JP4292070B2 - High toughness Al alloy casting and method for producing the same - Google Patents
High toughness Al alloy casting and method for producing the same Download PDFInfo
- Publication number
- JP4292070B2 JP4292070B2 JP2003420405A JP2003420405A JP4292070B2 JP 4292070 B2 JP4292070 B2 JP 4292070B2 JP 2003420405 A JP2003420405 A JP 2003420405A JP 2003420405 A JP2003420405 A JP 2003420405A JP 4292070 B2 JP4292070 B2 JP 4292070B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy casting
- casting
- alloy
- molten metal
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Description
本発明は高靱性Al合金鋳物およびその製造方法に関する。この種のAl合金鋳物には車体,サスペンション部材,サブフレーム部材,各種継手部材,アルミホイール等のシャーシ構成部品等が該当する。 The present invention relates to a high toughness Al alloy casting and a manufacturing method thereof. This type of Al alloy casting includes chassis components such as vehicle bodies, suspension members, subframe members, various joint members, and aluminum wheels.
従来,高靱性Al合金鋳物としては,その合金元素であるFeの含有量をFe≦0.2wt%に設定したものが知られている(例えば,特許文献1参照)。
しかしながら,Fe含有量をFe≦0.2wt%に設定する,ということはAl合金鋳物の靱性を高める上で有効であるとしても,その反面,加圧鋳造法の適用下では金型のキャビティ内面に対する溶湯の密着力が高くなるため,その焼付きが発生し易い,という新たな問題が生じた。 However, setting the Fe content to Fe ≦ 0.2 wt% is effective in increasing the toughness of the Al alloy casting, but on the other hand, under the application of the pressure casting method, the inner surface of the cavity of the mold A new problem arises that the adhesion of the molten metal to the steel increases and seizure is likely to occur.
本発明は前記に鑑み,優れた靱性を有すると共に金型への焼付きの発生の無い健全な前記Al合金鋳物およびその製造方法を提供することを目的とする。 In view of the above, an object of the present invention is to provide a sound Al alloy casting that has excellent toughness and does not cause seizure to a mold, and a method for producing the same.
前記目的を達成するため第1発明によれば,2wt%≦Si≦4wt%,0.2wt%≦Mg≦0.5wt%,0.4wt%≦Cu≦0.8wt%,0.2wt%<Fe≦0.5wt%,0.1wt%≦Ti≦0.3wt%および不可避不純物を含む残部Alよりなり,金属組織におけるα相の粒径dがd≦45μmである高靱性Al合金鋳物が提供される。
In order to achieve the above object, according to the first invention, 2 wt% ≦ Si ≦ 4 wt%, 0.2 wt% ≦ Mg ≦ 0.5 wt%, 0.4 wt% ≦ Cu ≦ 0.8 wt%, 0.2 wt% < A high toughness Al alloy casting made of Fe ≦ 0.5 wt%, 0.1 wt% ≦ Ti ≦ 0.3 wt% and the balance Al containing inevitable impurities, and the α phase particle size d in the metal structure is d ≦ 45 μm. Provided.
また第2発明によれば,2wt%≦Si≦4wt%,0.2wt%≦Mg≦0.5wt%,0.4wt%≦Cu≦0.8wt%,0.2wt%<Fe≦0.5wt%,0.1wt%≦Ti≦0.3wt%および不可避不純物を含む残部AlよりなるAl合金の溶湯を加圧下で金型のキャビティに充填し,次いで前記溶湯が凝固を開始してから凝固を完了するまでの間,前記溶湯およびその溶湯から生じたAl合金鋳物の冷却速度CR をCR ≧5℃/sに制御する高靱性Al合金鋳物の製造方法が提供される。 According to the second invention, 2 wt% ≦ Si ≦ 4 wt%, 0.2 wt% ≦ Mg ≦ 0.5 wt%, 0.4 wt% ≦ Cu ≦ 0.8 wt%, 0.2 wt% <Fe ≦ 0.5 wt. %, 0.1 wt% ≦ Ti ≦ 0.3 wt% and the remaining Al alloy containing inevitable impurities is filled in the mold cavity under pressure, and then the solidification starts after the molten metal starts to solidify. Until completion, there is provided a method for producing a high toughness Al alloy casting in which the cooling rate C R of the molten metal and the Al alloy casting produced from the molten metal is controlled to C R ≧ 5 ° C./s.
第1発明によれば,前記のように構成することによって優れた靱性を有する健全なAl合金鋳物を提供することができる。 According to 1st invention, the sound Al alloy casting which has the outstanding toughness by comprising as mentioned above can be provided.
これは次のような理由による。即ち,Fe含有量を前記のように設定すると,加圧鋳造法の適用下においても溶湯の金型への焼付きが防止され,またα相の粒径dをd≦45μmに設定してその微細化を図ると,α相の結晶粒界存在量を増して,それら結晶粒界によるFe受容量を増加させると共に針状および板状のβ−FeAlSi(Al5 FeSi)の晶出およびその成長を抑制することができるからである。
This is due to the following reason. That is, when the Fe content is set as described above, seizure of the molten metal to the mold is prevented even under the application of the pressure casting method, and the particle size d of the α phase is set to d ≦ 45 μm. The refinement of the crystal grain increases the abundance of α-phase grain boundaries, increases the amount of Fe accepted by the grain boundaries, and crystallizes and grows acicular and plate-like β-FeAlSi (Al5 FeSi). It is because it can suppress.
また第2発明によれば,前記Al合金鋳物を安価に量産することが可能な前記製造方法を提供することができる。 According to the second invention, it is possible to provide the manufacturing method capable of mass-producing the Al alloy casting at low cost.
これは,Fe含有量が比較的高く安価な地金や返り材(リターン)の使用が可能であり,また溶湯の焼付き回避から金型のメンテナンスが軽減されるため操業安定性がよくなると共に金型の使用寿命が伸びることに因る。また前記特定期間における冷却速度CR を前記のように設定すると,α相の粒径dをd≦45μmにすることができるのである。 This is because the Fe content is relatively high and inexpensive bullion and return material (return) can be used, and the mold maintenance is reduced from avoiding seizure of the molten metal. This is due to the extended service life of the mold. If the cooling rate CR during the specific period is set as described above, the particle size d of the α phase can be set to d ≦ 45 μm.
高靱性Al合金鋳物は,2wt%≦Si≦4wt%,0.2wt%≦Mg≦0.5wt%,0.4wt%≦Cu≦0.8wt%,0.2wt%<Fe≦0.5wt%,0.1wt%≦Ti≦0.3wt%および不可避不純物を含む残部Alよりなる,といった組成を有し,金属組織におけるα相の粒径dはd≦45μmに設定される。
High toughness Al alloy castings are 2wt% ≤Si≤4wt%, 0.2wt% ≤Mg≤0.5wt%, 0.4wt% ≤Cu≤0.8wt%, 0.2wt% <Fe≤0.5wt% , 0.1 wt% ≦ Ti ≦ 0.3 wt% and the balance Al containing inevitable impurities, and the α phase particle size d in the metal structure is set to d ≦ 45 μm.
各合金元素の含有理由およびその含有量限定理由は次の通りである。 The reasons for the content of each alloy element and the reasons for limiting the content are as follows.
Si:溶湯の流動性を良好にし,またAl合金鋳物の機械的特性を向上させる効果を有する。ただし,Si<2wt%では溶湯の流動性が悪化するためAl合金鋳物において巣等の鋳造欠陥が著しく増大する。一方,Si>4wt%ではα相の結晶粒界に分布するSi結晶の存在量が大となるためAl合金鋳物の靱性が低下する。 Si: Has the effect of improving the fluidity of the molten metal and improving the mechanical properties of the Al alloy casting. However, when Si <2 wt%, the fluidity of the molten metal is deteriorated, so that casting defects such as nests are remarkably increased in Al alloy castings. On the other hand, when Si> 4 wt%, the abundance of Si crystals distributed in the α-phase grain boundaries increases, and the toughness of the Al alloy casting decreases.
Mg:T6処理によりMg2 Siを微細に分散析出させてAl合金鋳物の強度を向上させる効果を有する。ただし,Mg<0.2wt%では前記効果が不十分となり,一方,Mg>0.5wt%ではMg2 Siの析出量が過多となるためAl合金鋳物の靱性が低下する。 Mg: Si has the effect of finely dispersing and precipitating Mg 2 Si to improve the strength of the Al alloy casting. However, when Mg <0.2 wt%, the above effect is insufficient. On the other hand, when Mg> 0.5 wt%, the precipitation amount of Mg 2 Si becomes excessive, and the toughness of the Al alloy casting is lowered.
Cu:Alへの高い固溶限に基づいてAl合金鋳物の金属組織を固溶強化し,またT6処理による分散析出により前記金属組織を分散強化する,といった効果を有する。ただし,Cu<0.4wt%ではAl合金鋳物における強度向上効果が十分ではなく,一方,Cu>0.8wt%ではAl合金鋳物の耐応力腐食割れ性が低下し,また耐食性も悪化する。 Based on the high solid solubility limit in Cu: Al, the metal structure of the Al alloy casting is strengthened by solid solution, and the metal structure is dispersed and strengthened by dispersion precipitation by T6 treatment. However, if Cu <0.4 wt%, the effect of improving the strength of the Al alloy casting is not sufficient, while if Cu> 0.8 wt%, the stress corrosion cracking resistance of the Al alloy casting is lowered and the corrosion resistance is also deteriorated.
Fe:前述のごとく,金型に対する溶湯の焼付きを防止する効果を有する。ただし,Fe≦0.2wt%では焼付き防止効果が不十分となり,一方,Fe>0.5wt%では高温で晶出するα−FeAlSiが存在するためAl合金鋳物の靱性が低下する。 Fe: As described above, it has the effect of preventing seizure of the molten metal to the mold. However, when Fe ≦ 0.2 wt%, the effect of preventing seizure is insufficient, while when Fe> 0.5 wt%, the toughness of the Al alloy casting decreases because α-FeAlSi that crystallizes at a high temperature exists.
Ti:結晶粒を微細化する効果を有する。ただし,T<0.1wt%では前記効果が不十分であり,一方,Ti>0.3wt%ではTiAl系高温晶出物であるAl3 Tiが生成されるため溶湯の流動性が悪化して鋳造欠陥が生じ易くなる。 Ti: has an effect of refining crystal grains. However, when T <0.1 wt%, the above effect is insufficient. On the other hand, when Ti> 0.3 wt%, Al 3 Ti, which is a TiAl-based high-temperature crystallization product, is generated, and the fluidity of the melt deteriorates. Casting defects are likely to occur.
結晶粒の微細化効果はZrおよびBによっても得られる。この場合,Zr含有量は0.1wt%≦Zr≦0.3wt%に,B含有量は0.02wt%≦B≦0.04wt%にそれぞれ設定される。なお,BはTi,Zrと協働して複合微粒子化効果を発現すべく,それらTi,Zrと併用される。 The effect of crystal grain refinement can also be obtained by Zr and B. In this case, the Zr content is set to 0.1 wt% ≦ Zr ≦ 0.3 wt%, and the B content is set to 0.02 wt% ≦ B ≦ 0.04 wt%. Note that B is used in combination with Ti and Zr in order to develop a composite fine particle effect in cooperation with Ti and Zr.
金属組織におけるα相の粒径dがd>45μmでは,α相の結晶粒界存在量が少なくなるため,その結晶粒界のFe受容量が小となって針状β−FeAlSi等の晶出およびその成長によってAl合金鋳物の靱性が低下する。
When the particle size d of the α phase in the metal structure is d> 45 μm, the abundance of the α phase grain boundary decreases, so that the Fe acceptance amount of the crystal grain boundary becomes small and crystals such as acicular β-FeAlSi are formed. The toughness of the Al alloy casting is lowered by the protrusion and its growth.
前記高靱性Al合金鋳物の製造に当っては,2wt%≦Si≦4wt%,0.2wt%≦Mg≦0.5wt%,0.4wt%≦Cu≦0.8wt%,0.2wt%<Fe≦0.5wt%,0.1wt%≦Ti≦0.3wt%および不可避不純物を含む残部AlよりなるAl合金の溶湯を加圧下で金型のキャビティに充填し,次いで前記溶湯が凝固を開始してから凝固を完了するまでの間,前記溶湯およびその溶湯から生じたAl合金鋳物の冷却速度CR をCR ≧5℃/sに制御するものである。 In manufacturing the high toughness Al alloy casting, 2 wt% ≦ Si ≦ 4 wt%, 0.2 wt% ≦ Mg ≦ 0.5 wt%, 0.4 wt% ≦ Cu ≦ 0.8 wt%, 0.2 wt% < Fill the mold cavity with molten Al alloy consisting of Fe ≦ 0.5wt%, 0.1wt% ≦ Ti ≦ 0.3wt% and the balance Al containing inevitable impurities, and then the molten metal starts to solidify Then, until the solidification is completed, the cooling rate C R of the molten metal and the Al alloy casting produced from the molten metal is controlled to C R ≧ 5 ° C./s.
各合金元素の含有理由およびその含有量限定理由は前記の場合と同じである。鋳造法としては,例えば,層流充填ダイカスト法,GDC法等が適用される。 The reason for the content of each alloy element and the reason for limiting the content are the same as described above. As the casting method, for example, a laminar flow filling die casting method, a GDC method, or the like is applied.
また前記のように冷却速度CR を設定することによって,α相の粒径dをd≦45μmにし得るが,CR <5℃/sではd>45μmとなるため所期の目的を達成することができない。この冷却速度CR が速ければ速い程α相の粒径dは小となるが,冷却装置等との関係から冷却速度CR の上限値はCR =102 ℃/sオーダーとなる。
In addition, by setting the cooling rate CR as described above, the particle size d of the α phase can be set to d ≦ 45 μm. However, at CR <5 ° C./s, d> 45 μm, so the intended purpose is achieved. I can't. The faster the cooling rate CR, the smaller the particle size d of the α phase. However, the upper limit value of the cooling rate CR is on the order of CR = 10 2 ° C./s because of the relationship with the cooling device.
以下,具体例について説明する。 Specific examples will be described below.
表1は,Al合金鋳物において,Fe含有量を変化させた例(1)〜(12)に関する組成,鋳造法の種類,溶湯が凝固を開始してから凝固を完了するまでの間の冷却速度CR ,α相の粒径dおよび金型に対する焼付きの有無を示す。 Table 1 shows the composition, examples of the casting method, and the cooling rate from the start of solidification to the completion of solidification for the examples (1) to (12) in which the Fe content was changed in an Al alloy casting. C.sub.R , .alpha.
表中,層流DCは,200tダイカスト機による層流充填ダイカスト法を意味し,その鋳造条件は金型温度90〜250℃,初速0.15m/s,射出スピード0.3m/s,注湯温度730℃,鋳造圧力90MPaに設定された。またGDCは重力金型鋳造法を意味し,その鋳造条件は,金型温度120〜350℃,注湯温度730℃に設定された。 In the table, laminar flow DC means a laminar filling die casting method using a 200-ton die casting machine. The temperature was set to 730 ° C. and the casting pressure was set to 90 MPa. GDC means a gravity mold casting method, and the casting conditions were set to a mold temperature of 120 to 350 ° C and a pouring temperature of 730 ° C.
冷却開始の指標となる溶湯の凝固開始温度は656〜630℃であり,一方,冷却終了の指標となる凝固完了時のAl合金鋳物の温度は約550℃である。これは表1の組成を有する溶湯およびAl合金鋳物ならびに,後述する表3,5,7の組成を有する溶湯およびAl合金鋳物について同じである。各Al合金鋳物にはT6処理が施されている。T6処理条件は,540〜510℃にて4〜8時間の加熱,それに次ぐ水焼入れおよび180〜160℃にて6〜15時間の加熱,に設定された。 The solidification start temperature of the molten metal, which is an index for starting cooling, is 656 to 630 ° C., while the temperature of the Al alloy casting at the completion of solidification, which is an index for ending cooling, is about 550 ° C. This is the same for molten metal and Al alloy castings having the compositions of Table 1 and molten metal and Al alloy castings having the compositions of Tables 3, 5 and 7 described later. Each Al alloy casting is subjected to T6 treatment. T6 treatment conditions were set at 540-510 ° C for 4-8 hours, followed by water quenching and 180-160 ° C for 6-15 hours.
図1,2はそれぞれ例(8)および例(3)の金属組織を示す顕微鏡写真の写図である。図1に示す例(8)においては,α相の粒径dがd≦45μmであって,結晶粒界に針状および板状のβ−FeAlSiが晶出していなかったが,図2に示す例(3)においては,α相の粒径dがd>45μmであって,結晶粒界に多数の針状β−FeAlSiが晶出していた。また例(8),(3)において,α相の結晶粒界には複数のSi結晶の晶出が認められた。
1 and 2 are photomicrographs showing the metal structures of Example (8) and Example (3), respectively. In the example (8) shown in FIG. 1, the particle size d of the α phase is d ≦ 45 μm, and needle-like and plate-like β-FeAlSi was not crystallized at the crystal grain boundary. In the example (3) shown, the particle size d of the α phase was d> 45 μm, and a large number of acicular β-FeAlSi crystallized at the crystal grain boundaries. In Examples (8) and (3), crystallization of a plurality of Si crystals was observed at the α-phase grain boundaries.
Al合金鋳物の例(1)〜(12)より,引張試験片およびシャルピー試験片を製作した。引張試験片は平板状をなし,標点距離Lが25mm,厚さtが3mm,幅wが6mmであり,シャルピー試験片はJIS 3号試験片に相当する。各試験片を用いて引張試験およびシャルピー衝撃試験を行ったところ表2の結果を得た。 Tensile test pieces and Charpy test pieces were produced from the Al alloy casting examples (1) to (12). The tensile test piece has a flat plate shape, the gauge distance L is 25 mm, the thickness t is 3 mm, and the width w is 6 mm. The Charpy test piece corresponds to a JIS No. 3 test piece. When a tensile test and a Charpy impact test were performed using each test piece, the results shown in Table 2 were obtained.
図3,4は表1,2に基づいて,Fe含有量とシャルピー衝撃値との関係およびFe含有量と引張強さとの関係をそれぞれグラフ化したものである。図中,(1)〜(12)はAl合金鋳物の例(1)〜(12)にそれぞれ対応する。このような関係は以下同じである。 3 and 4 are graphs showing the relationship between the Fe content and the Charpy impact value and the relationship between the Fe content and the tensile strength based on Tables 1 and 2, respectively. In the figure, (1) to (12) correspond to examples (1) to (12) of the Al alloy casting, respectively. Such a relationship is the same below.
表1,2および図3,4から明らかなように,例(7),(8),(9)は実施例に該当するもので,シャルピー衝撃値および引張強さが共に大であって,高強度・高靱性であり,また焼付きも発生していないことから健全であることが判る。シャーシ構成部品に要求される靱性は,シャルピー衝撃値にて12J/cm2 以上である。 As is clear from Tables 1 and 2 and FIGS. 3 and 4, examples (7), (8), and (9) correspond to the examples, and both the Charpy impact value and the tensile strength are large. It can be seen that it is healthy because it has high strength and toughness, and no seizure has occurred. The toughness required for chassis components is 12 J / cm 2 or more in Charpy impact value.
これに対し,例(1),(2),(5),(6)はFe含有量がFe≦0.2wt%であることからシャルピー衝撃値および引張強さは大であるが,金型に対する焼付きが発生していることから不良品である。例(3),(4)はFe含有量が大である上に冷却速度CR が1℃/sであり,また例(10)〜(12)は冷却速度CR が5℃/sであるがFe含有量が極端に大であることから,α−FeAlSiの晶出に起因して低強度・低靱性であることが判る。 On the other hand, examples (1), (2), (5), and (6) have a large Charpy impact value and tensile strength because the Fe content is Fe ≦ 0.2 wt%. This is a defective product because seizure occurs. Examples (3) and (4) have a large Fe content and a cooling rate C R of 1 ° C./s. Examples (10) to (12) have a cooling rate C R of 5 ° C./s. However, since the Fe content is extremely large, it can be seen that it has low strength and low toughness due to crystallization of α-FeAlSi.
表3は,Al合金鋳物において,Si含有量を変化させた例(13)〜(17)および例(8)に関する組成,加圧鋳造法の種類,溶湯が凝固を開始してから凝固を完了するまでの間の冷却速度CR ,α相の粒径dおよび金型に対する焼付きの有無を示す。 Table 3 shows the compositions of Examples (13) to (17) and Example (8) in which the Si content was changed in the Al alloy casting, the type of pressure casting method, and solidification completed after the molten metal started solidification. The cooling rate C R until the heat treatment, the α-phase particle size d, and the presence or absence of seizure on the mold are shown.
表中,層流DCは,前記同様に,200tダイカスト機による層流充填ダイカスト法を意味し,その鋳造条件は前記と同じである。また各Al合金鋳物にはT6処理が施されており,そのT6処理条件は前記と同じである。 In the table, laminar flow DC means a laminar flow filling die casting method using a 200-ton die casting machine, as described above, and the casting conditions are the same as described above. Each Al alloy casting is subjected to T6 treatment, and the T6 treatment conditions are the same as described above.
Al合金鋳物の例(13)〜(17)より,前記同様の引張試験片およびシャルピー試験片を製作した。各試験片を用いて引張試験およびシャルピー衝撃試験を行い,また溶湯の流動性確認試験を行ったところ,表4の結果を得た。溶湯の流動性確認試験に当っては,層流充填ダイカスト法のテストピース型に各溶湯を前記層流DCで述べた場合と同一条件で充填してテストピースを鋳造し,そのテストピースの断面を観察して,鋳造欠陥が生じているときは「悪い」,それが生じていないときは「良い」と判断した。 From the Al alloy casting examples (13) to (17), the same tensile test pieces and Charpy test pieces were produced. When a tensile test and a Charpy impact test were performed using each test piece, and a fluidity confirmation test of the molten metal was performed, the results shown in Table 4 were obtained. In the test for confirming the fluidity of the molten metal, the test piece mold of the laminar flow filling die casting method is filled with each molten metal under the same conditions as described for the laminar flow DC, and the test piece is cast. When the casting defect occurred, it was judged as “bad”, and when it did not, it was judged as “good”.
図5は表3,4に基づいて,Si含有量とシャルピー衝撃値および引張強さとの関係をグラフ化したものである。表3,4および図5から明らかなように,例(14),(15),(8)は実施例に該当するもので,シャルピー衝撃値および引張強さが共に大であって,高強度・高靱性であり,また溶湯の流動性に起因した鋳造欠陥も発生していないことから健全であることが判る。 FIG. 5 is a graph showing the relationship between the Si content, the Charpy impact value, and the tensile strength based on Tables 3 and 4. As is apparent from Tables 3 and 4 and FIG. 5, Examples (14), (15), and (8) correspond to the Examples, and both the Charpy impact value and the tensile strength are large, and the high strength.・ It is high toughness and no casting defects due to the fluidity of the molten metal have occurred.
例(13)は,溶湯の流動性が悪いことから鋳造欠陥を有し,一方,例(16),(17)はSi>4wt%であることに起因して低靱性である。 Example (13) has casting defects due to poor fluidity of the melt, while examples (16) and (17) have low toughness due to Si> 4 wt%.
表5は,Al合金鋳物において,Mg含有量を変化させた例(18)〜(22)および例(8)に関する組成,加圧鋳造法の種類,溶湯が凝固を開始してから凝固を完了するまでの間の冷却速度CR ,α相の粒径dおよび金型に対する焼付きの有無を示す。 Table 5 shows the compositions of Examples (18) to (22) and Example (8) in which the Mg content was changed in an Al alloy casting, the type of pressure casting method, and solidification completed after the molten metal started solidification. The cooling rate C R until the heat treatment, the α-phase particle size d, and the presence or absence of seizure on the mold are shown.
表中,層流DCは,前記同様に,200tダイカスト機による層流充填ダイカスト法を意味し,その鋳造条件は前記と同じである。また各Al合金鋳物にはT6処理が施されており,そのT6処理条件は前記と同じである。 In the table, laminar flow DC means a laminar flow filling die casting method using a 200-ton die casting machine, as described above, and the casting conditions are the same as described above. Each Al alloy casting is subjected to T6 treatment, and the T6 treatment conditions are the same as described above.
Al合金鋳物の例(18)〜(22)より,前記同様の引張試験片およびシャルピー試験片を製作した。各試験片を用いて引張試験およびシャルピー衝撃試験を行ったところ,表6の結果を得た。 From the examples (18) to (22) of Al alloy castings, the same tensile test pieces and Charpy test pieces as described above were produced. When a tensile test and a Charpy impact test were performed using each test piece, the results shown in Table 6 were obtained.
図6は表5,6に基づいて,Mg含有量とシャルピー衝撃値および引張強さとの関係をグラフ化したものである。 FIG. 6 is a graph showing the relationship between Mg content, Charpy impact value, and tensile strength based on Tables 5 and 6.
表5,6および図6から明らかなように,例(19),(20),(8)は実施例に該当するもので,シャルピー衝撃値および引張強さが共に大であって,高強度・高靱性であることが判る。 As is apparent from Tables 5 and 6 and FIG. 6, Examples (19), (20), and (8) correspond to the examples, and both the Charpy impact value and the tensile strength are large, and the high strength.・ It turns out to be high toughness.
例(18)はMg<0.2wt%であることから強度が低く,一方,例(21),(22)はMg>0.5wt%であることから低靱性である。 Example (18) has low strength because Mg <0.2 wt%, while Examples (21) and (22) have low toughness because Mg> 0.5 wt%.
表7は,Al合金鋳物において,Cu含有量を変化させた例(23)〜(27)および例(8)に関する組成,加圧鋳造法の種類,溶湯が凝固を開始してから凝固を完了するまでの間の冷却速度CR ,α相の粒径dおよび金型に対する焼付きの有無を示す。 Table 7 shows the compositions of Examples (23) to (27) and Example (8) in which the Cu content was changed in an Al alloy casting, the type of pressure casting method, and solidification completed after the molten metal started solidification. The cooling rate C R until the heat treatment, the α-phase particle size d, and the presence or absence of seizure on the mold are shown.
表中,層流DCは,前記同様に,200tダイカスト機による層流充填ダイカスト法を意味し,その鋳造条件は前記と同じである。また各Al合金鋳物にはT6処理が施されており,T6処理条件は前記と同じである。 In the table, laminar flow DC means a laminar flow filling die casting method using a 200-ton die casting machine, as described above, and the casting conditions are the same as described above. Each Al alloy casting is subjected to T6 treatment, and the T6 treatment conditions are the same as described above.
Al合金鋳物の例(23)〜(27)より,前記同様の引張試験片およびシャルピー試験片を製作した。各試験片を用いて引張試験およびシャルピー衝撃試験を行い,また応力腐食割れ試験を行ったところ,表8の結果を得た。応力腐食割れ試験は,JIS H 8711に則って,2B試験片を用い,応力負荷を耐力値の85%に設定して行われた。 From the examples (23) to (27) of Al alloy castings, the same tensile test pieces and Charpy test pieces were produced. When a tensile test and a Charpy impact test were performed using each test piece, and a stress corrosion cracking test was performed, the results shown in Table 8 were obtained. The stress corrosion cracking test was performed according to JIS H 8711 using a 2B test piece and setting the stress load to 85% of the proof stress value.
図7は表7,8に基づいて,Cu含有量とシャルピー衝撃値および引張強さとの関係をそれぞれグラフ化したものである。 FIG. 7 is a graph showing the relationship between the Cu content, the Charpy impact value, and the tensile strength based on Tables 7 and 8, respectively.
表7,8および図7から明らかなように,例(24),(25),(8)は実施例に該当するもので,シャルピー衝撃値および引張強さが共に大であって,高強度・高靱性であり,また応力腐食割れも発生していないことから健全であることが判る。 As is clear from Tables 7 and 8 and FIG. 7, examples (24), (25), and (8) correspond to the examples, and both the Charpy impact value and the tensile strength are large, and the high strength.・ It is found to be healthy because it has high toughness and no stress corrosion cracking has occurred.
例(23)はCu<0.4wt%であることから強度が低く,一方,例(26),(27)はCu>0.8wt%であることから応力腐食割れが発生していた。 Example (23) had low strength because Cu <0.4 wt%, while Examples (26) and (27) had stress corrosion cracking because Cu> 0.8 wt%.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003420405A JP4292070B2 (en) | 2003-12-18 | 2003-12-18 | High toughness Al alloy casting and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003420405A JP4292070B2 (en) | 2003-12-18 | 2003-12-18 | High toughness Al alloy casting and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005177791A JP2005177791A (en) | 2005-07-07 |
JP4292070B2 true JP4292070B2 (en) | 2009-07-08 |
Family
ID=34781937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003420405A Expired - Fee Related JP4292070B2 (en) | 2003-12-18 | 2003-12-18 | High toughness Al alloy casting and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4292070B2 (en) |
-
2003
- 2003-12-18 JP JP2003420405A patent/JP4292070B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005177791A (en) | 2005-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4970709B2 (en) | Casting alloy | |
JP2005264301A (en) | Casting aluminum alloy, casting of aluminum alloy and manufacturing method therefor | |
JP2001220639A (en) | Aluminum alloy for casting | |
JP5638222B2 (en) | Heat-resistant magnesium alloy for casting and method for producing alloy casting | |
JP7152977B2 (en) | aluminum alloy | |
JP4145242B2 (en) | Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy | |
JP2022093990A (en) | Aluminum alloy forging and method for producing the same | |
JP3479204B2 (en) | Aluminum alloy casting for non-heat treatment and method for producing the same | |
JP4292070B2 (en) | High toughness Al alloy casting and method for producing the same | |
JP3840400B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
CN117512411A (en) | High-toughness die-casting aluminum alloy with chromium element, and preparation method and product thereof | |
JPWO2020095777A1 (en) | Aluminum alloy for die casting and aluminum alloy die casting material | |
JP7147647B2 (en) | Aluminum alloy and aluminum alloy die-cast material | |
JP4796563B2 (en) | Aluminum casting alloy for heat treatment and manufacturing method of aluminum alloy casting having excellent rigidity | |
JP6741208B2 (en) | Hypereutectic Al-Si based aluminum alloy, cast member made of the same, and method for producing the aluminum alloy | |
JP3676723B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
JP4121266B2 (en) | Method for producing semi-molten billet of aluminum alloy for transportation equipment | |
JP2021070871A (en) | Aluminum alloy forging and production method thereof | |
CN114000020A (en) | Ingot for large-size die forging and preparation method thereof | |
JP7401080B1 (en) | Manufacturing method of Al alloy for casting | |
JPH0835030A (en) | Aluminum alloy for casting, excellent in strength | |
CN110564991A (en) | Method for producing aluminum alloy | |
JP4238181B2 (en) | High toughness Al alloy casting | |
JP4238180B2 (en) | High toughness Al alloy casting and method for producing the same | |
JP3674489B2 (en) | Wrought Mg alloy and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061102 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090325 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090406 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120410 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140410 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |