JPS6053117B2 - Copper electrolysis operation method - Google Patents

Copper electrolysis operation method

Info

Publication number
JPS6053117B2
JPS6053117B2 JP56010829A JP1082981A JPS6053117B2 JP S6053117 B2 JPS6053117 B2 JP S6053117B2 JP 56010829 A JP56010829 A JP 56010829A JP 1082981 A JP1082981 A JP 1082981A JP S6053117 B2 JPS6053117 B2 JP S6053117B2
Authority
JP
Japan
Prior art keywords
electrolytic
electrolyte
electrolysis
operation method
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56010829A
Other languages
Japanese (ja)
Other versions
JPS57126985A (en
Inventor
真幸 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onahama Smelting and Refining Co Ltd
Original Assignee
Onahama Smelting and Refining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onahama Smelting and Refining Co Ltd filed Critical Onahama Smelting and Refining Co Ltd
Priority to JP56010829A priority Critical patent/JPS6053117B2/en
Publication of JPS57126985A publication Critical patent/JPS57126985A/en
Publication of JPS6053117B2 publication Critical patent/JPS6053117B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は非鉄金属電解操業法の改良に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in nonferrous metal electrolytic operation methods.

従来、銅電解精製に於いては、例えば単一槽の代りに仕
切板のない大型電槽に、多数の陰極両極板の組合せた電
解精製セットを多数段装入し、実質的に同一槽内で多段
電解を行う装置が稼動されている。
Conventionally, in copper electrolytic refining, for example, instead of a single tank, multiple stages of electrolytic refining sets, each consisting of a large number of cathode and bipolar plates, are charged into a large tank without a partition plate. A device that performs multistage electrolysis is in operation.

この方法は、電槽の壁面が少なくなるので、ライニング
等のコストを低下しうると共に、電解液の還流も従来の
名ユニット電解槽に比し、個々に液の出口と入口を設け
る必要がなくなり、電解工場の総合的な建設コストの引
下げに大きなメリットとなるばかりでなく、操業管理上
も容易であるなどの効果が得られる。
This method reduces the wall surface of the cell, which reduces the cost of lining, etc., and eliminates the need to provide separate outlets and inlets for the electrolyte, compared to conventional unit electrolytes. This not only has a great advantage in reducing the overall construction cost of an electrolytic plant, but also facilitates operational management.

しかし、実操業面では、隣接する単位セル間で、リーク
電流が生じ、電位の高いセル側のカソードが析出し隣接
のより低電位側のセル電極上に析出する傾向が生じ、電
流効率が低下する原因ともなる。
However, in actual operation, leakage current occurs between adjacent unit cells, and the cathode on the cell side with a higher potential tends to deposit on the adjacent cell electrode on the lower potential side, resulting in a decrease in current efficiency. It can also cause

この電流は前記大型電解槽のユニットセル間に、不動態
のシート等を設けることにより防止することができる。
しかし、電解を継続すると、電解液中の濃度、特に銅イ
オンと遊離硫酸の濃度が局部的に変化し、その傾向は液
の滞溜時間及ひ電解析出量と共に増大する。
This current can be prevented by providing a passive sheet or the like between the unit cells of the large electrolytic cell.
However, as electrolysis continues, the concentration in the electrolyte, particularly the concentration of copper ions and free sulfuric acid, changes locally, and this tendency increases with the residence time of the solution and the amount of electrolytic deposition.

従つて上記多段電解槽の場合は、最終の液出口付近では
、電解液の深さ方向に操業上も無視し得ない濃度差を生
する。この結果電解槽内の位置により、アノードの溶解
及びカソードヘの析出に差異が生じ部分的にアノードの
溶残率が増加したり、カソード品質の低下をもたらす不
都合が生ずる。本発明は上記トラブルを改良し、大型マ
ルチ電解槽の効率を向上するためのもので、具体的には
添付図面参照で詳説する。
Therefore, in the case of the above-mentioned multi-stage electrolytic cell, near the final liquid outlet, a concentration difference occurs in the depth direction of the electrolyte that cannot be ignored in terms of operation. As a result, the dissolution of the anode and the deposition on the cathode vary depending on the position in the electrolytic cell, resulting in disadvantages such as an increase in the residual rate of the anode in some areas and deterioration of the quality of the cathode. The present invention is intended to improve the above-mentioned troubles and improve the efficiency of large multi-electrolytic cells, and will be specifically explained in detail with reference to the accompanying drawings.

1は大型多段電解槽で、個々の単位電解セル2、2’・
・・等のスペースに、夫々多数のアノード3とカソード
4を組合せて浸漬する。
1 is a large multi-stage electrolytic cell, in which individual unit electrolytic cells 2, 2',
A large number of anodes 3 and cathodes 4 are combined and immersed in spaces such as .

この際、隣接の単位セルとの間は、仕切りを全くなくし
て開放としているため、電解槽1の一端に設けた給液ボ
ックス5から供給した電解液10は矢印に従つJて各電
解ユニットセルを通過して、他端まで流れ、他端に設け
た排液機槽(図示せす)によつて電槽外へ出される。こ
の機構に於いて電槽の中途に適当間隔で(図示では3ユ
ニットセル毎に)仕、切板6、7を組合せた仕切板を設
ける。; この仕切板は還流液の上下層を逆転し、濃度
勾配を解消するためのものであるから、2枚を1セット
とし、例えば図示の如く6は液面上に突出し、下辺は槽
底との間に間隙8を設けて通液口とすることにより、電
解液10は仕切板6の下をくぐつて7の上部より隣接の
ユニットセル側に流入することになる。
At this time, since there is no partition between the adjacent unit cells and there is no partition between them, the electrolyte 10 supplied from the supply box 5 provided at one end of the electrolytic cell 1 is supplied to each electrolytic unit according to the arrow. The liquid flows through the cell to the other end, and is taken out of the container by a drain tank (not shown) provided at the other end. In this mechanism, partition plates, which are a combination of partitions and cutting plates 6 and 7, are provided at appropriate intervals (in the figure, every three unit cells) in the middle of the battery case. ; This partition plate is for reversing the upper and lower layers of the reflux liquid and eliminating the concentration gradient, so two plates are used as a set. For example, as shown in the figure, 6 protrudes above the liquid surface, and the lower side meets the bottom of the tank. By providing a gap 8 between them to serve as a liquid passage port, the electrolytic solution 10 passes under the partition plate 6 and flows from the upper part of the partition plate 7 into the adjacent unit cell side.

この仕切板6,7は、例えば塩ビ板等を挿入するのみで
足り設備費も僅少で済むし、必要に応じて設置の位置を
移動したり増減することも容易に可能となる。
The partition plates 6, 7 can be formed by simply inserting, for example, a vinyl chloride board, and the equipment cost is minimal, and the installation position can be easily moved or increased or decreased as required.

又、この例ては仕切板を下人上抜きの組合せとする形を
示したが、上下を逆にして上入れ下抜きとすることも勿
論差支えないし、また両者を適宜組合せたものでもよい
In addition, although this example shows the partition plate as a combination of genin and upper parts, it is of course possible to turn the partition plate upside down and use a top-in and bottom-in part, or a combination of the two as appropriate.

この機構を組み入れると、電槽内の電解液の流れは屈曲
するので、多少の抵抗は増加するが、仕切板の間隔や上
下の間隙の調整により、流動抵抗は実用上無視し得て、
電気抵抗のみを隣接電槽間に電解が生じない程度に上げ
ることが可能であり、漏洩電解も防止でき、カソード品
質も向上するなど、産業上の利用効果は高い。
When this mechanism is incorporated, the flow of electrolyte in the container is bent, so resistance increases to some extent, but by adjusting the distance between the partition plates and the upper and lower gaps, the flow resistance can be practically ignored.
It is possible to increase only the electrical resistance to a level that does not cause electrolysis between adjacent battery cells, prevent leakage of electrolysis, and improve cathode quality, which has high industrial effects.

実施例1 長さ28.1m1巾4.1m1深さ1.3n1の大型電
解槽を、長さ方向に2蒔分する如く、電槽上部にデス,
トリビユーターを設けた多段電解槽に於いて、3個所に
1対の仕切板を設けた。
Example 1 A large electrolytic cell with a length of 28.1 m, a width of 4.1 m, and a depth of 1.3 n1 was divided into 2 parts in the length direction, with desiccators placed on the top of the tank.
In a multistage electrolytic cell equipped with a tributator, a pair of partition plates were provided at three locations.

テストのため1つ置きに上入下抜方式及び下人上抜方式
の組合せとし各仕切個所共2枚の仕切板の間隔は20〜
30!n1下抜口の高さは150〜300m1上部溢流
部分は電解;槽上縁より200〜5007uに変動させ
てテストを行つた。電解液は短辺の一端に設けた給液ボ
ックスより700e/Min流入し、対面から排出した
For testing, we used a combination of upper entry and lower removal method and genin upper removal method for every other partition, and the spacing between the two partition plates at each partition location was 20 ~
30! The height of the n1 lower outlet was 150 to 300 m1, and the upper overflow part was electrolytic; the test was conducted by varying the height from 200 to 5007 m from the upper edge of the tank. The electrolytic solution flowed in at 700 e/min from the liquid supply box provided at one end of the short side, and was discharged from the opposite side.

この結果、還流液出口の20セル目における銅濃度分布
は次の如くであつた。即ち電解液中の深さ方向における
銅濃度勾配は、約1h以下となり、かつ仕切板を挾んだ
両側のセル間の電解は発生しなくなつた為、均質なりソ
ートが得られ、電流効率も従来の90から91.8%ま
で向上した。
As a result, the copper concentration distribution in the 20th cell at the reflux liquid outlet was as follows. In other words, the copper concentration gradient in the depth direction in the electrolyte is less than about 1 h, and electrolysis no longer occurs between the cells on both sides of the partition plate, so homogeneity or sorting is obtained, and the current efficiency is also improved. This has improved from the previous 90 to 91.8%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に用いた大型電解槽の平面図であ
り第2図は第1図の側面図である。 1は大型多段電解槽、2,2″は電解槽セル、3はアノ
ード、4はカソード、5は給液ボックス、6,7は仕切
板、8は間隙、9は懸吊材およびコンダクター、10は
電解液。
FIG. 1 is a plan view of a large electrolytic cell used in carrying out the present invention, and FIG. 2 is a side view of FIG. 1. 1 is a large multi-stage electrolytic cell, 2 and 2'' are electrolytic cell cells, 3 is an anode, 4 is a cathode, 5 is a liquid supply box, 6 and 7 are partition plates, 8 is a gap, 9 is a suspension member and a conductor, 10 is an electrolyte.

Claims (1)

【特許請求の範囲】[Claims] 1 同一槽内で多段電解を行う電解精製用電解槽に於い
て、電解液の流れと直角方向に、2枚1組の仕切板を設
け、該仕切板により環流電解液の上下を逆転させて、液
中の濃度差を減縮させ、かつ相隣する単位セル間のリー
ク電解を防止することを特徴とする銅電解操業法。
1. In an electrolytic refining electrolytic cell that performs multi-stage electrolysis in the same tank, a set of two partition plates is provided in the direction perpendicular to the flow of the electrolyte, and the top and bottom of the circulating electrolyte are reversed by the partition plates. , a copper electrolysis operation method characterized by reducing the concentration difference in the liquid and preventing leakage electrolysis between adjacent unit cells.
JP56010829A 1981-01-29 1981-01-29 Copper electrolysis operation method Expired JPS6053117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56010829A JPS6053117B2 (en) 1981-01-29 1981-01-29 Copper electrolysis operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56010829A JPS6053117B2 (en) 1981-01-29 1981-01-29 Copper electrolysis operation method

Publications (2)

Publication Number Publication Date
JPS57126985A JPS57126985A (en) 1982-08-06
JPS6053117B2 true JPS6053117B2 (en) 1985-11-22

Family

ID=11761244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56010829A Expired JPS6053117B2 (en) 1981-01-29 1981-01-29 Copper electrolysis operation method

Country Status (1)

Country Link
JP (1) JPS6053117B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0146732B1 (en) * 1983-11-08 1988-02-03 Holzer, Walter, Senator h.c. Dr.h.c.Ing. Process and apparatus for separating, for example, copper from a liquid electrolyte introduced into a pluricellular electrolyser

Also Published As

Publication number Publication date
JPS57126985A (en) 1982-08-06

Similar Documents

Publication Publication Date Title
US6872288B2 (en) Apparatus for controlling flow in an electrodeposition process
US4495048A (en) Apparatus for electrolysis of saline water
EP0847454B1 (en) Intense yet energy-efficient process for electrowinning of zinc in mobile particle beds
US3977951A (en) Electrolytic cells and process for treating dilute waste solutions
US8454818B2 (en) Method for operating copper electrolysis cells
US4282082A (en) Slurry electrowinning apparatus
US4129494A (en) Electrolytic cell for electrowinning of metals
US4212722A (en) Apparatus for electrowinning metal from metal bearing solutions
US3558455A (en) Electrolyte-circulating,electrolytic cell
EP0027016A1 (en) Improvement in an apparatus for electrolytic production of magnesium metal from its chloride
CA1072055A (en) Electrolytic cell and circulating method for electrolyte
US3956086A (en) Electrolytic cells
JPS6053117B2 (en) Copper electrolysis operation method
US4035278A (en) Electrolytic cells
US4434040A (en) Vertical-pass electrotreating cell
US5720867A (en) Process for the electrochemical recovery of the metals copper, zinc, lead, nickel or cobalt
US4957611A (en) Process and apparatus for the electro-deposition of copper sheets on the cathodic sides of bipolar electrodes made of lead
US4048046A (en) Electrolytic cell design
JP6967032B2 (en) Electrolyzer and electrolysis method
US6224720B1 (en) Electrolytic cell with removable bipolar electrodes
AU765237B2 (en) Electrolytic cell for electrochemically depositing one of the following metals: copper, zinc, lead, nickel or cobalt
CN2123537U (en) Multiple-hole side-in-and side-out electrolytic deposition cell
Rousar et al. Calculation of bypass currents in molten salt bipolar cells
US1984745A (en) Electrodeposition of zinc
JP7002494B2 (en) Electrolyzer and electrolysis method