JP2785044B2 - Copper anode mold and copper anode manufacturing method - Google Patents

Copper anode mold and copper anode manufacturing method

Info

Publication number
JP2785044B2
JP2785044B2 JP1190517A JP19051789A JP2785044B2 JP 2785044 B2 JP2785044 B2 JP 2785044B2 JP 1190517 A JP1190517 A JP 1190517A JP 19051789 A JP19051789 A JP 19051789A JP 2785044 B2 JP2785044 B2 JP 2785044B2
Authority
JP
Japan
Prior art keywords
mold
copper
anode
copper anode
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1190517A
Other languages
Japanese (ja)
Other versions
JPH0357530A (en
Inventor
修一 大戸
定男 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKO KINZOKU KK
Original Assignee
NITSUKO KINZOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKO KINZOKU KK filed Critical NITSUKO KINZOKU KK
Priority to JP1190517A priority Critical patent/JP2785044B2/en
Publication of JPH0357530A publication Critical patent/JPH0357530A/en
Application granted granted Critical
Publication of JP2785044B2 publication Critical patent/JP2785044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、銅アノード用モールド及びそれを用いての
銅アノードの製造方法に関するものであり、特には銅ア
ノードを鋳造するためのモールド材質として通常より高
いリン含有量のリン脱酸銅を用いることを特徴とする。
本発明により、表面の平滑なそして曲がりの減少したア
ノードが製造され、品質の良い電気銅が安定して得られ
た電解成績も向上する。
Description: TECHNICAL FIELD The present invention relates to a copper anode mold and a method for producing a copper anode using the same, and particularly to a mold material for casting a copper anode. It is characterized by using phosphorus deoxidized copper having a higher phosphorus content than usual.
According to the present invention, an anode having a smooth surface and a reduced curvature is manufactured, and the electrolytic performance in which a high-quality electrolytic copper is stably obtained is also improved.

(従来技術) 転炉からの粗銅は、精製炉において99.5%程度に精製
されそして精製粗銅はアノードに鋳造される。アノード
と種板カソードを用いて電解精製が行なわれる。生産性
向上のためにアノードとカソードはできるかぎり小さい
間隔をもって電解槽内に装入され、高い電流密度におい
て電解が行なわれる。約10日間電解析出させたカソード
は電解槽から取り出されそして新しい種板と交換されて
更に約10日間電解が行なわれる。種板上に電着した電気
銅は種板から剥取られる。近時、電気銅に対する品質要
求は益々厳しくなっており、また電解成績向上への不断
の努力が続けられている。
Prior Art Bronze from converters is refined to around 99.5% in a refining furnace and the refined blister is cast into an anode. Electrorefining is performed using the anode and the seed plate cathode. In order to improve productivity, the anode and the cathode are charged into the electrolytic cell at a distance as small as possible, and electrolysis is performed at a high current density. The cathode which has been electrodeposited for about 10 days is removed from the cell and replaced with a new seed plate and electrolysis is carried out for about another 10 days. The electrolytic copper electrodeposited on the seed plate is peeled off from the seed plate. In recent years, quality requirements for electrolytic copper have become increasingly severe, and continuous efforts have been made to improve electrolytic performance.

現在、アノードは精製粗銅製モールドを用いて鋳造さ
れている。
Currently, the anode is cast using a purified blister mold.

(発明が解決しようとする課題) 現在の方法で鋳造されたアノードの品質は必ずしも満
足すべきものでなく、アノード表面の荒れや凹凸の存
在、気泡巣の存在、アノードの曲がり等が問題視される
ようになった。これらの存在は電解時のショート、短絡
を引き起こし、品質の良い電気銅の安定した製造を妨げ
る。モールド自体についても、その寿命は現在のところ
700枚(鋳造回数)位であるが、生産コスト削減の点か
らより一層の寿命の延長が求められている。
(Problems to be Solved by the Invention) The quality of the anode cast by the current method is not always satisfactory, and there are problems such as the presence of roughness and unevenness on the anode surface, the presence of bubble cavities, and the bending of the anode. It became so. Their presence causes short-circuiting and short-circuiting during electrolysis, and hinders stable production of high quality electrolytic copper. The life of the mold itself is currently
Although it is about 700 sheets (the number of times of casting), further extension of the life is required from the viewpoint of reducing production costs.

斯様に、電気銅の品質改善及び電解操業の効率及びコ
スト改善の点から、電解槽に装入されるアノード及びそ
のモールドの見直しが必要であると思われる。
Thus, from the viewpoint of improving the quality of electrolytic copper and improving the efficiency and cost of the electrolytic operation, it may be necessary to review the anode and its mold to be charged into the electrolytic cell.

以上の状況に鑑みて、本発明の課題は、高品質アノー
ドを製造しまたモールドの寿命延長を可能とする新たな
技術を確立することである。
In view of the above circumstances, an object of the present invention is to establish a new technology that can manufacture a high-quality anode and extend the life of a mold.

(課題を解決するための手段) 上記課題に向け、本発明者らは検討を重ねた結果、従
来からのアノードモールドの材料である精製粗銅中に多
量に含まれるS及びOが、そこに同様の精製粗銅溶湯が
注がれるに際して、反応を生じてモールド中に酸化物が
混入し、これが諸問題の根源であることを究明するに至
った。モールド中に酸化物が混入することから、アノー
ド表面に凹凸が生じまたアノード中に気泡巣が入りやす
い。そのため、アノードの剥離性が悪く、アノードの曲
がりを生じやすい。また、モールドにヒビが入り割れを
生じやすい。従って、アノードモールドの材質を変更す
る必要性があると結論するに至った。多くの材料の検討
の結果、通常より高いリン含有量のリン脱酸銅を使用
し、そこに含まれるリンの脱酸作用を利用するのが最適
との知見が得られた。
(Means for Solving the Problems) The inventors of the present invention have conducted various studies toward the above problems, and found that a large amount of S and O contained in the purified blister copper, which is a material of the conventional anode mold, is similar thereto. When the purified crude copper melt was poured, a reaction occurred and oxides were mixed into the mold, which led to the investigation of the fact that this was the root of various problems. Since the oxide is mixed into the mold, irregularities are generated on the anode surface, and bubble cavities easily enter the anode. Therefore, the peelability of the anode is poor, and the anode is easily bent. In addition, cracks easily enter the mold and cracks easily occur. Therefore, it was concluded that it was necessary to change the material of the anode mold. As a result of examination of many materials, it was found that it is optimal to use phosphorus deoxidized copper having a higher phosphorus content than usual and to utilize the deoxidizing action of phosphorus contained therein.

この知見に基ずいて、本発明は、0.05−1.0wt%Pを
含有しそして残部がCu及び不可避的不純物である銅製の
銅アノード用モールドを提供する。S及びOは、それぞ
れ100ppm以下とすることが好ましい。
Based on this finding, the present invention provides a copper anode mold comprising 0.05-1.0 wt% P and the balance being Cu and unavoidable impurities. It is preferable that each of S and O is 100 ppm or less.

更に、本発明は、0.05−1.0wt%Pを含有しそして残
部がCu及び不可避的不純物である銅製の銅アノード用モ
ールドに精製粗銅を注湯し、モールド中のPにより脱酸
しながら鋳造し、鋳造銅アノードをモールドから離型す
ることから成る銅アノードの製造方法をも提供する。少
量の離型剤の使用下で、鋳造銅アノードはモールドから
容易に離型される。
Furthermore, the present invention pours purified crude copper into a copper anode mold made of copper containing 0.05-1.0 wt% P and the balance being Cu and inevitable impurities, and casts while deoxidizing with P in the mold. Also provided is a method of manufacturing a copper anode comprising releasing a cast copper anode from a mold. With the use of a small amount of release agent, the cast copper anode is easily released from the mold.

(発明の具体的説明) 従来からの精製粗銅に替わるアノードモールド用材料
の選定に当たっては、電気銅や、Cu−Zn,Cu−Al,Cu−Mg
等の銅合金が考慮され得る。アノードモールドの材質選
定条件としては、次の事項が挙げられる: (1)打撃強度が高いこと、 (2)気泡が少ないこと、 (3)ヒビが入りにくいこと、 (4)融点が低くならないこと、 (5)添加元素が出来るだけ少ないこと、 (6)コストが安価なこと。
(Detailed Description of the Invention) In selecting an anode mold material that replaces conventional purified blister copper, electrolytic copper, Cu-Zn, Cu-Al, Cu-Mg
Etc. can be considered. The conditions for selecting the material of the anode mold include the following: (1) high impact strength, (2) few bubbles, (3) hard to crack, and (4) low melting point. (5) The added element is as small as possible, and (6) The cost is low.

即ち、鋳造アノードの離型に際してモールドの打撃を
不可避的に伴うので、少なくとも粗銅と同程度の強度を
有するものが必要である。アノード面の荒れ、凹凸、鋳
張り等の原因となる気泡は極力排除せねばならない。モ
ールドの劣化につながりまた鋳張りの原因となるヒビが
入りにくいものでなければならない。融点低下による強
度低下や融着の問題を招いてはならない。転炉等への繰
り返し処理をする上で操業に支障を与えてはならないの
で、添加元素の量を1%以下とすることを目標とせねば
ならない。コスト負担を招かないことは云うまでもな
い。
That is, since the mold is inevitably hit when the cast anode is released, it is necessary that the anode has at least the same strength as blister copper. Bubbles that cause the anode surface to be rough, uneven, cast, and the like must be eliminated as much as possible. It must be hard to cause cracks which lead to deterioration of the mold and cause casting. It should not cause a problem of strength reduction or fusion due to a decrease in melting point. Since the operation must not be hindered in the repeated treatment of the converter and the like, the aim must be to reduce the amount of added elements to 1% or less. Needless to say, there is no cost burden.

電気銅、リン脱酸銅、無酸素銅、リン青銅その他Cu−
Zn,Cu−Al,Cu−Mg,Cu−Sn−P等々様々の合金が試験さ
れた。
Electrolytic copper, phosphorous deoxidized copper, oxygen-free copper, phosphor bronze, other Cu-
Various alloys have been tested, such as Zn, Cu-Al, Cu-Mg, Cu-Sn-P.

電気銅は基本的に、強度不足のためモールド材として
の適性を具備しない。無酸素銅も硬度が極端に低く、気
泡ができやすいために不適格である。Cu−Znも大きな気
泡が多数入りやすい点で好ましくない。最終的に、電気
銅に強度付与と脱酸作用をもたらし得る脱酸剤を添加し
た脱酸銅が検討されたが、同じ脱酸剤といってもその効
果には、相違があることが判明した。例えば、PとAlの
効果については次の通りである: P…1.脱酸効果は大である。
Basically, copper has no strength as a molding material due to insufficient strength. Oxygen-free copper is also unsuitable because of its extremely low hardness and easy formation of air bubbles. Cu-Zn is also not preferable because many large bubbles are likely to enter. In the end, deoxidized copper was added, which added a deoxidizing agent capable of imparting strength and deoxidizing effect to electrolytic copper, but it turned out that there was a difference in the effect of the same deoxidizing agent. did. For example, the effects of P and Al are as follows: P ... 1. The deoxidizing effect is great.

2.酸化物(P2O5)は溶湯中に残留しない。2. The oxide (P 2 O 5 ) does not remain in the molten metal.

3.残留Pにより気泡巣の発生が少ない。 3. Less bubble bubbles due to residual P.

4.湯流れを良くする。 4. Make the hot water flow better.

A1…1.強力な脱酸剤であるが、生成した酸化物は溶湯中
に懸濁しやすい。
A1… 1. Although it is a powerful deoxidizer, the generated oxide is easily suspended in the molten metal.

2.固溶するA1は凝固時の初晶形態を大きく変化さ
せ、微細な収縮巣が多く発生する。
2. A1 in the solid solution greatly changes the primary crystal morphology during solidification, and many fine shrinkage cavities are generated.

ビッカース硬度試験の結果、Pを5000ppm程度含むリ
ン脱酸銅試料は、85−100の硬度を示し、他の銅材料よ
り高い値を示した。
As a result of the Vickers hardness test, the phosphorus deoxidized copper sample containing about 5000 ppm of P showed a hardness of 85-100, which was higher than other copper materials.

以上のような総合的判断の結果として、通常より高い
リン含有量のリン脱酸銅がアノードモールドとして最も
優れていると結論づけられるに至ったものである。ちな
みに、JIS H 3100「銅及び銅合金の板及び条」に規
定されるりん脱酸銅「C1201」、「C1220」及び「C122
1」のP含有量は次の通りである: C1201:0.004%以上0.015%未満 C1220:0.015%〜0.040% C1221:0.004%〜0.040% こうして通常より高いリン含有量のリン脱酸銅製のア
ノードモールドを用いることにより、モールド中の酸化
物は十分に脱酸され除去される。Pは溶湯中の酸化物と
反応してP2O5となり、350℃で気化するため、溶湯面か
ら容易に逸出して酸化物を残留させない優れた脱酸効果
がある。また、鋳物中の気泡巣は多くの場合化合ガス
(主にH2O)の発生によるものであるが、Pが溶湯中に
残留することで、化合ガスは発生しなくなり、気泡巣の
発生が少くなくなると同時に、湯流れも良くなる。
As a result of the above comprehensive judgment, it has been concluded that phosphorus deoxidized copper having a phosphorus content higher than usual is the most excellent as an anode mold. Incidentally, phosphorus deoxidized copper "C1201", "C1220" and "C122" specified in JIS H 3100 "Copper and copper alloy plates and strips".
The P content of "1" is as follows: C1201: 0.004% or more and less than 0.015% C1220: 0.015% to 0.040% C1221: 0.004% to 0.040% Thus, an anode mold made of phosphorus deoxidized copper having a higher phosphorus content than usual By using, the oxide in the mold is sufficiently deoxidized and removed. P reacts with oxides in the molten metal to form P 2 O 5 , which is vaporized at 350 ° C., and thus has an excellent deoxidizing effect of easily escaping from the surface of the molten metal and leaving no oxides. In addition, the bubble cavities in the casting are often caused by the generation of a compound gas (mainly H 2 O). However, since P remains in the molten metal, the compound gas is not generated and the bubble cavities are not generated. At the same time, water flow is improved.

Pの脱酸効果により気泡が無くなり、アノード表面は
滑らかとなり、アノードの剥離が容易となって離型に際
してこれまで生じたアノードの曲がりが非常に少なくな
る。鋳張りも減少する。気泡が無くなることから、モー
ルドの欠け、割れ、ヒビ割れ等が減少し、モールドの耐
久性が向上する。また、従来、モールド面が粗いことか
ら離型剤を多量に使用するため、アノードに付着する離
型剤の量が多くなるという問題も生じていたが、そうし
た不都合は解消される。
Due to the deoxidizing effect of P, bubbles are eliminated, the anode surface becomes smooth, the peeling of the anode becomes easy, and the bending of the anode which has occurred so far at the time of mold release is extremely reduced. Casting is also reduced. Since bubbles are eliminated, chipping, cracking, cracking, etc. of the mold are reduced, and the durability of the mold is improved. In addition, conventionally, since a large amount of the release agent is used due to the rough mold surface, there has been a problem that the amount of the release agent attached to the anode is increased. However, such an inconvenience is solved.

Pの含有量は、0.05−1.0wt%とされる。0.05wt%よ
り少ないと、所期の脱酸効果が得られない。他方、1.0w
t%を超えると多量のPによる金属組織的な弊害が生ず
る。好ましいP含有量は、0.1−0.6wt%である。S及び
O含有量は、それぞれ100ppm以下とすることが好都合で
ある。
The content of P is set to 0.05 to 1.0 wt%. If it is less than 0.05 wt%, the desired deoxidizing effect cannot be obtained. On the other hand, 1.0w
If the content exceeds t%, a large amount of P causes a metallographic adverse effect. The preferred P content is 0.1-0.6 wt%. It is convenient that the S and O contents are each 100 ppm or less.

Pの添加は、例えば、P含有の鋳返しをシャフト炉で
溶解し、不足分のP量をCu3Pを用いて鋳造樋にてPを加
調することによりもたらされる。
P is added, for example, by melting a P-containing cast-back in a shaft furnace and adjusting the insufficient P amount in a casting gutter using Cu 3 P.

アノード鋳造に際しては、モールドに従来より少ない
離型剤を塗布した後、精製粗銅が注がれる。凝固後のア
ノードは容易に剥離される。鋳造工程自体は通常の態様
に従う。
At the time of anode casting, purified blister copper is poured after a mold release agent is applied to the mold in a smaller amount than before. After solidification, the anode is easily peeled off. The casting process itself follows the usual mode.

(実施例) 0.5wt%Pを含有するリン脱酸銅からアノードモール
ドを作製し、これを実際に精製粗銅の鋳造に使用した。
従来からの粗銅製アノードモールドを用いての試験も併
せて行なった。
(Example) An anode mold was prepared from phosphorus-deoxidized copper containing 0.5 wt% P, and this was actually used for casting of purified blister copper.
A test using a conventional blister copper anode mold was also performed.

本発明アノードモールドにより鋳造された銅アノード
は、離型剤の使用量が従来の約半分であったにもかかわ
らず、表面が平滑で、気泡巣及び鋳引きの無いそして曲
がりが大幅に低減した、懸垂性の良好なものであった。
電解成績を比較して示す: モールドライフも、従来のものが700枚(鋳込み回
数)であったのに対し、本発明モールドは2倍以上の15
00枚(鋳込み回数)と大幅に増大した。
The copper anode cast by the anode mold of the present invention had a smooth surface, no bubble cavities and no cast-in, and greatly reduced bending, although the amount of the release agent used was about half of the conventional amount. , Good suspension.
Compare and show the electrolysis results: The mold life of the conventional mold was 700 sheets (the number of times of casting), while the mold of the present invention was 15 times more than doubled.
It greatly increased to 00 sheets (the number of casting).

(発明の効果) 1.アノードの品質向上から、不良品発生率が減少し、そ
して電気銅の品質も向上した。
(Effects of the Invention) 1. Due to the improvement in the quality of the anode, the rejection rate has decreased, and the quality of electrolytic copper has also improved.

2.電解成績が向上した。2.Improved electrolysis performance.

3.モールド寿命が増大した。3. The mold life has been increased.

4.離型剤の使用量が減少した。4. The amount of release agent used decreased.

5.離型作業の負担が軽減された。5. The burden of demolding work has been reduced.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 9/00 - 9/10 B22C 1/00,9/06 C25C 1/12,7/02──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 6 , DB name) C22C 9/00-9/10 B22C 1/00, 9/06 C25C 1/12, 7/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】0.05−1.0wt%Pを含有しそして残部がCu
及び不可避的不純物である銅製の銅アノード用モール
ド。
(1) containing 0.05-1.0 wt% P and the balance being Cu
And a copper anode mold made of copper, which is an inevitable impurity.
【請求項2】0.05−1.0wt%Pを含有しそして残部がCu
及び不可避的不純物である銅製の銅アノード用モールド
に精製粗銅を注湯し、モールド中のPにより脱酸しなが
ら鋳造し、鋳造銅アノードをモールドから離型すること
から成る銅アノードの製造方法。
2. The composition contains 0.05-1.0 wt% P and the balance Cu
And a method of producing a copper anode, which comprises pouring purified crude copper into a copper anode mold made of copper, which is an inevitable impurity, casting while deoxidizing with P in the mold, and releasing the cast copper anode from the mold.
JP1190517A 1989-07-25 1989-07-25 Copper anode mold and copper anode manufacturing method Expired - Lifetime JP2785044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1190517A JP2785044B2 (en) 1989-07-25 1989-07-25 Copper anode mold and copper anode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1190517A JP2785044B2 (en) 1989-07-25 1989-07-25 Copper anode mold and copper anode manufacturing method

Publications (2)

Publication Number Publication Date
JPH0357530A JPH0357530A (en) 1991-03-12
JP2785044B2 true JP2785044B2 (en) 1998-08-13

Family

ID=16259408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1190517A Expired - Lifetime JP2785044B2 (en) 1989-07-25 1989-07-25 Copper anode mold and copper anode manufacturing method

Country Status (1)

Country Link
JP (1) JP2785044B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453667C (en) * 2003-04-01 2009-01-21 安徽铜都铜业股份有限公司铜材厂 Processing method of anode phosphorus copper alloy material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10222178B4 (en) * 2002-05-18 2012-01-12 Aurubis Ag Method for producing a mold and apparatus for casting anodes
JP4280593B2 (en) * 2003-09-30 2009-06-17 日鉱金属株式会社 Copper electrolytic purification method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547337A (en) * 1978-10-02 1980-04-03 Hitachi Cable Ltd Heat resisting highly conductive copper alloy
JPS6144930A (en) * 1984-08-10 1986-03-04 Ube Ind Ltd Glass fiber-reinforced composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453667C (en) * 2003-04-01 2009-01-21 安徽铜都铜业股份有限公司铜材厂 Processing method of anode phosphorus copper alloy material

Also Published As

Publication number Publication date
JPH0357530A (en) 1991-03-12

Similar Documents

Publication Publication Date Title
CN101191167B (en) Magnesium alloy containing rare earth element and preparation method thereof
CN108251714A (en) A kind of high tough aluminium alloy of extrusion casint and its extrusion casting method
CN114231802A (en) Rare earth aluminum alloy bar for forging aluminum alloy hub and preparation method thereof
CN109536786B (en) Manufacturing method of high-quality double-zero-foil aluminum alloy flat ingot
JP2785044B2 (en) Copper anode mold and copper anode manufacturing method
CN101693963B (en) Environment-friendly metal decoration material
CN110938763B (en) Preparation method of die-casting aluminum alloy material capable of being anodized and die-casting method
CN107338374A (en) The high tough Al Si Cu system's cast aluminium alloy golds and preparation method of Zr, Sr combined microalloying and Mn alloyings
CN110004328B (en) Corrosion-resistant cast aluminum-lithium alloy and preparation method thereof
CN111074105A (en) Anodic-oxidation die-casting aluminum alloy material, preparation method thereof and die-casting method thereof
CN102418009A (en) Aluminum alloy capable of digesting high-hardness compounds and smelting method of aluminum alloy
CN113403514B (en) High-strength cast aluminum alloy and preparation method thereof
CN111455200B (en) Preparation method for directly producing copper ingot for environment-friendly bath by using scrap copper
CN110205528B (en) Al-Mg alloy with high intergranular corrosion resistance and preparation method thereof
JPH07113133B2 (en) Cu alloy for continuous casting mold
CN102517476A (en) High strength aluminum alloy capable of reducing porosity and dispersed shrinkage and preparation method thereof
CN111961896A (en) Preparation method of aluminum alloy casting
CN106636802B (en) Non-ferrous metal electrodeposition zinc aluminium alloy cathode material and preparation method thereof
EP0155955A1 (en) Electrode for electrometallurgical processes.
CN115505799B (en) High-strength and high-toughness gravity casting aluminum alloy and preparation method and application thereof
CN107385288A (en) A kind of zirconium is strontium compound microalloyed and the high tough aluminium copper silicon cast aluminium alloy gold and preparation method of kirsite
CA1046799A (en) Electrowinning of zinc using aluminum alloy
CN118207435A (en) Aluminum alloy for anodic oxidation and production process thereof
CN107385287A (en) Zirconium is strontium compound microalloyed and the high tough Al-Si-Cu-based cast aluminium alloy gold and preparation method of MnZn alloying
JP4292070B2 (en) High toughness Al alloy casting and method for producing the same