量が増加した。
(Comparative Example 2)
The electrolytic copper powder was manufactured by comprising 6 electrolytic baths (ordinary baths) using electrolytic copper as an anode and 1 copper removal bath using an insoluble anode as an anode.
Electrolysis was performed for 3 weeks using a Pb electrode as an insoluble anode in the copper removal tank. The electrolytic conditions in the electrolytic tank and the electrolytic conditions in the copper removal tank were all the same as those in Example 2 except for the anode of the copper removal tank.
Similarly to Example 2, the dendritic copper powder deposited by electrolysis was subjected to normal water washing, neutralization, and drying steps to obtain copper powder. The Pb content in the electrolytic copper powder was an average of 6510 wtppm and a maximum of 8600 wtppm in the copper removal tank, an average of 112 wtppm or less in the normal tank, and a maximum of 166 wtppm. Thus, when the Pb electrode was used, the Pb content was significantly increased as compared with Example 2.

本発明は、脱銅槽の電極として、DSEを使用することにより、電解銅粉中のPb含有量を著しく低減させることが可能となり、環境破壊防止として注目されているPbを低減させた粉末冶金製品、導電性ペースト等の電子部品材料として極めて有用である。
The present invention makes it possible to remarkably reduce the Pb content in the electrolytic copper powder by using DSE as an electrode for the copper removal tank, and to reduce the Pb that has been attracting attention as an environmental destruction prevention. It is extremely useful as a material for electronic parts such as products and conductive pastes.

Claims (2)

電気銅を陽極とする3〜20槽の電解槽と1槽の脱銅槽を用いる電解銅粉の製造において、前記電解槽における電解液のCu濃度を5〜15g/l、硫酸(HSO)濃度を70〜120g/l、電流密度を、陰極:8〜12A/dm、陽極:8〜12A/dm、液温30〜45°Cで電解すると共に、脱銅槽において貴金属の酸化物、貴金属酸化物と弁金属酸化物との混晶又は貴金属酸化物と他の金属酸化物との混晶を表面に焼成被覆した弁金属板からなる不溶性電極を陽極として電解し、不純物である鉛の含有量が10wtppm以下である電解銅粉を製造することを特徴とする電解銅粉の製造方法。 In the production of electrolytic copper powder using 3 to 20 electrolytic baths with electrolytic copper as an anode and one copper removal bath, the Cu concentration of the electrolytic solution in the electrolytic bath is 5 to 15 g / l, sulfuric acid (H 2 SO 4 ) Electrolysis at a concentration of 70 to 120 g / l and a current density of cathode: 8 to 12 A / dm 2 , anode: 8 to 12 A / dm 2 , and a liquid temperature of 30 to 45 ° C. Electrolyzed with an insoluble electrode consisting of a valve metal plate with a surface coated with a mixed crystal of oxide, noble metal oxide and valve metal oxide or a mixed crystal of noble metal oxide and another metal oxide as an anode. The manufacturing method of the electrolytic copper powder characterized by manufacturing the electrolytic copper powder whose content of a certain lead is 10 wtppm or less. 脱銅槽で電解する際、脱銅槽の電流密度を高くする以外、その前の電解槽における電解と同一の条件で電解することを特徴とする請求項1記載の電解銅粉の製造方法。   2. The method for producing electrolytic copper powder according to claim 1, wherein, when electrolyzing in the copper removal tank, electrolysis is performed under the same conditions as in the previous electrolytic tank except that the current density of the copper removal tank is increased.
JP2003402726A 2003-12-02 2003-12-02 Method for producing electrolytic copper powder Expired - Lifetime JP4323297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402726A JP4323297B2 (en) 2003-12-02 2003-12-02 Method for producing electrolytic copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003402726A JP4323297B2 (en) 2003-12-02 2003-12-02 Method for producing electrolytic copper powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009067298A Division JP2009215652A (en) 2009-03-19 2009-03-19 Electrolytic copper powder and its production method

Publications (3)

Publication Number Publication Date
JP2005163096A JP2005163096A (en) 2005-06-23
JP2005163096A5 JP2005163096A5 (en) 2006-08-24
JP4323297B2 true JP4323297B2 (en) 2009-09-02

Family

ID=34726221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402726A Expired - Lifetime JP4323297B2 (en) 2003-12-02 2003-12-02 Method for producing electrolytic copper powder

Country Status (1)

Country Link
JP (1) JP4323297B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103862030A (en) * 2012-12-18 2014-06-18 重庆华浩冶炼有限公司 Copper powder composition and preparation method thereof
JP7232301B2 (en) 2021-06-25 2023-03-02 株式会社Steer Japan Oil extraction method and oil extraction method using co-rotating twin-screw extruder

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632966B2 (en) * 2006-02-20 2011-02-16 ペルメレック電極株式会社 Method for producing electrolytic metal powder
JP2013136818A (en) * 2011-12-28 2013-07-11 Mitsui Mining & Smelting Co Ltd Copper powder
JP6011992B2 (en) * 2012-04-06 2016-10-25 住友金属鉱山株式会社 Method for producing electrolytic copper powder
RU2557398C2 (en) * 2013-11-20 2015-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им Д.И. Менделеева) Method of metal powder electrochemical production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103862030A (en) * 2012-12-18 2014-06-18 重庆华浩冶炼有限公司 Copper powder composition and preparation method thereof
CN103862030B (en) * 2012-12-18 2017-10-27 重庆有研重冶新材料有限公司 A kind of copper powder composition
JP7232301B2 (en) 2021-06-25 2023-03-02 株式会社Steer Japan Oil extraction method and oil extraction method using co-rotating twin-screw extruder

Also Published As

Publication number Publication date
JP2005163096A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
Lu et al. Manganese electrodeposition—A literature review
EP2757179B1 (en) Chlorine-generating positive electrode
CN102560534B (en) Process for electrolytic refining of copper
EP2650403A2 (en) Electrorecovery of gold and silver from thiosulphate solutions
CN1273648C (en) Copper electroplating method, pure copper anode for copper electroplating, and semiconductor wafer plated thereby with little particle adhesion
Moskalyk et al. Anode effects in electrowinning
Yang et al. The effects of SeO2 additive on Mn electrodeposition on Al substrate in MnSO4-(NH4) 2SO4-H2O solution
JP4323297B2 (en) Method for producing electrolytic copper powder
Moats et al. Mesh-on-lead anodes for copper electrowinning
Kekesi Electrorefining in aqueous chloride media for recovering tin from waste materials
JP6985678B2 (en) Electrorefining method for low-grade copper anodes and electrolytes used for them
JP2000256898A (en) Copper plating method of wafer
JPS63190187A (en) Point of sodium permanent anode
JP2009215652A (en) Electrolytic copper powder and its production method
JP4632966B2 (en) Method for producing electrolytic metal powder
US7658833B2 (en) Method for copper electrowinning in hydrochloric solution
JP2005163096A5 (en)
JP7420001B2 (en) Method for producing metal cadmium
WO2017216417A1 (en) A method of recovering gold from a gold-bearing concentrated copper chloride solution
Barmi et al. Alternative low-cost composite coated anodes for base metal electrowinning
Sanad et al. Industrial perspectives for electrochemical extraction of metals from primary and secondary resources
Zhang et al. The Behaviour of Low arsenic copper anodes aT high currenT densiTy in eLecTrorefining
RU2237750C1 (en) Method for electrolytic refining of copper and nickel from copper/nickel alloys
Juhasz et al. Researches on the electrolyte purification and the useful elements recovery in the copper electrolytic refining process
KÉKESI INVESTIGATION AND CHARACTERIZATION OF THE ANODIC AND CATHODIC PROCESSESOF TIN AND SN-AG-CU ALLOYS

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4323297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term