JP6011992B2 - Method for producing electrolytic copper powder - Google Patents

Method for producing electrolytic copper powder Download PDF

Info

Publication number
JP6011992B2
JP6011992B2 JP2012087065A JP2012087065A JP6011992B2 JP 6011992 B2 JP6011992 B2 JP 6011992B2 JP 2012087065 A JP2012087065 A JP 2012087065A JP 2012087065 A JP2012087065 A JP 2012087065A JP 6011992 B2 JP6011992 B2 JP 6011992B2
Authority
JP
Japan
Prior art keywords
copper
powder
anode
cupric oxide
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012087065A
Other languages
Japanese (ja)
Other versions
JP2013216934A (en
Inventor
一雄 河西
一雄 河西
長南 武
武 長南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012087065A priority Critical patent/JP6011992B2/en
Publication of JP2013216934A publication Critical patent/JP2013216934A/en
Application granted granted Critical
Publication of JP6011992B2 publication Critical patent/JP6011992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、銅電気めっきのめっき液に用いられる硫酸銅水溶液に銅イオンを供給する為の酸化第二銅粉末を製造するのに適した電解銅粉および前記電解銅粉末を用いる酸化第二銅微粉末の製造方法に関し、さらには、硫酸銅水溶液の銅イオンの供給方法に関する。 The present invention, the second oxidation with and the electrolytic copper powder powder electrolytic copper powder suitable for the manufacture of cupric oxide powder for supplying copper ions to the copper sulfate aqueous solution used in the plating solution of copper electroplating The present invention relates to a method for producing copper fine powder, and further relates to a method for supplying copper ions in an aqueous copper sulfate solution.

電解銅粉は、粉末冶金の原料や樹脂と混合して導電ペ−ストとして使用されている。また、非特許文献1に示されるように銅粉を熱処理すると酸化銅粉末が得られることが知られているが、電解銅粉を熱処理して酸化第二銅粉末を得る製造方法は一般的には用いられず、湿式法と乾式法が広く普及している。なお、得られた酸化第二銅粉末の用途は、顔料、塗料、触媒、セラミックス材料、陶磁器の着色剤や銅めっき液用の硫酸銅水溶液の補給用銅源が知られている。
電解銅粉は、銅イオンを含む硫酸酸性水溶液(電解液)に陽極と陰極を浸漬し、電気分解を行うことで陰極に粉末状の銅を析出させて製造される。陽極には、板状に加工された銅を用い、陰極にはステンレスやチタンを用いる。該陽極は、電気分解の際に銅イオンを含む硫酸酸性水溶液に溶解し、銅イオンを供給する役目も果たす。この一連の電解銅粉の製造工程で、陽極の銅の溶解の電流効率と陰極の電解銅粉の析出の電流効率を比較すると、陽極での銅の溶解の電流効率の方が高い。そのため、硫酸酸性水溶液中の銅イオンの濃度は徐々に上昇し、結果的には析出する電解銅粉の品質に影響するので、硫酸酸性水溶液の銅イオンを略一定に保つ為の手段が必要になる。そこで、特許文献1には、銅を陽極に用いた通常槽と、チタンなどの弁金属の表面を貴金属酸化物で覆った不溶性陽極を備えた脱銅電解槽を設けて電解液(硫酸酸性水溶液)の銅イオン濃度の上昇を防ぎ、高純度の電解銅粉を得る技術が開示されている。
しかし、不溶性陽極を用いると陽極での銅の溶解が発生しないので、水の電気分解により発生期状態で非常に活性な酸素が発生し、電解銅粉の製造設備の不動態化等の損傷を与える恐れがある。このような設備の損傷を防ぐ為、イオン交換膜で形成された陽極バック(アノードバックともいう)内に不溶性陽極を配する対策が採られている。不溶性陽極を用いると脱銅電解槽の設置や、陽極バックの管理などで設備やその運用コストが増加する問題がある。
Electrolytic copper powder powder is conductive Bae mixed with powder metallurgical raw materials and resin - is used as a strike. Although copper oxide powder and heat-treating the copper powder as shown in Non-Patent Document 1 is known to be obtained, the production method by heat-treating the powder electrolytic copper powder obtained cupric oxide powder is generally Wet method and dry method are widely used. In addition, the use of the obtained cupric oxide powder is known as a copper source for replenishing pigments, paints, catalysts, ceramic materials, ceramic colorants and copper sulfate aqueous solutions for copper plating solutions.
Electrolytic copper powder weekend, an anode and a cathode immersed in sulfuric acid aqueous solution (electrolyte solution) containing copper ions are produced by precipitating powdery copper cathode by performing electrolysis. Copper processed into a plate shape is used for the anode, and stainless steel or titanium is used for the cathode. The anode also serves to supply copper ions by being dissolved in an aqueous sulfuric acid solution containing copper ions during electrolysis. In this series of electrolytic copper powder at the end of the manufacturing process, comparing the current efficiency and current efficiency of deposition of electrolytic copper powder at the end of the cathode of the dissolution of copper anodes, higher in current efficiency of the dissolution of the copper at the anode. Therefore, the concentration of copper ions in sulfuric acid aqueous solution is gradually increased, since the result affects the quality of the end electrolytic copper powder precipitated, requires means for maintaining the copper ion sulfuric acid aqueous solution approximately constant become. Therefore, Patent Document 1 is provided with an electrolytic solution (sulfuric acid aqueous solution) provided with a normal bath using copper as an anode and a decopper electrolytic bath provided with an insoluble anode in which the surface of a valve metal such as titanium is covered with a noble metal oxide. prevents an increase in copper ion concentration), technology of obtaining a high purity electrolytic copper powder late is disclosed.
However, since the solubility of copper in using the anode an insoluble anode is not generated by electrolysis of water highly active oxygen is generated in the nascent state, such as passivation of electrolytic copper powder at the end of production equipment damage There is a risk of giving. In order to prevent such damage to equipment, measures are taken to dispose an insoluble anode in an anode bag (also referred to as an anode bag) formed of an ion exchange membrane. When an insoluble anode is used, there is a problem that the equipment and its operating cost increase due to the installation of a copper removal electrolyzer and the management of the anode back.

酸化第二銅粉末の製造方法は、湿式法と乾式法が知られている。いずれの製造方法で得られる酸化第二銅粉末は品質上の問題がある。   As a method for producing cupric oxide powder, a wet method and a dry method are known. The cupric oxide powder obtained by any manufacturing method has a problem in quality.

湿式法は、例えば、特許文献2に記載されるように、塩化第二銅や硫酸銅の水溶液に水酸化ナトリウムを反応させて水酸化銅を生成させた後、加熱する方法である。   As described in Patent Document 2, for example, the wet method is a method in which sodium hydroxide is reacted with an aqueous solution of cupric chloride or copper sulfate to form copper hydroxide and then heated.

より詳細には、塩化第二銅を含むプリント基板のエッチング廃液を苛性アルカリで中和し、その中和した銅溶液と苛性アルカリ水溶液とを、温度40〜50℃に保持した水溶液中に同時に滴下混合して、その混合した水溶液のpHを弱酸性から弱アルカリ性の範囲に維持しながら銅の水和物を生成させる。次いでpH12〜13に調製し、70〜80℃の温度に30分間保持した後、水洗、固液分離して酸化第二銅を製造する方法が特許文献1に提案されている。   More specifically, the etching waste solution of the printed circuit board containing cupric chloride is neutralized with caustic alkali, and the neutralized copper solution and caustic aqueous solution are simultaneously dropped into an aqueous solution maintained at a temperature of 40 to 50 ° C. Mixing to form a copper hydrate while maintaining the pH of the mixed aqueous solution in a weakly acidic to weakly alkaline range. Next, Patent Document 1 proposes a method of preparing cupric oxide by adjusting the pH to 12 to 13 and maintaining the temperature at 70 to 80 ° C. for 30 minutes, followed by washing with water and solid-liquid separation.

しかし、不純物として塩化ナトリウム(NaCl)が副生することから、不純物除去のために水洗工程が必要であること、さらには水洗しても完全に除去することは困難である、といった問題を抱えている。   However, since sodium chloride (NaCl) is produced as a by-product as an impurity, there is a problem that a water washing step is necessary for removing impurities, and that it is difficult to completely remove even after washing with water. Yes.

また、特許文献3には、硫酸銅水溶液と水酸化ナトリウム水溶液とを30℃以下の温度で反応させて水酸化第二銅を生成し、次に60〜80℃の温度に加熱、熟成して酸化第二銅を形成する製造方法が開示されている。   In Patent Document 3, a copper sulfate aqueous solution and a sodium hydroxide aqueous solution are reacted at a temperature of 30 ° C. or lower to produce cupric hydroxide, and then heated and aged at a temperature of 60 to 80 ° C. A manufacturing method for forming cupric oxide is disclosed.

特許文献2、3に示す湿式法で製造された酸化第二銅粉末は、銅めっき液への溶解性が優れているものが多い。   Many cupric oxide powders manufactured by the wet method shown in Patent Documents 2 and 3 have excellent solubility in a copper plating solution.

しかし、この方法で得られた酸化第二銅粉末は、不純物としてNaやSO体でのSの残留濃度が高い問題があり、めっき液の硫酸銅水溶液を使用すると、その不純物などに起因するめっき不具合といった問題が生じ易かった。 However, the cupric oxide powder obtained by this method has a problem that the residual concentration of S in Na and SO 4 bodies is high as an impurity. When a copper sulfate aqueous solution of a plating solution is used, the cupric oxide powder is caused by the impurity. Problems such as plating defects were likely to occur.

一方、乾式法は、非特許文献1に記載されるように、硝酸銅、硫酸銅、炭酸銅、水酸化銅などを空気中で、600℃程度で熱分解する方法であり、湿式法に比べて生産性が高く、金属銅を原料とした場合、高純度の酸化第二銅が得られる利点がある。
しかし、乾式法では、その熱分解温度が高いため、得られた酸化第二銅粉末は、焼結の影響でめっき液への溶解速度が極めて遅くなってしまう問題が生じていた。
上述の湿式法と乾式法は、品質上の問題があり、酸化第二銅微粉末の原料となる電解銅粉にはコストの問題がある。
On the other hand, as described in Non-Patent Document 1, the dry method is a method in which copper nitrate, copper sulfate, copper carbonate, copper hydroxide, etc. are thermally decomposed at about 600 ° C. in the air, compared with the wet method. The productivity is high, and when metallic copper is used as a raw material, there is an advantage that high-purity cupric oxide can be obtained.
However, since the pyrolysis temperature is high in the dry method, the obtained cupric oxide powder has a problem that the dissolution rate in the plating solution becomes extremely slow due to the influence of sintering.
Wet method and dry method described above, there is a quality issue, the electrolytic copper powder powder as a cupric oxide fine powder of the raw material is cost issue.

特開2005ー163096号公報Japanese Patent Laying-Open No. 2005-163096 特開平5−319825号公報JP-A-5-31825 特開平3−80116号公報Japanese Patent Laid-Open No. 3-80116

第4版実験化学講座 無機化合物4th edition experimental chemistry course inorganic compounds

本発明の課題とするところは、上述の問題点、すなわち、設備コストが安価で、かつ純度が高い酸化第二銅粉末用の電解銅粉の製造方法を提供し、安価で純度が高い電解銅粉を用いて高純度で溶解速度が高い酸化第二銅微粉末の製造方法を提供することにある。 It is an object of the present invention, the above-mentioned problems, i.e., equipment cost is inexpensive, and the purity is to provide a high oxidative second method of manufacturing an electrolytic copper powder powder for copper powder, electrolytic high purity at low cost in the dissolution rate at a high purity to provide a high cupric oxide fine powder production method of using copper powder powder.

そこで、上記課題を解決するため、本発明者等が鋭意研究を継続した結果、金属銅を陽極とし銅イオン含有の硫酸酸性水溶液の電解による電解銅粉末の製造方法でも、陽極電流密度10A/dm〜40A/dmとすることと、電解時の銅イオン含有の硫酸酸性水溶液の温度が45℃〜65℃であるとすることで安価に純度の高い電解銅粉が得られる現象と、さらに得られた電解銅粉を一次熱処理と粉砕処理と二次熱処理に純度と溶解速度が高い酸化第二銅粉末が得られる現象を見出した。 Therefore, in order to solve the above-mentioned problems, the present inventors have continued intensive research. As a result, even in a method for producing electrolytic copper powder by electrolysis of a copper ion-containing sulfuric acid aqueous solution using metal copper as an anode, an anode current density of 10 A / dm. and be 2 ~40A / dm 2, a phenomenon that inexpensive high electrolytic copper powder powder purity that the temperature of the sulfuric acid aqueous solution of copper ions contained in the a 45 ° C. to 65 ° C. during electrolysis is obtained, further purity and dissolution rate is high cupric oxide powder electrolytic copper powder powder to pulverizing and second heat treatment and the primary heat treatment was obtained and found a phenomenon that is obtained.

すなわち本発明の第一の発明は、金属銅を陽極とし銅イオン含有の硫酸酸性水溶液の電解による酸化第二銅粉末原料用の電解銅粉末の製造方法において、陽極に不溶性陽極を用いないことと、陽極電流密度10〜40A/dmとすることで不均化反応を行い、一価の銅イオンを発生させることと、電解時の銅水溶液の温度が45℃〜65℃であることを特徴とする。 That is, according to the first aspect of the present invention, in the method for producing an electrolytic copper powder for cupric oxide powder raw material by electrolysis of a copper ion-containing sulfuric acid aqueous solution using metal copper as an anode, an insoluble anode is not used as the anode. The disproportionation reaction is performed by setting the anode current density to 10 to 40 A / dm 2 to generate monovalent copper ions, and the temperature of the aqueous copper solution during electrolysis is 45 ° C. to 65 ° C. Features.

本発明の第二の発明は、前記陽極が電気銅或いは無酸素銅からなり、前記陽極と前記陰極の表面に銅イオンを含む硫酸酸性水溶液の液流を噴射することを特徴とする第一の発明に記載の電解銅粉の製造方法である。 The second invention of the present invention is characterized in that the anode is made of electrolytic copper or oxygen-free copper, and a liquid solution of an acidic sulfuric acid solution containing copper ions is sprayed on the surfaces of the anode and the cathode. an electrolytic copper powder method according to the present invention.

本発明の第三の発明は、電解銅粉末を熱処理する酸化第二銅粉末の製造方法において、
前記電解銅粉が第一または第二の発明に記載の電解銅粉の製造方法で得られた電解銅粉を用いることと、前記熱処理が、酸素含有雰囲気下で一次熱処理して酸化第二銅粗粉末を得る工程と、前記酸化第二銅粗粉末を粉砕処理して一次熱処理酸化第二銅微粉末を得る工程と、前記一次熱処理酸化第二銅微粉末を、酸素含有雰囲気下で二次熱処理する工程と、を具備することを特徴とする。
A third aspect of the present invention is the manufacturing method of the cupric oxide fine powder of heat-treating the electrolytic copper powder,
Oxidation of the electrolytic copper powder powder and a the use of electrolytic copper powder powder electrolytic copper powder powder obtained by the method according to the first or second invention, the heat treatment, and heat-treated primary in an oxygen-containing atmosphere A step of obtaining a cupric coarse powder, a step of pulverizing the cupric oxide coarse powder to obtain a primary heat treated cupric oxide fine powder, and the primary heat treated cupric oxide fine powder under an oxygen-containing atmosphere. And a secondary heat treatment step.

本発明の第四の発明は、酸化第二銅微粉末を溶解させて硫酸銅水溶液の銅イオン濃度を調整する硫酸銅水溶液への銅イオンの供給方法において、前記酸化第二銅微粉末が、第の発明に記載の酸化第二銅微粉末製造方法により得られたもので、且つ、前記酸化第二銅微粉末を、CuSO・5HOを50g/リットル〜130g/リットル、HSOを150g/リットル〜240g/リットル、塩素イオンを30mg/リットル〜70mg/リットル含む水溶液に溶解させることを特徴とする。 The fourth invention of the present invention is a method of supplying copper ions to a copper sulfate aqueous solution in which the cupric oxide fine powder is dissolved to adjust the copper ion concentration of the copper sulfate aqueous solution, wherein the cupric oxide fine powder comprises: The cupric oxide fine powder obtained by the method for producing cupric oxide fine powder according to the third aspect of the invention, and the cupric oxide fine powder , CuSO 4 .5H 2 O, 50 g / liter to 130 g / liter, H 2 SO 4 is dissolved in an aqueous solution containing 150 to 240 g / liter and chlorine ions of 30 to 70 mg / liter.

本発明に係る電解銅粉の製造方法によれば、純度の高い銅粉を簡単な設備で大量に生産できる。また、得られた電解銅粉は本発明の酸化第二銅微粉末の製造方法により高純度で且つ硫酸銅水溶液に容易に溶解し、銅電気めっき液の銅イオン源として有用である。 According to the method of manufacturing an electrolytic copper powder powder according to the present invention can produce a large amount of high copper Powder purity by simple equipment. The obtained electrolytic copper Powder is and readily soluble in an aqueous copper sulfate solution with high purity by the production method of the cupric fine powder oxide of the present invention is useful as a source of copper ions the copper electroplating solution.

電解銅粉aのSEM像である。Is an SEM image of the electrolytic copper Powder a.

[電解銅粉の製造方法]
本発明に係る電解銅粉の製造方法は、金属銅を陽極とし銅イオンを含有する硫酸酸性水溶液の電解の際に、陽極電流密度10A/dm〜40A/dmとすることと、電解時の銅水溶液の温度が45℃〜65℃であることを特徴とする。
本発明に係る電解銅粉の製造方法を、具体的に説明する。
電解銅粉の製造方法は、銅イオンを含む硫酸酸性水溶液に陽極と陰極を浸漬し、電気分解により析出する電解銅粉を回収する。
本発明で用いる陽極は、電気銅あるいは無酸素銅から選択される板状、チップ状、ボール状のものを使用できる。チップ状やボール状の陽極を用いる場合は、銅イオンを含む硫酸酸性水溶液に溶解しないチタン製のバスケットなどに、チップ状やボール状の陽極を充填すればよい。チップ状やボール状の陽極はそれら同士が接触し導電する。チップ状やボール状の陽極は、板状の陽極よりも表面積が広くなり、銅の溶解が促進するので、電解銅粉の析出状況に応じ、板状、チップ状、ボール状を適宜選択すればよい。ただし、これら陽極には、硫酸銅めっきで用いる含リン銅を用いてはならない。含リン銅を用いると不均化反応しにくくなるからである。
[Method for powder electrolytic copper powder]
Method of manufacturing an electrolytic copper powder powder according to the present invention, when the electrolysis of sulfuric acid aqueous solution containing copper ions and the copper metal as an anode, the method comprising: an anode current density of 10A / dm 2 ~40A / dm 2 , electrolytic The temperature of the copper aqueous solution at the time is 45 ° C to 65 ° C.
The method for producing electrolytic copper powder powder according to the present invention will be described.
Method for producing a powder electrolytic copper powder, the anode and the cathode immersed in a sulfuric acid acidic aqueous solution containing copper ions, to recover electrolytic copper Powder precipitated by electrolysis.
As the anode used in the present invention, a plate shape, chip shape, or ball shape selected from electrolytic copper or oxygen-free copper can be used. When using a chip-shaped or ball-shaped anode, a chip-shaped or ball-shaped anode may be filled in a titanium basket that does not dissolve in an aqueous sulfuric acid solution containing copper ions. The chip-shaped and ball-shaped anodes are in contact with each other to conduct electricity. Chip-like or ball-shaped anode surface area wider than the plate-shaped anode, the dissolution of copper is accelerated, depending on the deposition conditions of the fine electrolytic copper powder, plate-like, chip-like, appropriately selected ball-shaped That's fine. However, phosphorous copper used in copper sulfate plating must not be used for these anodes. This is because it becomes difficult to disproportionate when phosphorous copper is used.

本発明で用いる陰極は、ステンレス板やチタンの板を使用する。陰極にステンレス板やチタン板を用いれば、析出した電解銅粉の剥離が容易だからである。
銅イオン含有の硫酸酸性水溶液の組成は、硫酸銅が15g/リットル〜120g/リットル、硫酸が150g/リットル〜220g/リットルである。
本発明に係る電解銅粉の製造方法において、電解温度は45℃〜65℃で、陽極および陰極の電流密度は10A/dm〜40A/dmである。
陽極の銅の溶解の電流効率と陰極の電解銅粉の析出の電流効率を比較すると、陽極での銅の溶解の電流効率の方が高い。そのため、銅イオンを含有する硫酸酸性水溶液中の銅イオンの濃度が増加する為、不溶性陽極を備えた脱銅槽を設けるなどの対策が必要である。例えば、特許文献1に開示される技術では、電流密度は10A/dm未満であり不溶性陽極などの対策が施されている。
電気分解(電解)などで電流が流れている銅イオンを含む硫酸酸性水溶液では一価の銅イオンと二価の銅イオンが平衡状態にある。本発明に係る電解銅粉の製造方法では、陽極の高い電流密度、すなわち、電流密度を10A/dm〜40A/dmとすることで、銅の陽極の表面において一価の銅イオンを積極的に発生させ、(1)式に示す不均化反応によって銅粉を析出させている。
2Cu→Cu+Cu2+ ・・・(1)
そのため、陽極の溶解で生じた銅イオンの一部が不均化反応で消費され、銅イオンの供給が過剰となることは無い。結果的に本発明の電解銅粉の製造方法では不溶性陽極などの対策は不要である。不溶性陽極を用いないので、イオン交換膜で形成された陽極バックは不要である。
The cathode used in the present invention is a stainless plate or a titanium plate. The use of stainless steel plate or a titanium plate cathode, deposited electrolytic copper powder at the end of the peeling becomes easy.
The composition of the sulfuric acid aqueous solution containing copper ions is 15 g / liter to 120 g / liter for copper sulfate and 150 g / liter to 220 g / liter for sulfuric acid.
In the method for manufacturing the electrolytic copper powder powder according to the present invention, the electrolysis temperature at 45 ° C. to 65 ° C., a current density of the anode and the cathode are 10A / dm 2 ~40A / dm 2 .
Comparing the current efficiency and current efficiency of deposition of electrolytic copper powder at the end of the cathode of the dissolution of copper anodes, higher in current efficiency of the dissolution of the copper at the anode. Therefore, since the concentration of copper ions in the sulfuric acid aqueous solution containing copper ions increases, it is necessary to take measures such as providing a copper removal tank equipped with an insoluble anode. For example, in the technology disclosed in Patent Document 1, the current density is less than 10 A / dm 2 and measures such as an insoluble anode are taken.
In a sulfuric acid aqueous solution containing copper ions in which current is flowing due to electrolysis (electrolysis) or the like, monovalent copper ions and divalent copper ions are in an equilibrium state. In the method of manufacturing the electrolytic copper powder powder according to the present invention, a high current density anode, i.e., by a current density 10A / dm 2 ~40A / dm 2 , the monovalent copper ions on the surface of the copper of the anode actively generate, thereby depositing copper powder by disproportionation reaction shown in equation (1).
2Cu + → Cu + Cu 2+ (1)
Therefore, a part of the copper ions generated by the dissolution of the anode is consumed by the disproportionation reaction, and the supply of copper ions does not become excessive. The resulting electrolytic copper powder at the end of the production method of the present invention measures such as insoluble anodes is not necessary. Since an insoluble anode is not used, an anode back formed of an ion exchange membrane is unnecessary.

さらに、不均化反応で生成する銅粉および陰極に析出した電解銅粉は銅の純度が高く、銅以外の金属は含まれない。また、脱銅槽が不要であることから設備コストが安価で、かつ生産性に優れている。なお、不均化反応で生成する銅粉は部分的に酸化していることがある。すなわち、一価の銅イオンにより、銅粉に酸化第一銅(CuO)含まれることがあるが、得られた銅粉は、熱処理で酸化第二銅粉末に加工されるので問題はない。
これまでの説明で得られる電解銅粉(以後、陰極の銅粉と陽極の不均化反応の銅粉をあわせた銅粉)の粒径は100μm以下である。
液は流動状態を維持できれば特に限定されるものではないが、例えば、陽極および陰極表面に電解液を送液ポンプで流量10リットル/分以上で直接銅イオンを含む硫酸酸性水溶液を噴射して銅粉を浮遊させることが好ましい。そして、銅イオン含有の硫酸酸性水溶液中に浮遊した銅粉は、フィルターや遠心ろ過等で回収し、水洗、乾燥を経て銅粉を得る。さらに、銅粉は部分的に酸化していてもよい。一価の銅イオンにより、銅粉に酸化第一銅(CuO)含まれることがあっても、得られた銅粉は、熱処理で酸化第二銅粉末に加工されるので問題はない。
Moreover, copper powder and electrolytic copper powder powder deposited on the cathode to generate in the disproportionation reaction has high purity copper, metals other than copper are not included. Moreover, since a copper removal tank is unnecessary, the equipment cost is low and the productivity is excellent. In addition, the copper powder produced | generated by disproportionation reaction may be partially oxidized. That is, cuprous oxide (Cu 2 O) may be contained in the copper powder due to monovalent copper ions, but the obtained copper powder is processed into cupric oxide powder by heat treatment, so there is no problem. .
Previous electrolytic copper powder powder obtained in the description (hereinafter, the combined copper powder disproportionation copper powder and the anode of cathode copper powder) particle size of is 100μm or less.
The liquid is not particularly limited as long as it can maintain a fluid state. For example, an electrolytic solution is injected onto the surfaces of the anode and the cathode, and a copper sulfate acid aqueous solution containing copper ions is directly sprayed at a flow rate of 10 liters / minute or more with a liquid feed pump. It is preferable to float the powder. And the copper powder which floated in the sulfuric acid acidic aqueous solution containing copper ion is collect | recovered with a filter, centrifugal filtration, etc., and obtains copper powder through water washing and drying. Furthermore, the copper powder may be partially oxidized. Even if cuprous oxide (Cu 2 O) is contained in the copper powder due to monovalent copper ions, the obtained copper powder is processed into cupric oxide powder by heat treatment, so there is no problem.

[酸化第二銅微粉末の製造方法]
(1)酸化第二銅粗粉末の形成
酸化第二銅粗粉末は、原料とする電解銅粉を酸素含有雰囲気下で最高温度を350℃〜800℃とした熱処理を行うことで形成することができる。
[Manufacturing method of cupric oxide fine powder]
(1) forming cupric oxide coarse powder cupric oxide coarse powder be formed by performing the heat treatment was 350 ° C. to 800 ° C. The maximum temperature of the electrolytic copper powder powder as a raw material in an oxygen-containing atmosphere Can do.

熱処理における最高温度が350℃未満では酸化に長時間を要したり、異相が混在してしまったりする。   If the maximum temperature in the heat treatment is less than 350 ° C., it takes a long time for the oxidation or a heterogeneous phase is mixed.

特に、問題となるのが異相であり、異相のうち酸化第一銅は、硫酸銅水溶液であるめっき液に溶解しない。そのため、異相の存在はめっき液の溶解性やめっき液の特性に悪影響を与えると考えられる。   In particular, the problem is the heterogeneous phase. Of the heterogeneous phases, cuprous oxide does not dissolve in the plating solution that is an aqueous copper sulfate solution. For this reason, the presence of a different phase is considered to adversely affect the solubility of the plating solution and the properties of the plating solution.

一方、最高温度の上限は、媒体攪拌ミルや気流式ミルでの粉砕性の点から800℃が好ましく、熱処理の最高温度が、800℃を超えると、酸化第二銅粗粉末が焼結し粉砕しにくくなる。なお、雰囲気は適宜選択できるが、大気中で熱処理しても良い。
(2)粉砕処理と一次熱処理酸化第二銅粉末
一次熱処理酸化第二銅微粉末は、酸化第二銅粗粉末を粉砕したものである。
On the other hand, the upper limit of the maximum temperature is preferably 800 ° C. from the viewpoint of pulverization in a medium stirring mill or an airflow mill. When the maximum temperature of the heat treatment exceeds 800 ° C., the cupric oxide coarse powder is sintered and pulverized. It becomes difficult to do. Although the atmosphere can be selected as appropriate, heat treatment may be performed in the air.
(2) Grinding treatment and primary heat treatment cupric oxide powder The primary heat treatment cupric oxide fine powder is obtained by grinding a cupric oxide coarse powder.

この粉砕処理での嵩密度、タップ密度、比表面積および平均粒子径の粉末特性が、二次熱処理された酸化第二銅微粉末の粉末特性を決めるものである。なお、後述する二次熱処理は、一次熱処理酸化第二銅微粉末を焼結させることはない。   The powder characteristics of the bulk density, tap density, specific surface area, and average particle size in the pulverization process determine the powder characteristics of the secondary heat-treated cupric oxide fine powder. The secondary heat treatment described later does not sinter the primary heat-treated cupric oxide fine powder.

酸化第二銅粗粉末の粉砕処理には、媒体攪拌ミルや気流式ミルを用いることが望ましい。この媒体攪拌ミルを用いると、後述の(2)式で求めた平均粒子径が1100nmを越えた粒子ができる可能性を低減できる。   It is desirable to use a medium stirring mill or an airflow mill for pulverizing the cupric oxide coarse powder. When this medium stirring mill is used, it is possible to reduce the possibility that particles having an average particle diameter of more than 1100 nm determined by the following formula (2) can be formed.

媒体攪拌ミルは、ビーズなどの粉末砕媒体と酸化第二銅粗粉末と溶媒を含むスラリーに攪拌により運動エネルギーを与え、酸化第二銅粗粉末同士の衝突や粉末砕媒体と酸化第二銅粗粉末のせん断応力により微粉末を得る装置である。   The media agitation mill gives kinetic energy to the slurry containing beads, such as powdered grinding media, cupric oxide coarse powder, and solvent by stirring. It is a device that obtains fine powder by the shear stress of the powder.

媒体攪拌ミルの攪拌機構は、ビーズのせん断応力が酸化第二銅粗粉末に効率よく伝達されれば良く、その機構や形状は特に限定されない。   The stirring mechanism of the medium stirring mill is not particularly limited as long as the shear stress of the beads is efficiently transmitted to the cupric oxide coarse powder.

粉末砕媒体であるビーズ径は、目的とする酸化第二銅微粉末の最終粒子径によって選択することが一般的であるが、好ましくは直径1mm以下である。直径1mm以下であれば、粒子を微細に砕く効率が高くなる。   The bead diameter that is the powder grinding medium is generally selected according to the final particle diameter of the desired cupric oxide fine powder, but is preferably 1 mm or less in diameter. If it is 1 mm or less in diameter, the efficiency which grinds particles finely will become high.

さらに、ビーズ径は、小さいほど粉砕スピードが速く、粉砕される酸化銅粉末の粒子径も小さくなる。特に、めっき液への溶解性が高い粒子径に粉砕するには、特に直径0.3mm以下のビーズが好ましい。   Furthermore, the smaller the bead diameter, the faster the pulverization speed and the smaller the particle diameter of the pulverized copper oxide powder. In particular, beads having a diameter of 0.3 mm or less are particularly preferable for pulverization to a particle diameter having high solubility in the plating solution.

ビーズの材質は、特に限定されないが、例えば比重が小さいガラスビーズや比重が大きいZrOビーズ、YSZビーズが挙げられる。比重が大きいビーズでは、粉末砕効率が高く、摩耗が少なく、特に好ましい。 The material of the beads is not particularly limited, and examples thereof include glass beads having a low specific gravity, ZrO 2 beads having a high specific gravity, and YSZ beads. Beads having a large specific gravity are particularly preferable because of high powder crushing efficiency and low wear.

媒体攪拌ミルは、特に限定されず、例えばビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどが挙げられる。   The medium stirring mill is not particularly limited, and examples thereof include a bead mill, a ball mill, a sand mill, a paint shaker, and an ultrasonic homogenizer.

一方、気流式ミルは、高速のジェット気流中で酸化第二銅粗粉末を相互に衝突させることにより、微粉末を得る装置である。   On the other hand, the airflow mill is a device that obtains fine powder by causing the cupric oxide coarse powder to collide with each other in a high-speed jet stream.

なお、湿式媒体ミルを用いても気流式ミルを用いても、粉砕条件は、特に限定されるものではなく、得られる酸化第二銅微粉末が所望の比表面積や平均粒子径となるように適宜選択すればよい。   The pulverization conditions are not particularly limited regardless of whether the wet medium mill or the airflow mill is used, so that the obtained cupric oxide fine powder has a desired specific surface area and average particle diameter. What is necessary is just to select suitably.

溶媒は、特に限定されるものではなく、例えば、水、エタノール、プロパノール、ブタノール、イソプロピルアルコール、イソブチルアルコール、ジアセトンアルコールなどのアルコール類、メチルエーテル、エチルエーテル、プロピルエーテルなどのエーテル類、エステル類、またはアセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソブチルケトンなどのケトン類といった各種の有機溶媒が使用可能である。   The solvent is not particularly limited, and examples thereof include water, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, diacetone alcohol and other ethers, methyl ether, ethyl ether, propyl ether and other ethers, and esters. Alternatively, various organic solvents such as acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, and ketones such as isobutyl ketone can be used.

さらに、酸化第二銅微粉末の使用目的に応じて、このスラリーには、適宜公知の消泡剤や分散剤や酸化第二銅微粉末の表面を被覆する化合物などを添加しても良い。   Furthermore, depending on the intended use of the cupric oxide fine powder, a known antifoaming agent or dispersant, a compound that coats the surface of the cupric oxide fine powder, or the like may be added to the slurry as appropriate.

(3)二次熱処理
上記の工程を経て得られた一次熱処理酸化第二銅微粉末を、酸素含有雰囲気下で熱処理して二次熱処理酸化第二銅微粉末を形成する。
(3) Secondary heat treatment The primary heat-treated cupric oxide fine powder obtained through the above steps is heat-treated in an oxygen-containing atmosphere to form a secondary heat-treated cupric oxide fine powder.

その熱処理温度は200℃〜800℃が望ましく、熱処理時間は0.5時間〜3時間が望ましいが、最終的に完全なCuOの形態となるように両者は適宜選択される。   The heat treatment temperature is desirably 200 ° C. to 800 ° C., and the heat treatment time is desirably 0.5 hours to 3 hours, but both are appropriately selected so as to finally form a complete CuO form.

この酸素含有雰囲気下での二次熱処理により、得られた酸化第二銅微粉末のめっき液への溶解性がさらに高くなるのは、一部酸素欠損の状態(CuO1−x)から完全なCuOの状態になるためと推察している。 The solubility of the obtained cupric oxide fine powder in the plating solution by the secondary heat treatment in the oxygen-containing atmosphere is further increased from the state of partial oxygen deficiency (CuO 1-x ). This is presumed to be in the state of CuO.

この二次熱処理温度が200℃未満では、一部酸素欠損の状態(CuO1−X)が残留している可能性があり完全なCuOの状態になっていないと推定されるが、一部酸素欠損の状態(CuO1−X)の残留が微量なため、X線回折では検出されなかったとみられる。 If this secondary heat treatment temperature is less than 200 ° C., it is estimated that a partial oxygen deficiency state (CuO 1-X ) may remain and is not in a complete CuO state. It seems that the defect (CuO 1-X ) remained in a deficient state and was not detected by X-ray diffraction.

なお、この二次熱処理では、一次熱処理酸化第二銅微粉末を焼結させないことに留意しなければならない。そのため上記の熱処理温度、および熱処理時間が望ましい。   It should be noted that this secondary heat treatment does not sinter the primary heat treated cupric oxide fine powder. Therefore, the above heat treatment temperature and heat treatment time are desirable.

さらに、本発明の酸化第二銅微粉末の製造方法は、酸化第二銅粗粉末を粉砕した微粉末化した一次熱処理酸化第二銅微粉末を二次熱処理するので、完全なCuOの形態となりやすい。硫酸銅水溶液への溶解時間は、二次熱処理を実施することで短くなる。   Furthermore, the manufacturing method of the cupric oxide fine powder according to the present invention performs the secondary heat treatment of the finely powdered primary heat treated cupric oxide fine powder obtained by pulverizing the cupric oxide coarse powder. Cheap. The dissolution time in the copper sulfate aqueous solution is shortened by performing the secondary heat treatment.

そのため、本発明の酸化第二銅微粉末は、銅めっき用補給銅源としてより望ましい。具体的には、本発明の製造方法で得られた酸化第二銅微粉末の7gの溶解時間は、CuSO・5HOを90g/リットル、HSOを220g/リットル、塩素イオンを60mg/リットル含み、攪拌されている1リットルの硫酸銅水溶液に投入した時に、2分以下で溶解する易溶性を有する。 Therefore, the cupric oxide fine powder of the present invention is more desirable as a replenishing copper source for copper plating. Specifically, the dissolution time of 7 g of the cupric oxide fine powder obtained by the production method of the present invention is 90 g / liter for CuSO 4 .5H 2 O, 220 g / liter for H 2 SO 4 , and chlorine ion. It contains 60 mg / liter and has a solubility that dissolves in 2 minutes or less when added to a stirred 1 liter aqueous copper sulfate solution.

以上のようにして、得られる酸化第二銅微粉末は、二次熱処理の効果と、比表面積が1m/g〜50m/gで、かつ平均粒子径が20nm〜1100nmとなり、硫酸銅水溶液(めっき液)への溶解性が高くなる。なお、当該平均粒子径は、下記(2)式から求めた値である。
d=6/(ρ・S)・・・(2)
d;粒子径、ρ;真密度、S;比表面積
As described above, cupric oxide fine powder obtained has a effect of secondary heat treatment, a specific surface area of 1m 2 / g~50m 2 / g, and an average particle diameter of 20nm~1100nm next, an aqueous solution of copper sulfate Solubility in (plating solution) increases. In addition, the said average particle diameter is the value calculated | required from the following (2) formula.
d = 6 / (ρ · S) (2)
d: particle diameter, ρ: true density, S: specific surface area

[硫酸銅水溶液(めっき液)の銅イオン供給方法]
銅を電解めっきする際に用いる銅めっき液(硫酸銅水溶液)は、硫酸銅、硫酸および塩素イオンを含有し、pHは1よりも低いものが用いられることが多い。そして、この銅めっき液には、銅めっきの品質向上のため公知の添加剤が加えられている。
[Copper ion supply method for copper sulfate aqueous solution (plating solution)]
A copper plating solution (copper sulfate aqueous solution) used for electrolytic plating of copper contains copper sulfate, sulfuric acid and chlorine ions, and a pH lower than 1 is often used. A known additive is added to the copper plating solution to improve the quality of the copper plating.

一方、銅の電解めっきを行うと、めっき液中の銅が析出し、めっき液の銅の濃度が低下する。そこで、めっき液の銅濃度の低下を防ぐ為、陽極に銅を用いて陽極を溶解しながら銅電解めっきを行う方法と、陽極に導電性酸化物セラミック等で覆われたチタン等からなる不溶性陽極を用い、併せてめっき液へ銅を供給する機構を備えた不溶性陽極を用いる方法がある。   On the other hand, when copper is electroplated, copper in the plating solution is deposited, and the concentration of copper in the plating solution is lowered. Therefore, in order to prevent a decrease in the copper concentration of the plating solution, a method of performing copper electroplating while dissolving the anode using copper as the anode, and an insoluble anode made of titanium or the like covered with a conductive oxide ceramic on the anode And an insoluble anode having a mechanism for supplying copper to the plating solution.

この不溶性陽極を用いる方法の場合、めっき液へどのように銅を補うかが問題となる。   In the case of the method using this insoluble anode, how to supplement copper to the plating solution becomes a problem.

めっき液へ銅を供給するには、めっき液に銅または銅を含む化合物等の銅源が速やかに溶解することと、銅源が溶解することでめっき液のSO 2+イオンなどのバランスが崩れないこと、さらにめっき液に含まれる添加剤が分解しないことが要求される。 To supply copper to the plating solution, the copper source such as copper or a compound containing copper dissolves rapidly in the plating solution, and the balance of SO 4 2+ ions of the plating solution is lost due to the dissolution of the copper source. Further, it is required that the additive contained in the plating solution does not decompose.

このような要求に対して、酸化第二銅微粉末は、めっき液のSO 2+イオンなどのバランスを崩すことなく、また、各種添加剤の分解も少ない利点を有するものである。 In response to such demands, cupric oxide fine powder has the advantage that the balance of SO 4 2+ ions and the like of the plating solution is not lost, and the decomposition of various additives is small.

さらに、めっき液への銅の供給は、めっき液中の銅が減少する都度、速やかに行う必要がある。   Furthermore, it is necessary to supply the copper to the plating solution promptly whenever the copper in the plating solution decreases.

具体的には、攪拌されたCuSO・5HOを90g/リットル、HSOを220g/リットル、塩素イオンを60mg/リットル含むめっき液に近似した水溶液1リットルに、酸化第二銅粉末7gを投入したときの溶解時間は、短いほどより望ましい。 Specifically, cupric oxide powder is added to 1 liter of an aqueous solution approximating a plating solution containing 90 g / liter of stirred CuSO 4 .5H 2 O, 220 g / liter of H 2 SO 4 and 60 mg / liter of chlorine ions. The shorter the dissolution time when 7 g is added, the more desirable.

本発明に係る酸化第二銅微粉末は、上記めっき液に近似した水溶液1リットルに投入すると2分以内に溶解する。   The cupric oxide fine powder according to the present invention dissolves within 2 minutes when introduced into 1 liter of an aqueous solution similar to the above plating solution.

また、めっき液に投入される酸化第二銅微粉末は、溶解残渣を生じてはならない。   Moreover, the cupric oxide fine powder thrown into the plating solution should not produce a dissolution residue.

特に酸化第一銅は、めっき液に溶解せずに残渣となることから生成を避けるべきものである。本発明の酸化第二銅微粉末の製造方法では、酸化第二銅粗粉末を製造する際の熱処理で異相となる酸化第一銅が生じにくい。   In particular, cuprous oxide should be prevented from being formed because it is not dissolved in the plating solution and becomes a residue. In the manufacturing method of cupric oxide fine powder of the present invention, cuprous oxide which becomes a different phase by heat treatment at the time of manufacturing cupric oxide coarse powder is hard to occur.

さらに、この熱処理の処理条件では、媒体攪拌ミルもしくは気流式ミルで微粉末化可能な酸化第二銅粗粉末が得られるので、結果的には、微粉砕によりめっき液へ速やかに溶解する酸化第二銅微粉末を得ることになる。したがって、めっき液の調整、すなわち硫酸銅水溶液への銅イオンの供給が可能となる。   Further, under the heat treatment conditions, a cupric oxide crude powder that can be made fine by a medium agitating mill or an airflow mill is obtained. A fine copper powder will be obtained. Therefore, it is possible to adjust the plating solution, that is, supply copper ions to the aqueous copper sulfate solution.

電解めっき装置で、本発明の硫酸銅水溶液への銅イオンの供給方法を実施するには、電解めっき装置のめっきを行うめっき槽と別に酸化第二銅微粉末を溶解する酸化第二銅溶解槽を設け、めっき槽と酸化第二銅溶解槽の間で水溶液(めっき液)を循環させればよい。   In order to carry out the method of supplying copper ions to the aqueous copper sulfate solution of the present invention in an electrolytic plating apparatus, a cupric oxide dissolution tank that dissolves cupric oxide fine powder separately from the plating tank for plating of the electrolytic plating apparatus And an aqueous solution (plating solution) may be circulated between the plating tank and the cupric oxide dissolution tank.

この酸化第二銅溶解槽は、めっき槽から供給された水溶液に酸化第二銅微粉末を溶解させて形成した水溶液を、めっき槽へ送り返す。使用する酸化第二銅溶解槽には、プロペラなどの攪拌機構を付属させることが好ましい。また、めっき槽と酸化第二銅溶解槽の間には、ゴミや異物等の除去のため公知の各種フィルターを備えても良い。   This cupric oxide dissolution tank returns an aqueous solution formed by dissolving cupric oxide fine powder in the aqueous solution supplied from the plating tank to the plating tank. It is preferable to attach a stirring mechanism such as a propeller to the cupric oxide dissolution tank to be used. Moreover, you may provide a well-known various filter between a plating tank and a cupric oxide dissolution tank for removal of a dust, a foreign material, etc.

なお、本発明の硫酸銅水溶液への銅イオンの供給方法に用いる硫酸銅水溶液は、硫酸銅を水に溶解した水溶液でもよいし、硫酸に本発明に係る酸化第二銅微粉末を溶解させた水溶液でも良い。   The copper sulfate aqueous solution used in the method for supplying copper ions to the copper sulfate aqueous solution of the present invention may be an aqueous solution in which copper sulfate is dissolved in water, or the cupric oxide fine powder according to the present invention is dissolved in sulfuric acid. An aqueous solution may be used.

以下に、本発明の実施例を比較例とともに具体的に説明する。   Examples of the present invention will be specifically described below together with comparative examples.

[実施例1]
銅イオンを含有する硫酸酸性水溶液の組成として、硫酸銅75g/リットル、硫酸220g/リットル、電解温度は45℃、陽極および陰極電流密度15A/dm、の条件で60分以上電解を行った。陽極に銅板、陰極にステンレス板を用いた。陰極に析出した銅粉を剥離し、銅イオンを含有する硫酸酸性水溶液中の銅粉を回収し、両者を混合し、水洗、ろ過を行い、電解銅粉aを得た。図1に、得られた電解銅粉aのSEM像を示す。また、得られた銅粉aの粉末X線解析の結果、主相のCuと微弱なCuO相が認められた。
[Example 1]
As the composition of the sulfuric acid aqueous solution containing copper ions, electrolysis was performed for 60 minutes or more under the conditions of copper sulfate 75 g / liter, sulfuric acid 220 g / liter, electrolysis temperature 45 ° C., anode and cathode current density 15 A / dm 2 . A copper plate was used for the anode and a stainless plate was used for the cathode. Stripping the copper powder deposited on the cathode, the copper powder in sulfuric acid aqueous solution containing copper ions was collected and mixed together, washed with water, followed by filtration, thereby preparing an electrolytic copper Powder a. Figure 1 shows an SEM image of the resulting electrolytic copper Powder a. As a result of the powder X-ray analysis of the obtained copper Powder a, Cu and weak Cu 2 O phase of the main phase were observed.

次に、電解銅粉aをボックス炉にて大気雰囲気500℃の温度で3時間一次熱処理することによって酸化銅粗粉末aを得た。得られた当該酸化銅粗粉末a20重量%、水80重量%となるように秤量し、0.3mmφZrOビ−ズ(東レトレセラム0.3mmφZrHIPビーズ )を入れたペイントシェーカーで12時間粉砕処理した後、ビーズを分離した分散液を105℃で乾燥し、さらにボックス炉にて大気雰囲気で500℃の温度で3時間二次熱処理することによって酸化銅微粉末aを得た。また、酸化銅微粉末aの粉末X線解析の結果、CuO単一相であった。 Next, to obtain a copper oxide crude powder a by heat treating for 3 hours primary at a temperature of the atmosphere 500 ° C. The electrolytic copper Powder a in a box furnace. It obtained the copper oxide coarse powder a20 wt%, were weighed so as to be 80% by weight of water, 0.3MmfaiZrO 2 bi -'s after 12 hours milling in a paint shaker containing the (E Retoreseramu 0.3mmφZrHIP beads) The dispersion liquid from which the beads were separated was dried at 105 ° C., and further subjected to secondary heat treatment at 500 ° C. for 3 hours in an air atmosphere in a box furnace to obtain copper oxide fine powder a. Moreover, it was a CuO single phase as a result of the powder X-ray analysis of the copper oxide fine powder a.

次に、硫酸銅水溶液(めっき液)として、CuSO・5HO 68g/リットル、HSO228g/リットル、Clイオン60mg/リットルとなるよう調製し、液温25℃にてスタ−ラ−で攪拌しながら酸化第二銅微粉末aを7g添加したところ、43秒で溶解した。 Next, CuSO 4 · 5H 2 O 68 g / liter, H 2 SO 4 228 g / liter, and Cl ion 60 mg / liter were prepared as an aqueous copper sulfate solution (plating solution). While stirring at −, 7 g of cupric oxide fine powder a was added and dissolved in 43 seconds.

[実施例2]
電解液温度を60℃に変えた以外は実施例1と同様にして実施例2に係る電解銅粉bを得た。陽極は、不働態化しなかった。そして、得られた電解銅粉bを実施例1と同じ条件で酸化第二銅微粉末bにして硫酸銅水溶液への溶解性を評価したところ、40秒で溶解した。
[Example 2]
Except for changing the temperature of the electrolyte to 60 ° C. was obtained electrolytic copper Powder b according to the second embodiment in the same manner as in Example 1. The anode did not passivate. Then, when obtained by the electrolytic copper Powder b to cupric oxide powder b under the same conditions as in Example 1 was evaluated solubility in aqueous copper sulfate solution, and dissolved in 40 seconds.

[実施例3]
電解液温度を60℃、陽極電流密度を30A/dmに変えた以外は実施例1と同様にして実施例3に係る電解銅粉cを得た。陽極は、不働態化しなかった。そして、得られた電解銅粉cを実施例1と同じ条件で酸化第二銅微粉末cにして硫酸銅水溶液への溶解性を評価したところ、41秒で溶解した。
[Example 3]
60 ° C. The temperature of the electrolyte, except for changing the anodic current density 30A / dm 2 was obtained electrolytic copper Powder c according to the third embodiment in the same manner as in Example 1. The anode did not passivate. Then, when obtained by the electrolytic copper Powder c in the cupric fine powder c oxidation under the same conditions as in Example 1 was evaluated solubility in aqueous copper sulfate solution, and dissolved in 41 seconds.

[実施例4]
電解液温度を60℃、陽極電流密度を40A/dmに変えた以外は実施例1と同様にして実施例4に係る電解銅粉dを得た。陽極は、不働態化しなかった。そして、得られた電解銅粉dを実施例1と同じ条件で酸化第二銅微粉末dにして硫酸銅水溶液への溶解性を評価したところ、43秒で溶解した。
[Example 4]
60 ° C. The temperature of the electrolyte, except for changing the anodic current density 40A / dm 2 was obtained electrolytic copper Powder d according to Example 4 in the same manner as in Example 1. The anode did not passivate. Then, when obtained by the electrolytic copper Powder d to cupric oxide powder d under the same conditions as in Example 1 was evaluated solubility in aqueous copper sulfate solution, and dissolved in 43 seconds.

[実施例5]
電解液温度を45℃、陽極電流密度を20A/dmに変えて、送液ポンプによる陽極および陰極表面へ液流を10リットル/分で噴射し電解を行った以外は、実施例1と同様にして実施例5に係る電解銅粉eを得た。陽極は、不働態化しなかった。そして、得られた電解銅粉eを実施例1と同じ条件で酸化第二銅微粉末eにして硫酸銅水溶液への溶解性を評価したところ、40秒で溶解した。
[Example 5]
The same as in Example 1 except that the electrolytic solution temperature was changed to 45 ° C., the anode current density was changed to 20 A / dm 2 , and electrolysis was performed by injecting a liquid flow to the anode and cathode surfaces by a liquid feed pump at 10 liters / minute. the electrolytic copper powder e according to the fifth embodiment in the yield. The anode did not passivate. Then, when obtained by the electrolytic copper Powder e to cupric oxide powder e under the same conditions as in Example 1 was evaluated solubility in aqueous copper sulfate solution, and dissolved in 40 seconds.

[実施例6]
実施例5において、電解液温度を60℃、陽極電流密度を40A/dmに変えて、送液ポンプによる陽極および陰極表面へ液流を10リットル/分で噴射し電解を行った以外は、実施例5と同様にして実施例6に係る電解銅粉fを得た。陽極は、不働態化しなかった。そして、得られた電解銅粉fを実施例1と同じ条件で酸化第二銅微粉末fにして硫酸銅水溶液への溶解性を評価したところ、43秒で溶解した。
[Example 6]
In Example 5, the electrolytic solution temperature was changed to 60 ° C., the anode current density was changed to 40 A / dm 2 , and the electrolysis was performed by injecting the liquid flow to the anode and cathode surfaces by a liquid feeding pump at 10 liters / minute. thereby preparing an electrolytic copper powder f according to the sixth embodiment in the same manner as in example 5. The anode did not passivate. Then, it was evaluated solubility in aqueous solution of copper sulfate in the resulting cupric oxide fine powder f electrolytic copper Powder f under the same conditions as in Example 1, was dissolved in 43 seconds.

[比較例1]
電解液温度を30℃に変えた以外は、実施例1と同様にして電解を行ったが、15分で陽極が不働態化した。
[Comparative Example 1]
Electrolysis was performed in the same manner as in Example 1 except that the electrolyte temperature was changed to 30 ° C., but the anode was passivated in 15 minutes.

[比較例2]
電解液温度を30℃に変えた以外は、実施例2と同様にして電解を行ったが、4分で陽極が不働態化した。
[Comparative Example 2]
Electrolysis was carried out in the same manner as in Example 2 except that the electrolyte temperature was changed to 30 ° C., but the anode was deactivated in 4 minutes.

[比較例3]
において、電解液温度を30℃に変えた以外は、実施例3と同様にして電解を行ったが、2分で陽極が不働態化した。
[Comparative Example 3]
The electrolysis was performed in the same manner as in Example 3 except that the electrolyte temperature was changed to 30 ° C., but the anode was deactivated in 2 minutes.

Claims (2)

金属銅を陽極とし銅イオンを含有する硫酸酸性水溶液の電解による電解銅粉末の製造方法において、
陽極に不溶性陽極を用いないことと、
陽極電流密度を10A/dm〜40A/dmとすることで不均化反応を行い、一価の銅イオンを発生させることと、
電解時の銅水溶液の温度が45℃〜65℃、
であることを特徴とする酸化第二銅粉末原料用の電解銅粉末の製造方法。
In the method for producing electrolytic copper powder by electrolysis of an aqueous sulfuric acid solution containing metallic copper as an anode and copper ions,
Do not use an insoluble anode for the anode,
A disproportionation reaction is performed by setting the anode current density to 10 A / dm 2 to 40 A / dm 2 to generate monovalent copper ions;
The temperature of the aqueous copper solution during electrolysis is 45 ° C to 65 ° C,
The manufacturing method of the electrolytic copper powder for cupric oxide powder raw materials characterized by these.
前記陽極が電気銅或いは無酸素銅からなり、前記陽極と前記陰極の表面に銅イオンを含む硫酸酸性水溶液の液流を噴射することを特徴とする請求項1に記載の電解銅粉末の製造方法。
2. The method for producing electrolytic copper powder according to claim 1, wherein the anode is made of electrolytic copper or oxygen-free copper, and a liquid flow of a sulfuric acid aqueous solution containing copper ions is sprayed on the surfaces of the anode and the cathode. .
JP2012087065A 2012-04-06 2012-04-06 Method for producing electrolytic copper powder Active JP6011992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012087065A JP6011992B2 (en) 2012-04-06 2012-04-06 Method for producing electrolytic copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012087065A JP6011992B2 (en) 2012-04-06 2012-04-06 Method for producing electrolytic copper powder

Publications (2)

Publication Number Publication Date
JP2013216934A JP2013216934A (en) 2013-10-24
JP6011992B2 true JP6011992B2 (en) 2016-10-25

Family

ID=49589390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012087065A Active JP6011992B2 (en) 2012-04-06 2012-04-06 Method for producing electrolytic copper powder

Country Status (1)

Country Link
JP (1) JP6011992B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101538967B1 (en) * 2014-01-09 2015-07-22 한양대학교 에리카산학협력단 Manufacturing method of metal oxide powder
JP6318718B2 (en) * 2014-03-10 2018-05-09 住友金属鉱山株式会社 Sulfuric acid copper electrolyte and method for producing granular copper powder using the electrolyte
JP6318719B2 (en) * 2014-03-10 2018-05-09 住友金属鉱山株式会社 Sulfuric acid copper electrolyte and method for producing dendritic copper powder using this electrolyte
US10741879B2 (en) 2014-10-21 2020-08-11 Nec Corporation Secondary battery and production method therefor
CN111593373B (en) * 2020-07-13 2022-06-17 重庆有研重冶新材料有限公司 Production method of electrolytic copper powder for perforating charge

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2155207C (en) * 1993-04-19 2000-05-16 David P. Burgess Process for making copper metal powder, copper oxides and copper foil
JP2002105684A (en) * 2000-09-29 2002-04-10 Dowa Mining Co Ltd Electrolytic method, and electrolytic tank used therefor
JP4323297B2 (en) * 2003-12-02 2009-09-02 日鉱金属株式会社 Method for producing electrolytic copper powder
JP5293276B2 (en) * 2008-03-11 2013-09-18 上村工業株式会社 Continuous electrolytic copper plating method

Also Published As

Publication number Publication date
JP2013216934A (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP6011992B2 (en) Method for producing electrolytic copper powder
US10519556B2 (en) Process for recycling waste carbide
US20100192728A1 (en) Spherical Copper Fine Powder and Process for Producing the Same
JP5648803B2 (en) Copper ion supply method of cupric oxide fine powder and copper sulfate aqueous solution
JP6168000B2 (en) Method for producing nickel sulfate solution
JP6225783B2 (en) Copper fine particles, conductive paste composition, and production method thereof
TW202028539A (en) Battery recycling with electrolysis of the leach to remove copper impurities
JP2009035801A (en) Method for producing copper
JP5874910B2 (en) Method for producing high-purity cupric oxide fine powder and method for supplying copper ion in aqueous copper sulfate solution
JP5622108B2 (en) High purity cupric oxide fine powder and method for producing the same, and copper ion supply method for aqueous copper sulfate solution using high purity cupric oxide fine powder
JP2012126942A (en) Fine spherical copper powder and method for producing the same
JP5796696B1 (en) Method for producing nickel powder
TWI580643B (en) Copper oxide (II) oxide powder and method for producing the same
JP2012193068A (en) Method of producing high-purity cupric oxide fine powder and method of supplying copper ion to copper sulfate solution
JP2003166100A (en) Copper powder used for copper plating, and method for using copper powder
JP6056709B2 (en) Method for producing cupric oxide powder and cupric oxide fine powder
JP5858267B2 (en) Copper ion supply method to easily soluble cupric oxide fine powder and copper sulfate aqueous solution
JP6241617B2 (en) Method for producing cobalt powder
WO2017150305A1 (en) Nickel powder production method
WO2014109088A1 (en) Cupric oxide fine powder, and production method therefor
JP2016113684A (en) Electrolytic device and method for producing indium hydroxide powder
JP6142848B2 (en) Method for removing deposits from insoluble electrodes
JP5206502B2 (en) Method for producing cobalt with excellent acid solubility
JP2016107329A (en) Anode regeneration process
JP6318719B2 (en) Sulfuric acid copper electrolyte and method for producing dendritic copper powder using this electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160829

R150 Certificate of patent or registration of utility model

Ref document number: 6011992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160911