JP5804920B2 - Electrolytic extraction of metals - Google Patents

Electrolytic extraction of metals Download PDF

Info

Publication number
JP5804920B2
JP5804920B2 JP2011267019A JP2011267019A JP5804920B2 JP 5804920 B2 JP5804920 B2 JP 5804920B2 JP 2011267019 A JP2011267019 A JP 2011267019A JP 2011267019 A JP2011267019 A JP 2011267019A JP 5804920 B2 JP5804920 B2 JP 5804920B2
Authority
JP
Japan
Prior art keywords
electrolysis
anode
copper
electrolytic
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011267019A
Other languages
Japanese (ja)
Other versions
JP2013119641A (en
Inventor
智也 後田
智也 後田
聡 並木
聡 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan Pacific Copper Co Ltd
Original Assignee
Pan Pacific Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Pacific Copper Co Ltd filed Critical Pan Pacific Copper Co Ltd
Priority to JP2011267019A priority Critical patent/JP5804920B2/en
Publication of JP2013119641A publication Critical patent/JP2013119641A/en
Application granted granted Critical
Publication of JP5804920B2 publication Critical patent/JP5804920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、金属の電解採取方法に関する。   The present invention relates to a metal electrowinning method.

銅電解精製では、電解液に浸した一対の電極へ直流電流を流すことで、電気分解により陽極側から銅が溶出し、陰極側へ銅が析出する。一方で、陽極から電解液中の硫酸等によって化学的に銅が溶出し、電解液中の銅濃度は徐々に上昇する。このため、電解液の銅濃度を調整するために、電解採取法、硫酸銅結晶の抜き出し、ブリードオフ等が行われている。   In copper electrolytic refining, when a direct current is passed through a pair of electrodes immersed in an electrolytic solution, copper is eluted from the anode side by electrolysis, and copper is deposited on the cathode side. On the other hand, copper is chemically eluted from the anode by sulfuric acid or the like in the electrolytic solution, and the copper concentration in the electrolytic solution gradually increases. For this reason, in order to adjust the copper concentration of the electrolytic solution, electrolytic collection, extraction of copper sulfate crystals, bleed-off, and the like are performed.

電解採取法は、陽極に不溶性の電極、一般的には鉛合金(Pb−Sb、Pb−Ca−Sn)が用いられ、下記の化学式により、脱銅電解中、陽極側では酸素発生、陰極側では銅析出により、電解液中から銅を回収している。
陽極:H2O=1/2O2+2H++2e-
陰極:Cu2++2e-=Cu
(陰極:CuSO4+2H++2e-=Cu+H2SO4
Electrolytic sampling uses an electrode that is insoluble in the anode, typically lead alloys (Pb-Sb, Pb-Ca-Sn), and uses the following chemical formula to generate oxygen on the anode side and cathode side during decopperization electrolysis. Then, copper is collect | recovered from electrolyte solution by copper precipitation.
Anode: H 2 O = 1 / 2O 2 + 2H + + 2e
Cathode: Cu 2+ + 2e = Cu
(Cathode: CuSO 4 + 2H + + 2e = Cu + H 2 SO 4 )

脱銅電解工程において、陰極板に電着した銅電着物を回収する場合、電力の供給を脱銅電解槽からバイパス回路へ切り替え、電解槽を停電状態として、電着陰極板を引き抜き、新しい陰極板を投入して、電解槽内への電力の供給を再開する。   In the copper removal electrolysis process, when recovering the copper electrodeposits deposited on the cathode plate, the power supply is switched from the copper removal electrolytic cell to the bypass circuit, the electrolytic cell is in a power failure state, the electrodeposited cathode plate is pulled out, and a new cathode Insert the plate and resume the supply of power into the electrolytic cell.

このような脱銅電解の復電時の操業で引き起こされる問題に対しては、従来、種々の研究がなされており、例えば、特許文献1には、パーマネントカソード法による銅の電解精製において、電解精製工場の計画停電時に、該電解精製工場に常設された主整流器より電解槽へ通電される電流を穏やかに落とし、次に、該電解精製工場に付設された補助整流器により、低電流にて停電復旧まで通電することを特徴とする銅の電解精製方法に係る発明が開示されている。そして、これによれば、パーマネントカソード(PC)方式の銅電解精製工場において、計画停電後にできる電気銅外層の薄膜電着により、剥ぎ取り困難となる状況をできるだけ回避することができると記載されている。   Various studies have been made on the problems caused by the operation at the time of power recovery of such copper removal electrolysis. For example, Patent Document 1 discloses electrolysis in electrolytic refining of copper by the permanent cathode method. During a planned blackout at the refinery, the current flowing to the electrolytic cell from the main rectifier permanently installed in the electrolytic refinery is gently dropped, and then the power is cut off at a low current by the auxiliary rectifier attached to the electrolytic refinery. An invention relating to a method for electrolytic purification of copper, which is characterized by energizing until recovery, is disclosed. And according to this, in the permanent cathode (PC) type copper electrolytic refining factory, it is described that the situation where it is difficult to peel off can be avoided as much as possible by thin film electrodeposition of the outer layer of electric copper that can be done after the planned power outage. Yes.

また、特許文献2には、PC法による銅の電解精製を行う電解精製工場を計画停電し、定期点検後、銅の電解精製槽に流す電流を正常操業値に戻す復電を行い、電解精製を再開する銅の電解精製法において、前記復電を、2段階以上の多段で電流値を増加させる操作により行うことを特徴とする銅の電解精製方法に係る発明が開示されている。そして、これによれば、パーマネントカソード(PC)方式の銅電解精製工場において、計画停電後に電着銅の剥取り困難となる状況を回避することができると記載されている。   Also, in Patent Document 2, an electrolytic refinery factory that performs electrolytic purification of copper by the PC method is scheduled for blackout, and after periodic inspection, power is returned to the normal operating value to restore the current flowing through the copper electrolytic purification tank, and electrolytic purification is performed. In the copper electrolytic refining method for restarting the process, an invention relating to a copper electrolytic refining method is disclosed, wherein the power recovery is performed by an operation of increasing the current value in two or more stages. And according to this, it is described that it is possible to avoid a situation in which it is difficult to strip the electrodeposited copper after a planned power outage in a permanent cathode (PC) type copper electrolytic refining factory.

特開2008−248273号公報JP 2008-248273 A 特開2009−256742号公報JP 2009-256742 A

従来の電解採取方法では、停電後の復電時に電流を一気に操業時の値まで上昇させると(1分程度で310mA/m2)、陽極に鉛合金を用いている場合、この鉛合金電極の表面層に形成された硫酸鉛を主成分とする表面層が剥離し、鉛電極の寿命を低下させてしまうという問題がある。この点、従来の電解採取方法では、このような問題に対して十分な解決手段とはならない。 In the conventional electrowinning method, when the current is increased to the value at the time of operation at the time of power recovery after a power failure (310 mA / m 2 in about 1 minute), when a lead alloy is used for the anode, this lead alloy electrode There is a problem that the surface layer mainly composed of lead sulfate formed on the surface layer is peeled off and the life of the lead electrode is reduced. In this regard, the conventional electrowinning method is not a sufficient solution to such a problem.

そこで、本発明は、金属の電解採取法において電極の長寿命化を実現することを課題とする。   Accordingly, an object of the present invention is to realize a long life of an electrode in a metal electrowinning method.

本発明者は、上記課題を解決するために鋭意検討した結果、電流の供給開始から、陽極表面の酸素ガスの発生量を調整しながら、電解槽へ供給する電圧を段階的に上昇させることで、例えば陽極が鉛合金で形成されている場合、鉛合金電極表面の硫酸鉛を徐々に酸化鉛へ変化させ、硫酸鉛層が電位の急上昇によって電解液中へ剥離してしまうことを抑制することができることを見出した。   As a result of intensive studies to solve the above problems, the present inventor has gradually increased the voltage supplied to the electrolytic cell while adjusting the amount of oxygen gas generated on the anode surface from the start of current supply. For example, when the anode is formed of a lead alloy, lead sulfate on the lead alloy electrode surface is gradually changed to lead oxide, and the lead sulfate layer is prevented from peeling into the electrolyte due to a sudden increase in potential. I found out that I can.

以上の知見を基礎として完成した本発明は一側面において、電解槽中の電解液に対して、電流供給開始から、酸素ガスの発生量を調整しながら電解槽へ供給する電圧を段階的に上昇させることで、前記電解液中の金属を電解採取するための電気分解を行う工程を含む金属の電解採取方法である。
The present invention completed based on the above knowledge, in one aspect, gradually increases the voltage supplied to the electrolytic cell while adjusting the amount of oxygen gas generated from the start of current supply to the electrolytic solution in the electrolytic cell. Thus, there is provided a metal electrowinning method including a step of performing electrolysis for electrowinning the metal in the electrolytic solution .

本発明に係る金属の電解採取方法は一実施形態において、前記電気分解が、電解操作を停止した後の、復電開始の際の電気分解である。   In one embodiment of the metal electrowinning method according to the present invention, the electrolysis is electrolysis at the start of power recovery after the electrolysis operation is stopped.

本発明に係る金属の電解採取方法は別の一実施形態において、前記供給開始時の電圧を、水の電気分解電位より低電位で一旦保持し、その後、段階的に復電していく。   In another embodiment of the metal electrowinning method according to the present invention, the voltage at the start of supply is temporarily held at a potential lower than the electrolysis potential of water, and then the power is restored stepwise.

本発明に係る金属の電解採取方法はさらに別の一実施形態において、前記電解液が硫酸酸性の電解液であり、且つ、電解で用いるアノードが鉛合金である。
In still another embodiment of the metal electrowinning method according to the present invention, the electrolytic solution is a sulfuric acid electrolytic solution, and the anode used for electrolysis is a lead alloy .

本発明によれば、金属の電解採取法において電極の長寿命化を実現することができる。   According to the present invention, it is possible to extend the life of an electrode in a metal electrowinning method.

複数の脱銅電解槽を直列に配列した状態を示す。The state which arranged the some copper removal electrolysis tank in series is shown. 複数の脱銅電解槽を直列に配列した状態を示す。The state which arranged the some copper removal electrolysis tank in series is shown. 複数の脱銅電解槽を直列に配列した状態を示す。The state which arranged the some copper removal electrolysis tank in series is shown. 非特許文献1(J.Burbank; Journal of electrochemical society, vol.106, No.5, (1959), 369-376)に記載された硫酸浴中における鉛アノード上のアノード酸化物層の概念図である。Non-Patent Document 1 (J. Urban; Journal of electrochemical society, vol. 106, No. 5, (1959), 369-376) is a conceptual diagram of an anode oxide layer on a lead anode in a sulfuric acid bath. is there. 実施例1の脱銅電解の通電条件を示す。The energization conditions of the copper removal electrolysis of Example 1 are shown. 比較例1の脱銅電解の通電条件を示す。The energization conditions for the copper removal electrolysis of Comparative Example 1 are shown.

以下に、本発明に係る金属の電解採取法の実施形態を、脱銅電解を例に挙げて説明する。   Hereinafter, an embodiment of a metal electrowinning method according to the present invention will be described by taking copper removal electrolysis as an example.

脱銅電解の一般的な手順を説明する。銅の電解精製と同様の電解液が脱銅電解槽に供給される。該電解液は硫酸酸性であるのが一般的であり、銅濃度は例えば30〜60g/Lである。脱銅電解槽内にはカソード(陰極)板とアノード(陽極)板が設置されている。一般には、カソード板とアノードが一つの脱銅電解槽内に交互に配列されている。図1−1〜図1−3に示すように、複数の脱銅電解槽11を直列に配列することもできる。脱銅電解開始前は図1−3に示すように、バイパス回路スイッチ15が閉の状態であり、電脱銅電解槽への電流が短絡されている。バイパス回路スイッチ15を開の状態にして、脱銅電解槽11への通電を開始すると、電気は図1−1に示すように脱銅電解槽11を流れ、電解液14中に溶解していた銅成分がカソード板13に電着する。通電を継続し、所定の厚みにまで電着銅が成長すると、一旦電流の供給を停止してカソード板13を電解槽11から引き上げて電着銅を回収し、新しいカソード板13に入れ替える。カソード板13の入れ替え時には、感電防止のため、カソード板13の引き上げ前に再び回路が短絡され、図1−3の状態に戻る。カソード板13の入れ替え中は図1−2の状態となり、脱銅電解槽11は絶縁される。新しいカソード板13が脱銅電解槽11に装入されて再度図1−3の状態となり、その後、通電が繰り返される。新しいカソード板13の配置が完了した時点で、図1−3の状態で、いったん全体を停電する場合もある。   A general procedure for copper removal electrolysis will be described. An electrolytic solution similar to the electrolytic purification of copper is supplied to the copper removal electrolytic cell. The electrolytic solution is generally sulfuric acid acid, and the copper concentration is, for example, 30 to 60 g / L. A cathode (cathode) plate and an anode (anode) plate are installed in the copper removal electrolytic cell. In general, cathode plates and anodes are alternately arranged in one copper removal electrolytic cell. As shown in FIGS. 1-1 to 1-3, a plurality of copper removal electrolytic cells 11 can be arranged in series. Before the start of copper removal electrolysis, as shown in FIG. 1C, the bypass circuit switch 15 is closed, and the current to the electrodeposition copper electrolysis tank is short-circuited. When the bypass circuit switch 15 was opened and energization to the copper removal electrolytic cell 11 was started, electricity flowed through the copper removal electrolytic cell 11 and dissolved in the electrolytic solution 14 as shown in FIG. The copper component is electrodeposited on the cathode plate 13. When the energization is continued and the electrodeposited copper grows to a predetermined thickness, the supply of current is stopped once, the cathode plate 13 is pulled up from the electrolytic cell 11, the electrodeposited copper is recovered, and is replaced with a new cathode plate 13. When replacing the cathode plate 13, the circuit is short-circuited again before the cathode plate 13 is pulled up to prevent an electric shock, and the state returns to the state shown in FIG. While the cathode plate 13 is replaced, the state shown in FIG. 1-2 is established, and the copper removal electrolytic cell 11 is insulated. A new cathode plate 13 is inserted into the decoppering electrolytic cell 11 to be in the state shown in FIG. 1-3 again, and then energization is repeated. When the arrangement of the new cathode plate 13 is completed, there is a case where the whole power is temporarily cut off in the state shown in FIG.

アノードとして、例えばPb−Sb、Pb−Ca−Sn合金を使用し、カソードとして銅の種板を使用する従来の脱銅電解においては、通電時(図1−1の状態)に以下のような反応が起こり、アノードでは水の電気分解により酸素が発生し、カソードでは銅が析出する。
アノード:H2O→1/2O2+2H++2e-
カソード:CuSO4+2e-→Cu+SO4 2-
また、カソードの引き上げ前及び通電前(図1−3の状態)には以下のような反応が起こり、カソードから銅が電解液中に溶出する反応が起きる。
アノード:PbO2+4H++SO4 2-+2e-→PbSO4+2H2
カソード:Cu+SO4 2-→CuSO4+2e-
In the conventional copper removal electrolysis using, for example, a Pb—Sb, Pb—Ca—Sn alloy as the anode and a copper seed plate as the cathode, the following is shown when energized (state shown in FIG. 1-1). Reaction occurs, oxygen is generated by electrolysis of water at the anode, and copper is deposited at the cathode.
Anode: H 2 O → 1 / 2O 2 + 2H + + 2e
Cathode: CuSO 4 + 2e → Cu + SO 4 2−
Further, the following reaction occurs before the cathode is pulled up and before energization (the state shown in FIG. 1-3), and a reaction occurs in which copper is eluted from the cathode into the electrolytic solution.
Anode: PbO 2 + 4H + + SO 4 2− + 2e → PbSO 4 + 2H 2 O
Cathode: Cu + SO 4 2− → CuSO 4 + 2e

このような脱銅電解において、一旦操業を停止した後の通電(復電)を操業の電圧まで一気に上昇させると(例えば、1分程度で310mA/m2、2.0V)、鉛アノードの表面層に形成された硫酸鉛を主成分とする表面層が剥離し、鉛アノードの寿命を低下させてしまうという問題があった。ここで、本発明者は、電解時における鉛アノード上のアノード酸化物層とアノード電位との対応関係について注目し、これにより上記問題を解決するに至った。具体的には、非特許文献1(J.Burbank; Journal of electrochemical society, vol.106, no.5, (1959), 369-376)及び、当該文献に記載された硫酸浴中における鉛アノード上のアノード酸化物層の概念図(図2)に着目した。図2に示されるように、鉛アノード上には、通電開始から徐々に表面層が形成されていくが、その表面層の形態が供給する電位ごとに異なっている。具体的には、電解槽に浸漬された鉛アノード板は、硫酸溶液と反応して、表面層に絶縁層の硫酸鉛が形成され、通電開始時には、PbSO4という絶縁物が厚く形成されており、電位の上昇と共に徐々にPbO・PbSO4→Pb(OH)2→PbOtとなって絶縁物の割合が減少していく。ここで、鉛アノードと表面層中の絶縁物層(PbSO4)との間に存在するPbO、Pb(OH)2、PbOt等からは、常に酸素ガスが発生している。通電開始時に一気に電位を上昇させると、この酸素ガスの量が一気に多くなり、最表層である絶縁物層(PbSO4)を剥がし、これによって鉛アノードの寿命を低下させてしまうという知見を得た。そこで、電解槽中の電解液に対して、電流供給開始から、この酸素ガスの発生量を調整しながら電解槽へ供給する電流を段階的に上昇させることで電気分解を行うことにより、鉛アノードの表面層の剥離を良好に抑制することで、鉛アノードの長寿命化を実現することができる。 In such decopperization electrolysis, when energization (recovery) after stopping the operation is increased to the operation voltage at once (for example, 310 mA / m 2 , 2.0 V in about 1 minute), the surface of the lead anode There was a problem that the surface layer mainly composed of lead sulfate formed in the layer peeled off and the life of the lead anode was reduced. Here, the present inventor paid attention to the correspondence between the anode oxide layer on the lead anode and the anode potential during electrolysis, thereby solving the above problem. Specifically, Non-Patent Document 1 (J. Urban; Journal of electrochemical society, vol. 106, no. 5, (1959), 369-376) and the lead anode in the sulfuric acid bath described in the document. Attention was paid to the conceptual diagram (FIG. 2) of the anode oxide layer. As shown in FIG. 2, the surface layer is gradually formed on the lead anode from the start of energization, and the form of the surface layer varies depending on the supplied potential. Specifically, the lead anode plate immersed in the electrolytic cell reacts with the sulfuric acid solution to form an insulating layer of lead sulfate on the surface layer. At the start of energization, a thick PbSO 4 insulator is formed. As the potential increases, the ratio of the insulator gradually decreases as PbO.PbSO 4 → Pb (OH) 2 → PbO t . Here, oxygen gas is always generated from PbO, Pb (OH) 2 , PbO t, etc. existing between the lead anode and the insulator layer (PbSO 4 ) in the surface layer. It was found that when the electric potential was increased at the start of energization, the amount of oxygen gas increased at a stretch, and the insulating layer (PbSO 4 ), which was the outermost layer, was peeled off, thereby reducing the life of the lead anode. . Therefore, by performing electrolysis by gradually increasing the current supplied to the electrolytic cell while adjusting the amount of oxygen gas generated from the start of current supply to the electrolytic solution in the electrolytic cell, the lead anode It is possible to extend the life of the lead anode by satisfactorily suppressing the peeling of the surface layer.

供給開始時の電圧は、水の電気分解電位より低電位で一旦保持し、その後、段階的に復電していくことが好ましい。図2に示されるように、水の電気分解電位以上の電位から酸素ガス発生量が増加していくため、それまでは低位電位で保持しておき、PbSO4→PbOに徐々に変化させることで、表面層の剥離を良好に抑制することができる。このときの保持電位は、より詳細には、PbSO4がPbOに変化していく電位以上であって、同時に水分解により酸素が発生しない電位以下のものである。保持電位の数値、及び、保持時間については、電解槽内の電解液の濃度やスケールにもよるが、好ましくは1.0〜1.5Vで10分以上、1.5〜2.0Vで10分以上と段階的に復電する。 It is preferable that the voltage at the start of supply is once held at a potential lower than the electrolysis potential of water, and then the power is restored stepwise. As shown in FIG. 2, since the amount of oxygen gas generated increases from a potential equal to or higher than the electrolysis potential of water, it is maintained at a low potential until then and gradually changed from PbSO 4 → PbO. The surface layer can be favorably suppressed. More specifically, the holding potential at this time is equal to or higher than the potential at which PbSO 4 changes to PbO and is equal to or lower than the potential at which oxygen is not generated by water splitting. Regarding the numerical value of the holding potential and the holding time, although it depends on the concentration and scale of the electrolytic solution in the electrolytic cell, it is preferably 1.0 to 1.5 V for 10 minutes or more, and 1.5 to 2.0 V to 10 Power is restored step by step in more than minutes

酸素発生量の調整は、目視や酸素濃度測定器で行うことができる。具体的には、目視で行う。酸素発生は鉛アノードの表面層の剥離に繋がるため、このように電流供給開始から酸素発生量を調整しながら供給電流を段階的に上昇させることで、表面層の剥離を良好に抑制することができる。   The oxygen generation amount can be adjusted visually or with an oxygen concentration measuring device. Specifically, it is performed visually. Oxygen generation leads to peeling of the surface layer of the lead anode. Thus, by gradually increasing the supply current while adjusting the amount of oxygen generated from the start of current supply, the peeling of the surface layer can be satisfactorily suppressed. it can.

陽極の材料としては特に制限はないが、鉛及びアンチモンを含む合金、或いは、鉛、カルシウム及びスズを含む合金を用いることができる。鉛合金は、安価で入手し易く、また電解液を汚染しないため好ましい。また、不溶性アノード(チタン素材上にイリジウム酸化物を被覆コートしたもの)等を用いてもよい。   Although there is no restriction | limiting in particular as a material of an anode, The alloy containing lead and antimony or the alloy containing lead, calcium, and tin can be used. Lead alloys are preferred because they are inexpensive and readily available and do not contaminate the electrolyte. An insoluble anode (a titanium material coated with iridium oxide) or the like may be used.

陰極の材料としては特に制限はないが、電解液に対して不溶性であることからチタンやステンレスを用いるのが一般的であり、電位が高いことからステンレスを用いるのが好ましい。ステンレスとしては特に制限はなく、マルテンサイト系ステンレス鋼、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、オーステナイト・フェライト二相ステンレス鋼、及び析出硬化ステンレス鋼の何れを用いても良い。   The cathode material is not particularly limited, but titanium or stainless steel is generally used because it is insoluble in the electrolytic solution, and stainless steel is preferably used because of its high potential. The stainless steel is not particularly limited, and any of martensitic stainless steel, ferritic stainless steel, austenitic stainless steel, austenitic / ferrite duplex stainless steel, and precipitation hardened stainless steel may be used.

本発明に係る金属の電解採取方法は脱銅電解に適用するのが典型的であるが、これに限られず、例えばSX−EW、脱砒電解、電解銅粉の製造、電解銅箔の製造において使用する場合にも適用可能であり、本発明ではこれらのプロセスも電解採取の概念に包含する。   Typically, the metal electrowinning method according to the present invention is applied to copper removal electrolysis, but is not limited thereto. For example, in SX-EW, dearsenic electrolysis, production of electrolytic copper powder, and production of electrolytic copper foil. The present invention is applicable to the case of use, and in the present invention, these processes are also included in the concept of electrowinning.

次に、本発明の実施例について説明する。なお、本実施例はあくまで一例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、実施例以外の態様あるいは変形を全て包含するものである。   Next, examples of the present invention will be described. In addition, a present Example is an example to the last, and is not restrict | limited to this example. That is, all aspects or modifications other than the embodiments are included within the scope of the technical idea of the present invention.

(実施例1)
以下の条件で脱銅電解を実施した。
(1)銅電解精製に用いた電解液
容量:7000L
組成(Cu):45g/L(給液側)、35g/L(排液側)
組成(遊離硫酸):170g/L(給液側)、180〜185g/L(排液側)
液温:55〜70℃
(2)脱銅電解槽
3槽の脱銅電解槽を直列に配列した。各電解槽にはステンレス製(SUS316L)のパーマネントカソード板(縦×横×厚み=1m×1m×3mm)56枚、及びPb−Ca−Sn合金(Ca(0.1質量%)、Sn(0.5質量%))の不溶性アノード板(縦×横×厚み=1m×1m×10mm)57枚を交互に装入した。
(3)通電条件
電解槽に印加した電流、電流密度、電圧、及び通電時間を表1及び図3に記載する。このときの通電中の酸素発生量は、目視により調整した。
(4)結果
この結果、電流値を段階的に上昇させることで、電圧は、印加直後の絶縁層への電圧印加による急峻な高電圧値(オーバーシュート)を示すことなく、段階的に増加しており、鉛アノードの表面性状は良好であった。また、鉛アノードからの鉛の剥離量は、使用前後の鉛アノード板の重量変化で調べ、鉛アノード表面からの鉛の剥離が従来の1/2程度に低減した。
(Example 1)
Copper removal electrolysis was performed under the following conditions.
(1) Electrolyte used for copper electrolytic purification Capacity: 7000L
Composition (Cu): 45 g / L (liquid supply side), 35 g / L (drainage side)
Composition (free sulfuric acid): 170 g / L (liquid supply side), 180 to 185 g / L (drainage side)
Liquid temperature: 55-70 degreeC
(2) Decoppering electrolytic cell Three decoppering electrolytic cells were arranged in series. Each electrolytic cell is made of 56 stainless steel (SUS316L) permanent cathode plates (vertical × horizontal × thickness = 1 m × 1 m × 3 mm), and Pb—Ca—Sn alloy (Ca (0.1 mass%), Sn (0%)). .5 mass%)) insoluble anode plates (length × width × thickness = 1 m × 1 m × 10 mm) were alternately charged.
(3) Energization conditions Table 1 and FIG. 3 show the current, current density, voltage, and energization time applied to the electrolytic cell. The amount of oxygen generated during energization at this time was visually adjusted.
(4) Result As a result, by increasing the current value stepwise, the voltage increases stepwise without showing a steep high voltage value (overshoot) due to voltage application to the insulating layer immediately after application. The surface properties of the lead anode were good. Further, the amount of lead stripped from the lead anode was examined by a change in the weight of the lead anode plate before and after use, and the lead stripping from the lead anode surface was reduced to about ½ of the conventional amount.

(比較例1)
通電条件以外は、実施例1と同様の条件で脱銅電解を実施した。比較例1の通電条件として、図4に示すように、2分間で電流密度が80から300A/m2へ一気に印加した。
この結果、電流印加後の電圧は一気に2.5Vから5.5Vへ上昇し、約30分かけて2.1Vで安定した。この電圧の急上昇は、鉛アノード表面に形成されている絶縁層へ電圧が一気に印加されて、電圧が急上昇し(オーバーシュート)、鉛アノード表面付近より酸素ガスが急激に発生した。その結果、鉛アノードの表面から薄膜が剥離している箇所がみられた。
(Comparative Example 1)
Copper removal electrolysis was performed under the same conditions as in Example 1 except for the energization conditions. As the energization conditions of Comparative Example 1, as shown in FIG. 4, the current density was applied from 80 to 300 A / m 2 at a stroke in 2 minutes.
As a result, the voltage after applying the current increased from 2.5 V to 5.5 V at a stretch, and stabilized at 2.1 V over about 30 minutes. This rapid increase in voltage was applied to the insulating layer formed on the lead anode surface at once, the voltage increased rapidly (overshoot), and oxygen gas was suddenly generated from the vicinity of the lead anode surface. As a result, a portion where the thin film was peeled off from the surface of the lead anode was observed.

(実施例2)
電解液中の鉛アノード(体積:1020mm×90mm×11mm)を57枚準備し、実施例1の条件によって、1年間の脱銅電解を行い、鉛アノードの使用評価を行った。鉛アノードの初期厚みは11mm、終期厚みは3mmであった。1年間の使用の結果、鉛滓中の鉛量は1162kgであった。
この結果、以下の計算式によって、通常は2年程度であった鉛アノードの使用寿命が4.1年となることが確認された。
初期の鉛電極重量:アノード板の体積(1020mm×90mm×11mm)×アノード板の密度(11.34mg/mm3)×アノード板の枚数(57枚)=6527kg
使用可能量:初期の鉛電極重量(6527kg)×厚み((11mm−3mm)/11mm)=4747kg
寿命評価:使用可能量(4747kg)/鉛滓中の鉛量(1162kg)=4.1年
(Example 2)
57 lead anodes (volume: 1020 mm × 90 mm × 11 mm) in the electrolytic solution were prepared, and copper removal electrolysis was conducted for one year under the conditions of Example 1 to evaluate the use of the lead anode. The lead anode had an initial thickness of 11 mm and a final thickness of 3 mm. As a result of one year of use, the amount of lead in the lead cage was 1162 kg.
As a result, it was confirmed by the following formula that the service life of the lead anode, which was normally about 2 years, was 4.1 years.
Initial lead electrode weight: anode plate volume (1020 mm × 90 mm × 11 mm) × anode plate density (11.34 mg / mm 3 ) × number of anode plates (57) = 6527 kg
Usable amount: initial lead electrode weight (6527 kg) × thickness ((11 mm−3 mm) / 11 mm) = 4747 kg
Life evaluation: Usable amount (4747 kg) / Lead amount in lead pad (1162 kg) = 4.1 years

11 脱銅電解槽
12 アノード板
13 カソード板
14 電解液
15 バイパス回路スイッチ
11 Decopper electrolytic bath 12 Anode plate 13 Cathode plate 14 Electrolyte 15 Bypass circuit switch

Claims (4)

電解槽中の電解液に対して、電流供給開始から、酸素ガスの発生量を調整しながら電解槽へ供給する電圧を段階的に上昇させることで、前記電解液中の金属を電解採取するための電気分解を行う工程を含む金属の電解採取方法。 To electrolyze the metal in the electrolytic solution by gradually increasing the voltage supplied to the electrolytic cell while adjusting the amount of oxygen gas generated from the start of current supply to the electrolytic solution in the electrolytic cell electrowinning method of the metal comprising the step of performing electrolysis of. 前記電気分解が、電解操作を停止した後の、復電開始の際の電気分解である請求項1に記載の金属の電解採取方法。   The method of electrowinning a metal according to claim 1, wherein the electrolysis is electrolysis at the start of power recovery after the electrolysis operation is stopped. 前記供給開始時の電圧を、水の電気分解電位より低電位で一旦保持し、その後、段階的に復電していく請求項2に記載の金属の電解採取方法。   The metal electrowinning method according to claim 2, wherein the voltage at the start of supply is temporarily held at a potential lower than the electrolysis potential of water, and then the power is recovered stepwise. 前記電解液が硫酸酸性の電解液であり、且つ、電解で用いるアノードが鉛合金である請求項1〜3のいずれか一項に記載の金属の電解採取方法。The method for electrowinning a metal according to any one of claims 1 to 3, wherein the electrolytic solution is a sulfuric acid electrolytic solution, and the anode used for electrolysis is a lead alloy.
JP2011267019A 2011-12-06 2011-12-06 Electrolytic extraction of metals Active JP5804920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011267019A JP5804920B2 (en) 2011-12-06 2011-12-06 Electrolytic extraction of metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011267019A JP5804920B2 (en) 2011-12-06 2011-12-06 Electrolytic extraction of metals

Publications (2)

Publication Number Publication Date
JP2013119641A JP2013119641A (en) 2013-06-17
JP5804920B2 true JP5804920B2 (en) 2015-11-04

Family

ID=48772441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011267019A Active JP5804920B2 (en) 2011-12-06 2011-12-06 Electrolytic extraction of metals

Country Status (1)

Country Link
JP (1) JP5804920B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592617B (en) * 2019-08-29 2021-06-15 青海物产工业投资有限公司 Secondary starting method for full-series power failure of aluminum electrolysis cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163106A (en) * 2003-12-02 2005-06-23 Permelec Electrode Ltd Copper removal electrolytic equipment
JP2005187865A (en) * 2003-12-25 2005-07-14 Nittetsu Mining Co Ltd Method and apparatus for recovering copper from copper etching waste solution by electrolysis
US7393438B2 (en) * 2004-07-22 2008-07-01 Phelps Dodge Corporation Apparatus for producing metal powder by electrowinning
JP2009256742A (en) * 2008-04-18 2009-11-05 Pan Pacific Copper Co Ltd Copper electro-refining method in which planned blackout is carried out

Also Published As

Publication number Publication date
JP2013119641A (en) 2013-06-17

Similar Documents

Publication Publication Date Title
Clancy et al. The influence of alloying elements on the electrochemistry of lead anodes for electrowinning of metals: a review
JP4771130B2 (en) Oxygen generating electrode
US20140231249A1 (en) Chlorine evolution anode
Zhang et al. Lead-silver anode behavior for zinc electrowinning in sulfuric acid solution
Nan et al. Hydrometallurgical process for extracting bismuth from by-product of lead smelting based on methanesulfonic acid system
JP5804920B2 (en) Electrolytic extraction of metals
US4264419A (en) Electrochemical detinning of copper base alloys
CA2533450A1 (en) Metal electrowinning cell with electrolyte purifier
JP5575020B2 (en) Electrolytic extraction of metals
JP6077884B2 (en) Nonferrous metal electrowinning method and anode manufacturing method used therefor
JP2019052329A (en) Electrorefining method of low-grade copper anode, and electrolytic solution used therefor
TWI725345B (en) Method for peeling attached metal from metal plate
Yang et al. Effect of rolling technologies on the properties of Pb-0.06 wt% Ca-1.2 wt% Sn alloy anodes during copper electrowinning
Lu et al. Effects of current density and nickel as an impurity on zinc electrowinning
JPS6312150B2 (en)
EP1417357B1 (en) Hydrogen evolution inhibiting additives for zinc electrowinning
EP0058506B1 (en) Bipolar refining of lead
Zhang Performance of lead anodes used for zinc electrowinning and their effects on energy consumption and cathode impurities
JP2017214612A (en) Electrolytic refining method for copper
JP2019044221A (en) Operation method of copper electrorefining
CN113881967B (en) Impurity removal method for lead electrolyte
JP6473102B2 (en) Cobalt electrowinning method
AU2002322888A1 (en) Hydrogen evolution inhibiting additives for zinc electrowinning
JP2012092447A (en) Electrolytic extracting method of cobalt
JP2003105581A (en) Method and apparatus for electrolytic deposition of tin alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150901

R150 Certificate of patent or registration of utility model

Ref document number: 5804920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250