JP2013237921A - Solution supply piping of electrolytic solution - Google Patents

Solution supply piping of electrolytic solution Download PDF

Info

Publication number
JP2013237921A
JP2013237921A JP2012113241A JP2012113241A JP2013237921A JP 2013237921 A JP2013237921 A JP 2013237921A JP 2012113241 A JP2012113241 A JP 2012113241A JP 2012113241 A JP2012113241 A JP 2012113241A JP 2013237921 A JP2013237921 A JP 2013237921A
Authority
JP
Japan
Prior art keywords
electrolytic
electrolytic solution
solution
supply pipe
bubble discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012113241A
Other languages
Japanese (ja)
Other versions
JP5835096B2 (en
Inventor
Hirohisa Kashu
裕久 加集
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012113241A priority Critical patent/JP5835096B2/en
Publication of JP2013237921A publication Critical patent/JP2013237921A/en
Application granted granted Critical
Publication of JP5835096B2 publication Critical patent/JP5835096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solution supply piping of an electrolytic solution, capable of removing bubbles mixed in the electrolytic solution.SOLUTION: A solution supply piping 1 is for supplying an electrolytic solution to an electrolytic cell 2, and is provided with a bubble discharge hole 13 formed for discharging bubbles surfacing from the electrolytic solution inside the solution supply piping 1 to the outside of the solution supply piping 1. A bubble discharge pipe 14 whose one end is connected to the bubble discharge hole 13 is provided, and an opening end 14a of the bubble discharge pipe 14 is led to the electrolytic cell 2 or an electrolytic solution discharge part 3. Since the bubbles surfacing from the electrolytic solution inside the solution supply piping 1 can be discharged from the bubble discharge hole 13, the bubbles mixed in the electrolytic solution can be removed. Thus, generation of a pinhole can be suppressed. By leading the electrolytic solution that leaks out from the bubble discharge hole 13 to the electrolytic cell 2 or the electrolytic solution discharge part 3, the electrolytic solution can be recovered.

Description

本発明は、電解液の給液配管に関する。さらに詳しくは、電解精製や電解採取において、電解槽に電解液を給液する給液配管に関する。   The present invention relates to an electrolyte supply pipe. More specifically, the present invention relates to a liquid supply pipe for supplying an electrolytic solution to an electrolytic cell in electrolytic purification and electrolytic collection.

例えば、銅の電解精製においては、電解液を満たした電解槽に複数枚の粗銅アノードと純銅カソードを交互に挿入し、アノードとカソードとの間に通電して、カソード上に銅を析出させて、電気銅を得ている。製品としての電気銅は、その表面に歪みや凹凸がなく滑らかであることが要求される。このような電気銅の外観品質は電解液の液質に左右されるため、電解液は電解液循環系内を循環しており、電解槽から排出された電解液は浄液工程で不純物が除去され、再度電解槽に給液される。   For example, in electrolytic refining of copper, a plurality of crude copper anodes and pure copper cathodes are alternately inserted into an electrolytic cell filled with an electrolytic solution, and electricity is applied between the anodes and cathodes to deposit copper on the cathodes. You're getting electric copper. The electrolytic copper as a product is required to be smooth with no distortion or unevenness on the surface. Since the appearance quality of electrolytic copper depends on the quality of the electrolyte, the electrolyte circulates in the electrolyte circulation system, and impurities are removed from the electrolyte discharged from the electrolytic cell in the liquid purification process. And supplied again to the electrolytic cell.

より詳細には、電解液は、電解始液として電解槽に給液された後、電解精製に用いられ、電解終液として電解槽から排出される。電解槽から排出された電解終液の一部は貯液槽に溜められ、そのほかは浄液工程に送られる。浄液工程では、濃縮冷却や電解採取などの方法により、電解液中の砒素、アンチモン、ビスマスなどの不純物や過剰な銅分が除去される。浄液後の電解液は貯液槽に貯留された電解終液と混合され、膠やチオ尿素などの添加剤などを混合して再調整された後、電解始液として給液槽に溜められる。   More specifically, the electrolytic solution is supplied to the electrolytic cell as an electrolytic start solution, then used for electrolytic purification, and discharged from the electrolytic cell as an electrolytic final solution. Part of the electrolytic final solution discharged from the electrolytic cell is stored in a liquid storage tank, and the rest is sent to the liquid purification process. In the liquid purification process, impurities such as arsenic, antimony, and bismuth in the electrolytic solution and excess copper are removed by methods such as concentration cooling and electrolytic collection. The electrolytic solution after cleaning is mixed with the final electrolytic solution stored in the storage tank, mixed with additives such as glue and thiourea and readjusted, and then stored in the supply tank as the electrolytic start solution .

給液槽と電解槽とは給液配管で接続されており、その給液配管には給液ポンプが介装されている。この給液ポンプを用いて給液槽から電解槽への電解始液の送液が行われる。この際、何らかの原因により給液配管内に空気が混入すると、その空気が微細な気泡となって電解始液中に分散し、微細な気泡を含んだ電解始液が電解槽に給液される。電解槽においては、電解液中の気泡の一部は凝集して液面まで上昇するが、大部分の気泡は細かいため液面に到達することなくカソードの表面に付着する。そうすると、その気泡を囲むように電着が起こり、電気銅の表面および内部に小さな穴(以下、ピンホールという。)が形成される。このような電気銅は外観品質が悪いため製品とすることができない。そして、外観品質の悪い電気銅はスクラップとして再溶解され、再度電解精製が行われるため、生産量が減少し、製造コストが増加するという問題がある。   The liquid supply tank and the electrolytic tank are connected by a liquid supply pipe, and a liquid supply pump is interposed in the liquid supply pipe. Using this liquid supply pump, the electrolysis starting liquid is fed from the liquid supply tank to the electrolytic tank. At this time, if air is mixed into the liquid supply pipe for some reason, the air becomes fine bubbles and is dispersed in the electrolytic start solution, and the electrolytic start solution containing fine bubbles is supplied to the electrolytic cell. . In the electrolytic cell, some of the bubbles in the electrolytic solution aggregate and rise to the liquid level, but most of the bubbles are fine and adhere to the surface of the cathode without reaching the liquid level. Then, electrodeposition occurs so as to surround the bubbles, and small holes (hereinafter referred to as pinholes) are formed on the surface and inside of the electrolytic copper. Such electrolytic copper cannot be made into a product due to poor appearance quality. Then, electrolytic copper having poor appearance quality is redissolved as scrap and subjected to electrolytic refining again, so that there is a problem that the production amount is reduced and the manufacturing cost is increased.

以上のように、電解液に気泡が混入すると種々の問題が生じるため、気泡の混入を早期に発見し、その原因を除去する必要がある。
しかし、従来、電解液への気泡の混入は、得られた電気銅にピンホールが形成されているか否かにより判断されていた。そして、得られた電気銅の外観を検査し、外観品質の悪い電気銅を除去することが行われていた。そのため、電解液に気泡が混入することを有効に防止できていなかった。
As described above, since various problems occur when bubbles are mixed in the electrolytic solution, it is necessary to detect the mixing of bubbles at an early stage and remove the cause.
However, conventionally, the mixing of bubbles in the electrolyte has been determined by whether or not pinholes are formed in the obtained electrolytic copper. And the external appearance of the obtained electrical copper was inspected, and removing the electrical copper with poor external quality was performed. For this reason, it has not been possible to effectively prevent bubbles from being mixed into the electrolytic solution.

しかも、工業的な銅の電解精製においては、多数の電解槽を用いて連続的に操業を行うことが一般的である。具体的には、電解精製設備には25〜50枚のカソードが装入される電解槽が数百〜千槽備えられており、それらの電解槽に電解液を給液しつつ通電する。そして、10日程度毎に電気銅となったカソードを引き上げて、新たなカソードを装入することを繰り返す。このような操業においては、1日に生産される電気銅は、2,500〜4,000枚もある。このように多数枚の電気銅の全ての外観を検査し、ピンホールが形成された電気銅を除去するのは作業員の負担が大きい。また、連続的に操業を行なうことから、一度電解液に気泡が混入すると、その電解液が循環する全ての電解槽においてピンホールが形成される可能性があり、影響が数日〜10日以上の長期間にわたることもあるなど、生産性が低下するという問題があった。   Moreover, in industrial copper electrolytic refining, it is common to operate continuously using a large number of electrolytic cells. Specifically, the electrolytic refining equipment is provided with several hundred to thousands of electrolytic cells in which 25 to 50 cathodes are charged, and the electrolytic cells are energized while supplying the electrolytic solution. Then, every 10 days or so, the cathode that has become copper is pulled up and a new cathode is inserted. In such operations, there are as many as 2,500 to 4,000 electrolytic copper produced per day. Thus, it is a heavy burden on the operator to inspect all the appearances of a large number of electrolytic coppers and remove the electrolytic copper in which pinholes are formed. In addition, since the operation is continuously performed, once bubbles are mixed into the electrolytic solution, pinholes may be formed in all electrolytic cells in which the electrolytic solution circulates, and the influence is several days to 10 days or more. There was a problem that the productivity was lowered, such as for a long period of time.

一方、特許文献1には、電解液への気泡の混入を確認する気泡混入確認装置が記載されている。この気泡混入確認装置は、給液ポンプの吐出側の給液配管に接続され電解液の一部を採取するサンプリング用配管と、そのサンプリング用配管で採取された電解液を受ける透明なサンプル受けとから構成されている。給液ポンプから吐出される電解液の一部がサンプル受けに流入するため、サンプル受けの中の電解液を目視観察することにより、電解液に気泡が混入しているか否かを確認できる。   On the other hand, Patent Document 1 describes a bubble mixing confirmation device for confirming the mixing of bubbles in an electrolytic solution. This bubble mixing confirmation device is connected to a supply pipe on the discharge side of a supply pump, and a sampling pipe for collecting a part of the electrolyte, a transparent sample receiver for receiving the electrolyte collected by the sampling pipe, It is composed of Since a part of the electrolytic solution discharged from the feed pump flows into the sample receiver, it is possible to confirm whether or not bubbles are mixed in the electrolytic solution by visually observing the electrolytic solution in the sample receiver.

しかるに、上記従来技術においては、電解液への気泡の混入を作業員の目視観察により確認する必要があるため、作業員の負担が大きい。そして、気泡の混入を確認した場合には、操業を停止して気泡混入の原因となっている箇所を修理する必要がある。そのため、むしろ、電解液に気泡が混入したとしてもその気泡を除去して、電気銅にピンホールが形成されないようすることが望まれていた。   However, in the above prior art, it is necessary to confirm the mixing of bubbles into the electrolytic solution by visual observation of the worker, so that the burden on the worker is great. When it is confirmed that air bubbles are mixed, it is necessary to stop the operation and repair the location causing the air bubbles. For this reason, it has been desired that even if bubbles are mixed in the electrolytic solution, the bubbles are removed so that pinholes are not formed in the electrolytic copper.

特開2009−114530号公報JP 2009-114530 A

本発明は上記事情に鑑み、電解液に混入した気泡を除去できる電解液の給液配管を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an electrolyte solution supply pipe capable of removing bubbles mixed in an electrolyte solution.

第1発明の電解液の給液配管は、電解槽に電解液を給液する給液配管であって、前記給液配管内の電解液から浮上した気泡を該給液配管の外部に排出する気泡排出孔が形成されていることを特徴とする。
第2発明の電解液の給液配管は、第1発明において、前記気泡排出孔は、前記給液配管内の電解液の液面より高い位置に形成されていることを特徴とする。
第3発明の電解液の給液配管は、第1または第2発明において、前記給液配管は、逆U字形に屈曲した屈曲部を有しており、前記気泡排出孔は、前記屈曲部の頂点近傍に形成されていることを特徴とする。
第4発明の電解液の給液配管は、第1、第2または第3発明において、一端が前記気泡排出孔に接続された気泡排出管を備え、前記気泡排出管の開口端は前記電解槽または該電解槽の電解液排出部まで導かれていることを特徴とする。
第5発明の電解液の給液配管は、第4発明において、前記気泡排出管の開口端には、該気泡排出管から排出される電解液の飛散を防止する飛散防止カバーが取り付けられていることを特徴とする。
The electrolytic solution supply pipe according to the first aspect of the present invention is a supply pipe for supplying an electrolytic solution to an electrolytic cell, and discharges air bubbles floating from the electrolytic solution in the liquid supply pipe to the outside of the supply pipe. A bubble discharge hole is formed.
The electrolyte solution supply pipe according to a second aspect of the present invention is characterized in that, in the first invention, the bubble discharge hole is formed at a position higher than the liquid level of the electrolyte solution in the liquid supply pipe.
The electrolyte solution supply pipe according to a third aspect of the present invention is the first or second invention, wherein the liquid supply pipe has a bent portion bent in an inverted U shape, and the bubble discharge hole is formed on the bent portion. It is formed near the apex.
An electrolyte solution supply pipe according to a fourth aspect of the present invention is the first, second or third aspect of the invention, comprising a bubble discharge pipe whose one end is connected to the bubble discharge hole, and the open end of the bubble discharge pipe is the electrolytic cell. Or it is led to the electrolyte discharge part of this electrolytic vessel.
According to a fifth aspect of the present invention, there is provided an electrolyte solution supply pipe according to the fourth invention, wherein a scattering prevention cover for preventing scattering of the electrolyte solution discharged from the bubble discharge pipe is attached to the opening end of the bubble discharge pipe. It is characterized by that.

第1発明によれば、給液配管内の電解液から浮上した気泡を気泡排出孔から排出できるので、電解液に混入した気泡を除去できる。そのため、ピンホールの発生を抑制できる。
第2発明によれば、気泡排出孔が電解液の液面より高い位置に形成されているので、電解液から浮上した気泡を残らず排出できる。また、気泡排出孔から電解液が漏れ出ることを抑制できる。
第3発明によれば、気泡排出孔が屈曲部の頂点近傍に形成されているので、電解液から浮上した気泡が気泡排出孔の近傍に集まり、その気泡を残らず排出できる。
第4発明によれば、気泡排出孔から漏れ出た電解液を電解槽または電解液排出部に導くことにより、その電解液を回収できる。
第5発明によれば、飛散防止カバーにより気泡排出管から排出される電解液の飛散を防止できるので、電解液の飛散による不具合を防止できる。
According to the first aspect of the present invention, the bubbles floating from the electrolytic solution in the liquid supply pipe can be discharged from the bubble discharge hole, so that the bubbles mixed in the electrolytic solution can be removed. Therefore, the generation of pinholes can be suppressed.
According to the second aspect of the invention, since the bubble discharge hole is formed at a position higher than the liquid level of the electrolytic solution, it is possible to discharge all the bubbles floating from the electrolytic solution. Moreover, it can suppress that electrolyte solution leaks out from a bubble discharge hole.
According to the third aspect of the invention, since the bubble discharge hole is formed near the apex of the bent portion, the bubbles floating from the electrolytic solution gather in the vicinity of the bubble discharge hole and can be discharged without leaving the bubbles.
According to the fourth aspect of the invention, the electrolytic solution leaked from the bubble discharge hole can be recovered by introducing the electrolytic solution to the electrolytic cell or the electrolytic solution discharge portion.
According to the fifth aspect, since the scattering of the electrolytic solution discharged from the bubble discharge pipe can be prevented by the scattering prevention cover, it is possible to prevent problems caused by the scattering of the electrolytic solution.

本発明の一実施形態に係る給液配管の屈曲部の拡大図である。It is an enlarged view of the bending part of the liquid supply piping which concerns on one Embodiment of this invention. 他の実施形態に係る給液配管の屈曲部の拡大図である。It is an enlarged view of the bending part of the liquid supply piping which concerns on other embodiment. さらに他の実施形態に係る給液配管の屈曲部の拡大図である。It is an enlarged view of the bending part of the liquid supply piping which concerns on other embodiment. 電解槽の説明図である。It is explanatory drawing of an electrolytic vessel.

つぎに、本発明の実施形態を図面に基づき説明する。
本発明に係る電解液の給液配管は、銅、金、ニッケル、コバルト、鉛、亜鉛などの電解精製や電解採取に用いられる電解槽に、電解液を給液する給液配管である。いずれの場合においても、同様の構成で同様の効果を奏することができるので、以下、銅の電解精製を例に説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.
The electrolyte solution supply pipe according to the present invention is a supply pipe for supplying an electrolyte solution to an electrolytic cell used for electrolytic purification and electrolytic collection of copper, gold, nickel, cobalt, lead, zinc and the like. In any case, since the same effect can be obtained with the same configuration, the electrolytic refining of copper will be described below as an example.

図4に示すように、銅の電解精製においては、電解液を満たした電解槽2に複数枚の粗銅アノードと純銅カソードを交互に挿入し(図示せず)、アノードとカソードとの間に通電して、カソード上に銅を析出させて、電気銅を得ている。   As shown in FIG. 4, in electrolytic refining of copper, a plurality of crude copper anodes and pure copper cathodes are alternately inserted into an electrolytic cell 2 filled with an electrolytic solution (not shown), and electricity is passed between the anodes and the cathodes. Then, copper is deposited on the cathode to obtain electrolytic copper.

電解液は、電解始液として給液配管1から電解槽2に給液された後、電解精製に用いられ、電解液排出部3から排出される。電解液排出部3から排出された電解終液は、浄液工程で不純物が除去され、添加剤などを混合して再調整された後、電解始液として図示しない給液槽に溜められる。給液槽と電解槽2とは給液配管1で接続されており、その給液配管1には図示しない給液ポンプが介装されている。この給液ポンプを用いて給液槽から電解槽2への電解始液の送液が行われる。   The electrolytic solution is supplied from the supply pipe 1 to the electrolytic cell 2 as an electrolytic start solution, and then used for electrolytic purification and discharged from the electrolytic solution discharge unit 3. The electrolytic final solution discharged from the electrolytic solution discharge unit 3 is removed from the impurities in the liquid purification step, mixed with additives, and readjusted, and then stored in a liquid supply tank (not shown) as an electrolytic start solution. The liquid supply tank and the electrolytic tank 2 are connected by a liquid supply pipe 1, and a liquid supply pump (not shown) is interposed in the liquid supply pipe 1. Using this liquid supply pump, the electrolysis starting liquid is fed from the liquid supply tank to the electrolytic tank 2.

給液配管1は、電解槽2の側壁を跨ぐように逆U字形に屈曲した屈曲部11を有している。給液配管1は、屈曲部11の一端が電解槽2の内壁に沿って下向きに延設され、さらに電解槽2の底面に沿って延設されている。そして、給液配管1の開口端は、電解液排出部3とは逆側の電解槽2の端部(図4における右端)に開口している。そのため、電解液は、給液配管1から電解槽2の一端(図4における右端)に給液され、電解槽2内を他端(図4における左端)に向かって流れ、電解液排出部3から排出される。   The liquid supply pipe 1 has a bent portion 11 bent in an inverted U shape so as to straddle the side wall of the electrolytic cell 2. In the liquid supply pipe 1, one end of the bent portion 11 extends downward along the inner wall of the electrolytic cell 2, and further extends along the bottom surface of the electrolytic cell 2. And the opening end of the liquid supply piping 1 is opening to the edge part (right end in FIG. 4) of the electrolytic cell 2 on the opposite side to the electrolyte solution discharge part 3. As shown in FIG. Therefore, the electrolytic solution is supplied from the liquid supply pipe 1 to one end (the right end in FIG. 4) of the electrolytic cell 2, flows in the electrolytic cell 2 toward the other end (the left end in FIG. 4), and the electrolytic solution discharge unit 3 Discharged from.

給液配管1には、屈曲部11より上流側に流量制御弁12が介装されている。この流量制御弁12により電解槽2への電解液の給液量を制御できるようになっている。   A flow rate control valve 12 is interposed in the liquid supply pipe 1 upstream of the bent portion 11. The flow rate control valve 12 can control the amount of electrolyte supplied to the electrolytic cell 2.

図1に示すように、電解槽2の電解液排出部3には、その側壁の上縁に凹部が形成されており、その凹部に排液ボックス31が嵌め込まれている。排液ボックス31は電解槽2の内側(図1における右側)は壁面がなく開放されており、電解槽2の外側(図1における左側)に突出して設けられている。排液ボックス31の内部には、電解槽2の内側寄りに堰32が設けられており、電解槽2の内側と排液ボックス31はこの堰32により仕切られている。また、排液ボックス31の底面には、電解槽2の外側に排液配管33が接続されている。堰32により電解槽2内の電解液の液面高さが調整され、堰32を超えた電解液は排液配管33から排液される。   As shown in FIG. 1, a recess is formed in the upper edge of the side wall of the electrolyte discharge part 3 of the electrolytic cell 2, and a drainage box 31 is fitted in the recess. The drainage box 31 is open without any wall on the inner side (right side in FIG. 1) of the electrolytic cell 2, and is provided so as to protrude to the outer side (left side in FIG. 1) of the electrolytic cell 2. Inside the drainage box 31, a weir 32 is provided near the inside of the electrolytic cell 2, and the inside of the electrolytic cell 2 and the drainage box 31 are partitioned by this weir 32. A drainage pipe 33 is connected to the bottom of the drainage box 31 on the outside of the electrolytic cell 2. The level of the electrolyte in the electrolytic cell 2 is adjusted by the weir 32, and the electrolyte exceeding the weir 32 is drained from the drain pipe 33.

給液配管1の屈曲部11は、垂直方向に配設された一対の縦配管11a、11aと、水平方向に配設され、一対の縦配管11a、11aの上端同士を接続する横配管11bとから構成されている。横配管11bの内部は、電解液である液相と空気である気相とに分かれている。言い換えれば、このように横配管11bの内部が液相と気相に分かれるように、流量制御弁12で電解液の給液量が制御されている。   The bent portion 11 of the liquid supply pipe 1 includes a pair of vertical pipes 11a and 11a arranged in the vertical direction, and a horizontal pipe 11b arranged in the horizontal direction and connecting the upper ends of the pair of vertical pipes 11a and 11a. It is composed of The inside of the horizontal pipe 11b is divided into a liquid phase that is an electrolytic solution and a gas phase that is air. In other words, the supply amount of the electrolytic solution is controlled by the flow rate control valve 12 so that the inside of the horizontal pipe 11b is divided into a liquid phase and a gas phase.

横配管11bの上面には、給液配管1の内部と外部とを連通する気泡排出孔13が形成されている。また、気泡排出孔13には気泡排出管14の一端が接続されており、気泡排出管14の他端(以下、開口端14aという)は電解槽2の内部まで導かれている。   A bubble discharge hole 13 is formed on the upper surface of the horizontal pipe 11b to communicate the inside and outside of the liquid supply pipe 1 with each other. One end of a bubble discharge pipe 14 is connected to the bubble discharge hole 13, and the other end (hereinafter referred to as an open end 14 a) of the bubble discharge pipe 14 is led to the inside of the electrolytic cell 2.

給液配管1を流れる電解液に気泡が含まれていると、給液配管1を流れる間にその電解液から気泡が浮上してくる。特に、屈曲部11では電解液の流れ方向が逆向きに変えられるので、一種の乱流が起こり電解液から気泡が浮上しやすくなると考えられる。電解液から浮上した気泡は横配管11b内の気相に排出され、気泡排出孔13から気泡排出管14を通って給液配管1の外部に排出される。   If bubbles are included in the electrolyte flowing through the liquid supply pipe 1, the bubbles rise from the electrolyte while flowing through the liquid supply pipe 1. In particular, since the flow direction of the electrolyte solution is changed in the opposite direction at the bent portion 11, it is considered that a kind of turbulent flow occurs and bubbles easily rise from the electrolyte solution. Bubbles floating from the electrolytic solution are discharged to the gas phase in the horizontal pipe 11b, and discharged from the bubble discharge hole 13 to the outside of the liquid supply pipe 1 through the bubble discharge pipe 14.

このように、給液配管1内の電解液から浮上した気泡を気泡排出孔13から排出できるので、電解液に混入した気泡を除去できる。そのため、電解槽2に気泡を含んだ電解液が給液されず、カソードの表面に気泡が付着することがない。これにより、電気銅の表面および内部に小さな穴(以下、ピンホールという。)が発生することを抑制できる。   As described above, since the air bubbles floating from the electrolytic solution in the liquid supply pipe 1 can be discharged from the bubble discharge hole 13, the bubbles mixed in the electrolytic solution can be removed. Therefore, the electrolytic solution containing bubbles is not supplied to the electrolytic cell 2, and bubbles do not adhere to the surface of the cathode. Thereby, it can suppress that a small hole (henceforth a pinhole) generate | occur | produces on the surface and inside of an electric copper.

電解液への気泡の混入は、給液配管1に介装された給液ポンプの近傍で発生することが多い。例えば、給液ポンプのメカニカルシールの劣化、給液配管1と給液ポンプの継ぎ目の劣化などにより生じた孔から空気が吸引され微細な気泡となる。また、給液ポンプから電解槽2までの間でも、例えば、給液配管1の損傷などにより、給液配管1の内部に空気が吸引され気泡が混入する場合があると考えられる。
この点、給液配管1には、電解槽2に入る直前に気泡排出孔13が形成されているため、上記のように給液ポンプの近傍で混入した気泡のみならず、給液ポンプから電解槽2までの間に混入した気泡も除去できる。
In many cases, bubbles are mixed into the electrolytic solution in the vicinity of the liquid supply pump interposed in the liquid supply pipe 1. For example, air is sucked through holes generated due to deterioration of the mechanical seal of the liquid supply pump, deterioration of the joint between the liquid supply pipe 1 and the liquid supply pump, and the like, and fine bubbles are formed. Further, even between the liquid supply pump and the electrolytic cell 2, it is considered that air may be sucked into the liquid supply pipe 1 due to damage of the liquid supply pipe 1 and bubbles may be mixed.
In this respect, the liquid supply pipe 1 is formed with the bubble discharge hole 13 immediately before entering the electrolytic cell 2, so that not only the bubbles mixed in the vicinity of the liquid supply pump as described above, but also the electrolysis from the liquid supply pump. Bubbles mixed up to the tank 2 can also be removed.

気泡排出孔13の位置は、横配管11bの上面に限られず、横配管11bの側面など種々の位置を選択でき特に限定されないが、給液配管1内の電解液の液面より高い位置、すなわち気相部分に形成されることが好ましい。気泡排出孔13が電解液の液面より高い位置に形成されていれば、電解液から浮上した気泡を残らず排出できるからである。また、気泡排出孔13から電解液が漏れ出ることを抑制できる。   The position of the bubble discharge hole 13 is not limited to the upper surface of the horizontal pipe 11b, and various positions such as a side surface of the horizontal pipe 11b can be selected. However, the position is higher than the liquid level of the electrolyte in the liquid supply pipe 1, that is, It is preferably formed in the gas phase portion. This is because if the bubble discharge hole 13 is formed at a position higher than the liquid level of the electrolytic solution, all bubbles floating from the electrolytic solution can be discharged. In addition, leakage of the electrolyte from the bubble discharge hole 13 can be suppressed.

また、気泡排出孔13は、本実施形態のように屈曲部11の頂点近傍に形成されることが好ましい。電解液から浮上した気泡は屈曲部11の頂点の気相に集まる性質を有する。そのため、気泡排出孔13が屈曲部11の頂点近傍に形成されていれば、電解液から浮上した気泡が気泡排出孔13の近傍に集まり、その気泡を残らず排出できるからである。   Further, the bubble discharge hole 13 is preferably formed in the vicinity of the apex of the bent portion 11 as in the present embodiment. Bubbles floating from the electrolyte have a property of collecting in the gas phase at the apex of the bent portion 11. For this reason, if the bubble discharge hole 13 is formed in the vicinity of the apex of the bent portion 11, the bubbles floating from the electrolytic solution gather near the bubble discharge hole 13 and can be discharged without leaving the bubbles.

給液配管1を流れる電解液の流量によっては、電解液の液面が気泡排出孔13に達したり、電解液の液面が揺らぐことにより、電解液が気泡排出孔13から外部に漏れ出る場合がある。その場合、気泡排出孔13に気泡排出管14が接続されていないと、気泡排出孔13から漏れ出た電解液がそのまま床面などに垂れてしまう。一方、気泡排出孔13に気泡排出管14が接続されていれば、気泡排出孔13から漏れ出た電解液を電解槽2に導いて回収することができる。   Depending on the flow rate of the electrolyte flowing through the liquid supply pipe 1, when the electrolyte level reaches the bubble discharge hole 13 or when the electrolyte level fluctuates, the electrolyte leaks out of the bubble discharge hole 13. There is. In that case, if the bubble discharge pipe 14 is not connected to the bubble discharge hole 13, the electrolyte leaked from the bubble discharge hole 13 hangs down on the floor as it is. On the other hand, if the bubble discharge pipe 14 is connected to the bubble discharge hole 13, the electrolyte leaked from the bubble discharge hole 13 can be guided to the electrolytic cell 2 and collected.

気泡排出孔13の形状や孔径、および気泡排出管14の形状や内径は適宜選択することができ特に限定されない。ただし、気泡排出孔13から多量の電解液が漏れ出ない程度の大きさとし、漏れ出た電解液が結晶となって内部に付着しても閉塞しない大きさとすることが好ましい。   The shape and hole diameter of the bubble discharge hole 13 and the shape and inner diameter of the bubble discharge pipe 14 can be appropriately selected and are not particularly limited. However, it is preferable that the size is such that a large amount of electrolyte does not leak from the bubble discharge hole 13 and does not block even if the leaked electrolyte becomes a crystal and adheres to the inside.

気泡排出管14の開口端14aを、電解槽2内の電解液の液面より高い位置に配置すると、気泡排出孔13から漏れ出た電解液が開口端14aから落下し、電解槽2内の電解液に滴下される結果、電解液が周囲に飛散する恐れがある。電解槽2の両縁には、アノードとカソードに電力を供給する電気接点が設けられている。この電気接点に電解液が付着すると、電解液中の水分が蒸発し結晶が生じることにより、電気接点とアノード、カソードとの間が導通不良となる。
そこで、気泡排出管14は、開口端14aを電解槽2の電気接点から離れた位置、例えば30cm以上離れた位置に配置して、飛散した電解液が電気接点に付着しないようにすることが好ましい。
When the opening end 14a of the bubble discharge pipe 14 is arranged at a position higher than the liquid level of the electrolytic solution in the electrolytic cell 2, the electrolytic solution leaking from the bubble discharging hole 13 falls from the open end 14a, and the inside of the electrolytic cell 2 As a result of being dropped into the electrolytic solution, the electrolytic solution may be scattered around. Electrical contacts for supplying power to the anode and the cathode are provided on both edges of the electrolytic cell 2. When the electrolytic solution adheres to this electrical contact, the water in the electrolytic solution evaporates and crystals are formed, resulting in poor conduction between the electrical contact and the anode and cathode.
Therefore, it is preferable that the bubble discharge pipe 14 is arranged so that the open end 14a is away from the electrical contact of the electrolytic cell 2, for example, 30 cm or more, so that the scattered electrolyte does not adhere to the electrical contact. .

また、図2に示すように、気泡排出管14の開口端14aに、飛散防止カバー15を取り付けてもよい。飛散防止カバー15としては、気泡排出管14から排出される電解液の飛散を防止することができるカバーであれば、種々の形状、材質の物を採用することができ特に限定は無いが、例えば、布等を開口端14aの周囲にスカート状に巻きつけて、開口端14aと電解液の液面との隙間を覆うようなものとしてもよい。また、気泡排出管14より大口径の配管を短尺に切断した部材を飛散防止カバーとして開口端14aに取り付けてもよい。飛散防止カバー15により気泡排出管14から排出される電解液の飛散を防止できるので、電解液の飛散による不具合を防止できる。   Further, as shown in FIG. 2, a scattering prevention cover 15 may be attached to the opening end 14 a of the bubble discharge pipe 14. As the scattering prevention cover 15, various shapes and materials can be adopted as long as they can prevent scattering of the electrolyte discharged from the bubble discharge pipe 14. Alternatively, a cloth or the like may be wound around the opening end 14a in a skirt shape so as to cover the gap between the opening end 14a and the electrolyte surface. Moreover, you may attach to the opening end 14a as a scattering prevention cover the member which cut | disconnected piping larger diameter than the bubble exhaust pipe 14 shortly. Since scattering of the electrolytic solution discharged from the bubble discharge pipe 14 can be prevented by the scattering prevention cover 15, problems due to scattering of the electrolytic solution can be prevented.

また、図3に示すように、気泡排出管14の開口端14aを、電解液排出部3の排液ボックス31の内部まで導いてもよい。このようにしても、気泡排出孔13から漏れ出た電解液を回収しつつ、電解液が周囲に飛散することを防止できる。   Further, as shown in FIG. 3, the open end 14 a of the bubble discharge pipe 14 may be guided to the inside of the drain box 31 of the electrolyte discharge unit 3. Even if it does in this way, it can prevent that electrolyte solution scatters around, collect | recovering the electrolyte solution which leaked from the bubble discharge hole 13. FIG.

実施例、比較例共に、銅の電解精製を以下の条件で行った。
使用した電解槽は、コンクリートの表面に塩化ビニルをライニングした構造であり、長さ3000mm、幅1260mm、深さ1500〜1700mm(いずれも内寸)であり、電解液の容量は3.4m2である。この電解槽1槽当たりに、銅品位99.2%の粗銅アノード27枚と銅品位99.99%の純銅カソード26枚を交互に並べ、アノードとカソード間の距離が105mmになるように揃えて挿入した。アノードの電極面積は幅1015mm、縦1015mm、初期厚さ約36mmである。カソードの電極面積は幅1070mm、縦1050mm、初期厚さ約0.7mmである。
この電解槽を36槽使用して、それぞれの電解槽に電解液を流量15L/分で給液した。電解液の組成は、銅濃度46〜50g/L、遊離硫酸濃度170〜200g/Lであり、液温は60℃である。また、通電時のカソード電流密度を300A/m2とした。
In both the examples and comparative examples, electrolytic purification of copper was performed under the following conditions.
Electrolytic cell used was a structure lined vinyl chloride on the surface of the concrete, the length 3000 mm, width 1260 mm, the depth 1500~1700Mm (both internal dimensions), the capacity of the electrolytic solution is 3.4 m 2 . 27 electrolytic copper anodes of 99.2% copper grade and 26 pure copper cathodes of 99.99% copper grade were alternately arranged per electrolytic cell, and were inserted so that the distance between the anode and the cathode was 105 mm. The electrode area of the anode is 1015 mm wide, 1015 mm long, and has an initial thickness of about 36 mm. The electrode area of the cathode is 1070 mm wide, 1050 mm long, and an initial thickness of about 0.7 mm.
Using 36 electrolytic cells, the electrolytic solution was supplied to each electrolytic cell at a flow rate of 15 L / min. The composition of the electrolytic solution is a copper concentration of 46 to 50 g / L, a free sulfuric acid concentration of 170 to 200 g / L, and the solution temperature is 60 ° C. The cathode current density during energization was 300 A / m 2 .

9日(約200時間)通電後に停電してカソードのみを引き揚げて洗浄して電気銅として払い出し、次いで新たなカソードを挿入して再度9日間通電後にアノードとカソードを引き揚げて払い出す1ライフ18日間の操業を、13回(約30週間)繰り返した。その結果、24,336枚(=36槽×26枚×2回×13ライフ)の電気銅が得られた。   9 days (approx. 200 hours) after power off, lift only the cathode, wash and dispose of as copper, then insert a new cathode and re-energize for 9 days, then lift and dispose of the anode and cathode 1 life 18 days This operation was repeated 13 times (about 30 weeks). As a result, 24,336 sheets (= 36 tanks × 26 sheets × 2 times × 13 lives) of electrolytic copper were obtained.

(実施例)
本発明を適用した給液配管を用いて上記操業を行った結果、24,336枚の電気銅のうち、ピンホールの発生した電気銅は10枚であり、発生率は約0%であった。
なお、ピンホールの発生は得られた電気銅を目視で観察して判定した。
(Example)
As a result of performing the above operation using the liquid supply pipe to which the present invention was applied, 10 pieces of electrolytic copper in which pinholes occurred were generated out of 24,336 pieces of electrolytic copper, and the occurrence rate was about 0%.
The occurrence of pinholes was determined by visually observing the obtained electrolytic copper.

(比較例)
気泡排出孔を有しない従来の給液配管を用いて上記操業を行った結果、24,336枚の電気銅のうち、ピンホールの発生した電気銅は240枚であり、発生率は約1%であった。
また、気泡の発生状況を監視するため、経験を積んだ作業員を4時間に1回の頻度で監視させる作業工数が必要であった。
(Comparative example)
As a result of the above operation using a conventional liquid supply pipe having no bubble discharge hole, out of 24,336 sheets of electrolytic copper, 240 pieces of electrolytic copper with pinholes were generated, and the rate of occurrence was about 1%. It was.
Moreover, in order to monitor the generation | occurrence | production state of a bubble, the operation man-hour which monitors an experienced worker once every 4 hours was required.

以上より、本発明の給液配管によれば、ピンホールの発生を抑制でき、作業員の負担を軽減できることが分かった。   From the above, it has been found that according to the liquid supply pipe of the present invention, the occurrence of pinholes can be suppressed and the burden on workers can be reduced.

1 給液配管
11 屈曲部
12 流量制御弁
13 気泡排出孔
14 気泡排出管
15 飛散防止カバー
2 電解槽
3 電解液排出部
31 排液ボックス
32 堰
33 排液配管
DESCRIPTION OF SYMBOLS 1 Liquid supply piping 11 Bending part 12 Flow control valve 13 Bubble discharge hole 14 Bubble discharge pipe 15 Spatter prevention cover 2 Electrolysis tank 3 Electrolyte discharge part 31 Drainage box 32 Weir 33 Drainage pipe

Claims (5)

電解槽に電解液を給液する給液配管であって、
前記給液配管内の電解液から浮上した気泡を該給液配管の外部に排出する気泡排出孔が形成されている
ことを特徴とする電解液の給液配管。
A liquid supply pipe for supplying an electrolytic solution to an electrolytic cell,
A liquid supply pipe for an electrolytic solution, wherein a bubble discharge hole for discharging bubbles floating from the electrolytic solution in the liquid supply pipe to the outside of the liquid supply pipe is formed.
前記気泡排出孔は、前記給液配管内の電解液の液面より高い位置に形成されている
ことを特徴とする請求項1記載の電解液の給液配管。
2. The electrolytic solution supply pipe according to claim 1, wherein the bubble discharge hole is formed at a position higher than a liquid level of the electrolytic solution in the supply pipe.
前記給液配管は、逆U字形に屈曲した屈曲部を有しており、
前記気泡排出孔は、前記屈曲部の頂点近傍に形成されている
ことを特徴とする請求項1または2記載の電解液の給液配管。
The liquid supply pipe has a bent portion bent in an inverted U shape,
The electrolyte supply pipe according to claim 1, wherein the bubble discharge hole is formed in the vicinity of the apex of the bent portion.
一端が前記気泡排出孔に接続された気泡排出管を備え、
前記気泡排出管の開口端は前記電解槽または該電解槽の電解液排出部まで導かれている
ことを特徴とする請求項1、2または3記載の電解液の給液配管。
A bubble discharge pipe having one end connected to the bubble discharge hole;
4. The electrolytic solution supply pipe according to claim 1, wherein an open end of the bubble discharge pipe is led to the electrolytic cell or an electrolytic solution discharge part of the electrolytic cell. 5.
前記気泡排出管の開口端には、該気泡排出管から排出される電解液の飛散を防止する飛散防止カバーが取り付けられている
ことを特徴とする請求項4記載の電解液の給液配管。
5. The electrolytic solution supply pipe according to claim 4, wherein a scattering prevention cover for preventing scattering of the electrolytic solution discharged from the bubble discharging tube is attached to an opening end of the bubble discharging tube.
JP2012113241A 2012-05-17 2012-05-17 Electrolyte supply piping Active JP5835096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012113241A JP5835096B2 (en) 2012-05-17 2012-05-17 Electrolyte supply piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012113241A JP5835096B2 (en) 2012-05-17 2012-05-17 Electrolyte supply piping

Publications (2)

Publication Number Publication Date
JP2013237921A true JP2013237921A (en) 2013-11-28
JP5835096B2 JP5835096B2 (en) 2015-12-24

Family

ID=49763191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012113241A Active JP5835096B2 (en) 2012-05-17 2012-05-17 Electrolyte supply piping

Country Status (1)

Country Link
JP (1) JP5835096B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164961A (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Electrolyzer and electrolysis method
JP2020164966A (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Electrolyzer and electrolysis method
JP2020164963A (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Electrolyzer and electrolysis method
JP2020164962A (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Electrolyzer and electrolysis method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS484671U (en) * 1971-06-15 1973-01-19
JPH033404U (en) * 1989-06-01 1991-01-14
JPH11128605A (en) * 1997-10-31 1999-05-18 Koa Corporation:Kk Gas-liquid separator
JP2000104191A (en) * 1998-09-28 2000-04-11 Shinko Pantec Co Ltd Hydrogen and oxygen generating device
JP2002301305A (en) * 2001-04-03 2002-10-15 Kurita Water Ind Ltd Deaeration unit and deaeration apparatus
JP2007262466A (en) * 2006-03-28 2007-10-11 Renesas Technology Corp Method of manufacturing semiconductor device
JP2009114233A (en) * 2007-11-01 2009-05-28 Nippon Steel Engineering Co Ltd Liquid phase oxidation wet type desulphurization apparatus
JP2009114530A (en) * 2007-11-09 2009-05-28 Sumitomo Metal Mining Co Ltd Bubble mixing confirming apparatus for electrolyte supply equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS484671U (en) * 1971-06-15 1973-01-19
JPH033404U (en) * 1989-06-01 1991-01-14
JPH11128605A (en) * 1997-10-31 1999-05-18 Koa Corporation:Kk Gas-liquid separator
JP2000104191A (en) * 1998-09-28 2000-04-11 Shinko Pantec Co Ltd Hydrogen and oxygen generating device
JP2002301305A (en) * 2001-04-03 2002-10-15 Kurita Water Ind Ltd Deaeration unit and deaeration apparatus
JP2007262466A (en) * 2006-03-28 2007-10-11 Renesas Technology Corp Method of manufacturing semiconductor device
JP2009114233A (en) * 2007-11-01 2009-05-28 Nippon Steel Engineering Co Ltd Liquid phase oxidation wet type desulphurization apparatus
JP2009114530A (en) * 2007-11-09 2009-05-28 Sumitomo Metal Mining Co Ltd Bubble mixing confirming apparatus for electrolyte supply equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164961A (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Electrolyzer and electrolysis method
JP2020164966A (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Electrolyzer and electrolysis method
JP2020164963A (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Electrolyzer and electrolysis method
JP2020164962A (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Electrolyzer and electrolysis method
JP7002494B2 (en) 2019-03-29 2022-01-20 Jx金属株式会社 Electrolyzer and electrolysis method

Also Published As

Publication number Publication date
JP5835096B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5835096B2 (en) Electrolyte supply piping
US8142627B2 (en) System for monitoring, control, and management of a plant where hydrometallurgical electrowinning and electrorefining processes for non ferrous metals
US8361287B2 (en) Lateral exhaust enclosure-aided mist control system in metal electrowinning and electrorefining cells
JP6111931B2 (en) Electrolyte supply method
WO2016124034A1 (en) Electrolytic furnace group
JP5085474B2 (en) Method for electrolytic purification of copper
JP5522151B2 (en) Weir for electrolytic cell
KR101623869B1 (en) Electric plating apparatus with horizontal cell
JP2002105684A (en) Electrolytic method, and electrolytic tank used therefor
US20060118421A1 (en) Electrolytic cell or modified electrolytic cell for the metal recovery its base or floor comprising pyramid-shaped funnels which allow the continuous extraction of sludge from the bottom of the cell, in addition discloses the method to recover the sludge
CN201148470Y (en) Nickel electrodeposition acid mist absorption apparatus
JP6967032B2 (en) Electrolyzer and electrolysis method
CN202519346U (en) Anode scrap-free series-wound electrolyzer with anode material storage tank
JP7188239B2 (en) Method for producing electrolytic cell and acid solution
US3574083A (en) Apparatus for the production of chlorine in chlor-alkali diaphragm cells
JP4524248B2 (en) Copper collection method
CN103374732A (en) Anode scrap-free tandem electrolyzing device with anode material storing box
JP5630423B2 (en) Monitoring method for air bubbles in electrolyte
CN211734487U (en) Novel horizontal electrolytic tank
WO2013182755A1 (en) Bubble collector guide and use thereof
JP7146174B2 (en) Electrolyte drainage method in electrorefining
JP7002494B2 (en) Electrolyzer and electrolysis method
JP7309123B2 (en) Method for supplying electrolyte to electrolytic cell for electrorefining
CN205241844U (en) Industry chemistry waste liquid copper recovery device
CN202070203U (en) Novel copper-enriched liquid storage tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5835096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150