JP7150768B2 - Electrolysis apparatus and electrolysis method - Google Patents

Electrolysis apparatus and electrolysis method Download PDF

Info

Publication number
JP7150768B2
JP7150768B2 JP2020014137A JP2020014137A JP7150768B2 JP 7150768 B2 JP7150768 B2 JP 7150768B2 JP 2020014137 A JP2020014137 A JP 2020014137A JP 2020014137 A JP2020014137 A JP 2020014137A JP 7150768 B2 JP7150768 B2 JP 7150768B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
electrolytic
liquid supply
rectifying
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020014137A
Other languages
Japanese (ja)
Other versions
JP2021120477A5 (en
JP2021120477A (en
Inventor
大輔 手塚
裕磨 二宮
正 森
公司 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2020014137A priority Critical patent/JP7150768B2/en
Publication of JP2021120477A publication Critical patent/JP2021120477A/en
Publication of JP2021120477A5 publication Critical patent/JP2021120477A5/ja
Application granted granted Critical
Publication of JP7150768B2 publication Critical patent/JP7150768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、電解装置及び電解方法に関する。 TECHNICAL FIELD The present invention relates to an electrolysis device and an electrolysis method.

従来の電解装置では、電解槽の長手方向の一端側の下部から電解液が供給され、他端側の上部から電解液が排液される下入れ上抜き方式と呼ばれる電解液の給排液が行われてきた。電解槽内の液組成及び添加剤濃度を均一に保つことは、例えば電気銅の品質及び電解成績を向上させるために重要な技術の一つであり、これまで色々な方法が検討されている。 In a conventional electrolytic device, the electrolyte is supplied and drained from the bottom of one end in the longitudinal direction of the electrolytic cell, and the electrolyte is drained from the top of the other end. has been done. Keeping the liquid composition and additive concentration in the electrolytic cell uniform is one of the important techniques for improving, for example, the quality of electrolytic copper and the electrolysis results, and various methods have been studied so far.

例えば、特開2007-204779号公報(特許文献1)には、電解槽の長手方向の一端側から電解液の上層部及び下層部へ電解液を給液し、反対側の端部側の液面上層部から排液する方法が提案されている。特開2015-209550号公報(特許文献2)には、電解槽の長手方向の一端の上部から電解液が側面に向けて給液され、他端の下部から排液される方法が提案されている。また、全く別の方法として、特開2014-189851号公報(特許文献3)及び特許第5227404号公報(特許文献4)には、電解槽の底や電解槽脇から電解液を給液する方法が提案されている。 For example, in Japanese Patent Application Laid-Open No. 2007-204779 (Patent Document 1), the electrolytic solution is supplied from one end side in the longitudinal direction of the electrolytic cell to the upper and lower layers of the electrolytic solution, and the liquid on the opposite end side A method of draining from the surface upper layer has been proposed. Japanese Patent Application Laid-Open No. 2015-209550 (Patent Document 2) proposes a method in which an electrolytic solution is supplied from the upper part of one end in the longitudinal direction of the electrolytic cell toward the side surface and drained from the lower part of the other end. there is In addition, as a completely different method, Japanese Patent Application Laid-Open No. 2014-189851 (Patent Document 3) and Japanese Patent No. 5227404 (Patent Document 4) disclose a method of supplying the electrolytic solution from the bottom of the electrolytic cell or the side of the electrolytic cell. is proposed.

特開2007-204779号公報Japanese Patent Application Laid-Open No. 2007-204779 特開2015-209550号公報JP 2015-209550 A 特開2014-189851号公報JP 2014-189851 A 特許第5227404号公報Japanese Patent No. 5227404

しかしながら、電解が進むと電解槽内に液の濃度差が生まれ、電解槽底へいくほど比重の重い液が溜まる。給液口から給液された液は、電解槽底の液より比重が軽いため、特許文献1及び2に記載されるような下入れ上抜き方式の電解液の給排液を行った場合には、給液位置より下方に電解液や添加剤が供給されないデッドスペースが生じる。電解槽内に添加剤が供給されない領域が生じると電着物の表面が荒れる場合や、電解液が供給されないことによって液中の銅濃度が部分的に上昇して不動態化が起こりやすくなる場合がある。 However, as electrolysis progresses, a difference in the concentration of the liquid is created in the electrolytic cell, and the liquid with a higher specific gravity accumulates toward the bottom of the electrolytic cell. Since the liquid supplied from the liquid supply port has a lighter specific gravity than the liquid at the bottom of the electrolytic cell, when the electrolyte solution is supplied and drained by the bottom-up, top-out method as described in Patent Documents 1 and 2, , there is a dead space below the liquid supply position where the electrolyte and additive are not supplied. If there is a region in the electrolytic bath where the additive is not supplied, the surface of the electrodeposit may become rough, and when the electrolytic solution is not supplied, the copper concentration in the solution may partially increase and passivation may easily occur. be.

特許文献3に記載された発明では、電解槽の下方且つカソードの側方から電解液を供給し、電解槽の上部の電解液排出口から電解液を排液することで、排液側の電解槽底部の銅濃度上昇を防ぐことはできる。しかしながら、給液側は、従来と同様に上方から供給されているため、給液側の電解槽下方には電解液が供給されないデッドスペースが生じ、電解槽内の混合状態を十分に改善できているとはいえない。 In the invention described in Patent Document 3, the electrolytic solution is supplied from the lower side of the electrolytic cell and the side of the cathode, and the electrolytic solution is drained from the electrolytic solution discharge port at the top of the electrolytic cell, thereby performing electrolysis on the drain side. It is possible to prevent the increase in copper concentration at the bottom of the tank. However, since the liquid supply side is supplied from above as in the conventional case, there is a dead space below the electrolytic cell on the liquid supply side where the electrolyte is not supplied, and the mixing state in the electrolytic cell cannot be sufficiently improved. I can't say there is.

特許文献4に記載された発明では、電解槽の底及び電解槽脇から電解液を供給することにより、電解槽内の電解液の混合状態を改善することができる。しかしながら、特許文献4では、電解液を下方から上方へと強制的に対流させることにより、殿物の巻き上げなどによるカソードの汚染の問題が発生するおそれがある。 In the invention described in Patent Document 4, the mixing state of the electrolyte in the electrolytic cell can be improved by supplying the electrolytic solution from the bottom of the electrolytic cell and the side of the electrolytic cell. However, in Patent Document 4, the forced convection of the electrolytic solution from the bottom to the top may cause a problem of contamination of the cathode due to sediments being lifted up.

上記課題を鑑み、本開示は、殿物の巻き上げを抑制しながら電解槽内に給液される電解液を電解槽内により均一に供給することが可能な電解装置及び電解方法を提供する。 In view of the above problems, the present disclosure provides an electrolysis apparatus and an electrolysis method capable of more uniformly supplying an electrolytic solution into an electrolytic cell while suppressing the winding up of precipitates.

本発明の実施の形態に係る電解装置は一実施態様において、電解液を収容する電解槽の長手方向に互いに間隔を空けて配置された電極を電解液中に浸漬し、電解液を循環させながら電解処理する電解装置であって、電解槽の長手方向に延びる第1の側壁に沿って互いに間隔を空けて配置され、電解液を供給するための複数の給液口と、給液口から供給される電解液を収容し、該電解液をオーバーフローさせて電解槽内へと供給する樋部と、樋部内に設けられ、電解液の流速分布を電解槽の長手方向で均一化させるための1以上の整流板と、樋部よりも下方において第1の側壁と対向する第2の側壁に沿って互いに間隔を空けて配置され、電解液を排液するための複数の排液口とを備える電解装置である。 In one embodiment of the electrolytic device according to the embodiment of the present invention, electrodes arranged at intervals in the longitudinal direction of an electrolytic bath containing an electrolytic solution are immersed in the electrolytic solution, and while the electrolytic solution is circulated An electrolytic device for electrolytic treatment, comprising: a plurality of liquid supply ports for supplying an electrolytic solution spaced apart from each other along a first side wall extending in the longitudinal direction of the electrolytic cell; a gutter portion for accommodating the electrolytic solution, overflowing the electrolytic solution and supplying it into the electrolytic cell; The rectifying plate described above and a plurality of drain ports for draining the electrolytic solution are arranged along the second side wall facing the first side wall below the gutter portion at intervals. It is an electrolytic device.

本発明の実施の形態に係る電解方法は一実施態様において、電解液を収容する電解槽の長手方向に互いに間隔を空けて配置された電極を電解液中に浸漬し、電解液を循環させながら電解処理する電解方法であって、電解槽の長手方向に延びる第1の側壁に沿って互いに間隔を空けて配置された複数の給液口から電解液を供給し、給液口から供給される電解液を収容するための樋部内に配置された1以上の整流板により、電解液の流速分布を電解槽の長手方向で均一化させ、電解液を樋部からオーバーフローさせて電解槽内へと供給し、樋部よりも下方において第1の側壁と対向する第2の側壁に沿って互いに間隔を空けて配置された複数の排液口を介して電解液を排液することを含む電解方法である。 In one embodiment of the electrolysis method according to the embodiment of the present invention, electrodes arranged at intervals in the longitudinal direction of an electrolytic bath containing an electrolytic solution are immersed in the electrolytic solution, and while the electrolytic solution is circulated An electrolysis method for electrolytic treatment, wherein the electrolytic solution is supplied from a plurality of liquid supply ports spaced apart from each other along a first side wall extending in the longitudinal direction of the electrolytic cell, and is supplied from the liquid supply port One or more rectifying plates arranged in the gutter for containing the electrolytic solution make the flow velocity distribution of the electrolytic solution uniform in the longitudinal direction of the electrolytic cell, causing the electrolytic solution to overflow from the gutter and flow into the electrolytic cell. supplying and draining the electrolytic solution through a plurality of spaced drain ports along a second side wall opposite the first side wall below the gutter. is.

本開示によれば、殿物の巻き上げを抑制しながら電解槽内に給液される電解液を電解槽内により均一に供給することが可能な電解装置及び電解方法が提供できる。 Advantageous Effects of Invention According to the present disclosure, it is possible to provide an electrolysis device and an electrolysis method that can more uniformly supply an electrolytic solution into an electrolytic cell while suppressing the winding up of precipitates.

本発明の実施の形態に係る電解装置の上面概略図である。1 is a schematic top view of an electrolytic device according to an embodiment of the present invention; FIG. 本発明の実施の形態に係る電解装置を側面からみた場合の給液配管と排液配管との位置関係を示す概略図である。It is a schematic diagram showing a positional relationship between a liquid supply pipe and a liquid discharge pipe when the electrolytic device according to the embodiment of the present invention is viewed from the side. 図3(a)は、本発明の実施の形態に係る整流板を備える樋部の構成例を示す概略図であり、図3(b)は、樋部の開口端に設けられた流出量調整機構の構成例を示す概略図である。FIG. 3(a) is a schematic diagram showing a configuration example of a gutter provided with a rectifying plate according to an embodiment of the present invention, and FIG. 4 is a schematic diagram showing a configuration example of a mechanism; FIG. 図4(a)、図4(c)、図4(e)は本発明の実施の形態に係る整流板が備える整流口の配置例を示す平面図であり、図4(b)、図4(d)、図4(f)は本発明の実施の形態に係る整流板が備える整流口の配置例を示す断面図である。4(a), 4(c), and 4(e) are plan views showing examples of arrangement of rectifying ports provided in the rectifying plate according to the embodiment of the present invention. 4(d) and 4(f) are cross-sectional views showing examples of arrangement of rectifying ports provided in the rectifying plate according to the embodiment of the present invention. 排液ボックスと排液配管の電解槽内の配置位置を表す説明図である。FIG. 4 is an explanatory diagram showing the arrangement positions of the drainage box and the drainage pipe in the electrolytic cell. 給液部と排液ボックスとを表す上面概略図である。FIG. 4 is a schematic top view showing a liquid supply section and a liquid drainage box; 電解液が排液ボックスから給液部へと流れる様子を表す断面概略図である。FIG. 4 is a schematic cross-sectional view showing how an electrolytic solution flows from a drainage box to a liquid supply section; 本発明の実施の形態に係る電解装置を用いて電解液を給液した場合のシミュレーション結果の例を表す説明図である。FIG. 5 is an explanatory diagram showing an example of simulation results when an electrolytic solution is supplied using the electrolytic device according to the embodiment of the present invention; 本発明の実施の形態に係る電解装置を用いて電解槽の長手方向から電解液をオーバーフローさせて供給した場合の流速分布の例を表すグラフである。FIG. 4 is a graph showing an example of flow velocity distribution when an electrolytic solution is overflowed from the longitudinal direction of the electrolytic cell using the electrolyzer according to the embodiment of the present invention. FIG.

以下、図面を参照しながら本発明の実施の形態に係る電解装置及び電解方法について説明する。なお、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、各構成部品の構造、配置及び手順等を下記のものに特定するものではない。 Hereinafter, an electrolysis device and an electrolysis method according to embodiments of the present invention will be described with reference to the drawings. The embodiments shown below are examples of devices and methods for embodying the technical idea of this invention. are not specific to the following:

(電解装置)
本発明の実施の形態に係る電解装置は、図1に示すように、電解液を収容するための直方体状の電解槽1を備える。電解槽1のサイズとしては、例えば、電解槽1の長さ(長手方向Xの内径)が5200~5900mm、幅(短手方向Yの内径)が1095~1110mm、深さが1275~1510mmとなるように形成できる。
(Electrolyzer)
An electrolysis apparatus according to an embodiment of the present invention, as shown in FIG. 1, includes a rectangular parallelepiped electrolytic cell 1 for containing an electrolytic solution. The size of the electrolytic cell 1 is, for example, 5200 to 5900 mm in length (inner diameter in the longitudinal direction X), 1095 to 1110 mm in width (inner diameter in the lateral direction Y), and 1275 to 1510 mm in depth. can be formed as

電解槽1は、長手方向Xに平行な方向に延びる第1の側壁11と、第1の側壁11に対向する第2の側壁12と、長手方向Xの一端において第1の側壁11及び第2の側壁12に垂直に延びる第3の側壁13と、長手方向Xの他端において第1の側壁11及び第2の側壁12に垂直に延び、第3の側壁13に対向する第4の側壁14とを有する。 The electrolytic cell 1 has a first side wall 11 extending in a direction parallel to the longitudinal direction X, a second side wall 12 facing the first side wall 11, and at one end of the longitudinal direction X the first side wall 11 and the second side wall 12. and a fourth sidewall 14 extending perpendicularly to the first sidewall 11 and the second sidewall 12 at the other end in the longitudinal direction X and facing the third sidewall 13 . and

図2に示すように、電解槽1の第1の側壁11の上方には、電解槽1内に収容される電解液の液面もしくは液面近傍となる高さにおいて電解槽1の長手方向に沿って延びる給液配管2a、2b、2cが配置されている。給液配管2a、2b、2cは、電解槽1の第3の側壁13の上方に配置された電解液を供給するための給液部20に接続されている。 As shown in FIG. 2 , above the first side wall 11 of the electrolytic cell 1 , the liquid level of the electrolytic solution contained in the electrolytic cell 1 or a height close to the liquid level is provided in the longitudinal direction of the electrolytic cell 1 . Liquid supply pipes 2a, 2b, and 2c are arranged extending along. The liquid supply pipes 2 a , 2 b , 2 c are connected to a liquid supply section 20 arranged above the third side wall 13 of the electrolytic cell 1 for supplying the electrolytic solution.

給液部20は、ここでは図示を省略しているが、図2の電解槽1の他に、図2の電解槽1以外の他の電解槽に対しても電解液を給液することが可能な給液主管と、供給主管から給液配管2a、2b、2cへ電解液を分岐させる分岐配管とを備えることができる。 Although illustration is omitted here, the liquid supply unit 20 can supply the electrolytic solution not only to the electrolytic cell 1 in FIG. 2 but also to other electrolytic cells other than the electrolytic cell 1 in FIG. It is possible to provide a main supply pipe and branch pipes branching the electrolytic solution from the main supply pipe to the supply pipes 2a, 2b, 2c.

給液配管2a、2b、2cは、電解液への電解液の供給流量が20~100L/分となるように電解液を電解槽1内へ供給することが好ましい。電解液の供給流量が20L/分未満では添加剤が電解槽1内に行き渡る前に分解してしまい、電着した金属の平滑性が損なわれる場合や、不動態化を起こす場合がある。電解液の供給流量は電解効率の面から高い方が好ましいが、電解液の供給流量が100L/分を超えると、電解槽1内の殿物が巻き上げられてカソード板表面へ付着する場合がある。 The liquid supply pipes 2a, 2b, and 2c preferably supply the electrolytic solution into the electrolytic cell 1 so that the flow rate of the electrolytic solution supplied to the electrolytic solution is 20 to 100 L/min. If the supply flow rate of the electrolytic solution is less than 20 L/min, the additive is decomposed before it spreads throughout the electrolytic cell 1, which may impair the smoothness of the electrodeposited metal or cause passivation. Although the supply flow rate of the electrolytic solution is preferably high in terms of electrolysis efficiency, if the supply flow rate of the electrolytic solution exceeds 100 L/min, precipitates in the electrolytic cell 1 may be rolled up and adhere to the surface of the cathode plate. .

本実施形態に係る電解装置では、電解槽1への電解液の供給流量を20~100L/分とすることで、殿物の巻き上げを抑制しながら電解槽1内に給液される電解液の混合状態をより改善することができ、より効率の高い電解精製を実施することができる。なお、電解液の供給流量は、30~90L/分とすることが好ましく、30~70L/分とすることがより好ましく、50~70L/分とすることが更に好ましい。 In the electrolytic device according to the present embodiment, by setting the supply flow rate of the electrolytic solution to the electrolytic cell 1 to be 20 to 100 L/min, the electrolytic solution supplied into the electrolytic cell 1 is suppressed while the precipitation is suppressed. The mixed state can be further improved, and more efficient electrorefining can be carried out. The supply flow rate of the electrolytic solution is preferably 30 to 90 L/min, more preferably 30 to 70 L/min, and even more preferably 50 to 70 L/min.

給液配管2a、2b、2cの先端部には、給液口21が設けられている。給液口21はそれぞれ電解槽1の長手方向に互いに間隔を空けて離間するように、好ましくは等間隔に設けられている。図2に示すように、給液口21は、それぞれ樋部4の底部に接続されており、樋部4の下方から上方へ向けて電解液を流出させる。 Liquid supply ports 21 are provided at the tip portions of the liquid supply pipes 2a, 2b, and 2c. The liquid supply ports 21 are preferably provided at regular intervals so as to be spaced apart from each other in the longitudinal direction of the electrolytic cell 1 . As shown in FIG. 2, the liquid supply ports 21 are connected to the bottoms of the gutter portions 4, respectively, and allow the electrolytic solution to flow upward from below the gutter portion 4. As shown in FIG.

樋部4は、複数の給液口21から供給される電解液を内部に収容し、電解液を一時的に貯留した後、電解液をオーバーフローさせて電解槽1内へと供給するように構成されている。樋部4は、図1に示すように、電解槽1の長手方向Xに沿って第1の側壁11と実質的に平行に延びる壁部42と、第1の側壁11と壁部42との間に一定間隔Wを空けるように、壁部42と第1の側壁11との間を支える複数の梁部44とを備える。間隔Wは10~30mm程度、より具体的には15mm程度とすることができる。 The gutter portion 4 is configured to accommodate the electrolytic solution supplied from the plurality of liquid supply ports 21 therein, temporarily store the electrolytic solution, and then overflow the electrolytic solution to supply it into the electrolytic cell 1 . It is As shown in FIG. 1, the gutter portion 4 includes a wall portion 42 extending substantially parallel to the first side wall 11 along the longitudinal direction X of the electrolytic cell 1, and a A plurality of beams 44 are provided to support between the wall 42 and the first side wall 11 so as to leave a constant interval W therebetween. The interval W can be about 10 to 30 mm, more specifically about 15 mm.

図1に示すように、壁部42側から梁部44内に、第1の側壁11側へ向けてねじ等の固定具47を差し込んで固定することにより、壁部42を樋部4に対して取り外し可能に配置することができる。壁部42が樋部4に対して取り外し可能に配置されることにより、樋部4内に発生した電解液中の不純物であるアンチモン等が原因で発生したスケールの除去作業を簡易に実施することができ、メンテナンス作業が簡易化できる。 As shown in FIG. 1, the wall portion 42 is attached to the gutter portion 4 by inserting and fixing fasteners 47 such as screws into the beam portion 44 from the wall portion 42 side toward the first side wall 11 side. can be removably placed on the Since the wall portion 42 is detachably arranged with respect to the gutter portion 4, it is possible to easily perform the work of removing scale generated due to antimony, which is an impurity in the electrolytic solution, generated inside the gutter portion 4. and simplifies maintenance work.

図3(a)に示すように、樋部4内には、樋部4内に供給される電解液の流速を、電解槽1の長手方向Xで均一化させるための1以上の整流板46a、46b、46cが設けられている。整流板46a、46b、46cの数は限定されないが、2以上設けられることがより好ましい。 As shown in FIG. 3( a ), in the gutter portion 4 , one or more rectifying plates 46 a are provided to make the flow velocity of the electrolytic solution supplied into the gutter portion 4 uniform in the longitudinal direction X of the electrolytic cell 1 . , 46b and 46c are provided. Although the number of rectifying plates 46a, 46b, and 46c is not limited, it is more preferable to provide two or more.

図2に示すように、整流板46a、46b、46cは、電解液を通水させる複数の整流口45を備えていることが好ましい。更に、上下の整流板46a、46bの整流口45が、鉛直方向(図2の紙面垂直方向)に互いに異なる位置に配置されるように、整流口45がそれぞれ互い違いに配置されることが好ましい。 As shown in FIG. 2, the rectifying plates 46a, 46b, 46c preferably have a plurality of rectifying ports 45 through which the electrolytic solution flows. Further, it is preferable that the rectifying ports 45 of the upper and lower rectifying plates 46a and 46b are arranged alternately so that the rectifying ports 45 are arranged at different positions in the vertical direction (perpendicular to the paper surface of FIG. 2).

これにより、給液口21から樋部4の上方へ向けて供給される電解液は、まず、樋部4の最も下端にある整流板46aとぶつかり、電解槽1の長手方向に流れる。その後、電解液は、整流板46aが備える整流口45を通って、その上方にある整流板46bとぶつかり、整流板46aと整流板46bの間を、電解槽1の長手方向に流れる。電解液は更に、整流板46bが備える整流口45を通って、その上方にある整流板46cにぶつかり、整流板46cが備える整流口45を通って樋部4の上方へと流れる。 As a result, the electrolytic solution supplied from the liquid supply port 21 toward the top of the gutter portion 4 first collides with the current plate 46 a at the lowest end of the gutter portion 4 and flows in the longitudinal direction of the electrolytic cell 1 . After that, the electrolytic solution passes through the straightening port 45 provided in the straightening plate 46a, collides with the straightening plate 46b above it, and flows in the longitudinal direction of the electrolytic cell 1 between the straightening plates 46a and 46b. The electrolytic solution further passes through the rectifying port 45 provided in the rectifying plate 46b, collides with the rectifying plate 46c located above it, and flows above the gutter portion 4 through the rectifying port 45 provided in the rectifying plate 46c.

このようにして、鉛直方向に異なる位置に互い違いに配置された複数の整流板46a、46b、46cの整流口45に給液口21から供給される電解液が通水されることで、電解液の流れを電解槽1の長手方向に拡げることができる。その結果、樋部4の開口部41から電解液をオーバーフローさせる際に、オーバーフローする電解液の流速分布を、電解槽1の長手方向で均一化できる。 In this manner, the electrolytic solution supplied from the liquid supply port 21 is passed through the rectifying ports 45 of the plurality of rectifying plates 46a, 46b, and 46c that are alternately arranged at different positions in the vertical direction. can be expanded in the longitudinal direction of the electrolytic cell 1. As a result, when the electrolytic solution overflows from the opening 41 of the gutter portion 4 , the flow velocity distribution of the overflowing electrolytic solution can be made uniform in the longitudinal direction of the electrolytic cell 1 .

樋部4へ供給される電解液の流速は、給液口21の付近が最も速い。そのため、給液口21の直上に電解液を通水させるための整流口45が形成されていると、整流口45を介して電解液が上方に流出してしまい、整流板46a、46b、46cによって、電解液を電解槽1の長手方向へ拡散させることが難しくなる。 The flow velocity of the electrolytic solution supplied to the gutter portion 4 is the fastest in the vicinity of the liquid supply port 21 . Therefore, if the rectifying port 45 for passing the electrolytic solution is formed directly above the liquid supply port 21, the electrolytic solution flows upward through the rectifying port 45, causing the rectifying plates 46a, 46b, and 46c to flow upward. This makes it difficult to diffuse the electrolytic solution in the longitudinal direction of the electrolytic cell 1 .

本実施形態では、給液口21の直上に配置される整流口45の開口面積を、給液口21の直上以外の整流口45の開口面積よりも小さく形成するか、または、給液口21の直上の整流口45を塞ぐか、または、整流口45の位置を、給液口21の直上からずらして配置する。これにより、給液口21から上方へ向けて流れる電解液を、給液口21の直上にある整流板46aへ当てて、電解液を長手方向に流すことができるため、電解液の流れを電解槽1の長手方向に拡げることができる。その結果、樋部4の開口部41からオーバーフローする電解液の流速分布を、電解槽1の長手方向で均一化できる。 In this embodiment, the opening area of the straightening port 45 arranged directly above the liquid supply port 21 is formed smaller than the opening area of the straightening port 45 other than the straightening port 45 located directly above the liquid supply port 21, or the liquid supply port 21 , or the position of the rectifying port 45 is displaced from directly above the liquid supply port 21 . As a result, the electrolytic solution flowing upward from the liquid supply port 21 can be brought into contact with the rectifying plate 46a located directly above the liquid supply port 21, and the electrolytic solution can flow in the longitudinal direction. It can be expanded in the longitudinal direction of the tank 1 . As a result, the flow velocity distribution of the electrolytic solution overflowing from the opening 41 of the gutter 4 can be made uniform in the longitudinal direction of the electrolytic cell 1 .

図3に示すように、給液口21の直上に配置される整流板46aと樋部4の電解液を貯留する底面48との間隔d1が、給液口21の直上に配置される整流板46aよりも上方にある他の整流板46b、46間の間隔d2、d3と比較して、最も狭くなるように、整流板46a、46b、46cの高さが調整されていることが好ましい。 As shown in FIG. 3, the distance d1 between the rectifying plate 46a arranged directly above the liquid supply port 21 and the bottom surface 48 of the gutter portion 4 for storing the electrolytic solution is equal to the rectifying plate arranged directly above the liquid supply port 21. It is preferable that the heights of the straightening vanes 46a, 46b and 46c are adjusted so as to be narrowest compared to the intervals d2 and d3 between the other straightening vanes 46b and 46 above 46a.

給液口21の直上に配置される整流板46aと樋部4の底面48との間隔d1が、間隔d2、d3と比較して、最も狭くなるように配置されることにより、給液口21から上方へ流出する電解液の流速を有効に利用しながら電解液を電解槽1の長手方向に拡げることができる。 The gap d1 between the rectifying plate 46a arranged directly above the liquid supply port 21 and the bottom surface 48 of the gutter portion 4 is arranged so as to be the narrowest compared to the gaps d2 and d3. The electrolytic solution can be spread in the longitudinal direction of the electrolytic cell 1 while effectively utilizing the flow velocity of the electrolytic solution flowing upward from the opening.

整流板46a、46b、46cを樋部4の上方に配置しすぎると、整流効果が得られない場合がある。整流板46a、46b、46cは、樋部4の高さの1/2以下、より好ましくは1/3以下の高さに配置されることが好ましい。 If the straightening plates 46a, 46b, and 46c are arranged too far above the gutter portion 4, the straightening effect may not be obtained. The rectifying plates 46a, 46b, 46c are preferably arranged at a height of 1/2 or less, more preferably 1/3 or less of the height of the gutter portion 4. As shown in FIG.

以下に限定されるものではないが、例えば、樋部4の高さhは150~300mm程度、整流板46a、46b、46cの厚さは2~8mm程度、間隔d1は5~15mm程度、間隔d2、d3は20~40mm程度とすることができる。 Although not limited to the following, for example, the height h of the gutter portion 4 is about 150 to 300 mm, the thickness of the rectifying plates 46a, 46b, and 46c is about 2 to 8 mm, the interval d1 is about 5 to 15 mm, and the interval d2 and d3 can be about 20 to 40 mm.

整流口45の開口面積が小さすぎると、整流口45を通水する電解液の抵抗が大きくなり、流速が低下しすぎる場合がある。例えば、図4(a)及び図4(b)に示すように、整流板46a、46bの整流口45が、電解槽1の長手方向に、一定間隔を空けて、円形状で、一定直径を有して等間隔に配置される場合には、整流口45の直径を8mm以上、典型的には10mm程度とすることが好ましく、隣接する整流口45間の間隔を20~40mm程度、典型的には約30mm程度とすることが好ましい。 If the opening area of the rectifying port 45 is too small, the resistance of the electrolytic solution flowing through the rectifying port 45 increases, and the flow velocity may decrease too much. For example, as shown in FIGS. 4(a) and 4(b), the rectifying ports 45 of the rectifying plates 46a and 46b are circular in the longitudinal direction of the electrolytic cell 1 at regular intervals and have a constant diameter. When the rectifying ports 45 are arranged at equal intervals, the diameter of the rectifying ports 45 is preferably 8 mm or more, typically about 10 mm, and the interval between adjacent rectifying ports 45 is about 20 to 40 mm, typically is preferably about 30 mm.

このような構成において、給液口21からの流速の大きい電解液を、より効果的に電解槽1の長手方向に拡げて流すためには、最下段となる一段目の整流板46aの給液口21近傍の整流口45を例えば6~10個所程度塞ぎ、二段目の整流板46bの給液口21近傍の整流口45を例えば1~3個程度塞ぐことが好ましい。 In such a configuration, in order to spread the electrolytic solution having a high flow velocity from the liquid supply port 21 more effectively in the longitudinal direction of the electrolytic cell 1, the liquid supply to the first rectifying plate 46a, which is the lowest stage, is required. For example, about 6 to 10 rectifying ports 45 in the vicinity of the port 21 are closed, and 1 to 3 rectifying ports 45 in the vicinity of the liquid supply port 21 of the second stage rectifying plate 46b are preferably closed.

整流口45の具体的構成は、給液口21への電解液の直上への流れを抑制し、電解液を電解槽1の長手方向に拡げて、樋部4からオーバーフローする電解液の流速を均一化できるような構成であれば特に限定されない。 The specific configuration of the rectifying port 45 suppresses the flow of the electrolytic solution directly above the liquid supply port 21, spreads the electrolytic solution in the longitudinal direction of the electrolytic cell 1, and reduces the flow rate of the electrolytic solution overflowing from the gutter portion 4. There is no particular limitation as long as the configuration can be made uniform.

例えば、図4(c)、図4(d)に示すように、矩形の整流口45が、上下の整流板46a、46b間で、鉛直方向に異なる位置に配置されるように形成されていてもよい。図4(e)、図4(f)に示すように、多角形(ここでは三角形)整流口45が、上下の整流板46a、46b間で、鉛直方向に異なる位置に配置されるように形成されていてもよい。 For example, as shown in FIGS. 4(c) and 4(d), rectangular rectifying ports 45 are arranged at different positions in the vertical direction between upper and lower rectifying plates 46a and 46b. good too. As shown in FIGS. 4(e) and 4(f), polygonal (here, triangular) rectifying ports 45 are arranged at different positions in the vertical direction between the upper and lower rectifying plates 46a and 46b. may have been

また、給液口21から供給される電解液の流れを電解槽1の長手方向に拡散しやすくするために、複数の整流口45の開口面積が、給液口21から遠ざかるにつれて大きくなるように形成されていてもよい。 Further, in order to facilitate the diffusion of the flow of the electrolytic solution supplied from the liquid supply port 21 in the longitudinal direction of the electrolytic cell 1, the opening areas of the plurality of rectifying ports 45 are made larger as the distance from the liquid supply port 21 increases. may be formed.

このように、給液配管2a、2b、2cから給液された電解液が、樋部4の内部で一旦、貯留され、整流板46a、46b、46cで電解液の流速が整えられてから、電解槽1内へと供給されることによって、樋部4の開口部41からオーバーフローする電解液の流速分布が樋部4内で均一化されるため、電解液を電解槽1全体に渡って偏りなく供給することができる。 In this way, the electrolytic solution supplied from the liquid supply pipes 2a, 2b, and 2c is temporarily stored inside the gutter portion 4, and after the flow velocity of the electrolytic solution is adjusted by the rectifying plates 46a, 46b, and 46c, By being supplied into the electrolytic cell 1, the flow velocity distribution of the electrolytic solution overflowing from the opening 41 of the gutter portion 4 is made uniform within the gutter portion 4, so that the electrolytic solution is unevenly distributed throughout the electrolytic cell 1. can be supplied without

また、樋部4内において一旦、電解液が貯留されることにより、電解液及び添加剤の成分を電解槽1の長手方向に沿って均一化することができるため、電解槽内に給液される電解液の混合状態を総全体に渡り改善することが可能となる。また、電解液がオーバーフローによって電解槽1内へ供給されることにより、電解液の供給による電解液の液面の揺らぎを小さくできる。 In addition, once the electrolytic solution is stored in the gutter portion 4, the components of the electrolytic solution and the additive can be made uniform along the longitudinal direction of the electrolytic cell 1. It is possible to improve the mixed state of the electrolytic solution that is used as a whole. In addition, since the electrolytic solution is supplied into the electrolytic cell 1 by the overflow, the fluctuation of the liquid surface of the electrolytic solution due to the supply of the electrolytic solution can be reduced.

樋部4の開口部41の高さが電解液の液面に対して高すぎると、樋部4からオーバーフローした電解液が電解液の液面と衝突して気泡が発生し、電解に影響を及ぼす場合がある。一方、樋部4の開口部41の高さが電解液の液面よりも低いと、電解槽1内の液面近傍に添加剤が供給されず電気銅上部の電着が荒れる可能性がある。 If the height of the opening 41 of the gutter 4 is too high with respect to the liquid surface of the electrolyte, the electrolyte overflowing from the gutter 4 collides with the liquid surface of the electrolyte to generate air bubbles, which affects electrolysis. may affect On the other hand, if the height of the opening 41 of the gutter 4 is lower than the liquid surface of the electrolytic solution, the additive is not supplied to the vicinity of the liquid surface in the electrolytic bath 1, and there is a possibility that the electrodeposition on the upper portion of the electrolytic copper will be rough. .

樋部4の開口部41の高さは、電解液の液面から400mm以内の高さ、より好ましくは200mm以内の高さ、さらに好ましくは50mm以内の高さに配置されることが好ましい。樋部4の高さhは、給液配管2a、2b、2cの管径や電解槽1の装置規模に応じて適宜変更することができる。 The height of the opening 41 of the gutter 4 is preferably within 400 mm, more preferably within 200 mm, and even more preferably within 50 mm from the liquid surface of the electrolytic solution. The height h of the gutter portion 4 can be appropriately changed according to the pipe diameters of the liquid supply pipes 2a, 2b, and 2c and the scale of the electrolytic cell 1.

図1及び図2に示すように、電解槽1の第4の側壁14側上方には、電解槽1内の電解液を電解槽1外へ排出するための排液部30及び排液部30に接続された排液ボックス32が設けられている。図5に示すように、排液ボックス32には、複数の排液配管3a、3b、3cがそれぞれ接続されている。排液配管3a、3b、3cは、給液配管2a、2b、2cよりも下方に配置され、第2の側壁12上に固定されて第2の側壁12に沿って延び、互いに間隔を空けて電解槽1の長手方向に沿って配置された複数の排液口31を備える。 As shown in FIGS. 1 and 2, above the fourth side wall 14 side of the electrolytic cell 1, a draining portion 30 for discharging the electrolytic solution in the electrolytic cell 1 to the outside of the electrolytic cell 1 and a draining portion 30 are provided. There is a drain box 32 connected to. As shown in FIG. 5, a plurality of drainage pipes 3a, 3b, and 3c are connected to the drainage box 32, respectively. The drainage pipes 3a, 3b, 3c are arranged below the liquid supply pipes 2a, 2b, 2c, are fixed on the second side wall 12, extend along the second side wall 12, and are spaced apart from each other. A plurality of drain ports 31 are arranged along the longitudinal direction of the electrolytic cell 1 .

図2の例では、電解槽1の上流側、即ち、給液部20に近い側の電解槽1内の電解液を排液可能な排液口31を備える排液配管3aと、電解槽1の中央付近の電解液を排液可能な排液口31を備える排液配管3bと、電解槽1の排液ボックス32に近い側の電解液を排液可能な排液口31を備える排液配管3cの3本の配管が上下に離間してそれぞれ配置される。しかしながら、排液配管3a、3b、3cの配置は図2の配置に限定されないことは勿論である。 In the example of FIG. 2, the upstream side of the electrolytic cell 1, that is, the electrolytic cell 1 on the side close to the liquid supply unit 20, a drain pipe 3a having a drain port 31 capable of draining the electrolytic solution in the electrolytic cell 1, and the electrolytic cell 1 A drainage pipe 3b provided with a drainage port 31 capable of draining the electrolyte near the center of the electrolyzer 1 The three pipes of the pipe 3c are vertically spaced apart from each other. However, the arrangement of the drainage pipes 3a, 3b, and 3c is of course not limited to the arrangement shown in FIG.

例えば、配管の長さが一番長い排液配管3aを、電解槽1の底部に最も近い位置に配置し、配管の長さが最も短い排液配管3cを、3つの排液配管3a、3b、3cの中で最も上部となるように配置することも可能であることは勿論である。 For example, the drain pipe 3a with the longest pipe length is arranged closest to the bottom of the electrolytic cell 1, and the drain pipe 3c with the shortest pipe length is arranged between the three drain pipes 3a and 3b. , 3c can be arranged at the top.

排液配管3a、3b、3cは、それぞれ排液ボックス32に接続された一端側とは反対側の先端部側に排液口31がそれぞれ設けられている。図2に示すように排液配管3a、3b、3cの先端部に選択的に排液口31が設けられることによって、一本の排液配管の全体に渡って排液口を均一に設ける場合に比べて、排液口31が形成される領域の電解槽1の長手方向に沿った長さをそれぞれ短くすることができるため、圧力損失を小さくでき、排液口31が配置された各領域の電解液をより効率的に排液しやすくなる。これにより、電解槽1長手方向の排液ムラが生じにくくなる。 The drain pipes 3 a , 3 b , 3 c are each provided with a drain port 31 on the tip end side opposite to the one end side connected to the drain box 32 . As shown in FIG. 2, when a drainage port 31 is selectively provided at the tip of each of the drainage pipes 3a, 3b, and 3c, and the drainage ports are provided uniformly over the entire one drainage pipe. Compared to, the length along the longitudinal direction of the electrolytic cell 1 in the region where the drain port 31 is formed can be shortened, so the pressure loss can be reduced, and each region where the drain port 31 is arranged It becomes easier to drain the electrolyte solution of the As a result, uneven drainage in the longitudinal direction of the electrolytic cell 1 is less likely to occur.

なお、排液配管3a、3b、3cのそれぞれ最も先端部にある例えば排液口31は排液ボックス32から最も遠い位置にあるため、排液配管3a、3b、3c内を流れる電解液の抵抗や圧力損失等により、十分に排液されない場合がある。図2に示すように、排液配管3a、3b、3cの排液口31の先端部が互いに上下に重なるように配置されることによって、排液配管3a、3b、3cの先端部においても十分に排液が行われるように構成することができる。これにより、電解槽1の長手方向の排液ムラを生じにくくすることができる。 For example, the liquid discharge port 31 located at the most distal end of each of the liquid discharge pipes 3a, 3b, and 3c is located farthest from the liquid discharge box 32, so the resistance of the electrolyte flowing through the liquid discharge pipes 3a, 3b, and 3c is or pressure loss, etc., the liquid may not be drained sufficiently. As shown in FIG. 2, by arranging the tip portions of the drain ports 31 of the drain pipes 3a, 3b, and 3c so as to overlap each other, the tip portions of the drain pipes 3a, 3b, and 3c are sufficiently can be configured to drain to As a result, it is possible to make it difficult for uneven drainage in the longitudinal direction of the electrolytic cell 1 to occur.

排液配管3a、3b、3cの管径は、給液配管2a、2b、2cの管径よりも大きくなるように構成されることが好ましい。給液配管2a、2b、2cの管径は同一であっても異なっていても構わない。排液配管3a、3b、3c側の管径を給液配管2a、2b、2cの管径よりも大きくすることによって、排液ボックス32から電解液のヘッド圧差を利用して電解液を電解槽1外へ排出させる際に、排液配管3a、3b、3cの圧力損失の影響をより小さくすることができる。これにより、より円滑に給液配管2a、2b、2c内に給液された電解液を電解槽1の外へ排出しやすくできる。 It is preferable that the pipe diameters of the drain pipes 3a, 3b, 3c are larger than the pipe diameters of the liquid supply pipes 2a, 2b, 2c. The pipe diameters of the liquid supply pipes 2a, 2b, and 2c may be the same or different. By making the pipe diameters of the drain pipes 3a, 3b, and 3c larger than the pipe diameters of the liquid supply pipes 2a, 2b, and 2c, the electrolyte is discharged from the drain box 32 to the electrolytic cell by utilizing the head pressure difference of the electrolyte. 1, the influence of pressure loss in the drainage pipes 3a, 3b, and 3c can be reduced. As a result, the electrolytic solution supplied to the liquid supply pipes 2a, 2b, and 2c can be more smoothly discharged to the outside of the electrolytic cell 1. FIG.

排液配管3a、3b、3cの管径は、給液配管2a、2b、2cの管径よりも1.5倍以上、より好ましくは2倍以上、更に好ましくは4倍以上大きくすることができる。 The pipe diameters of the drainage pipes 3a, 3b, and 3c can be 1.5 times or more, more preferably 2 times or more, and still more preferably 4 times or more than the pipe diameters of the liquid supply pipes 2a, 2b, and 2c. .

排液配管3a、3b、3cの高さは、電解槽1の底部に近づけすぎると電解槽1の底部の殿物などを巻き込んで排液口31の詰まり或いは不具合等を生じさせる場合がある。排液口31は、例えば、電解槽1内に収容される電極の下端部を起点に、上方に100mm、下方に300mmの範囲に配置されることが好ましく、より好ましくは上方に100mm、下方に100mmの範囲に配置される。 If the height of the drainage pipes 3a, 3b, and 3c is too close to the bottom of the electrolytic cell 1, sediment or the like at the bottom of the electrolytic cell 1 may be caught in the drainage port 31, causing clogging or malfunction. For example, the drain port 31 is preferably arranged in a range of 100 mm upward and 300 mm downward, more preferably 100 mm upward and 300 mm downward, starting from the lower end of the electrode housed in the electrolytic cell 1. They are arranged in a range of 100 mm.

給液配管2a、2b、2cが備える給液口21の開口面積よりも排液配管3a、3b、3cが備える排液口31の開口面積が大きくなるように形成されていることが好ましい。排液口31の開口面積を大きくとることによって、排液配管3a、3b、3c内の電解液を電解槽1外へ排出させる際の圧力損失の影響をより小さくすることができる。 It is preferable that the opening area of the drain port 31 of the liquid drain pipes 3a, 3b, and 3c is larger than the opening area of the liquid supply port 21 of the liquid supply pipes 2a, 2b, and 2c. By increasing the opening area of the drain port 31, the influence of the pressure loss when the electrolyte in the drain pipes 3a, 3b, and 3c is discharged to the outside of the electrolytic cell 1 can be reduced.

以下に限定されるものではないが、排液口31の各開口面積を給液口21の各開口面積に対して1~400倍、より典型的には100~200倍大きくすることができる。これにより、排液口31から電解槽1内の電解液を効率よく排液することができる。給液口21及び排液口31の形状、穴径(スリット径)及び間隔は、電解槽1の大きさ等に応じて適宜調整することができる。 Although not limited to the following, the opening area of each drain port 31 can be 1 to 400 times larger than the opening area of each liquid supply port 21, more typically 100 to 200 times larger. As a result, the electrolytic solution in the electrolytic cell 1 can be efficiently drained from the drain port 31 . The shape, hole diameter (slit diameter) and spacing of the liquid supply port 21 and the liquid drain port 31 can be appropriately adjusted according to the size of the electrolytic cell 1 and the like.

図6に示すように、排液部30には、電解槽1内の電解液を排出するための排出口300が設けられている。図7に示すように、排出口300の下方には、電解液を電解槽1外へ排出するために排出口300に接続された排出配管301が設けられている。 As shown in FIG. 6 , the drainage part 30 is provided with a discharge port 300 for discharging the electrolytic solution in the electrolytic cell 1 . As shown in FIG. 7 , a discharge pipe 301 connected to the discharge port 300 is provided below the discharge port 300 to discharge the electrolytic solution to the outside of the electrolytic cell 1 .

排液ボックス32は、図7に示す電解液の液面LSよりも下方となる底面32aを備える。底面32aには、図6に示すように、排液配管3a、3b、3cの出口3A、3B、3Cがそれぞれ接続されている。電解槽1から排液配管3a、3b、3c内に排液された電解液は、電解液の液面LSと排液ボックス32内の電解液の液面lsの高さの差Hにより汲み上げされる。 The drainage box 32 has a bottom surface 32a below the liquid surface LS of the electrolytic solution shown in FIG. As shown in FIG. 6, the outlets 3A, 3B and 3C of the drainage pipes 3a, 3b and 3c are connected to the bottom surface 32a, respectively. The electrolyte discharged from the electrolytic cell 1 into the drain pipes 3a, 3b, and 3c is pumped up by the height difference H between the liquid level LS of the electrolyte and the liquid level ls of the electrolyte in the drain box 32. be.

排液部30と排液配管3a、3b、3cとの間に排液ボックス32が配置されることにより、ポンプ等の動力を使用せず、且つ電解槽1の底部に沈積する殿物の巻き込みを抑制しながら、電解槽1の下方から電解液を電解槽1の外部へ抜き出すことができる。 By arranging the drainage box 32 between the drainage part 30 and the drainage pipes 3a, 3b, and 3c, the power of a pump or the like is not used, and sediments deposited on the bottom of the electrolytic cell 1 are not involved. The electrolytic solution can be extracted from the bottom of the electrolytic cell 1 to the outside of the electrolytic cell 1 while suppressing the

排液ボックス32の電解液と接する側の側壁32bの上端部の高さは、電解槽1内の電解液の液面LSに対して数mm~数十mm上方となるように配置されている。排液ボックス32は、電解槽1内に収容された電解液と接する側の側壁32bに、電解槽1内の電解液中の異物を排液ボックス32へ送るための切り欠き部33を備えることが好ましい。この切り欠き部33は、図6に示すように、電解槽1の上方側から下方側に向かってその開口幅AWが小さくなるような形状を有している。切り欠き部33の形状としては、V字形状、U字形状、台形形状等の種々の形状を取り得るが、具体的な形状は特に限定されない。 The height of the upper end of the side wall 32b of the drainage box 32 on the side in contact with the electrolytic solution is arranged to be several mm to several tens of mm above the liquid surface LS of the electrolytic solution in the electrolytic cell 1. . The drainage box 32 is provided with a notch 33 on a side wall 32b on the side that contacts the electrolyte contained in the electrolytic bath 1 for sending foreign matter in the electrolyte in the electrolytic bath 1 to the drainage box 32. is preferred. As shown in FIG. 6, the notch 33 has a shape such that the opening width AW of the electrolytic cell 1 decreases from the upper side to the lower side of the electrolytic cell 1 . The shape of the notch portion 33 may take various shapes such as a V shape, a U shape, and a trapezoidal shape, but the specific shape is not particularly limited.

電解槽1内には、電解を行うにつれて電解液の液面LSにゴミ等の異物が溜まる場合がある。この異物が電解槽1内に留まると、電解に悪影響を与える恐れがある。本発明の実施の形態に係る電解装置によれば、電解槽1の電解液の液面LS付近にたまるゴミなどの異物を含む電解液を切り欠き部33からオーバーフローさせて排出することができるため、電解槽1内の電解液の液面LS付近のゴミの滞留を抑制することができる。 In the electrolytic cell 1, foreign matter such as dust may accumulate on the liquid surface LS of the electrolytic solution as electrolysis is performed. If this foreign matter stays in the electrolytic cell 1, it may adversely affect electrolysis. According to the electrolytic device according to the embodiment of the present invention, the electrolytic solution containing foreign matter such as dust accumulated in the vicinity of the liquid surface LS of the electrolytic solution in the electrolytic cell 1 can be overflowed from the notch portion 33 and discharged. , stagnation of dust near the liquid surface LS of the electrolytic solution in the electrolytic bath 1 can be suppressed.

図6に示すように、排液ボックス32と排液部30との間には、排液ボックス32から排液部30へと流れる電解液を堰き止めるように配置された調整板35が配置されている。調整板35が配置されることにより、排液配管3を介して排液ボックス32内に回収された電解液が、調整板35の上端からオーバーフローして排液部30へと流れる。 As shown in FIG. 6, an adjustment plate 35 is arranged between the drainage box 32 and the drainage section 30 so as to block the electrolyte flowing from the drainage box 32 to the drainage section 30 . ing. By arranging the adjustment plate 35 , the electrolytic solution recovered in the drainage box 32 through the drainage pipe 3 overflows from the upper end of the adjustment plate 35 and flows to the drainage section 30 .

例えば、大きさの異なる調整板35を配置することにより、調整板35の排液ボックス32の底面32aからの高さを変更することが可能である。調整板35の高さを変更することにより、電解槽1内の電解液の液面LSと排液ボックス32内の電解液の液面lsとの高さの差Hを調整することができる。これにより、電解槽1内の電解液の液面LSとの電解液の液面lsとの高さの差Hによるヘッド圧差を調整して、どのような給液量であっても電解槽1内の電解液の液面LSの高さを一定に保つことができる。 For example, by arranging adjusting plates 35 of different sizes, it is possible to change the height of the adjusting plate 35 from the bottom surface 32 a of the drainage box 32 . By changing the height of the adjustment plate 35, the height difference H between the liquid level LS of the electrolytic solution in the electrolytic bath 1 and the liquid level ls of the electrolytic solution in the drainage box 32 can be adjusted. As a result, the head pressure difference due to the height difference H between the liquid level LS of the electrolytic solution in the electrolytic cell 1 and the liquid level ls of the electrolytic solution is adjusted, and the electrolytic cell 1 The height of the liquid level LS of the internal electrolyte can be kept constant.

更に、排液ボックス32には、排液配管3a、3b、3cの出口3A、3B、3Cが接続された底面32aを複数の領域に分割するための分割壁37が排液ボックス32に設けられていることが好ましい。分割壁37を配置せずとも各出口3A、3B、3Cからそれぞれ排出される電解液の量を把握することは可能であるが、排液ボックス32に分割壁37が配置されることにより、各出口3A、3B、3Cからそれぞれ排出される電解液の量を目視により把握しやすくできる。 Further, the drainage box 32 is provided with a dividing wall 37 for dividing the bottom surface 32a to which the outlets 3A, 3B, and 3C of the drainage pipes 3a, 3b, and 3c are connected into a plurality of regions. preferably. Although it is possible to grasp the amount of electrolyte discharged from each of the outlets 3A, 3B, and 3C without arranging the dividing wall 37, by arranging the dividing wall 37 in the drainage box 32, each The amount of electrolyte discharged from the outlets 3A, 3B, and 3C can be easily grasped by visual observation.

電解装置は、図1~図7に不図示の電解液の環流機構が設けられている。環流機構は、電解槽1の排液部30から排出された電解液にニカワやチオ尿素等の添加剤を追加するとともに、必要な成分調整と温度調整を行い、調整後の電解液を給液配管2a、2b、2cから電解槽1内へと環流する。電解装置には不図示の給電機構が設けられている。給電機構は、電解槽1内の長手方向に沿って交互に配置されるアノード板とカソード板とを含む電極の間に直流電流を印加する電源装置と配線とを備えている。 The electrolytic device is provided with an electrolytic solution circulation mechanism (not shown in FIGS. 1 to 7). The circulation mechanism adds additives such as glue and thiourea to the electrolytic solution discharged from the drainage part 30 of the electrolytic cell 1, performs necessary component adjustment and temperature adjustment, and supplies the adjusted electrolytic solution. It is circulated into the electrolytic cell 1 through the pipes 2a, 2b, and 2c. The electrolytic device is provided with a power supply mechanism (not shown). The power supply mechanism includes a power supply device and wiring for applying a direct current between electrodes including anode plates and cathode plates alternately arranged along the longitudinal direction in the electrolytic cell 1 .

アノード板及びカソード板の構成は特に限定されない。アノード板は電解精製もしくは電解採取を行う際の陽極となり、粗金属製の板材で構成される。カソード板は電解精製もしくは電解採取を行う際の陰極となり、導電性に優れた板状の金属で構成される。 The configurations of the anode plate and the cathode plate are not particularly limited. The anode plate serves as an anode for electrorefining or electrowinning, and is composed of a crude metal plate. The cathode plate serves as a cathode for electrorefining or electrowinning, and is made of a highly conductive plate-shaped metal.

電解槽1内の電解液の混合状態を改善するために種々の検討が行われてきたが、電解槽1内の長手方向の一端側から長手方向の他端側へと電解液を流す従来の下入れ上抜き方式の電解装置では電解液供給方向上流側と下流側で電解液中の銅などの金属イオン濃度及び添加物の濃度に偏りが生じるとともに、電解が進むにつれて電解槽1の上部から底部へいくほど金属イオン濃度が高くなる傾向にあった。 Various investigations have been made to improve the mixing state of the electrolyte in the electrolytic cell 1. However, the conventional method of flowing the electrolyte from one longitudinal end of the electrolytic cell 1 to the other longitudinal end has been proposed. In the bottom-up, top-out method electrolysis apparatus, the concentration of metal ions such as copper and the concentration of additives in the electrolyte are uneven between the upstream side and the downstream side in the electrolyte supply direction, and as the electrolysis progresses, The concentration of metal ions tended to increase toward the bottom.

本発明の実施の形態に係る電解装置によれば、電解槽1の幅(Y)方向、即ち、電解槽1の第1の側壁11側から第2の側壁12側へと電解液を供給するように構成するとともに、樋部4の開口部41から電解液を流出させて、開口部41に比べて相対的に下方にある排液配管3a、3b、3cの排液口31を介して電解液を排液するように構成した、いわゆる、「横入れ上入れ下抜き方式」を採用する。その結果、電解槽1の底部の銅イオン濃度などの金属イオン濃度の上昇を効果的に抑制できるとともに、電解液中に含まれる種々の添加剤の濃度分布を電解槽1内全体でより均一化することができる。 According to the electrolytic device according to the embodiment of the present invention, the electrolytic solution is supplied in the width (Y) direction of the electrolytic cell 1, that is, from the first side wall 11 side of the electrolytic cell 1 to the second side wall 12 side. In addition, the electrolytic solution is allowed to flow out from the opening 41 of the gutter portion 4, and electrolysis is performed through the drainage ports 31 of the drainage pipes 3a, 3b, and 3c relatively below the opening 41. A so-called "horizontal top-loading bottom-loading method" is adopted, which is configured to drain the liquid. As a result, it is possible to effectively suppress an increase in the concentration of metal ions such as the concentration of copper ions at the bottom of the electrolytic cell 1, and to make the concentration distribution of various additives contained in the electrolytic solution more uniform throughout the electrolytic cell 1. can do.

さらに、電解槽1において上方から下方へと電解液を流すことにより、殿物の巻き上げの恐れも少なくなる。そのため、電解液の供給流量を大きくしても殿物の巻き上げを抑制しながら電解液の混合状態を改善することができ、電着物の電着効率も従来に比べて改善させることができる。さらに、電着物の表面性状に影響を及ぼすニカワなどの添加物を電解槽全体にわたって均一に行き渡らせることができるため、電解槽1全体において品質の揃った電着物が得られる。 Furthermore, by flowing the electrolytic solution from the upper side to the lower side in the electrolytic cell 1, the risk of sediments being lifted up is reduced. Therefore, even if the supply flow rate of the electrolyte solution is increased, it is possible to improve the mixed state of the electrolyte solution while suppressing the winding up of sediments, and the electrodeposition efficiency of the electrodeposit can also be improved as compared with the conventional method. Furthermore, since the additive such as glue that affects the surface properties of the electrodeposit can be spread evenly over the entire electrolytic cell, electrodeposits of uniform quality can be obtained in the entire electrolytic cell 1 .

(電解方法)
本発明の実施の形態に係る電解装置を用いて電解液を電気分解することにより、複数のカソード板に銅などの金属を電着させることができる。以下においては、本発明の実施の形態に係る電解装置を用いて電気分解する例として粗銅を精錬する場合について説明する。
(Electrolysis method)
Metal such as copper can be electrodeposited on a plurality of cathode plates by electrolyzing the electrolytic solution using the electrolytic apparatus according to the embodiment of the present invention. In the following, a case of refining blister copper will be described as an example of electrolysis using the electrolytic apparatus according to the embodiment of the present invention.

まず、例えば純度が99mass%程度の粗銅の板材をアノード板とし、純度が99.99mass%程度の銅の板材又はステンレス板をカソード板として、複数のアノード板と複数のカソード板とを交互に板厚方向に間隔を空けて、電極板の下端が電解槽1の底面から所定の間隔が空くように且つ電極板の側面が樋部4と接触しないように電解槽1内に配置する。 First, for example, a crude copper plate material with a purity of about 99 mass% is used as an anode plate, a copper plate material with a purity of about 99.99 mass% or a stainless steel plate is used as a cathode plate, and a plurality of anode plates and a plurality of cathode plates are alternately plated. The electrode plates are arranged in the electrolytic cell 1 with a space in the thickness direction so that the lower end of the electrode plate is spaced from the bottom of the electrolytic cell 1 by a predetermined distance and the side surface of the electrode plate does not come into contact with the gutter portion 4 .

給液部20内に配置された給液主管に接続された給液配管2a、2b、2cが備える複数の給液口21から硫酸銅及び硫酸の混合水溶液にニカワやチオ尿素などの添加剤を添加した電解液を供給する。給液配管2a、2b、2cの給液口21から樋部4内へ電解液を供給する。 Additives such as glue and thiourea are added to the mixed aqueous solution of copper sulfate and sulfuric acid from a plurality of liquid supply ports 21 provided in the liquid supply pipes 2a, 2b, and 2c connected to the liquid supply main pipe arranged in the liquid supply unit 20. Supply the added electrolyte. The electrolytic solution is supplied into the gutter portion 4 from the liquid supply ports 21 of the liquid supply pipes 2a, 2b, and 2c.

次に、給液口21から供給される電解液を、1以上の整流板46a、46b、46cにより、電解槽1の長手方向で均一化させるように電解液の流れを整える。そして、樋部4の開口部41から、電解液をオーバーフローさせて電解槽内へと供給する。一方、排液ボックス32及び排液部30に接続された排液配管3a、3b、3cの複数の排液口31から電解槽1内の電解液を排液させる。 Next, the flow of the electrolytic solution supplied from the liquid supply port 21 is adjusted so as to be uniform in the longitudinal direction of the electrolytic cell 1 by one or more rectifying plates 46a, 46b, and 46c. Then, the electrolytic solution is overflowed from the opening 41 of the gutter portion 4 and supplied into the electrolytic bath. On the other hand, the electrolytic solution in the electrolytic cell 1 is drained from the plurality of drain ports 31 of the drain pipes 3 a , 3 b , and 3 c connected to the drain box 32 and the drain section 30 .

給電機構を用いてアノード板とカソード板との間に直流電流を印加し、アノード板の銅を電解液中にイオンとして溶出させてカソード板へ電着させる。電解液は上述のようにして電解槽1の第1の側壁11にある樋部4の開口部41から電解液を電解槽1内へ供給し、第1の側壁11と対向する電解槽1の第2の側壁12の下方で電解液を排液配管3a、3b、3c内へ排液させるようにして液流を発生させる。 A direct current is applied between the anode plate and the cathode plate using a power feeding mechanism, and the copper on the anode plate is eluted into the electrolytic solution as ions and electrodeposited on the cathode plate. The electrolytic solution is supplied into the electrolytic cell 1 through the opening 41 of the gutter portion 4 on the first side wall 11 of the electrolytic cell 1 as described above, and the electrolytic cell 1 opposite to the first side wall 11 is supplied. Below the second side wall 12, the electrolyte is drained into the drain pipes 3a, 3b, 3c to generate a liquid flow.

排液配管3a、3b、3c内へ排液された電解液は、排液ボックス32により汲み上げられて、排液部30を介して排液される。電解槽1内の電解液の上層に浮遊するゴミなどの異物は、排液ボックス32が備える切り欠き部33から越流により排液ボックス32内へ収容され、電解槽1の外部へ排出され、不図示の環流機構によって、電解液を循環させる。 The electrolytic solution drained into the drain pipes 3 a , 3 b , 3 c is pumped up by the drain box 32 and drained through the drain section 30 . Foreign matter such as dust floating in the upper layer of the electrolytic solution in the electrolytic cell 1 is accommodated in the drainage box 32 by overflow from the notch 33 provided in the drainage box 32, and discharged to the outside of the electrolytic cell 1, The electrolytic solution is circulated by a circulation mechanism (not shown).

本発明の実施の形態に係る電解方法によれば、電解槽1の幅方向Yの一端から幅方向Yの他端側へ、且つ上方から下方へ向けて電解槽1の長手方向Xに沿った複数箇所から電解液を流すことにより、電解槽1の長手方向Xの一端側から他端側へと電解液を流す従来の方式と比べて、電解槽1内の電解液の混合状態をより良好にすることができる。 According to the electrolysis method according to the embodiment of the present invention, the By flowing the electrolyte solution from a plurality of locations, the mixed state of the electrolyte solution in the electrolytic bath 1 is improved compared to the conventional method of flowing the electrolyte solution from one end side to the other end side in the longitudinal direction X of the electrolytic bath 1. can be

特に、本発明の実施の形態に係る電解方法によれば、電解槽1下部の銅イオンなどの金属イオン濃度の上昇を抑制し、金属イオンを液中により均一に分散できるため、高い電流密度又は不純物濃度の高い材料をアノード板に用いて電解精製を実施した場合の不動態化現象をより効率的に抑制することが可能となる。 In particular, according to the electrolysis method according to the embodiment of the present invention, an increase in the concentration of metal ions such as copper ions in the lower part of the electrolytic cell 1 can be suppressed, and the metal ions can be more uniformly dispersed in the liquid, resulting in a high current density or It is possible to more efficiently suppress the passivation phenomenon when electrolytic refining is performed using a material with a high impurity concentration for the anode plate.

(その他の実施の形態)
本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態及び運用技術が明らかとなろう。
(Other embodiments)
Although the present invention has been described by the above embodiments, the statements and drawings forming part of this disclosure should not be understood to limit the present invention. Various alternative embodiments and operational techniques will become apparent to those skilled in the art from this disclosure.

図3(b)に示すように、電解液がオーバーフローする樋部4の開口部41の上端に、電解液の流出量を調整するための流出量調整機構49が設けられていてもよい。流出量調整機構49は、例えば凹凸形状を有することができる。凹凸の凹部分を電極間の隙間と対向するように配置することで、電極間の隙間に電解液をより流しやすくすることができる。 As shown in FIG. 3B, an outflow adjustment mechanism 49 for adjusting the outflow of the electrolyte may be provided at the upper end of the opening 41 of the gutter 4 through which the electrolyte overflows. The outflow rate adjusting mechanism 49 can have, for example, an uneven shape. By arranging the concave portion of the unevenness so as to face the gap between the electrodes, it is possible to make it easier for the electrolytic solution to flow into the gap between the electrodes.

このように、本発明は上記の開示から妥当な特許請求の範囲の発明特定事項によって表されるものであり、実施段階においては、その要旨を逸脱しない範囲において変形し具体化し得る。 As described above, the present invention is represented by the matters specifying the invention in the scope of claims that are valid from the above disclosure, and can be modified and embodied at the stage of implementation without departing from the gist of the invention.

図8に、樋部4内に3枚の整流板を配置した場合の樋部の構成例と電解液の流速分布のシミュレーション結果の例を示す。この例では、樋部の高さh(図3(a)参照)を200mm、樋部4の壁部42から第1の側壁までの間隔、即ち樋部4の内径(図1参照)を15mm、電解槽1の長手方向の樋部4の長さを5400mmとした。厚さ5mmの整流板を3枚使用し、各整流板にはそれぞれ直径10mmの整流口を30mm間隔で等間隔に配置し、上下の整流板の整流口の位置が上下で重ならないように互い違いに配置した。更に、最下段の整流板の給液口の直上に位置する整流口を7ケ所個塞ぎ、中段の整流板の給液口の直上に位置する整流口を2ケ所塞いた。最下段の整流板と樋部の底面との間隔d1(図3(a)参照)を10mm、最下段と中段、中段と上段の整流板間の間隔d2、d3(図3(a)参照)をそれぞれ30mmとして、給液口21から電解液を流速1.35m/sで供給した。 FIG. 8 shows an example of the configuration of the gutter 4 and an example of simulation results of the flow velocity distribution of the electrolytic solution when three rectifying plates are arranged in the gutter 4 . In this example, the height h of the gutter portion (see FIG. 3A) is 200 mm, and the distance from the wall portion 42 of the gutter portion 4 to the first side wall, that is, the inner diameter of the gutter portion 4 (see FIG. 1) is 15 mm. , the length of the gutter portion 4 in the longitudinal direction of the electrolytic cell 1 was set to 5400 mm. Three straightening plates with a thickness of 5 mm are used, and straightening ports with a diameter of 10mm are arranged at equal intervals of 30mm on each straightening plate. placed in Furthermore, 7 rectifying ports located directly above the liquid supply ports of the lowermost rectifying plate were closed, and 2 rectifying ports located directly above the liquid supply ports of the middle rectifying plate were closed. The distance d1 (see FIG. 3(a)) between the bottom rectifying plate and the bottom surface of the gutter portion is 10 mm, and the distances d2 and d3 (see FIG. 3(a)) between the bottom and middle rectifying plates and between the middle and upper rectifying plates. was set to 30 mm, and the electrolytic solution was supplied from the liquid supply port 21 at a flow rate of 1.35 m/s.

図8に示すように、本実施形態によれば、給液口21の周囲には、電解液の流速の早い領域が形成されておらず、最下段の整流板46aと樋部4の底面の間の領域においては電解液が長手方向に良好に広がっている様子が観察できる。また、上段の整流板46b、46cに近づくにつれて整流口45からほぼ同程度の流速の電解液を排液できることが分かった。 As shown in FIG. 8, according to the present embodiment, a region where the flow rate of the electrolytic solution is high is not formed around the liquid supply port 21, and the lowermost rectifying plate 46a and the bottom surface of the gutter portion 4 are not formed. It can be observed that the electrolytic solution spreads well in the longitudinal direction in the region between them. Further, it was found that the electrolytic solution can be discharged from the rectifying port 45 at substantially the same flow rate as the rectifying plates 46b and 46c on the upper stage are approached.

図9は、樋部4からオーバーフローした電解液の流速分布をシミュレーションにより示したグラフの例である。図9中の番号1~3は、給液口21の位置と対応する。図9に示すように、給液口21付近から流出される電解液の流速は、長手方向においていずれも2.7~3.5cm/sの範囲に抑えられており、樋部4からオーバーフローにより供給される電解液の流速を長手方向において一定範囲に平均化できていることが分かる。 FIG. 9 is an example of a graph showing the flow velocity distribution of the electrolytic solution overflowing from the gutter portion 4 by simulation . Numbers 1 to 3 in FIG. 9 correspond to the positions of the liquid supply port 21 . As shown in FIG. 9, the flow velocity of the electrolytic solution flowing out from the vicinity of the liquid supply port 21 is suppressed in the range of 2.7 to 3.5 cm/s in the longitudinal direction, and the overflow from the gutter portion 4 It can be seen that the flow velocity of the supplied electrolytic solution can be averaged within a certain range in the longitudinal direction.

1…電解槽
2a、2b、2c…給液配管
3a、3b、3c…排液配管
4…樋部
11…第1の側壁
12…第2の側壁
13…第3の側壁
14…第4の側壁
20…給液部
21…給液口
30…排液部
31…排液口
32b…側壁
32a…底面
32…排液ボックス
33…切り欠き部
35…調整板
37…分割壁
41…開口部
42…壁部
44…梁部
45…整流口
46a、46b、46c…整流板
47…固定具
48…底面
49…流出量調整機構
300…排出口
301…排出配管
REFERENCE SIGNS LIST 1 electrolytic baths 2a, 2b, 2c liquid supply pipes 3a, 3b, 3c drainage pipes 4 gutter 11 first side wall 12 second side wall 13 third side wall 14 fourth side wall 20... Liquid supply part 21... Liquid supply port 30... Liquid drain part 31... Liquid drain port 32b... Side wall 32a... Bottom surface 32... Liquid drain box 33... Notch 35... Adjusting plate 37... Divided wall 41... Opening 42... Wall portion 44 Beam portion 45 Straightening ports 46a, 46b, 46c Straightening plate 47 Fixing tool 48 Bottom surface 49 Outflow adjusting mechanism 300 Discharge port 301 Discharge pipe

Claims (8)

電解液を収容する電解槽の長手方向に互いに間隔を空けて配置された電極を電解液中に浸漬し、電解液を循環させながら電解処理する電解装置であって、
前記電解槽の長手方向に延びる第1の側壁に沿って互いに間隔を空けて配置され、電解液を供給するための複数の給液口と、
前記給液口から供給される電解液を収容し、該電解液をオーバーフローさせて前記電解槽内へと供給する樋部と、
前記樋部内に設けられ、前記電解液の流速分布を前記電解槽の長手方向で均一化させるための1以上の整流板と、
前記樋部よりも下方において前記第1の側壁と対向する第2の側壁に沿って互いに間隔を空けて配置され、前記電解液を排液するための複数の排液口と
を備える電解装置。
An electrolysis device that performs electrolysis while circulating the electrolyte by immersing electrodes arranged at intervals in the longitudinal direction of an electrolytic bath containing the electrolyte in the electrolyte,
a plurality of liquid supply ports spaced apart from each other along a first longitudinally extending side wall of the electrolytic cell for supplying an electrolytic solution;
a gutter containing the electrolytic solution supplied from the liquid supply port, overflowing the electrolytic solution and supplying it into the electrolytic cell;
one or more rectifying plates provided in the gutter portion for uniformizing the flow velocity distribution of the electrolytic solution in the longitudinal direction of the electrolytic cell;
an electrolytic device comprising a plurality of drain ports for draining the electrolytic solution, which are spaced apart from each other along a second side wall facing the first side wall below the gutter.
前記1以上の整流板が、前記電解液を通水させる複数の整流口を備え、上下の整流板の前記整流口が、鉛直方向に互いに異なる位置に配置されている請求項1に記載の電解装置。 2. The electrolysis according to claim 1, wherein said one or more rectifying plates are provided with a plurality of rectifying ports for passing said electrolytic solution, and said rectifying ports of said upper and lower rectifying plates are arranged at mutually different positions in the vertical direction. Device. 前記1以上の整流板が、前記電解液を通水させる複数の整流口を備え、
前記給液口の直上に配置される前記整流口の開口面積を前記給液口の直上以外の前記整流口の開口面積よりも小さく形成するか、または、前記給液口の直上の前記整流口を塞ぐか、または、前記整流口の位置を前記給液口の直上からずらして配置することを含む請求項1に記載の電解装置。
The one or more rectifying plates are provided with a plurality of rectifying ports for passing the electrolytic solution,
The opening area of the straightening port arranged immediately above the liquid supply port is formed to be smaller than the opening area of the straightening port other than the straightening port located directly above the liquid supply port, or the straightening port directly above the liquid supply port 2. The electrolysis device according to claim 1, wherein the rectifying port is arranged to be shifted from directly above the liquid supply port.
前記給液口の直上に配置される整流板と前記樋部の底面との間隔が、前記給液口の直上に配置される整流板よりも上方にある他の整流板間の間隔と比較して最も狭くなるように配置されることを含む請求項1に記載の電解装置。 The distance between the rectifying plate arranged directly above the liquid supply port and the bottom surface of the gutter portion is compared with the distance between the other rectifying plates located above the rectifying plate arranged directly above the liquid supply port. 2. The electrolytic device of claim 1, including being arranged to be narrowest at the 前記整流板が、前記樋部の高さの1/2以下の高さに配置されている請求項1~4のいずれか1項に記載の電解装置。 The electrolysis apparatus according to any one of claims 1 to 4, wherein the rectifying plate is arranged at a height equal to or less than 1/2 of the height of the gutter portion. 前記整流口の開口面積が、前記給液口から遠ざかるにつれて大きくなるように形成されている請求項2~5のいずれか1項に記載の電解装置。 The electrolytic device according to any one of claims 2 to 5, wherein the opening area of the rectifying port is formed so as to increase with increasing distance from the liquid supply port. 前記樋部が、前記電解液をオーバーフローさせるための開口部を備え、前記開口部が前記電解液の液面から50mm以内となる高さに配置されることを含む請求項1~6のいずれか1項に記載の電解装置。 7. Any one of claims 1 to 6, wherein the gutter includes an opening for overflowing the electrolytic solution, and the opening is arranged at a height within 50 mm from the liquid surface of the electrolytic solution. 2. The electrolytic device according to item 1. 電解液を収容する電解槽の長手方向に互いに間隔を空けて配置された電極を電解液中に浸漬し、電解液を循環させながら電解処理する電解方法であって、
前記電解槽の長手方向に延びる第1の側壁に沿って互いに間隔を空けて配置された複数の給液口から電解液を供給し、
前記給液口から供給される電解液を収容するための樋部内に配置された1以上の整流板により、前記電解液の流速分布を前記電解槽の長手方向で均一化させ、前記電解液を前記樋部からオーバーフローさせて前記電解槽内へと供給し、
前記樋部よりも下方において前記第1の側壁と対向する第2の側壁に沿って互いに間隔を空けて配置された複数の排液口を介して前記電解液を排液すること
を含む電解方法。
An electrolysis method in which electrodes arranged at intervals in the longitudinal direction of an electrolytic bath containing an electrolytic solution are immersed in the electrolytic solution, and electrolytic treatment is performed while the electrolytic solution is circulated,
supplying an electrolytic solution from a plurality of liquid supply ports spaced apart from each other along a first side wall extending in the longitudinal direction of the electrolytic cell;
The flow velocity distribution of the electrolytic solution is made uniform in the longitudinal direction of the electrolytic cell by one or more rectifying plates arranged in a gutter portion for containing the electrolytic solution supplied from the liquid supply port, thereby distributing the electrolytic solution. Overflow from the gutter and supply into the electrolytic cell,
Draining the electrolytic solution through a plurality of drain ports spaced apart from each other along a second side wall facing the first side wall below the gutter. .
JP2020014137A 2020-01-30 2020-01-30 Electrolysis apparatus and electrolysis method Active JP7150768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020014137A JP7150768B2 (en) 2020-01-30 2020-01-30 Electrolysis apparatus and electrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020014137A JP7150768B2 (en) 2020-01-30 2020-01-30 Electrolysis apparatus and electrolysis method

Publications (3)

Publication Number Publication Date
JP2021120477A JP2021120477A (en) 2021-08-19
JP2021120477A5 JP2021120477A5 (en) 2021-09-30
JP7150768B2 true JP7150768B2 (en) 2022-10-11

Family

ID=77269791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020014137A Active JP7150768B2 (en) 2020-01-30 2020-01-30 Electrolysis apparatus and electrolysis method

Country Status (1)

Country Link
JP (1) JP7150768B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7003442B2 (en) * 2017-05-15 2022-01-20 株式会社三洋物産 Pachinko machine
JP7069573B2 (en) * 2017-05-15 2022-05-18 株式会社三洋物産 Pachinko machine
JP7069571B2 (en) * 2017-05-15 2022-05-18 株式会社三洋物産 Pachinko machine
JP7069574B2 (en) * 2017-05-15 2022-05-18 株式会社三洋物産 Pachinko machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105684A (en) 2000-09-29 2002-04-10 Dowa Mining Co Ltd Electrolytic method, and electrolytic tank used therefor
JP2002541334A (en) 1999-04-13 2002-12-03 セミトゥール・インコーポレイテッド Workpiece processing apparatus having a processing chamber for improving the flow of a processing fluid
JP2009091597A (en) 2007-10-03 2009-04-30 Japan Envirotic Industry Co Ltd Treatment apparatus
JP2010537051A (en) 2007-08-27 2010-12-02 メットトップ ゲーエムベーハー How to operate a copper electrolytic cell
JP2014189851A (en) 2013-03-27 2014-10-06 Mitsubishi Materials Corp Electrolytic refining method, electrolytic refining apparatus of metal, and cathode
JP2015209550A (en) 2014-04-23 2015-11-24 三菱マテリアル株式会社 Electrolytic refining method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922483Y1 (en) * 1970-01-26 1974-06-17
JPS5535338Y2 (en) * 1972-03-31 1980-08-20
DE3469190D1 (en) * 1983-11-08 1988-03-10 Holzer Walter Process and apparatus for separating, for example, copper from a liquid electrolyte introduced into a pluricellular electrolyser
JPS62290876A (en) * 1986-06-09 1987-12-17 Seiko Epson Corp Surface treatment device
JP2839401B2 (en) * 1991-12-25 1998-12-16 日鉱金属株式会社 Supply / drainage method in an electrolytic cell for metal electrolytic refining

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541334A (en) 1999-04-13 2002-12-03 セミトゥール・インコーポレイテッド Workpiece processing apparatus having a processing chamber for improving the flow of a processing fluid
JP2002105684A (en) 2000-09-29 2002-04-10 Dowa Mining Co Ltd Electrolytic method, and electrolytic tank used therefor
JP2010537051A (en) 2007-08-27 2010-12-02 メットトップ ゲーエムベーハー How to operate a copper electrolytic cell
JP2009091597A (en) 2007-10-03 2009-04-30 Japan Envirotic Industry Co Ltd Treatment apparatus
JP2014189851A (en) 2013-03-27 2014-10-06 Mitsubishi Materials Corp Electrolytic refining method, electrolytic refining apparatus of metal, and cathode
JP2015209550A (en) 2014-04-23 2015-11-24 三菱マテリアル株式会社 Electrolytic refining method

Also Published As

Publication number Publication date
JP2021120477A (en) 2021-08-19

Similar Documents

Publication Publication Date Title
JP7150768B2 (en) Electrolysis apparatus and electrolysis method
JP7150769B2 (en) Electrolysis apparatus and electrolysis method
US7431810B2 (en) Apparatus for controlling flow in an electrodeposition process
US8454818B2 (en) Method for operating copper electrolysis cells
JP2017057508A (en) Electrolytic refining method of metal, electrolytic refining apparatus
JP6065706B2 (en) Electrolytic purification method of metal, electrolytic purification equipment
JP2002105684A (en) Electrolytic method, and electrolytic tank used therefor
JP3150370U (en) Electrolytic plating equipment
JP6967032B2 (en) Electrolyzer and electrolysis method
JP6364920B2 (en) Electrolytic refining method
CN113631762B (en) Electrolysis apparatus and electrolysis method
JP6929320B2 (en) Electrolyzer and electrolysis method
JP7002494B2 (en) Electrolyzer and electrolysis method
JP6962960B2 (en) Electrolyzer and electrolysis method
JP4342522B2 (en) Method for homogenizing electrolyte concentration and electrolytic cell
KR20140035571A (en) Apparatus to plate substrate
US2737487A (en) Electrolytic apparatus
US6361673B1 (en) Electroforming cell
JP2020164960A (en) Electrolyzer and electrolysis method
KR101325390B1 (en) Metal Foil Manufacturing Apparatus Comprising Perpendicular Type Cell
JP7309123B2 (en) Method for supplying electrolyte to electrolytic cell for electrorefining
KR100418404B1 (en) Vertical type electro plating apparatus using insoluble anode
JP2018168405A (en) Apparatus for electrolysis, and method for electrolysis using the same
JP2018168406A (en) Apparatus for electrolysis, and method for electrolysis using the same
JPH0730688Y2 (en) Vertical electroplating equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220928

R151 Written notification of patent or utility model registration

Ref document number: 7150768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151