JP4280593B2 - Copper electrolytic purification method - Google Patents

Copper electrolytic purification method Download PDF

Info

Publication number
JP4280593B2
JP4280593B2 JP2003340124A JP2003340124A JP4280593B2 JP 4280593 B2 JP4280593 B2 JP 4280593B2 JP 2003340124 A JP2003340124 A JP 2003340124A JP 2003340124 A JP2003340124 A JP 2003340124A JP 4280593 B2 JP4280593 B2 JP 4280593B2
Authority
JP
Japan
Prior art keywords
anode
copper
release agent
mold
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003340124A
Other languages
Japanese (ja)
Other versions
JP2005105349A (en
Inventor
明 上野
聖臣 金澤
克幸 佐藤
正治郎 薄井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2003340124A priority Critical patent/JP4280593B2/en
Publication of JP2005105349A publication Critical patent/JP2005105349A/en
Application granted granted Critical
Publication of JP4280593B2 publication Critical patent/JP4280593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、銅製錬における電解精製により電気銅を製造する方法に関する。     The present invention relates to a method for producing electrolytic copper by electrolytic purification in copper smelting.

硫酸銅及び硫酸を主成分とする水溶液を電解浴とし、精製粗銅をアノードとする電解精製により電気銅を製造する銅電解精製工程において、理論電着量に対する実際の電着量の重量百分率を電流効率として工程管理の指標としている。   In the copper electrolytic purification process in which electrolytic copper is produced by electrolytic purification using copper sulfate and an aqueous solution containing sulfuric acid as the main component and electrolytically purified copper as the anode, the weight percentage of the actual electrodeposition amount with respect to the theoretical electrodeposition amount is the current. It is an index of process control as efficiency.

電流効率を悪化させる要因として、アノードとカソード間のショート、製品の再溶解等が知られている。(「非鉄金属製錬」 日本金属学会;昭和55年10月1日;PAGE.231)(非特許文献1)さらに、ショートの発生要因としては、カソード面に発生するコブの成長、カソードの湾曲によるアノードとの接触等がある。   Known factors that deteriorate the current efficiency include a short circuit between the anode and the cathode and remelting of the product. ("Nonferrous metal smelting" The Japan Institute of Metals; October 1, 1980; PAGE.231) (Non-patent document 1) Furthermore, the causes of shorts are growth of bumps on the cathode surface, curvature of the cathode. Contact with the anode.

ショート発生を防止する対策としては、通電初期において電解液液面より上にカソードの上端部が出るように液面を調整し針状電析の発生を防止する方法(特開平9−67691:特許文献1)がある。   As a measure for preventing the occurrence of a short circuit, a method of preventing the occurrence of needle electrodeposition by adjusting the liquid surface so that the upper end of the cathode comes out above the electrolytic solution surface in the initial stage of energization (Japanese Patent Laid-Open No. 9-67691: Patent There is literature 1).

またアノードを電解液中に浸漬したときに発生する銅粉を、通電前に電解液
の一部または全量を置換することで除去し、さらに通電初期のカソード電流密
度を低くする方法(特開平11−200083:特許文献2)等が報告されて
いる。
Further, the copper powder generated when the anode is immersed in the electrolytic solution is removed by substituting a part or all of the electrolytic solution before energization, and the cathode current density at the initial energization is further lowered (Japanese Patent Laid-Open No. 11). -200083: Patent Document 2) has been reported.

同一設備で生産性を向上するため、より高い電流密度での銅電解操業が検討されているが、電流密度が高くなるほど、カソード面内の電流密度のバラツキが大きくなり、局所的に電流密度が高い箇所にコブが発生し易く、ショート率が高くなる。   In order to improve productivity with the same equipment, copper electrolysis operation at a higher current density is being studied, but the higher the current density, the greater the variation in the current density in the cathode surface, and the local current density is. Cobbing is likely to occur at high locations, and the short-circuit rate is increased.

このことから、より高い電流密度で電解精製を行なうには、アノード及びカ
ソードとして使用する種板の懸垂性を従来よりも向上させ、アノードとカソー
ド間の面間距離をより均一にすることが必要となる。
For this reason, in order to carry out electrolytic purification at a higher current density, it is necessary to improve the suspension of the seed plate used as the anode and the cathode as compared with the conventional method, and to make the distance between the anode and the cathode more uniform. It becomes.

コブの発生原因の1つであるアノードスライムが、カソードに取り込まれることなく電槽底に沈降するためにも、アノードとカソード間の面間距離をより均一にすることが重要である。また、高電流密度電解では電気銅表面が荒れる傾向があるため、電気銅の表面を均一で平滑なものにするため使用する「にかわ」や「チオ尿素」等の添加剤についても、従来の添加量を変更することも検討されている。   It is important to make the distance between the anode and the cathode more uniform so that the anode slime, which is one of the causes of bumps, settles to the bottom of the battery tank without being taken into the cathode. In addition, because the surface of electrolytic copper tends to be rough in high current density electrolysis, conventional additives such as "Niwa" and "thiourea" used to make the surface of electrolytic copper uniform and smooth are also added. Changing the amount is also being considered.

しかし、アノード及び種板の懸垂性を向上させてもバラツキが存在するため、
全てのアノード及び種板を目標とする懸垂性の範囲に収めることは困難であ
り、僅かに発生する懸垂性不良のアノード及び種板によって、アノードとカソ
ードが直接接触しショートが発生し、また面間距離の減少による電流の集中及
びアノードスライムの付着等によりコブが発生しショートに至る。
However, even if the suspension of the anode and seed plate is improved, there is variation,
It is difficult to keep all anodes and seed plates within the target suspension range, and the anodes and seed plates that are slightly poorly suspended will cause direct contact between the anode and the cathode, causing short circuit. Cobbing occurs due to current concentration due to a decrease in the distance and adhesion of anode slime, resulting in a short circuit.

添加剤については、電解液中の添加剤濃度を分析する方法が一部で報告されているが、添加剤濃度を常時測定することがまだ一般的とは言えず、製造された電気銅の表面状態を見て添加量を調整することが多く、常に最適な条件を保つことは困難である。   As for additives, some methods for analyzing the concentration of additives in the electrolyte have been reported, but it is still not common to measure the concentration of additives at all times. The amount of addition is often adjusted by looking at the state, and it is difficult to always maintain the optimum conditions.

「非鉄金属製錬」(日本金属学会,昭和55年10月1日;PAGE.231)"Nonferrous metal smelting" (Japan Institute of Metals, 1 October 1980; PAGE.231) 特開平9−67691JP-A-9-67691 特開平11−200083JP-A-11-200083

本発明は、銅電解精製において、アノードとカソード間のショート発生率を低減することを目的とする。   An object of the present invention is to reduce the occurrence rate of a short circuit between an anode and a cathode in copper electrolytic purification.

本発明者等は、上記の課題を解決すべく以下の発明をなした。
即ち本発明は、
(1)銅電解精製において、アノードとして使用する粗銅の表面に付着した離
型剤をあらかじめ除去した後、当該アノードを使用し電解精製を行なう電気銅
の製造方法。
(2)アノードとして使用する粗銅表面の鋳型面、湯面、側面のうち、鋳型面
と側面についてのみ、表面に付着した離型剤を除去する上記(1)に記載の電
気銅の製造方法。
The present inventors have made the following invention to solve the above-mentioned problems.
That is, the present invention
(1) In copper electrolytic refining, a method for producing electrolytic copper, in which a release agent adhering to the surface of crude copper used as an anode is removed in advance, and then electrolytic refining is performed using the anode.
(2) The method for producing electrolytic copper as described in (1) above, wherein the mold release agent attached to the surface of only the mold surface and the side surface is removed from the mold surface, the molten metal surface, and the side surface of the rough copper surface used as the anode.

(3)アノードとして使用する粗銅表面の鋳型面、湯面、側面のうち、鋳型面
についてのみ、表面に付着した離型剤を除去する上記(1)記載の電気銅の製
造方法。
(4)アノード表面から離型剤を除去する方法として、金属製ブラシ、回転ブ
ラシ、高圧水流の何れか一種以上の前記手段を用いる上記(1)〜(3)記載
の電気銅の製造方法。
(3) The method for producing electrolytic copper as described in (1) above, wherein the mold release agent attached to the surface of only the mold surface is removed from the mold surface, the molten metal surface, and the side surface of the rough copper surface used as the anode.
(4) The method for producing electrolytic copper as described in (1) to (3) above, wherein any one or more of a metal brush, a rotating brush, and a high-pressure water stream is used as a method for removing the release agent from the anode surface.

以下本発明に関して、詳細に説明する。
本発明者等は、銅電解精製のアノードとして使用する精製粗銅について、ア
ノードとして電解工程に供するため鋳造する際に粗銅の表面に付着する離型
剤を、あらかじめ除去してから電解精製することにより、アノードとカソード
間のショート発生を防止できることを見出した。
Hereinafter, the present invention will be described in detail.
The inventors of the present invention have made it possible to remove the mold release agent adhering to the surface of the crude copper in advance for casting to be subjected to the electrolytic process as an anode for the refined crude copper used as an anode for copper electrolytic purification, and then perform electrolytic purification after removing it in advance. It was found that the occurrence of a short circuit between the anode and the cathode can be prevented.

さらに具体的には、本発明者等は、種々の検討、調査の結果、ショート発生
の原因として、特にアノードライフの1代目(1枚のアノードから2枚の電気
銅を生産するが、1枚目の電気銅を製造する期間)において、アノードに付着
している離型剤が電解中に剥離してカソードとショートする割合が、他の原因
によりショートが発生する割合と比較して高いことを見出し本発明に至った。
More specifically, as a result of various examinations and investigations, the present inventors, in particular, are the first generation of the anode life (two sheets of electrolytic copper are produced from one anode. The ratio of the release agent adhering to the anode peeling off during electrolysis and short-circuiting with the cathode is higher than the ratio of short-circuiting due to other causes. The headline has led to the present invention.

なお、ここでいう離型剤とは、精製粗銅をアノードに鋳造する際、SiO2
Al2O3を主成分とする粘土粉等を言う。離型剤は、鋳型に吹付け、アノードと
鋳型が溶着することを防止しているが、この粘土粉等が薄い小片状となって鋳
造したアノード表面に付着する。更に、一部はアノード内部にも巻き込まれる。
The mold release agent referred to here is SiO 2 , when refined crude copper is cast on the anode,
This refers to clay powders mainly composed of Al 2 O 3 . The mold release agent sprays on the mold to prevent the anode and the mold from being welded, but this clay powder or the like becomes a thin piece and adheres to the cast anode surface. Furthermore, a part is also caught inside the anode.

また、アノードから剥がれ落ちる離型剤の小片は、粘土粉と、酸化銅等のア
ノード成分からなる。離型剤によるショートがアノードライフの1代目で多く
発生するのは、1つはアノードに付着する離型剤が、アノードの鋳型側の表面
部に集中して存在するためアノードから剥がれる離型剤の量が2代目に比較し
て多いためである。
Moreover, the small piece of the release agent that peels off from the anode is composed of clay powder and an anode component such as copper oxide. One of the reasons why shorts due to the release agent occur frequently in the first generation of the anode life is that the release agent that adheres to the anode is concentrated on the surface of the anode on the mold side and peels off from the anode. This is because the amount of is larger than the second generation.

もう1つには、電解の進行によりアノードの厚みが減少している2代目に比
較し、1代目のアノード面間距離は狭いため、アノード及びカソードの懸垂性
不良があった場合、離型剤が、アノードとカソード間を橋渡しする状態となっ
てショートする現象が起こり易いためと推測される。
The other is that the distance between the anode surfaces of the first generation is narrow compared to the second generation where the thickness of the anode has decreased due to the progress of electrolysis. However, it is presumed that a short-circuit phenomenon is likely to occur between the anode and the cathode.

離型剤によるショートを減らす手段として、鋳型に吹き付けた離型剤の量を
減らすことも考えられるが、アノード鋳造の際に鋳型に塗布する離型剤の量を
減らすと、アノードが鋳型に溶着し剥がれなくなるトラブルの発生頻度が多く
なり鋳造機の稼働率が低下し、また鋳型が使用不能となって鋳型の製造コスト
が増える問題が起こる。このため、アノードに付着する離型剤の量を減少する
ことは困難である。また、アノードに付着する離型剤の量は鋳造工程の状況に
より変動する。
As a means of reducing shorts caused by the mold release agent, it is conceivable to reduce the amount of mold release agent sprayed on the mold. However, if the amount of mold release agent applied to the mold during anode casting is reduced, the anode is welded to the mold. The frequency of occurrence of trouble that prevents peeling off increases, the operating rate of the casting machine decreases, and the mold cannot be used, resulting in an increase in the manufacturing cost of the mold. For this reason, it is difficult to reduce the amount of the release agent adhering to the anode. Further, the amount of the release agent adhering to the anode varies depending on the situation of the casting process.

アノード表面に付着する離型剤を除去する手段は、表面を金属製ブラシ、電
動の回転ブラシで擦る、100kg/cm以上の高圧の洗浄水を吹き付ける
等、離型剤を除去できるもので有る必要がある。また、前記手段を組み合わせ
て、除去しても良い。下記する実施例ではSUS製ワイヤーブラシでアノード
表面を擦って離型剤を除去した。
ただ、離型剤は、酸性の液に浸漬或いは、噴霧する程度では、アノード表面
から除去できない点を十分考慮しなければならない。
The means for removing the mold release agent adhering to the anode surface can remove the mold release agent by rubbing the surface with a metal brush or an electric rotating brush, or spraying high-pressure washing water of 100 kg / cm 2 or more. There is a need. Further, the above means may be combined and removed. In the following examples, the release agent was removed by rubbing the anode surface with a SUS wire brush.
However, it must be taken into consideration that the release agent cannot be removed from the anode surface only by being immersed or sprayed in an acidic liquid.

アノード表面の離型剤を除去するとき、副次的な効果として、アノード表面
に付着している銅粉も除去することができ、これもショート率の低減に効果が
ある。
When removing the mold release agent on the anode surface, as a secondary effect, the copper powder adhering to the anode surface can also be removed, which is also effective in reducing the short-circuit rate.

なお、実施例の試験1において、アノードの表面から擦り落した離型剤の重
量はアノード1枚当り約6gであったが、そのほとんどはアノードの鋳型面に
付着している。アノードの側面には少量の離型剤の付着があるが、湯面側には
ほとんど見られない。
In Test 1 of the example, the weight of the release agent scraped off from the surface of the anode was about 6 g per anode, but most of it adhered to the mold surface of the anode. There is a small amount of release agent attached to the side of the anode, but it is hardly seen on the hot water side.

このことから、アノード表面からの離型剤の除去は、鋳型面と側面、或いは
鋳型面のみについて実施すれば、ショート率低減の効果が十分にあると考えら
れる。例えば、アノードをハンドリングする設備においてオンラインで離型剤
の除去を実施する場合、離型剤の除去をアノード鋳型面に限定すれば、アノー
ドの鋳型面についてのみ離型剤除去設備を設置すればよく、本発明を実施する
ことは、より容易になる。本発明を実施する具体的な箇所としては、アノード
の重量、厚みを測定する設備のライン上などが考えられる。
From this, it is considered that the removal of the release agent from the anode surface is sufficiently effective in reducing the short-circuit rate if it is performed only on the mold surface and the side surface or only on the mold surface. For example, when removing the release agent on-line in the facility for handling the anode, if the removal of the release agent is limited to the anode mold surface, it is only necessary to install the mold release agent removal facility only on the anode mold surface. It becomes easier to implement the present invention. As a specific place for carrying out the present invention, it can be considered on the line of equipment for measuring the weight and thickness of the anode.

本発明を実施した場合、アノード表面の離型剤を擦り落すのは、アノードを
銅の電解槽に挿入する前であるので、ショート率を低減する効果はアノードラ
イフの1代目においてのみあると考えられるが、試験を行なうとアノードライ
フの2代目においてもショート率低減の効果が見られる。これは、1代目にお
いてショート率が低くなると、電解により消費されるアノードの銅量が増える
ことで、2代目においてアノードとカソードの面間距離が僅かではあるが長く
なりショートが発生しにくくなるためと推測される。
When the present invention is carried out, the release agent on the anode surface is scraped off before the anode is inserted into the copper electrolytic cell, so that the effect of reducing the short-circuit rate is considered to be only in the first generation of the anode life. However, when the test is performed, the effect of reducing the short-circuit rate is also seen in the second generation of anode life. This is because when the short-circuit rate in the first generation is reduced, the amount of copper in the anode consumed by electrolysis increases, and in the second generation, the distance between the anode and the cathode is slightly increased, but short-circuiting is less likely to occur. It is guessed.

本発明の銅電解精製方法は、
(1)電解精製に先立ちアノード表面に付着する離型剤を除去することで、ア
ノード表面の離型剤量に影響されることなく、電解中にアノードから剥離する
離型剤によるショート発生を減らすことができる。
The copper electrolytic purification method of the present invention comprises:
(1) By removing the release agent adhering to the anode surface prior to electrolytic purification, the occurrence of short circuit due to the release agent that peels off from the anode during electrolysis is reduced without being affected by the amount of the release agent on the anode surface. be able to.

(2)ショート率減少に伴い、電解操業の稼働率を上げることができる。
(3)コブの発生が少ないことから、表面の平坦な綺麗なカソードを得ること
ができる。
(2) As the short circuit rate decreases, the operating rate of electrolytic operation can be increased.
(3) Since there is little generation of bumps, a clean cathode with a flat surface can be obtained.

(実施例)
アノード表面に付着した離型剤を剥離してから挿入した銅の電解槽、及びア
ノードの離型剤を剥離せずにそのまま電槽に挿入し、その他の条件は同じにし
た電槽、それぞれにおいて電解精製を実施し、ショート率を調査した。
(Example)
In each of the electrolytic cell of copper inserted after peeling the release agent adhering to the anode surface, and the electrolytic cell inserted in the battery case without removing the release agent of the anode, and the other conditions were the same Electrolytic purification was performed and the short-circuit rate was investigated.

[実施例]
長さ5200mm×深さ1345mm×幅1090mmの銅の電解槽にアノード(縦
1010mm×横914mm×厚み50mm)50枚、カソード(縦1020mm×横960mm
×厚み0.7mm)49枚をアノード間隔が100mmになるように挿入した。電解
液は銅50〜54g/l、硫酸170〜175g/l、塩素濃度50mg/lとし、電解液給液温度
を62〜63℃として、1槽当り25〜30l/min給液した。添加剤は、電着電気銅1
t当り、にかわ85g、チオ尿素72g、アビトン43gを添加した。全てのアノー
ドは、表面に付着している離型剤をSUS製ワイヤーブラシで擦り落としてか
ら電槽に挿入し、カソード電流密度285A/m2及び288 A/m2で11日間電解精
製を実施した。
[Example]
5200mm long x 1345mm deep x 1090mm wide copper electrolytic cell with anode (vertical
50 sheets of 1010mm x width 914mm x thickness 50mm, cathode (length 1020mm x width 960mm)
(X thickness 0.7 mm) 49 sheets were inserted so that the anode spacing was 100 mm. The electrolyte was 50 to 54 g / l copper, 170 to 175 g / l sulfuric acid, 50 mg / l chlorine concentration, the electrolyte supply temperature was 62 to 63 ° C., and 25 to 30 l / min was supplied per tank. Additive is electrodeposited copper 1
85 g of glue, 72 g of thiourea and 43 g of Abiton were added per t. All the anodes were subjected to electrolytic purification for 11 days at cathode current densities of 285 A / m 2 and 288 A / m 2 after the release agent adhering to the surface was scraped off with a SUS wire brush and inserted into the battery case.

(比較例)
アノード表面に付着している離型剤を剥ぎ落すことなく電槽に挿入する以
外は、実施例と同じ条件で電解精製を実施した。
(Comparative example)
Electrolytic purification was carried out under the same conditions as in the examples except that the release agent adhering to the anode surface was inserted into the battery case without peeling off.

実施例及び比較例のショート率を表1に示す。アノードに付着している離型
剤をあらかじめ除去することで、比較例に対し実施例はショート率が、0.6〜
2.4%低減された。
Table 1 shows the short ratios of the examples and comparative examples. By removing the release agent adhering to the anode in advance, the embodiment has a short ratio of 0.6 to
It was reduced by 2.4%.

Figure 0004280593
実施例及び比較例のショート率
Figure 0004280593
Short rate of the examples and comparative examples

Claims (3)

銅電解精製において、アノードとして使用する粗銅の表面に付着した離型剤及び銅粉を鋳造後、電解精製前に、金属製ブラシ、回転ブラシ、高圧水流の何れか一種以上の手段を用いることにより、あらかじめ擦り落とした後、当該アノードを使用し電解精製を行なう電気銅の製造方法であり、これにより、実質的に電解精製時にアノード表面に付着した離型剤の剥がれ落ちを防止する製造方法In copper electrolytic purification, after casting the release agent and copper powder attached to the surface of the crude copper used as the anode, before electrolytic purification , by using one or more means of metal brush, rotating brush, high-pressure water flow after pre-rubbing overlooked, a method of manufacturing a row of power sale kidou the electrolytic refining using the anode, thereby preventing the peeling off of the release agent adhering to the anode surface during substantially electrorefining Manufacturing method . アノードとして使用する粗銅表面の鋳型面、湯面、側面のうち、鋳型面と側面についてのみ、表面に付着した離型剤を除去することを特徴とする請求項1に記載の電気銅の製造方法。   2. The method for producing electrolytic copper according to claim 1, wherein the mold release agent attached to the surface of only the mold surface and the side surface is removed from the mold surface, the molten metal surface, and the side surface of the rough copper surface used as the anode. . アノードとして使用する粗銅表面の鋳型面、湯面、側面のうち、鋳型面についてのみ、表面に付着した離型剤を除去することを特徴とする請求項1に記載の電気銅の製造方法。   2. The method for producing electrolytic copper according to claim 1, wherein the mold release agent attached to the surface of only the mold surface is removed from the mold surface, the molten metal surface, and the side surface of the rough copper surface used as the anode.
JP2003340124A 2003-09-30 2003-09-30 Copper electrolytic purification method Expired - Lifetime JP4280593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003340124A JP4280593B2 (en) 2003-09-30 2003-09-30 Copper electrolytic purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003340124A JP4280593B2 (en) 2003-09-30 2003-09-30 Copper electrolytic purification method

Publications (2)

Publication Number Publication Date
JP2005105349A JP2005105349A (en) 2005-04-21
JP4280593B2 true JP4280593B2 (en) 2009-06-17

Family

ID=34535114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003340124A Expired - Lifetime JP4280593B2 (en) 2003-09-30 2003-09-30 Copper electrolytic purification method

Country Status (1)

Country Link
JP (1) JP4280593B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3307890C2 (en) * 1983-03-05 1988-12-22 C.J. Wennberg AB, Karlstad Method and device for cleaning cathode plates obtained in the electrolytic refining of metals, in particular Cu cathode plates
JPS6033379A (en) * 1983-08-04 1985-02-20 Nippon Mining Co Ltd Preparation of high purity electrolytic copper
JP2785044B2 (en) * 1989-07-25 1998-08-13 日鉱金属株式会社 Copper anode mold and copper anode manufacturing method
JPH04341758A (en) * 1991-05-16 1992-11-27 Matsushita Electric Ind Co Ltd Manufacture of lead storage battery positive pole plate
JP2896764B2 (en) * 1996-07-01 1999-05-31 三井金属鉱業株式会社 Casting method of anode for copper electrolysis
JP2000160356A (en) * 1998-11-30 2000-06-13 Toshiba Corp Production of magnesium alloy basket body
JP2001096354A (en) * 1999-09-29 2001-04-10 Sumitomo Metal Mining Co Ltd Anode casting mold and mother mold
JP4131371B2 (en) * 2002-03-08 2008-08-13 トヨタ自動車株式会社 Cylinder block manufacturing method

Also Published As

Publication number Publication date
JP2005105349A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
EP0743378B1 (en) Electrowinning of lead
KR20130069419A (en) Method of removing oxide film on surface of copper or copper-base alloy and copper or copper-base alloy recovered using the method
JP4076751B2 (en) Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion
JP2895502B2 (en) Metal fibers obtained by pulling a metal bundle
JP4280593B2 (en) Copper electrolytic purification method
JP2008266766A (en) Method for producing sheet-form electrolytic copper from halide solution
JP2014214378A (en) METHOD FOR RECOVERING COPPER FROM Sn PLATING STRIPPING WASTE LIQUID
JP6985678B2 (en) Electrorefining method for low-grade copper anodes and electrolytes used for them
BR102019026420A2 (en) PROCESS OF GRENALIZING A PLATE FOR LEAD ANODE, AND, ANODE WHICH IS OBTAINED BY THE PROCESS OF GRENALIZING A PLATE FOR LEAD ANODE
EP0058506B1 (en) Bipolar refining of lead
JP2008095203A (en) Electrolytic copper plating method
JPS6133918B2 (en)
JP4831408B2 (en) Method for producing plate-like electrolytic copper
JP2012092447A (en) Electrolytic extracting method of cobalt
JPH0625882A (en) Electrolytic refining method for copper
JP7334095B2 (en) Tin electrowinning method
JPH0465157B2 (en)
JPH1015659A (en) Method for casting anode for copper electrolysis, and aqueous releasing agent solution for casting molten metal into metallic mold
JP6453743B2 (en) Method for electrolytic purification of lead using sulfamic acid bath
JP2009102723A (en) Non-ferrous electrolytic refining method
JP3316606B2 (en) Tin plating apparatus and tin plating method
JP2017214612A (en) Electrolytic refining method for copper
JP2006274293A (en) Method for producing sheet-form electrolytic copper
US10106904B2 (en) Method for electrolytically refining lead in sulfamate bath
JPH10183389A (en) Electrolytic cell and copper electrolysis operation method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4280593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term