JP7089862B2 - Copper electrorefining method - Google Patents

Copper electrorefining method Download PDF

Info

Publication number
JP7089862B2
JP7089862B2 JP2017242017A JP2017242017A JP7089862B2 JP 7089862 B2 JP7089862 B2 JP 7089862B2 JP 2017242017 A JP2017242017 A JP 2017242017A JP 2017242017 A JP2017242017 A JP 2017242017A JP 7089862 B2 JP7089862 B2 JP 7089862B2
Authority
JP
Japan
Prior art keywords
copper
concentration
passivation
anode
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017242017A
Other languages
Japanese (ja)
Other versions
JP2019085636A (en
Inventor
大輔 手塚
有兼 深野
明 會澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of JP2019085636A publication Critical patent/JP2019085636A/en
Application granted granted Critical
Publication of JP7089862B2 publication Critical patent/JP7089862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

特許法第30条第2項適用 1.平成29年度 特別研究会、レアメタル研究会、寄付ユニット特別シンポジウム、一般社団法人 資源・素材学会協賛“非鉄製錬におけるマイナーメタルに関するシンポジウム”報告資料:「銅電解におけるマイナーエレメントの挙動」JX金属株式会社技術開発センター 岡本 秀則 主催者: 東京大学、生産技術研究所 非鉄金属資源循環工学寄付研究部門(JX金属寄付ユニット) 開催日: 平成29年11月10日 開催場所:東京大学生産技術研究所Application of Article 30, Paragraph 2 of the Patent Law 1. 2017 Special Study Group, Rare Metal Study Group, Donation Unit Special Symposium, "Symposium on Minor Metals in Non-Iron Smelting" sponsored by the Institute of Industrial Science, JX Metals Co., Ltd. Technology Development Center Hidenori Okamoto Organizer: Institute of Industrial Science, University of Tokyo Non-ferrous Metal Resources Recycling Engineering Donation Research Division (JX Metal Donation Unit) Date: November 10, 2017 Venue: Institute of Industrial Science, University of Tokyo

本発明は、銅電解精製方法に関し、不純物を多く含む銅アノードを用いた銅電解精製方法に関する。 The present invention relates to a copper electrorefining method, and relates to a copper electrorefining method using a copper anode containing a large amount of impurities.

銅電解精製に用いられる銅アノードの不純物品位は規格が設けられ、不純物含有量がその規格を超えないように成分を調整することが行われてきていた。しかしながら、近年の鉱石中の不純物品位の上昇及び基板屑等を含むリサイクル原料の増処理により銅アノード中の不純物品位が上昇を続けており、今後、現在の規格以上の不純物品位の銅アノードを処理しなければならなくなることが予見されている。特にリサイクル原料の処理量が増えると、銅アノードに混入するSbやNiの品位が上昇する。 Standards have been established for the impurity grade of copper anodes used in copper electrorefining, and the components have been adjusted so that the impurity content does not exceed the standard. However, the impurity grade in the copper anode has continued to rise due to the recent rise in the impurity grade in the ore and the increase treatment of recycled raw materials including substrate waste, and in the future, the copper anode with the impurity grade higher than the current standard will be treated. It is foreseen that we will have to do it. In particular, as the amount of recycled raw material processed increases, the quality of Sb and Ni mixed in the copper anode increases.

銅アノードの不純物品位が高くなると、当然、電解液中に溶け出す不純物も多くなり、そのまま放置すれば電解成績及び電気銅の品質の悪化を招く恐れが高い。合わせて、不純物の中でも、SbやNiの品位が高い銅アノードは、銅アノード中に存在する不溶性のNiOや銅-ニッケル-アンチモン-酸化物(Kupferglimmer)とよばれるCu、Sb、Niの結晶が多く存在すると考えられており、これらの結晶が殿物中に増えると、アノード近傍のCuイオンの拡散が阻害され、不動態化が助長すると考えられる。 As the quality of impurities in the copper anode increases, naturally, the amount of impurities dissolved in the electrolytic solution also increases, and if left as it is, there is a high possibility that the electrolytic performance and the quality of electrolytic copper will deteriorate. In addition, among the impurities, the copper anode with high grade of Sb and Ni contains insoluble NiO and Cu, Sb, and Ni crystals called copper-nickel-antimon-oxide (Kupferglimmer) existing in the copper anode. It is thought that there are many of these crystals, and when these crystals increase in the burial mound, the diffusion of Cu ions near the anode is inhibited and passivation is promoted.

不動態化は、銅アノード近傍でCu濃度が上昇を続け、導電性のないCuSO4・5H2O結晶が析出することで、通電が不可能となる現象である。操業現場では、不動態化を防止するために、電解液のCu濃度、硫酸濃度、液温などの管理を行っているが、不動態化の予兆が見られた場合は、硫酸銅結晶を析出させないように液組成や液温を変更して対応を取ってきた。しかしながら、不動態化発生への対応については体系的な規定はなく、これまでの経験に基づいて実施されているだけであり、特に不純物を多く含有する銅アノード使用時の対応については知見が無い。 Passivation is a phenomenon in which the Cu concentration continues to increase near the copper anode and non-conductive CuSO 4.5H 2 O crystals are deposited, making it impossible to energize. At the operation site, in order to prevent passivation, the Cu concentration, sulfuric acid concentration, liquid temperature, etc. of the electrolytic solution are controlled, but if there is a sign of passivation, copper sulfate crystals are deposited. We have taken measures by changing the liquid composition and liquid temperature so as not to cause it. However, there is no systematic regulation for the response to the occurrence of passivation, and it is only implemented based on the experience so far, and there is no knowledge about the response when using a copper anode containing a large amount of impurities. ..

不動態化抑制方法として、特開2000-54181号公報(特許文献1)には、アノードのCu品位、酸素品位、Se品位、Ag品位、As品位からなる関係式を用いて、不動態化を抑制できる品位に調整したアノードを使用する方法が開示されている。 As a method for suppressing passivation, JP-A-2000-54181 (Patent Document 1) uses a relational expression consisting of Cu grade, oxygen grade, Se grade, Ag grade, and As grade of the anode to perform passivation. A method of using an anode adjusted to a suppressable grade is disclosed.

特開2000-54181号公報Japanese Unexamined Patent Publication No. 2000-54181

しかしながら、特許文献1に記載された方法は、不動態化現象の発現の原因として、1価のCuイオンが電物中でCu粉となり、Cuイオンの拡散を阻害するという事象を抑制するために、銅アノードの組成を調整して1価のCuイオンの生成を抑える手法が提案されるだけであって、電極近傍のCu濃度増加という不動態化現象の根本原因を十分解決できているとはいえない。 However, the method described in Patent Document 1 is to suppress the phenomenon that monovalent Cu ions become Cu powder in an electric substance and inhibit the diffusion of Cu ions as a cause of the occurrence of the passivation phenomenon. However, only a method of adjusting the composition of the copper anode to suppress the generation of monovalent Cu ions has been proposed, and it is said that the root cause of the passivation phenomenon of increasing the Cu concentration near the electrode can be sufficiently solved. I can't say.

また、特許文献1に記載された方法は、Cu、Ag、As品位に着目して銅アノード中の不純物品位を調整する例しか記載されていない。よって、液の拡散を阻害する不溶性のNiOやKupferglimmerが多いと考えられるSbやNiの品位が高い銅アノードを用いた場合に、不動態化を抑制しながら高い電流効率で効率良く電解精製を行えるかどうかは不明である。 Further, the method described in Patent Document 1 describes only an example of adjusting the impurity grade in the copper anode by focusing on the Cu, Ag, and As grades. Therefore, when a copper anode with high grade of Sb or Ni, which is considered to have many insoluble NiO or Kupferglimmer that inhibits the diffusion of the liquid, is used, electrolytic refining can be efficiently performed with high current efficiency while suppressing passivation. It is unknown whether or not.

上記課題を鑑み、本発明は、Sb及びNiの品位が高い銅アノードを用いた場合であっても、不動態化を抑制しながら高い電流効率で効率良く電解精製を行うことが可能な銅電解精製方法を提供する。 In view of the above problems, the present invention provides copper electrorefining capable of efficiently performing electrolytic refining with high current efficiency while suppressing passivation even when a copper anode having high grades of Sb and Ni is used. A purification method is provided.

本発明者が上記課題を解決するために鋭意検討したところ、電解液中のSO4濃度を所定値以下に制御することが有効であることを見出した。 As a result of diligent studies to solve the above problems, the present inventor has found that it is effective to control the SO 4 concentration in the electrolytic solution to a predetermined value or less.

以上の知見を基礎として完成した本発明は一側面において、Sbを0.030~0.040質量%及びNiを0.20~0.30質量%含む銅アノードを用いた銅電解精製において、電解液中のSO4濃度268g/L以下で銅電解精製を行うことを特徴とする銅電解精製方法が提供される。 In one aspect, the present invention completed based on the above findings is electrolyzed in copper electrorefining using a copper anode containing 0.030 to 0.040% by mass of Sb and 0.20 to 0.30% by mass of Ni. Provided is a copper electrorefining method characterized by performing copper electrorefining at an SO 4 concentration of 268 g / L or less in a liquid.

本発明に係る銅電解精製方法は一実施態様において、カソード電流密度300~350A/m2で銅電解精製を行う。 In one embodiment, the copper electrorefining method according to the present invention performs copper electrorefining at a cathode current density of 300 to 350 A / m 2 .

本発明に係る銅電解精製方法は更に別の一実施態様において、銅アノードが、Asを0.05~0.24質量%、Biを0.01~0.027質量%含む。 In still another embodiment of the copper electrorefining method according to the present invention, the copper anode contains 0.05 to 0.24% by mass of As and 0.01 to 0.027% by mass of Bi.

本発明に係る銅電解精製方法は更に別の一実施態様において、電解液の液温が65℃以上である。 In still another embodiment of the copper electrorefining method according to the present invention, the liquid temperature of the electrolytic solution is 65 ° C. or higher.

本発明によれば、Sb及びNiの品位が高い銅アノードを用いた場合であっても、不動態化を抑制しながら高い電流効率で効率良く電解精製を行うことが可能な銅電解精製方法が提供できる。 According to the present invention, there is a copper electrorefining method capable of efficiently performing electrolytic refining with high current efficiency while suppressing passivation even when a copper anode having high grades of Sb and Ni is used. Can be provided.

不動態化が生じた際のアノード電流密度(不動態化DA)と電解液中のSO4濃度との関係の一例を表すグラフである。It is a graph showing an example of the relationship between the anode current density (passivation DA) and the SO 4 concentration in the electrolytic solution when passivation occurs.

以下、本発明の実施の形態について説明する。本発明の実施の形態に係る銅電解精製方法は、Sbを0.030~0.040質量%及びNiを0.20~0.30質量%含む銅アノードを用いる。 Hereinafter, embodiments of the present invention will be described. The copper electrorefining method according to the embodiment of the present invention uses a copper anode containing 0.030 to 0.040% by mass of Sb and 0.20 to 0.30% by mass of Ni.

銅アノード中のSb濃度はより典型的には0.030~0.038質量%であり、より更に典型的には0.035~0.038質量である。銅アノード中のNi濃度はより典型的には0.20~0.28質量%であり、より更に典型的には0.20~0.25質量%である。本実施形態に係る銅アノードはSb、Niの他に、Asを0.05~0.24質量%、Biを0.01~0.027質量%含み、銅品位は99.3~99.4質量%程度とすることができる。 The Sb concentration in the copper anode is more typically 0.030 to 0.038% by weight, and even more typically 0.035 to 0.038% by weight. The Ni concentration in the copper anode is more typically 0.20 to 0.28% by mass, and even more typically 0.20 to 0.25% by mass. The copper anode according to this embodiment contains 0.05 to 0.24% by mass of As and 0.01 to 0.027% by mass of Bi in addition to Sb and Ni, and has a copper grade of 99.3 to 99.4. It can be about% by mass.

不動態の原因は、電極近傍において硫酸銅結晶が析出してしまうことである。特に、本実施形態に用いられる銅アノードのように、銅アノード中のSb濃度が高い場合、浮遊スライムが生成されるとともに、アノード-電解液境界でのSb(III)のSB(V)の酸化により、不溶性で粘着性のアノード表面へのゲル状膜生成を引き起こす問題がある。特に、銅アノード中のSb濃度及びNi濃度の双方の濃度が高いと、kupferglimmerなどの不溶性結晶が生成し、液拡散を阻害して、不動態化を助長する問題がある。 The cause of the passivation is the precipitation of copper sulfate crystals near the electrodes. In particular, when the Sb concentration in the copper anode is high as in the copper anode used in the present embodiment, floating slime is generated and the SB (V) of Sb (III) is oxidized at the anode-electrolyte solution boundary. Causes the problem of causing the formation of a gel-like film on the surface of the insoluble and sticky anode. In particular, when both the Sb concentration and the Ni concentration in the copper anode are high, insoluble crystals such as kupferglimmer are generated, which hinders liquid diffusion and promotes passivation.

本実施形態に係る銅電解精製では、Sbを0.030~0.040質量%及びNiを0.20~0.30質量%含む高不純物濃度の銅アノードを使用し、電解液中のSO4濃度を種々に変更することにより、不動態化が発生するアノード電流密度(以下「不動態化DA」という)について検討を行ったところ、アノード電流密度と電解液中のSO4濃度との間に、図1に示すような関係を有することを見出した。即ち、SO4濃度を下げるほど、アノード電流密度を高くしても不動態化が起こりにくくなることがわかった。 In the copper electrolytic purification according to the present embodiment, a copper anode having a high impurity concentration containing 0.030 to 0.040% by mass of Sb and 0.20 to 0.30% by mass of Ni is used, and SO 4 in the electrolytic solution is used. When the anodic current density at which immobilization occurs by changing the concentration (hereinafter referred to as "immobilized DA") was investigated, the difference between the anodic current density and the SO 4 concentration in the electrolytic solution was investigated. , Found to have the relationship as shown in FIG. That is, it was found that the lower the SO 4 concentration, the less likely the passivation occurs even if the anode current density is increased.

「不動態化DA」とは、不動態化を起こした時のアノード電流密度の値を示す。不動態化DAが高いということは、不動態化が起きずに電解が進んだことを示し、不動態化対策として効果が高いことを示す。ここで「SO4濃度」とは、電解液中に硫酸根を持つ物質を合算することにより算出したSO4イオンの濃度の合計値を表す。具体的には、SO4濃度は、以下の計算式(A)で算出される。
{(電解液中で硫酸根を持つ銅の濃度÷銅の原子量63.5)+
(電解液中で硫酸根を持つニッケルの濃度÷ニッケルの原子量58.7)+
(フリー硫酸の濃度÷硫酸の分子量98)}×SO4の分子量96 ・・・(A)
"Passivation DA" indicates the value of the anode current density at the time of passivation. A high passivation DA indicates that electrolysis proceeded without passivation, indicating that it is highly effective as a passivation countermeasure. Here, the "SO 4 concentration" represents the total value of the SO 4 ion concentration calculated by adding up the substances having sulfate roots in the electrolytic solution. Specifically, the SO 4 concentration is calculated by the following formula (A).
{(Concentration of copper with sulfate root in electrolytic solution ÷ Atomic weight of copper 63.5) +
(Concentration of nickel with sulfate root in electrolytic solution ÷ Atomic weight of nickel 58.7) +
(Concentration of free sulfuric acid ÷ Molecular weight of sulfuric acid 98)} × Molecular weight of SO 4 96 ・ ・ ・ (A)

更に、図1の関係から、不動態化を抑制するための不動態化抑制指標として、式(1)の関係に基づく関係を用いて、電解液中の硫酸根を持つ物質の濃度を調整することができる。これにより電極近傍での硫酸銅結晶の析出を抑制し、不動態化を抑制しながら高い電流効率で効率良く電解精製を進めることができる。 Further, from the relationship of FIG. 1, the concentration of the substance having a sulfate root in the electrolytic solution is adjusted by using the relationship based on the relationship of the formula (1) as the passivation suppression index for suppressing the passivation. be able to. As a result, it is possible to suppress the precipitation of copper sulfate crystals in the vicinity of the electrode and efficiently proceed with electrolytic refining with high current efficiency while suppressing passivation.

不動態化抑制指標は、以下の式(1)
Y=-13.37X+4147 ・・・(1)
で表すことができる。
ここで、Yは不動態化DA(A/m2)、XはSO4濃度(g/L)を示す。
The passivation suppression index is the following formula (1).
Y = -13.37X + 4147 ... (1)
Can be represented by.
Here, Y indicates passivation DA (A / m 2 ), and X indicates SO 4 concentration (g / L).

更に銅電解精製工程をより高効率で実施するために、実操業において目標となる不動態化DAについて、目標とするカソード電流密度DKが350A/m2程度であるとした場合の複数のサンプルのばらつきから算出したところ、目標とする不動態化DAは560A/m2であることがわかった。 Furthermore, in order to carry out the copper electrolysis purification process with higher efficiency, for the passivation DA targeted in actual operation, a plurality of samples when the target cathode current density DK is about 350 A / m 2 When calculated from the variation, it was found that the target passivation DA was 560 A / m 2 .

目標とする不動態化DAに基づいて、式(1)の不動態化抑制指標に従って算出すると、SO4濃度は約268g/Lとなるため、本実施形態では、電解液中のSO4濃度が268g/L以下となるように銅電解精製を行うものとする。これにより、Sb及びNiの含有量の多い銅アノードを使用し、カソード電流密度DKを350A/m2程度に上げた場合においても、電極近傍のCu濃度の上昇を抑制し、不動態化を抑制しながら高い電流効率で効率良く電解精製を進めることができる。 When calculated according to the passivation suppression index of the formula (1) based on the target passivation DA, the SO 4 concentration is about 268 g / L. Therefore, in the present embodiment, the SO 4 concentration in the electrolytic solution is Copper electrorefining shall be performed so as to be 268 g / L or less. As a result, even when a copper anode with a high content of Sb and Ni is used and the cathode current density DK is increased to about 350 A / m 2 , the increase in Cu concentration near the electrodes is suppressed and immobilization is suppressed. At the same time, electrolytic purification can be efficiently advanced with high current efficiency.

一方で、電解液中のSO4濃度、特にSO4濃度に対する影響が大きいフリー酸濃度(フリーの硫酸イオン濃度)が低すぎると、Sb23・As25の溶解度が低下し、殿物の粘性が増加し、それにより電極近傍での液の拡散が阻害され不動態化を助長する恐れもある。よって、電解液中のフリー酸濃度は150g/L以上とすることが好ましく、より好ましくは160g/L以上であり、典型的には160~180g/Lである。また、その際のSO4濃度は244g/L以上とすることが好ましく、より好ましくは254g/L以上であり、更に好ましくは264g/L以上であり、典型的には254~268g/Lである。 On the other hand, if the SO 4 concentration in the electrolytic solution, especially the free acid concentration (free sulfate ion concentration) that has a large effect on the SO 4 concentration, is too low, the solubility of Sb 2 O 3 and As 2 O 5 decreases. The viscosity of the object increases, which may hinder the diffusion of the liquid near the electrode and promote immobilization. Therefore, the free acid concentration in the electrolytic solution is preferably 150 g / L or more, more preferably 160 g / L or more, and typically 160 to 180 g / L. The SO 4 concentration at that time is preferably 244 g / L or more, more preferably 254 g / L or more, further preferably 264 g / L or more, and typically 254 to 268 g / L. ..

本実施形態に係る銅電解精製工程における電解液の液温は、温度を上げるほど不動態化DAを高くすることができるため、60℃以上が好ましく、更には65℃以上とすることが好ましく、一実施態様においては65~70℃である。 The temperature of the electrolytic solution in the copper electrorefining step according to the present embodiment is preferably 60 ° C. or higher, more preferably 65 ° C. or higher, because the passivation DA can be increased as the temperature is raised. In one embodiment, the temperature is 65 to 70 ° C.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention are shown below together with comparative examples, but these examples are provided for a better understanding of the present invention and its advantages, and are not intended to limit the invention.

(不動態化DAと電解液中のSO4濃度との関係(不動態化抑制指標)の評価)
Sbを0.037~0.040質量%、Niを0.23~0.27%含有する銅アノード(試料1~13)を用いて銅電解精製を実施し、不動態化を起こした時のアノード電流密度の値(不動態化DA)を測定した。銅アノード中にはその他の不純物としてAs:0.09~0.11%、Bi:0.012~0.016%程度含んでいた。電解液の液温は63~65℃以上とした。試料1~9のカソード電流密度DKは322~350A/m2で実施した。
(Evaluation of the relationship between the passivation DA and the SO 4 concentration in the electrolytic solution (passivation suppression index))
When copper electrolytic purification was carried out using a copper anode (Samples 1 to 13) containing 0.037 to 0.040% by mass of Sb and 0.23 to 0.27% of Ni, and passivation occurred. The value of the anode current density (passivation DA) was measured. The copper anode contained As: 0.09 to 0.11% and Bi: 0.012 to 0.016% as other impurities. The liquid temperature of the electrolytic solution was 63 to 65 ° C. or higher. The cathode current density DK of Samples 1 to 9 was 322 to 350 A / m 2 .

なお、試料10~13は、実操業において目標となる不動態化DAを評価するために、試料1~9よりも小型の銅アノードを使用した。即ち、試料10~13では試験開始時のアノード電流密度DAが400A/m2となるように、カソード電流密度DKを33~50A/m2に設定し、不動態化DAを評価した。 For samples 10 to 13, a copper anode smaller than that of samples 1 to 9 was used in order to evaluate the passivation DA targeted in the actual operation. That is, in the samples 10 to 13, the cathode current density DK was set to 33 to 50 A / m 2 so that the anode current density DA at the start of the test was 400 A / m 2 , and the passivation DA was evaluated.

試料1~13の液組成を表1に示すように変更し、試験をした。表1中「SO4濃度」は、上記の関係式(A)で示されるCu、Ni、フリー硫酸濃度から算出した合算値を用いた。結果を図1に示す。 The liquid composition of Samples 1 to 13 was changed as shown in Table 1 and tested. For "SO 4 concentration" in Table 1, the total value calculated from the Cu, Ni, and free sulfuric acid concentrations represented by the above relational expression (A) was used. The results are shown in FIG.

Figure 0007089862000001
Figure 0007089862000001

図1に示すように、カソード電流密度DKによらず液中のSO4濃度と不動態化DAとの間に、SO4濃度が下がるにつれて、不動態化DAが上昇する関係が見られた。また、試料1~13の関係から不動態化抑制指標として式(1)の関係が得られた。また、試料10~13に基づいて目標とする不動態化DAを算出した。カソード電流密度DKを350A/m2で操業した場合、操業終了時のアノード電流密度DAが平均で460A/m2となった。電極に流れる電流は、接触抵抗や電極の懸垂性のばらつきにより同一電解槽内の電極においてもばらつきがある。このため、実測された電流分布のばらつきが正規分布に従うとした場合、正規分布の3σを考慮すると、アノード電流密度DAが最大で560A/m2と試算された。この結果から、目標とする不動態化DAは560A/m2となった。目標とする不動態化DAを式(1)に導入して目標とするSO4濃度を算出した結果、268g/L以下とすればよいことが分かった。 As shown in FIG. 1, there was a relationship between the SO 4 concentration in the liquid and the passivated DA, regardless of the cathode current density DK, as the passivated DA increased as the SO 4 concentration decreased. Moreover, the relationship of the formula (1) was obtained as an index for suppressing passivation from the relationship of the samples 1 to 13. In addition, the target passivation DA was calculated based on the samples 10 to 13. When the cathode current density DK was operated at 350 A / m 2 , the anode current density DA at the end of the operation was 460 A / m 2 on average. The current flowing through the electrodes varies even in the electrodes in the same electrolytic cell due to variations in contact resistance and suspension properties of the electrodes. Therefore, assuming that the variation of the measured current distribution follows the normal distribution, the anode current density DA is estimated to be 560 A / m 2 at the maximum, considering the normal distribution of 3σ. From this result, the target passivation DA was 560 A / m 2 . As a result of introducing the target passivation DA into the formula (1) and calculating the target SO 4 concentration, it was found that the concentration should be 268 g / L or less.

(不動態化DAと液温の関係)
Sbを0.034~0.036質量%、Niを0.24~0.26質量%、その他元素としてAs:0.07~0.10%、Bi:0.010~0.013%程度含む銅アノードを用いて、カソードDKを322~350A/m2に設定し、液温68~70℃の間で変更して、不動態化DAへの影響を調べた。結果を表2に示す。
(Relationship between passivation DA and liquid temperature)
Sb is 0.034 to 0.036% by mass, Ni is 0.24 to 0.26% by mass, and other elements include As: 0.07 to 0.10% and Bi: 0.010 to 0.013%. Using a copper anode, the cathode DK was set to 322-350 A / m 2 and the liquid temperature was varied between 68-70 ° C. to investigate the effect on immobilized DA. The results are shown in Table 2.

Figure 0007089862000002
Figure 0007089862000002

表1と表2の結果から、電解液に対して液温を65℃以上に上げることで不動態化DAを高くできる結果を得た。 From the results in Tables 1 and 2, it was obtained that the passivation DA could be increased by raising the liquid temperature to 65 ° C. or higher with respect to the electrolytic solution.

Claims (3)

Sbを0.030~0.040質量%及びNiを0.20~0.30質量%含む銅アノードを用いた銅電解精製において、電解液中の硫酸根を持つ物質を合算することにより算出したSO4イオンの濃度の合計値であるSO4濃度を244~268g/Lとし、カソード電流密度322~350A/m2で銅電解精製を行うことを含み、
前記銅電解精製が、前記カソード電流密度において不導態化が生じる不動態化アノード電流密度と前記SO4濃度との関係に基づいて算出した不導態化抑制指標に基づいて、前記SO4濃度を調整することを含み、
前記不導態化抑制指標が、以下の式(1):
Y=-13.37X+4147 ・・・(1)
(ここで、Yは前記不導態化アノード電流密度(A/m 2 )、Xは前記SO 4 濃度(g/L)を表す)
に基づくことを特徴とする銅電解精製方法。
Calculated by adding up substances with sulfuric acid roots in the electrolytic solution in copper electrolytic purification using a copper anode containing 0.030 to 0.040% by mass of Sb and 0.20 to 0.30% by mass of Ni. The SO 4 concentration, which is the total concentration of SO 4 ions, was set to 244 to 268 g / L, and copper electrolytic purification was performed at a cathode current density of 322 to 350 A / m 2 .
The SO 4 concentration is based on the demobilization suppression index calculated based on the relationship between the mobilized anode current density at which demobilization occurs at the cathode current density and the SO 4 concentration in the copper electrolytic purification. Including adjusting
The derivatization suppression index is the following equation (1):
Y = -13.37X + 4147 ... (1)
(Here, Y represents the deconducted anode current density (A / m 2 ), and X represents the SO 4 concentration (g / L)).
A copper electrorefining method characterized by being based on .
前記銅アノードが、Asを0.05~0.24質量%、Biを0.01~0.027質量%含むことを特徴とする請求項1に記載の銅電解精製方法。 The copper electrorefining method according to claim 1, wherein the copper anode contains 0.05 to 0.24% by mass of As and 0.01 to 0.027% by mass of Bi. 電解液の液温が65℃以上であることを特徴とする請求項1又は2に記載の銅電解精製方法。 The copper electrorefining method according to claim 1 or 2, wherein the temperature of the electrolytic solution is 65 ° C. or higher.
JP2017242017A 2017-11-09 2017-12-18 Copper electrorefining method Active JP7089862B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017216601 2017-11-09
JP2017216601 2017-11-09

Publications (2)

Publication Number Publication Date
JP2019085636A JP2019085636A (en) 2019-06-06
JP7089862B2 true JP7089862B2 (en) 2022-06-23

Family

ID=66763953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017242017A Active JP7089862B2 (en) 2017-11-09 2017-12-18 Copper electrorefining method

Country Status (1)

Country Link
JP (1) JP7089862B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054181A (en) 1998-08-06 2000-02-22 Sumitomo Metal Mining Co Ltd Method for electrolytically refining copper

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158684B2 (en) * 1992-07-03 2001-04-23 住友金属鉱山株式会社 Copper electrorefining method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054181A (en) 1998-08-06 2000-02-22 Sumitomo Metal Mining Co Ltd Method for electrolytically refining copper

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GLOBAL SURVEY OF COPPER ELECTROREFINING OPERATIONS AND PRACTICES,COPPER 2013 DECEMVER 1-4,20213-SANTIAGO, CHILE. International Copper Conference, VOLUME V BOOK 2,pp.67-107

Also Published As

Publication number Publication date
JP2019085636A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP4298712B2 (en) Method for electrolytic purification of copper
MX2010013510A (en) Electrorecovery of gold and silver from thiosulfate solutions.
JP4864101B2 (en) Improved alloys and anodes for use in electrowinning metals
Nan et al. Hydrometallurgical process for extracting bismuth from by-product of lead smelting based on methanesulfonic acid system
Spyrellis Production of copper powder from printed circuit boards by electrodeposition
Hernández-Pérez et al. Voltammetric and electrodeposition study for the recovery of antimony from effluents generated in the copper electrorefining process
Lins et al. Effect of nickel and magnesium on zinc electrowinning using sulfate solutions
JP7089862B2 (en) Copper electrorefining method
JP6172526B2 (en) Adjustment method of copper concentration of chlorine leachate in nickel chlorine leaching process
Owais Effect of electrolyte characteristics on electrowinning of copper powder
Li et al. Energy-efficient fluorine-free electro-refining of crude lead in a green methanesulfonic acid system
JP4323297B2 (en) Method for producing electrolytic copper powder
JP7271917B2 (en) Copper electrolytic refining method
Markovic et al. Treatment of Waste Copper Electrolytes Using Insoluble and Soluble Anodes
JP2017214612A (en) Electrolytic refining method for copper
JP7041275B2 (en) How to make electrolytic copper
JP2014025121A (en) Electrolytic extraction method for tin and method for recovering tin
FENG et al. Migration regularity and control of silver inclusions during copper electrorefining process
EP3472372A1 (en) A method of recovering gold from a gold-bearing concentrated copper chloride solution
JP6332523B2 (en) Adjustment method of copper concentration of chlorine leachate in nickel chlorine leaching process
Erdoğan et al. Removal of trace amounts of copper from concentrated hydrochloric acid solutions
WO2019107287A1 (en) Method for producing electrolytic copper
Zhang et al. The Behaviour of Low arsenic copper anodes aT high currenT densiTy in eLecTrorefining
JP2019099908A (en) Method for producing electrolytic copper
Marković et al. Characteristics of anode slime obtained from secondary copper anodes with high Ni content

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220613

R151 Written notification of patent or utility model registration

Ref document number: 7089862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151