JP2020164961A - Electrolyzer and electrolysis method - Google Patents

Electrolyzer and electrolysis method Download PDF

Info

Publication number
JP2020164961A
JP2020164961A JP2019069347A JP2019069347A JP2020164961A JP 2020164961 A JP2020164961 A JP 2020164961A JP 2019069347 A JP2019069347 A JP 2019069347A JP 2019069347 A JP2019069347 A JP 2019069347A JP 2020164961 A JP2020164961 A JP 2020164961A
Authority
JP
Japan
Prior art keywords
drainage
electrolytic solution
electrolytic
side wall
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019069347A
Other languages
Japanese (ja)
Other versions
JP6962960B2 (en
Inventor
大輔 手塚
Daisuke Tezuka
大輔 手塚
明 會澤
Akira Aizawa
明 會澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019069347A priority Critical patent/JP6962960B2/en
Priority to PCT/JP2020/014682 priority patent/WO2020204003A1/en
Priority to CN202080024892.2A priority patent/CN113631762B/en
Publication of JP2020164961A publication Critical patent/JP2020164961A/en
Application granted granted Critical
Publication of JP6962960B2 publication Critical patent/JP6962960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

To provide an electrolyzer and an electrolysis method, which may improve the mixed state of the electrolytic solution supplied into an electrolytic chamber while suppressing the hoisting of slime.SOLUTION: An electrolyzer comprises: an electrolytic chamber 1 which stores an electrolytic solution and in which electrodes arranged at intervals along a longitudinal direction X are immersed in the electrolytic solution for an electrolysis treatment; a liquid supply pipe 2 that extends along a side wall 11 extending in the longitudinal direction X of the electrolytic chamber 1 and comprises a plurality of liquid supply ports 21a for supplying the electrolytic solution toward a second side wall 12 side facing the first side wall 11; a drainage pipe 3 that is arranged at a position relatively lower than the liquid supply pipe 2, extends along the second side wall 12 and comprises a plurality of drainage ports 31a for draining the electrolytic solution; a drainage unit 30 that is arranged on one end of the electrolytic chamber 1 and drains the electrolytic solution to the outside of the electrolytic chamber 1; and a drainage box 32 that is connected to the drainage unit 30 and the drainage pipe 3, comprises a bottom surface 32a lower than the liquid level of the electrolytic solution, an outlet 3A of the drainage pipe 3 being connected to the bottom surface 32a, and may pump the electrolytic solution in the drainage pipe 3.SELECTED DRAWING: Figure 1

Description

本発明は、電解装置及び電解方法に関する。 The present invention relates to an electrolyzer and an electrolyzer.

従来の電解装置では、電解槽の長手方向の一端側の下部から電解液が供給され、他端側の上部から電解液が排液される下入れ上抜き方式と呼ばれる電解液の給排液が行われてきた。電解槽内の液組成及び添加剤濃度を均一に保つことは、例えば電気銅の品質及び電解成績を向上させるために重要な技術の一つであり、これまで色々な方法が検討されている。 In the conventional electrolytic cell, the electrolytic solution is supplied from the lower part on one end side in the longitudinal direction of the electrolytic cell, and the electrolytic solution is discharged from the upper part on the other end side. It has been done. Keeping the liquid composition and additive concentration in the electrolytic cell uniform is one of the important techniques for improving the quality of electrolytic copper and the electrolytic performance, for example, and various methods have been studied so far.

例えば、特開2007−204779号公報(特許文献1)には、電解槽の長手方向の一端側から電解液の上層部及び下層部へ電解液を給液し、反対側の端部側の液面上層部から排液する方法が提案されている。特開2015−209550号公報(特許文献2)には、電解槽の長手方向の一端の上部から電解液が側面に向けて給液され、他端の下部から排液される方法が提案されている。また、全く別の方法として、特開2014−189851号公報(特許文献3)及び特許第5227404号公報(特許文献4)には、電解槽の底や電解槽脇から電解液を給液する方法が提案されている。 For example, in Japanese Patent Application Laid-Open No. 2007-204779 (Patent Document 1), the electrolytic solution is supplied from one end side in the longitudinal direction of the electrolytic cell to the upper layer portion and the lower layer portion of the electrolytic cell, and the liquid on the opposite end side. A method of draining liquid from the upper layer has been proposed. Japanese Unexamined Patent Publication No. 2015-209550 (Patent Document 2) proposes a method in which an electrolytic solution is supplied toward a side surface from the upper part of one end in the longitudinal direction of an electrolytic cell and drained from the lower part of the other end. There is. Further, as a completely different method, Japanese Patent Application Laid-Open No. 2014-189851 (Patent Document 3) and Japanese Patent No. 5227404 (Patent Document 4) provide a method of supplying an electrolytic solution from the bottom of the electrolytic cell or the side of the electrolytic cell. Has been proposed.

特開2007−204779号公報JP-A-2007-204779 特開2015−209550号公報JP-A-2015-209550 特開2014−189851号公報Japanese Unexamined Patent Publication No. 2014-189851 特許第5227404号公報Japanese Patent No. 5227404

しかしながら、電解が進むと電解槽内に液の濃度差が生まれ、電解槽底へいくほど比重の重い液が溜まる。給液口から給液された液は、電解槽底の液より比重が軽いため、特許文献1及び2に記載されるような下入れ上抜き方式の電解液の給排液を行った場合には、給液位置より下方に電解液や添加剤が供給されないデッドスペースが生じる。電解槽内に添加剤が供給されない領域が生じると電着物の表面が荒れる場合や電解液が供給されないことによって液中の銅濃度が部分的に上昇して不動態化が起こりやすくなる場合がある。 However, as the electrolysis progresses, a difference in the concentration of the liquid is generated in the electrolytic cell, and the liquid having a heavier specific gravity accumulates toward the bottom of the electrolytic cell. Since the liquid supplied from the liquid supply port has a lower specific gravity than the liquid at the bottom of the electrolytic cell, when the electrolyte liquid of the bottom-in / top-draining method as described in Patent Documents 1 and 2 is supplied / discharged. There is a dead space below the liquid supply position where the electrolyte and additives are not supplied. If there is a region in the electrolytic cell where the additive is not supplied, the surface of the electrodeposited material may become rough, or the copper concentration in the liquid may partially increase due to the absence of the electrolyte, and passivation may easily occur. ..

特許文献3に記載された発明では、電解槽の下方且つカソードの側方から電解液を供給し、電解槽の上部の電解液排出口から電解液を排液することで、排液側の電解槽底部の銅濃度上昇を防ぐことはできる。しかしながら、給液側は、従来と同様に上方から供給されているため、給液側の電解槽下方には電解液が供給されないデッドスペースが生じ、電解槽内の混合状態を十分に改善できているとはいえない。 In the invention described in Patent Document 3, the electrolytic solution is supplied from below the electrolytic cell and from the side of the cathode, and the electrolytic solution is discharged from the electrolytic cell discharge port at the upper part of the electrolytic cell, whereby electrolysis on the drain side is performed. It is possible to prevent an increase in the copper concentration at the bottom of the tank. However, since the liquid supply side is supplied from above as in the conventional case, a dead space in which the electrolytic solution is not supplied is generated below the electrolytic cell on the liquid supply side, and the mixed state in the electrolytic cell can be sufficiently improved. It cannot be said that there is.

特許文献4に記載された発明では、電解槽の底及び電解槽脇から電解液を供給することにより、電解槽内の電解液の混合状態を改善することができる。しかしながら、特許文献4では、電解液を下方から上方へと強制的に対流させることにより、殿物の巻き上げなどによるカソードの汚染の問題が発生するおそれがある。 In the invention described in Patent Document 4, the mixed state of the electrolytic cell in the electrolytic cell can be improved by supplying the electrolytic cell from the bottom of the electrolytic cell and the side of the electrolytic cell. However, in Patent Document 4, by forcibly convection of the electrolytic solution from the lower side to the upper side, there is a possibility that a problem of cathode contamination due to winding up of the palace may occur.

上記課題を鑑み、本開示は、殿物の巻き上げを抑制しながら電解槽内に給液される電解液の混合状態を改善することが可能な電解装置及び電解方法を提供する。 In view of the above problems, the present disclosure provides an electrolyzer and an electrolysis method capable of improving the mixed state of the electrolytic solution supplied into the electrolytic cell while suppressing the hoisting of the ridge.

本発明の実施の形態に係る電解装置は一実施態様において、電解液を収容し、長手方向に沿って互いに間隔を空けて配置される電極を電解液中に浸漬して電解処理する電解槽と、電解槽の長手方向に延びる第1の側壁に沿って延び、第1の側壁と対向する電解槽の第2の側壁側に向けて電解液を給液するための複数の給液口を備える給液配管と、給液配管よりも相対的に下方となる位置に配置され、第2の側壁に沿って延び、電解液を排液する複数の排液口を備える排液配管と、電解槽の一端に設けられ、電解液を電解槽外へ排液する排液部と、排液部と排液配管とに接続され、電解液の液面よりも下方となる底面を備え、底面に排液配管の出口が接続され、排液配管内の電解液を汲み上げ可能な排液ボックスとを備える電解装置である。 In one embodiment, the electrolyzer according to the embodiment of the present invention includes an electrolyzer that houses an electrolytic solution and immerses electrodes arranged at intervals along the longitudinal direction in the electrolytic solution for electrolytic treatment. , A plurality of liquid supply ports for supplying the electrolytic solution toward the second side wall side of the electrolytic tank, which extends along the first side wall extending in the longitudinal direction of the electrolytic tank and faces the first side wall. A liquid supply pipe, a drainage pipe arranged at a position relatively lower than the liquid supply pipe, extending along the second side wall, and having a plurality of drainage ports for draining the electrolytic solution, and an electrolytic tank. It has a drainage part that is provided at one end of the electrolytic solution and drains the electrolytic solution to the outside of the electrolytic tank, and a bottom surface that is connected to the drainage part and the drainage pipe and is below the liquid level of the electrolytic solution, and drains to the bottom surface. It is an electrolyzer equipped with a drainage box to which the outlet of the liquid pipe is connected and capable of pumping the electrolytic solution in the drainage pipe.

本発明の実施の形態に係る電解方法は一実施態様において、電解液を循環しながら電解処理する電解方法であって、電解槽の長手方向に延びる第1の側壁に沿って延びる給液配管が備える複数の給液口から第1の側壁と対向する第2の側壁側へ向けて電解液を給液し、給液配管よりも下方において第2の側壁に沿って延びる排液配管が備える複数の排液口を介して電解液を排液させ、排液配管内の電解液を、電解液の液面よりも下方となる底面を備え、底面に排液配管の出口が接続された排液ボックスにより汲み上げて電解槽外へ排出させることを含む電解方法である。 In one embodiment, the electrolysis method according to the embodiment of the present invention is an electrolysis method in which an electrolysis treatment is performed while circulating an electrolytic solution, and a liquid supply pipe extending along a first side wall extending in the longitudinal direction of the electrolytic tank is provided. A plurality of drainage pipes provided for supplying electrolytic solution from a plurality of liquid supply ports provided toward the second side wall facing the first side wall and extending along the second side wall below the liquid supply pipe. The electrolytic solution is drained through the drainage port of the above, and the electrolytic solution in the drainage pipe is provided with a bottom surface below the liquid level of the electrolytic solution, and the outlet of the drainage pipe is connected to the bottom surface. This is an electrolysis method that includes pumping up with a box and discharging it to the outside of the electrolysis tank.

本開示によれば、殿物の巻き上げを抑制しながら電解槽内に給液される電解液の混合状態を改善することが可能な電解装置及び電解方法が提供できる。 According to the present disclosure, it is possible to provide an electrolyzer and an electrolyzing method capable of improving the mixed state of the electrolytic solution supplied into the electrolytic cell while suppressing the hoisting of the tongue.

図1(a)は、本発明の実施の形態に係る電解装置の上面概略図であり、図1(b)は、本発明の実施の形態に係る電解装置の断面概略図である。FIG. 1A is a schematic top view of the electrolyzer according to the embodiment of the present invention, and FIG. 1B is a schematic cross-sectional view of the electrolyzer according to the embodiment of the present invention. 給液配管が備える給液口及び排液配管が備える排液口を示す説明図である。It is explanatory drawing which shows the liquid supply port provided in the liquid supply pipe, and the drainage port provided in the drainage pipe. 給液部と排液ボックスを表す断面概略図である。It is sectional drawing which shows the liquid supply part and the drainage box. 給液部と排液ボックスを表す上面概略図である。It is a top view which shows the liquid supply part and the drainage box. 排液ボックスが備える切り欠き部を表す側面概略図である。It is a side schematic view which shows the notch part provided in the drainage box.

以下、図面を参照しながら本発明の実施の形態に係る電解装置及び電解方法について説明する。なお、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、各構成部品の構造、配置及び手順等を下記のものに特定するものではない。 Hereinafter, the electrolysis apparatus and the electrolysis method according to the embodiment of the present invention will be described with reference to the drawings. The embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention includes the structure, arrangement, procedure, etc. of each component. Is not specified as the following.

(電解装置)
本発明の実施の形態に係る電解装置は、図1(a)及び図1(b)に示すように、電解液を収容するための直方体状の電解槽1を備える。電解槽1のサイズとしては、例えば、電解槽1の長さ(長手方向Xの内径)が5200〜5900mm、幅(短手方向Yの内径)が1095〜1110mm、深さが1275〜1510mmとなるように形成することができる。
(Electrolyzer)
As shown in FIGS. 1 (a) and 1 (b), the electrolyzer according to the embodiment of the present invention includes a rectangular parallelepiped electrolytic cell 1 for accommodating the electrolytic solution. The size of the electrolytic cell 1 is, for example, a length (inner diameter in the longitudinal direction X) of 5200 to 5900 mm, a width (inner diameter in the lateral direction Y) of 1095 to 1110 mm, and a depth of 1275 to 1510 mm. Can be formed as follows.

電解槽1は、長手方向Xに平行な方向に延びる第1の側壁11と、第1の側壁11に対向する第2の側壁12と、長手方向Xの一端において第1の側壁11及び第2の側壁12に垂直に延びる第3の側壁13及び長手方向Xの他端において第1の側壁11及び第2の側壁12に垂直に延び、第3の側壁13に対向する第4の側壁14を有する。 The electrolytic cell 1 includes a first side wall 11 extending in a direction parallel to the longitudinal direction X, a second side wall 12 facing the first side wall 11, and a first side wall 11 and a second side wall 11 at one end in the longitudinal direction X. A third side wall 13 extending perpendicularly to the side wall 12 and a fourth side wall 14 extending perpendicularly to the first side wall 11 and the second side wall 12 at the other end in the longitudinal direction X and facing the third side wall 13. Have.

図1(b)に示すように、電解槽1の第1の側壁11の上方には、電解槽1内に収容される電解液の液面もしくは液面近傍となる高さにおいて電解槽1の長手方向Xに沿って延びる給液配管2が配置されている。給液配管2は、電解槽1の第3の側壁13の上方に配置された供給部20に接続されている。供給部20は、図1(a)及び図1(b)に示す電解槽1の他に、電解槽1以外の他の電解槽に対しても電解液を給液することが可能な給液主管と、供給主管から給液配管2へ電解液を分岐させる分岐配管とを備えることができるが、この例に制限されないことは勿論である。 As shown in FIG. 1 (b), above the first side wall 11 of the electrolytic cell 1, the electrolytic cell 1 is located at a height close to or near the liquid level of the electrolytic cell housed in the electrolytic cell 1. A liquid supply pipe 2 extending along the longitudinal direction X is arranged. The liquid supply pipe 2 is connected to a supply unit 20 arranged above the third side wall 13 of the electrolytic cell 1. The supply unit 20 can supply the electrolytic solution to other electrolytic cells other than the electrolytic cell 1 in addition to the electrolytic cell 1 shown in FIGS. 1 (a) and 1 (b). A main pipe and a branch pipe for branching the electrolytic solution from the supply main pipe to the liquid supply pipe 2 can be provided, but of course, the present invention is not limited to this example.

給液配管2には、長手方向Xに沿って複数の給液口21a、21b・・・21xが好ましくは等間隔に設けられている。電解液の混合状態を改善するためには、複数の給液口21a、21b・・・21xは、電解液面から400mm以内の高さ、より好ましくは200mm以内の高さ、さらに好ましくは50mm以内の高さに配置されることが好ましい。 The liquid supply pipe 2 is preferably provided with a plurality of liquid supply ports 21a, 21b ... 21x along the longitudinal direction X at equal intervals. In order to improve the mixed state of the electrolytic solution, the plurality of liquid supply ports 21a, 21b ... 21x have a height within 400 mm, more preferably a height within 200 mm, and further preferably within 50 mm from the electrolytic solution surface. It is preferably arranged at the height of.

給液配管2は、電解液の供給流量を20〜100L/分となるように電解槽1内へ供給することが好ましい。電解液の供給流量が20L/分未満では添加剤が電解槽1内に行き渡る前に分解してしまい、電着した金属の平滑性が損なわれる場合や、不動態化を起こす場合がある。電解液の供給流量は電解効率の面から高い方が好ましいが、電解液の供給流量が100L/分を超えると、電解槽1内の殿物が巻き上げられてカソード板表面へ付着する場合がある。 The liquid supply pipe 2 preferably supplies the electrolytic solution into the electrolytic cell 1 so that the supply flow rate of the electrolytic solution is 20 to 100 L / min. If the supply flow rate of the electrolytic solution is less than 20 L / min, the additive may be decomposed before being distributed in the electrolytic cell 1, and the smoothness of the electrodeposited metal may be impaired or passivation may occur. The supply flow rate of the electrolytic solution is preferably high from the viewpoint of electrolytic efficiency, but if the supply flow rate of the electrolytic solution exceeds 100 L / min, the ridges in the electrolytic cell 1 may be rolled up and adhere to the surface of the cathode plate. ..

本実施形態に係る電解装置では、電解液を第1の側壁11の上側から供給し、第2の側壁12の下側から排出する方式を採用するとともに、供給流量を20〜100L/分とする。これにより、殿物の巻き上げを抑制しながら電解槽1内に給液される電解液の混合状態をより改善することができ、より効率の高い電解精製を実施することができる。なお、電解液の供給流量は、30〜90L/分とすることが好ましく、30〜70L/分とすることがより好ましく、50〜70L/分とすることが更に好ましい。 In the electrolytic apparatus according to the present embodiment, a method is adopted in which the electrolytic solution is supplied from the upper side of the first side wall 11 and discharged from the lower side of the second side wall 12, and the supply flow rate is 20 to 100 L / min. .. As a result, it is possible to further improve the mixed state of the electrolytic solution supplied into the electrolytic cell 1 while suppressing the hoisting of the ridge, and it is possible to carry out more efficient electrolytic refining. The supply flow rate of the electrolytic solution is preferably 30 to 90 L / min, more preferably 30 to 70 L / min, and even more preferably 50 to 70 L / min.

電解槽1の第2の側壁12の下方側には、長手方向Xに沿って延びる排液配管3が配置されている。排液配管3は配管等で構成することができる。排液配管3には、長手方向Xに沿って複数の排液口31a、31b・・・31xが互いに所定の間隔を有して設けられている。複数の排液口31a、31b・・・31xは、複数の給液口21a、21b・・・21xよりも相対的に下方となるように、好ましくは等間隔に配置されている。このように、第1の側壁11側から第2の側壁12側へ向けて、電解液を上方から下方へ流すように給液配管2及び排液配管3が配置されることによって、電解液が上方から下方へと流れるため、電解槽1の底部に沈積する殿物の巻き上げを抑制しながら、電解液の混合状態、特に電解液中の金属イオンや添加剤の混合状態をより良好にすることができる。 A drainage pipe 3 extending along the longitudinal direction X is arranged on the lower side of the second side wall 12 of the electrolytic cell 1. The drainage pipe 3 can be composed of a pipe or the like. The drainage pipe 3 is provided with a plurality of drainage ports 31a, 31b ... 31x at predetermined intervals along the longitudinal direction X. The plurality of drainage ports 31a, 31b ... 31x are preferably arranged at equal intervals so as to be relatively lower than the plurality of liquid supply ports 21a, 21b ... 21x. In this way, the liquid supply pipe 2 and the liquid drainage pipe 3 are arranged so that the electrolytic solution flows from the upper side to the lower side from the first side wall 11 side to the second side wall 12 side, so that the electrolytic solution is released. Since it flows from the upper side to the lower side, it is necessary to improve the mixed state of the electrolytic solution, particularly the mixed state of the metal ions and additives in the electrolytic cell, while suppressing the hoisting of the deposits on the bottom of the electrolytic cell 1. Can be done.

複数の排液口31a、31b・・・31xは、底部に近づけすぎると電解槽1の底部の殿物などを巻き込んで排液口31a、31b・・・31xの詰まり或いは不具合等を生じさせる場合がある。排液口31a、31b・・・31xは、例えば、電解槽1内に収容される電極の下端部を起点に、上方に100mm、下方に300mmの範囲に配置されることが好ましく、より好ましくは上方に100mm、下方に100mmの範囲に配置される。 When the plurality of drainage ports 31a, 31b ... 31x are too close to the bottom, the drainage ports 31a, 31b ... 31x may be clogged or malfunction due to the involvement of the bottom ridge of the electrolytic cell 1. There is. The drainage ports 31a, 31b ... 31x are preferably arranged in a range of 100 mm upward and 300 mm downward, starting from the lower end of the electrode housed in the electrolytic cell 1, for example, more preferably. It is arranged in a range of 100 mm above and 100 mm below.

図2に示すように、給液口21a、21b、21c・・・の開口面積よりも排液口31a、31b、・・・の開口面積が大きくなるように形成されていることが好ましい。排液口31a、31b、・・・の開口面積を大きくとることによって、排液配管3内の電解液を電解槽1外へ排出させる際の圧力損失の影響をより小さくすることができる。以下に限定されるものではないが、排液口31a、31b、・・・の各開口面積を給液口21a、21b、21c・・・の各開口面積を1〜400倍、より典型的には100〜200倍大きくすることができる。これにより、排液口31a、31b、・・・から電解槽1内の電解液を効率よく排液することができる。 As shown in FIG. 2, it is preferable that the opening areas of the drainage ports 31a, 31b, ... Are larger than the opening areas of the liquid supply ports 21a, 21b, 21c ... By increasing the opening area of the drainage ports 31a, 31b, ..., The influence of pressure loss when the electrolytic solution in the drainage pipe 3 is discharged to the outside of the electrolytic cell 1 can be further reduced. Although not limited to the following, the opening areas of the drainage ports 31a, 31b, ... Are more typically 1 to 400 times the opening areas of the liquid supply ports 21a, 21b, 21c ... Can be 100 to 200 times larger. As a result, the electrolytic solution in the electrolytic cell 1 can be efficiently drained from the drainage ports 31a, 31b, ....

排液配管3の管径は、給液配管2の管径よりも大きく形成されることが好ましい。排液配管3側の管径を給液配管2の管径よりも大きくすることによって、排液ボックス32内の電解液のヘッド圧と電解槽1内の電解液のヘッド圧の差を利用して電解液を電解槽1外へ排出させる際に、排液配管3の圧力損失の影響をより小さくすることができる。これにより、より円滑に給液配管2内に吸い上げられた電解液を電解槽1の外へ排出しやすくできる。 The pipe diameter of the liquid drainage pipe 3 is preferably formed larger than the pipe diameter of the liquid supply pipe 2. By making the pipe diameter on the drainage pipe 3 side larger than the pipe diameter of the liquid supply pipe 2, the difference between the head pressure of the electrolytic solution in the drainage box 32 and the head pressure of the electrolytic solution in the electrolytic cell 1 is utilized. When the electrolytic solution is discharged to the outside of the electrolytic cell 1, the influence of the pressure loss of the drainage pipe 3 can be further reduced. As a result, the electrolytic solution sucked up in the liquid supply pipe 2 can be easily discharged to the outside of the electrolytic cell 1.

排液配管3の管径は、給液配管2の管径よりも1.5倍以上、より好ましくは2倍以上、更に好ましくは4倍以上大きくすることができる。 The pipe diameter of the drainage pipe 3 can be 1.5 times or more, more preferably 2 times or more, still more preferably 4 times or more larger than the pipe diameter of the liquid supply pipe 2.

給液配管2及び排液配管3の管径、給液口21a、21b、21c・・・及び排液口31a、31b、・・・の形状、穴径(スリット径)及び間隔は、電解槽1の大きさ等に応じて適宜調整することができる。図2に示す例では、給液口21a、21b、21c・・・は円形状又は楕円形状を有し、互いに間隔d1を空けて配置されている。排液口31a、31b、・・・は、スリット径d2を有する長円或いは略長方形状を有し、互いに間隔d3を空けて配置されている。 The pipe diameters of the liquid supply pipe 2 and the liquid drainage pipe 3, the shapes, hole diameters (slit diameters), and intervals of the liquid supply ports 21a, 21b, 21c ... And the liquid drainage ports 31a, 31b, ... It can be appropriately adjusted according to the size of 1. In the example shown in FIG. 2, the liquid supply ports 21a, 21b, 21c ... Have a circular shape or an elliptical shape, and are arranged at intervals d1 from each other. The drainage ports 31a, 31b, ... Have an oval shape or a substantially rectangular shape having a slit diameter d2, and are arranged at intervals d3 from each other.

以下に制限されないが、図2の例では、給液配管2には、電解槽間隔d1が50mm間隔で穴径が5φの円又は楕円形状の給液口21a、21b、21c・・・が形成されている。排液配管3には、幅10mm、スリット径(d2)400mmの長円形状又は略矩形形状の排液口31a、31b、・・・が、200mmの間隔d3を有して配置されている。 Although not limited to the following, in the example of FIG. 2, in the liquid supply pipe 2, circular or elliptical liquid supply ports 21a, 21b, 21c, ... With an electrolytic cell interval d1 of 50 mm and a hole diameter of 5φ are formed. Has been done. In the drainage pipe 3, elliptical or substantially rectangular drainage ports 31a, 31b, ... With a width of 10 mm and a slit diameter (d2) of 400 mm are arranged with an interval d3 of 200 mm.

図1(a)及び図1(b)に示すように、電解槽1の第4の側壁14には、電解液を電解槽1外へ排液する排液部30が配置されている。排液部30には、図1(a)に示すように、その上部に電解槽1内の電解液を排出するための排出口300が設けられている。排液口31aの下方には、図3に示すように、電解液を電解槽1外へ排出するために排出口300に接続された排出配管301が設けられている。 As shown in FIGS. 1A and 1B, a drainage unit 30 for draining the electrolytic solution to the outside of the electrolytic cell 1 is arranged on the fourth side wall 14 of the electrolytic cell 1. As shown in FIG. 1A, the drainage unit 30 is provided with a discharge port 300 for discharging the electrolytic solution in the electrolytic cell 1 above the drainage unit 30. As shown in FIG. 3, a discharge pipe 301 connected to the discharge port 300 is provided below the drain port 31a in order to discharge the electrolytic solution to the outside of the electrolytic cell 1.

図1(b)に示すように、排液ボックス32は、排液部30と排液配管3との間に接続されている。排液ボックス32は、図3に示すように、電解液の液面LSよりも下方となる底面32aを備える。底面32aには、排液配管3の出口3Aが接続されている。電解槽1から排液配管3内に排液された電解液は、電解液の液面LSと排液ボックス32内の電解液の液面lsの高さの差Hによるヘッド差により汲み上げされる。 As shown in FIG. 1 (b), the drainage box 32 is connected between the drainage unit 30 and the drainage pipe 3. As shown in FIG. 3, the drainage box 32 includes a bottom surface 32a that is below the liquid level LS of the electrolytic solution. The outlet 3A of the drainage pipe 3 is connected to the bottom surface 32a. The electrolytic solution discharged from the electrolytic cell 1 into the drainage pipe 3 is pumped up by the head difference due to the height difference H between the liquid level LS of the electrolytic solution and the liquid level ls of the electrolytic solution in the drainage box 32. ..

本発明の実施の形態によれば、排液部30と排液配管3との間に排液ボックス32が配置されることにより、ポンプ等の動力を使用せず、且つ電解槽1の底部に沈積する殿物の巻き込みを抑制しながら、電解槽1の下方から電解液を電解槽1の外部へ抜き出すことができる。 According to the embodiment of the present invention, the drainage box 32 is arranged between the drainage section 30 and the drainage pipe 3, so that the power of a pump or the like is not used and the bottom of the electrolytic cell 1 is located. The electrolytic solution can be extracted from below the electrolytic cell 1 to the outside of the electrolytic cell 1 while suppressing the entrainment of the deposited gravel.

排液ボックス32の電解液と接する側の側壁32bの上端部の高さは、電解槽1内の電解液の液面LSに対して数mm〜数十mm上方となるように配置されている。排液ボックス32は、電解槽1内に収容された電解液と接する側の側壁32bに、電解槽1内の電解液中の異物を排液ボックス32へ送るための切り欠き部33を備えることが好ましい。この切り欠き部33は、図5に示すように、電解槽1の上方側から下方側に向かってその開口幅AWが小さくなるような形状を有している。切り欠き部33の形状としては、例えば図4に示すようなV字形状、U字形状、台形形状等の種々の形状を取り得るが、具体的な形状は特に限定されない。 The height of the upper end of the side wall 32b on the side of the drainage box 32 in contact with the electrolytic solution is arranged so as to be several mm to several tens of mm above the liquid level LS of the electrolytic solution in the electrolytic cell 1. .. The drainage box 32 is provided with a notch 33 for sending foreign matter in the electrolytic solution in the electrolytic cell 1 to the drainage box 32 on the side wall 32b on the side in contact with the electrolytic cell housed in the electrolytic cell 1. Is preferable. As shown in FIG. 5, the cutout portion 33 has a shape in which the opening width AW decreases from the upper side to the lower side of the electrolytic cell 1. The shape of the cutout portion 33 may be various shapes such as a V-shape, a U-shape, and a trapezoidal shape as shown in FIG. 4, but the specific shape is not particularly limited.

電解槽1内には、電解を行うにつれて電解液の液面LSにゴミ等の異物が溜まる場合がある。この異物が電解槽1内に留まると、電解に悪影響を与える恐れがある。本発明の実施の形態に係る電解装置によれば、電解槽1の電解液の液面LS付近にたまるゴミなどの異物を含む電解液を切り欠き部33からオーバーフローさせて排出することができるため、電解槽1内の電解液の液面LS付近のゴミの滞留を抑制することができる。 Foreign matter such as dust may accumulate in the electrolytic cell 1 as the electrolysis is performed on the liquid level LS of the electrolytic solution. If this foreign matter stays in the electrolytic cell 1, it may adversely affect the electrolysis. According to the electrolytic device according to the embodiment of the present invention, the electrolytic solution containing foreign matter such as dust accumulated near the liquid level LS of the electrolytic cell in the electrolytic cell 1 can be overflowed from the notch 33 and discharged. , It is possible to suppress the retention of dust near the liquid level LS of the electrolytic solution in the electrolytic cell 1.

図3に示すように、排液ボックス32と排液部30との間には、排液ボックス32から排液部30へと流れる電解液を堰き止めるように配置された調整板35が配置されている。調整板35が配置されることにより、排液配管3を介して排液ボックス32内に回収された電解液が、調整板35の上端からオーバーフローして排液部30へと流れる。 As shown in FIG. 3, an adjusting plate 35 arranged so as to block the electrolytic solution flowing from the drainage box 32 to the drainage section 30 is arranged between the drainage box 32 and the drainage section 30. ing. By arranging the adjusting plate 35, the electrolytic solution collected in the draining box 32 via the draining pipe 3 overflows from the upper end of the adjusting plate 35 and flows to the draining portion 30.

例えば、大きさの異なる調整板35を配置することにより、調整板35の排液ボックス32の底面32aからの高さhを変更することが可能である。調整板35の高さhを変更することにより、電解槽1内の電解液の液面LSと排液ボックス32内の電解液の液面lsとの高さの差Hを調整することができる。これにより、電解槽1内の電解液の液面LSとの電解液の液面lsとの高さの差Hによるヘッド圧差を調整して、どのような給液量であっても電解槽1内の電解液の液面LSの高さを一定に保つことができる。 For example, by arranging the adjusting plates 35 having different sizes, it is possible to change the height h of the adjusting plate 35 from the bottom surface 32a of the drainage box 32. By changing the height h of the adjusting plate 35, it is possible to adjust the height difference H between the liquid level LS of the electrolytic solution in the electrolytic cell 1 and the liquid level ls of the electrolytic solution in the drainage box 32. .. As a result, the head pressure difference due to the height difference H between the liquid level LS of the electrolytic solution and the liquid level ls of the electrolytic solution in the electrolytic cell 1 is adjusted, and the electrolytic cell 1 is supplied regardless of the amount of liquid supplied. The height of the liquid level LS of the electrolytic solution inside can be kept constant.

図1の電解装置には不図示の電解液の環流機構が設けられている。環流機構は、電解槽1の排液部30から排出された電解液にニカワやチオ尿素等の添加剤を追加するとともに、必要な成分調整と温度調整を行い、調整後の電解液を給液口21a、21b、21c・・・21xから電解槽1内へと環流する。電解装置には不図示の給電機構が設けられている。給電機構は、電解槽1内の長手方向に沿って交互に配置されるアノード板とカソード板とを含む電極の間に直流電流を印加する電源装置と配線とを備えている。 The electrolytic device of FIG. 1 is provided with a circulation mechanism of an electrolytic solution (not shown). The recirculation mechanism adds additives such as nikawa and thiourea to the electrolytic solution discharged from the drainage unit 30 of the electrolytic cell 1, adjusts necessary components and temperature, and supplies the adjusted electrolytic solution. Circulation flows from the ports 21a, 21b, 21c ... 21x into the electrolytic cell 1. The electrolyzer is provided with a power feeding mechanism (not shown). The power feeding mechanism includes a power supply device and wiring for applying a direct current between electrodes including anode plates and cathode plates that are alternately arranged along the longitudinal direction in the electrolytic cell 1.

アノード板及びカソード板の構成は特に限定されない。アノード板は電解精製もしくは電解採取を行う際の陽極となり、粗金属製の板材で構成される。カソード板は電解精製もしくは電解採取を行う際の陰極となり、導電性に優れた板状の金属で構成される。 The configuration of the anode plate and the cathode plate is not particularly limited. The anode plate serves as an anode for electrolytic refining or electrowinning, and is composed of a crude metal plate material. The cathode plate serves as a cathode for electrolytic refining or electrowinning, and is composed of a plate-shaped metal having excellent conductivity.

電解槽1内の電解液の混合状態を改善するために種々の検討が行われてきたが、電解槽1内の長手方向の一端側から長手方向の他端側へと電解液を流す従来の下入れ上抜き方式の電解装置では電解液供給方向上流側と下流側で電解液中の銅などの金属イオン濃度及び添加物の濃度に偏りが生じるとともに、電解が進むにつれて電解槽1の上部から底部へいくほど金属イオン濃度が高くなる傾向にあった。 Various studies have been conducted to improve the mixed state of the electrolytic solution in the electrolytic tank 1, but the conventional method of flowing the electrolytic solution from one end side in the longitudinal direction to the other end side in the longitudinal direction in the electrolytic tank 1 has been carried out. In the bottom-in / top-pull type electrolyzer, the concentration of metal ions such as copper and the concentration of additives in the electrolytic solution are biased between the upstream side and the downstream side in the electrolytic solution supply direction, and as the electrolysis progresses, from the upper part of the electrolytic tank 1 The metal ion concentration tended to increase toward the bottom.

本発明の実施の形態に係る電解装置によれば、電解槽1の幅(X)方向、即ち、電解槽1の第1の側壁11側から第2の側壁12側へと電解液を供給するように構成するとともに、第1の側壁11側の給液口21a、21b・・・21xの設置位置が第2の側壁12側の排液口31a、31b・・・31xよりも相対的に上方となるように構成した、いわゆる、「横入れ上入れ下抜き方式」を採用する。その結果、電解槽1の底部の銅イオン濃度などの金属イオン濃度の上昇を効果的に抑制できるとともに、電解液中に含まれる種々の添加剤の濃度分布を電解槽1内全体でより均一化することができる。 According to the electrolyzer according to the embodiment of the present invention, the electrolytic solution is supplied from the width (X) direction of the electrolytic cell 1, that is, from the first side wall 11 side to the second side wall 12 side of the electrolytic cell 1. The installation positions of the liquid supply ports 21a, 21b ... 21x on the first side wall 11 side are relatively higher than the drainage ports 31a, 31b ... 31x on the second side wall 12 side. The so-called "horizontal insertion, top insertion, bottom removal method" is adopted. As a result, an increase in the metal ion concentration such as the copper ion concentration at the bottom of the electrolytic cell 1 can be effectively suppressed, and the concentration distribution of various additives contained in the electrolytic cell is made more uniform throughout the electrolytic cell 1. can do.

さらに、電解槽1において上方から下方へと電解液を流すことにより、殿物の巻き上げの恐れも少なくなる。そのため、電解液の供給流量を大きくしても殿物の巻き上げを抑制しながら電解液の混合状態を改善することができ、電着物の電着効率も従来に比べて改善させることができる。さらに、電着物の表面性状に影響を及ぼすニカワなどの添加物を電解槽全体にわたって均一に行き渡らせることができるため、電解槽1全体において品質の揃った電着物が得られる。 Further, by flowing the electrolytic solution from the upper side to the lower side in the electrolytic cell 1, the risk of winding up the palace is reduced. Therefore, even if the supply flow rate of the electrolytic solution is increased, the mixed state of the electrolytic solution can be improved while suppressing the hoisting of the palace, and the electrodeposition efficiency of the electrodeposited object can be improved as compared with the conventional case. Further, since additives such as Nikawa, which affect the surface texture of the electrodeposited material, can be uniformly distributed throughout the electrolytic cell, an electrodeposited material having uniform quality can be obtained in the entire electrolytic cell 1.

更に、電解槽1の下方に配置された排液配管3と電解槽1の上方に配置された排液部との間には、排液ボックス32が配置される。排液ボックス32が配置されることにより、電解槽1の下方に配置された排液配管3内の電解液を、ポンプ等の動力を必要とせずに、電解槽1及び排液ボックス32内の電解液のヘッド圧差によって汲み上げて排液部30へと送ることができるため、より簡易な構成で、既存の電解槽1を用いて、殿物の巻き上げを抑制しながら電解槽内に給液される電解液の混合状態を改善することが可能となる。 Further, a drainage box 32 is arranged between the drainage pipe 3 arranged below the electrolytic cell 1 and the drainage portion arranged above the electrolytic cell 1. By arranging the drainage box 32, the electrolytic solution in the drainage pipe 3 arranged below the electrolytic cell 1 can be used in the electrolytic cell 1 and the drainage box 32 without the need for power such as a pump. Since it can be pumped up by the head pressure difference of the electrolytic solution and sent to the drainage section 30, the existing electrolytic cell 1 is used, and the liquid is supplied into the electrolytic cell while suppressing the winding up of the ridge. It is possible to improve the mixed state of the electrolytic solution.

(電解方法)
本発明の実施の形態に係る電解装置を用いて電解液を電気分解することにより、複数のカソード板に銅などの金属を電着させることができる。以下においては、本発明の実施の形態に係る電解装置を用いて電気分解する例として粗銅を精錬する場合について説明する。
(Electrolysis method)
By electrolyzing the electrolytic solution using the electrolytic device according to the embodiment of the present invention, a metal such as copper can be electrodeposited on a plurality of cathode plates. In the following, a case of refining blister copper will be described as an example of electrolysis using the electrolytic device according to the embodiment of the present invention.

まず、例えば純度が99mass%程度の粗銅の板材をアノード板とし、純度が99.99mass%程度の銅の板材又はステンレス板をカソード板として、複数のアノード板と複数のカソード板とを交互に板厚方向に間隔を空けて、電極板の下端が電解槽1の底面から所定の間隔が空くように電解槽1内に配置する。電解槽1の内部には給液配管2の複数の給液口21a、21b・・・21xから硫酸銅及び硫酸の混合水溶液にニカワやチオ尿素などの添加剤を添加した電解液を供給し、環流機構によって、電解液を循環させる。 First, for example, a blister copper plate having a purity of about 99 mass% is used as an anode plate, a copper plate having a purity of about 99.99 mass% or a stainless steel plate is used as a cathode plate, and a plurality of anode plates and a plurality of cathode plates are alternately arranged. The electrode plates are arranged in the electrolytic cell 1 so as to have a predetermined distance from the bottom surface of the electrolytic cell 1 at intervals in the thickness direction. Inside the electrolytic cell 1, an electrolytic solution obtained by adding additives such as nikawa and thiourea to a mixed aqueous solution of copper sulfate and sulfuric acid is supplied from a plurality of liquid supply ports 21a, 21b ... 21x of the liquid supply pipe 2. The electrolytic solution is circulated by the recirculation mechanism.

給電機構を用いてアノード板とカソード板との間に直流電流を印加し、アノード板の銅を電解液中にイオンとして溶出させてカソード板へ電着させる。このとき、アノード板及びカソード板の側面と対向する電解槽1の第1の側壁11の上方から電解液を電解槽1内へ供給し、第1の側壁11と対向する電解槽1の第2の側壁12の下方で電解液を排液配管3内へ排液させるようにして液流を発生させる。 A direct current is applied between the anode plate and the cathode plate using a power feeding mechanism, and the copper of the anode plate is eluted as ions in the electrolytic solution and electrodeposited on the cathode plate. At this time, the electrolytic solution is supplied into the electrolytic cell 1 from above the first side wall 11 of the electrolytic cell 1 facing the side surfaces of the anode plate and the cathode plate, and the second side wall 1 of the electrolytic cell 1 facing the first side wall 11 is supplied. A liquid flow is generated by draining the electrolytic solution into the drainage pipe 3 below the side wall 12.

排液配管3内へ排液された電解液は、排液ボックス32により汲み上げられて、排液部30を介して排液される。電解槽1内の電解液の上層に浮遊するゴミなどの異物は、排液ボックス32が備える切り欠き部33から越流により排液ボックス32内へ収容され、電解槽1の外部へ排出される。 The electrolytic solution drained into the drainage pipe 3 is pumped up by the drainage box 32 and drained through the drainage section 30. Foreign matter such as dust floating in the upper layer of the electrolytic cell in the electrolytic cell 1 is accommodated in the drainage box 32 by overflow from the notch 33 provided in the drainage box 32 and discharged to the outside of the electrolytic cell 1. ..

本発明の実施の形態に係る電解方法によれば、電解槽1の短手方向Yの一端から短手方向Yの他端側へ、且つ上方から下方へ向けて電解槽1の長手方向Xに沿った複数箇所から電解液を流すことにより、電解槽1の長手方向Xの一端側から他端側へと電解液を流す従来の方式と比べて、電解槽1内の電解液の混合状態をより良好にすることができる。 According to the electrolysis method according to the embodiment of the present invention, from one end of the short direction Y of the electrolytic cell 1 to the other end side of the short direction Y, and from the upper side to the lower side in the longitudinal direction X of the electrolytic cell 1. Compared with the conventional method of flowing the electrolytic solution from one end side to the other end side in the longitudinal direction X of the electrolytic cell 1 by flowing the electrolytic solution from a plurality of locations along the line, the mixed state of the electrolytic cell in the electrolytic cell 1 is changed. Can be better.

特に、本発明の実施の形態に係る電解方法によれば、電解槽1下部の銅イオンなどの金属イオン濃度の上昇を抑制し、金属イオンを液中により均一に分散できるため、高い電流密度又は不純物濃度の高い材料をアノード板に用いて電解精製を実施した場合の不動態化現象をより効率的に抑制することが可能となる。 In particular, according to the electrolysis method according to the embodiment of the present invention, an increase in the concentration of metal ions such as copper ions in the lower part of the electrolytic cell 1 can be suppressed, and the metal ions can be more uniformly dispersed in the liquid, so that the current density is high or It is possible to more efficiently suppress the passivation phenomenon when electrolytic purification is performed using a material having a high impurity concentration for the anode plate.

(その他の実施の形態)
本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態及び運用技術が明らかとなろう。
(Other embodiments)
Although the present invention has been described in accordance with the above embodiments, the statements and drawings that form part of this disclosure should not be understood to limit the invention. Various alternative embodiments and operational techniques will be apparent to those skilled in the art from this disclosure.

給液配管2及び排液配管3がそれぞれ備える給液口21a、21b・・・21x及び排液口31a、31b・・・31xの位置は、電解槽1内に浸漬されるアノード板及びカソード板が配置される位置との関係で調整することができる。例えば、給液配管2に設けられた複数の給液口21a、21b・・・21x及び排液配管3に設けられた複数の排液口31a、31b・・・31xを、それぞれアノード板とカソード板との間に設けられた隙間に面するように設け、電解液をアノード板とカソード板との空間に供給するように構成することができる。このようにしてアノード板及びカソード板の表面に液流を発生させることにより、高い電流密度又は不純物濃度の高い材料をアノード板に用いて電解精製を実施した場合の不動態化現象をより効率的に抑制することが可能となる。 The positions of the liquid supply ports 21a, 21b ... 21x and the liquid drainage ports 31a, 31b ... 31x provided in the liquid supply pipe 2 and the liquid drainage pipe 3 are the anode plate and the cathode plate immersed in the electrolytic cell 1. Can be adjusted in relation to the position where is placed. For example, the plurality of liquid supply ports 21a, 21b ... 21x provided in the liquid supply pipe 2 and the plurality of drainage ports 31a, 31b ... 31x provided in the liquid drainage pipe 3 are provided with an anode plate and a cathode, respectively. It can be provided so as to face the gap provided between the plates and the electrolytic solution can be supplied to the space between the anode plate and the cathode plate. By generating a liquid flow on the surfaces of the anode plate and the cathode plate in this way, the passivation phenomenon when electrolytic refining is performed using a material having a high current density or a high impurity concentration for the anode plate is more efficient. Can be suppressed.

電解槽1内に収容されるアノード板とカソード板との間の空間には、給液口21a、21b・・・21x及び排液口31a、31b・・・31xがそれぞれ1箇所ずつ配置されるだけでなく、アノード板とカソード板との間の空間の広さに対応して給液口21a、21b・・・21x及び排液口31a、31b・・・31xが空間内に複数配置されるようにしてもよい。また、電解液、特に添加剤の混合状態が悪化しやすい電解槽1の長手方向中央側から排液側の給液口21a、21b・・・21x及び排液口31a、31b・・・31xの個数を電解槽1の長手方向中央側から給液側の個数よりも多くするようにしてもよい。 In the space between the anode plate and the cathode plate housed in the electrolytic cell 1, one liquid supply port 21a, 21b ... 21x and one drainage port 31a, 31b ... 31x are arranged. Not only that, a plurality of liquid supply ports 21a, 21b ... 21x and drainage ports 31a, 31b ... 31x are arranged in the space according to the size of the space between the anode plate and the cathode plate. You may do so. Further, the liquid supply ports 21a, 21b ... 21x and the drainage ports 31a, 31b ... 31x from the central side in the longitudinal direction to the drainage side of the electrolytic cell 1 in which the mixed state of the electrolytic solution, particularly the additive, tends to deteriorate. The number may be larger than the number on the liquid supply side from the center side in the longitudinal direction of the electrolytic cell 1.

給液配管2及び排液配管3がそれぞれ備える給液口21a、21b・・・21x及び排液口31a、31b・・・31xの各開口面積は、基本的には長手方向Xに沿ってそれぞれ等しい大きさとなる例を示しているが、電解槽1の長手方向X上流側と下流側で異なる開口面積を有していてもよい。 The opening areas of the liquid supply ports 21a, 21b ... 21x and the liquid drainage ports 31a, 31b ... 31x provided in the liquid supply pipe 2 and the liquid drainage pipe 3, respectively, are basically along the longitudinal direction X, respectively. Although an example in which the sizes are the same is shown, different opening areas may be provided in the longitudinal direction X upstream side and the downstream side of the electrolytic cell 1.

給液配管2及び排液配管3は複数の配管又は一の配管が長手方向に沿って枝状に分岐した配管を用いることができる。排液配管3が複数本配置される場合は、排液配管3の出口のそれぞれが独立して排液ボックス32に接続されることができる。 As the liquid supply pipe 2 and the liquid drainage pipe 3, a plurality of pipes or a pipe in which one pipe is branched in a branch shape along the longitudinal direction can be used. When a plurality of drainage pipes 3 are arranged, each of the outlets of the drainage pipes 3 can be independently connected to the drainage box 32.

このように、本発明は上記の開示から妥当な特許請求の範囲の発明特定事項によって表されるものであり、実施段階においては、その要旨を逸脱しない範囲において変形し具体化し得る。 As described above, the present invention is represented by the matters specifying the invention within the scope of claims reasonable from the above disclosure, and at the implementation stage, it can be modified and embodied without departing from the gist thereof.

1…電解槽
2…給液配管
3…排液配管
3A…出口
11…第1の側壁
12…第2の側壁
13…第3の側壁
14…第4の側壁
20…給液部
21a、21b・・・21x…給液口
23…排液ボックス
30…排液部
31a、31b・・・31x…排液口
32a…底面
32…排液ボックス
32b…側壁
33…切り欠き部
35…調整板
300…排出口
301…排出配管
1 ... Electrolytic cell 2 ... Liquid supply pipe 3 ... Drainage pipe 3A ... Outlet 11 ... First side wall 12 ... Second side wall 13 ... Third side wall 14 ... Fourth side wall 20 ... Liquid supply section 21a, 21b. 21x ... Liquid supply port 23 ... Drainage box 30 ... Drainage part 31a, 31b ... 31x ... Drainage port 32a ... Bottom surface 32 ... Drainage box 32b ... Side wall 33 ... Notch 35 ... Adjustment plate 300 ... Discharge port 301 ... Discharge pipe

Claims (6)

電解液を収容し、長手方向に沿って互いに間隔を空けて配置される電極を前記電解液中に浸漬して電解処理する電解槽と、
前記電解槽の長手方向に延びる第1の側壁に沿って延び、前記第1の側壁と対向する第2の側壁側に向けて前記電解液を給液するための複数の給液口を備える給液配管と、
前記給液配管よりも相対的に下方となる位置に配置され、前記第2の側壁に沿って延び、前記電解液を排液する複数の排液口を備える排液配管と、
前記電解槽の一端に設けられ、前記電解液を前記電解槽外へ排液する排液部と、
前記排液部と前記排液配管とに接続され、前記電解液の液面よりも下方となる底面を備え、前記底面に前記排液配管の出口が接続され、前記排液配管内の前記電解液を汲み上げ可能な排液ボックスと
を備えることを特徴とする電解装置。
An electrolytic cell in which electrodes containing an electrolytic solution and arranged at intervals along the longitudinal direction are immersed in the electrolytic solution for electrolysis treatment.
A supply provided with a plurality of liquid supply ports extending along a first side wall extending in the longitudinal direction of the electrolytic cell and supplying the electrolytic solution toward the second side wall side facing the first side wall. Liquid piping and
A drainage pipe that is arranged at a position relatively lower than the liquid supply pipe, extends along the second side wall, and has a plurality of drainage ports for draining the electrolytic solution.
A drainage unit provided at one end of the electrolytic cell and draining the electrolytic solution to the outside of the electrolytic cell
The drainage portion is connected to the drainage pipe and has a bottom surface below the liquid level of the electrolytic solution. The outlet of the drainage pipe is connected to the bottom surface, and the electrolysis in the drainage pipe is provided. An electrolyzer characterized by having a drainage box capable of pumping liquid.
前記給液口の開口面積よりも前記排液口の開口面積が大きいことを特徴とする請求項1に記載の電解装置。 The electrolyzer according to claim 1, wherein the opening area of the drainage port is larger than the opening area of the liquid supply port. 前記給液配管の管径よりも前記排液配管の管径が大きいことを特徴とする請求項1又は2に記載の電解装置。 The electrolyzer according to claim 1 or 2, wherein the diameter of the drainage pipe is larger than the diameter of the liquid supply pipe. 前記排液ボックスが、前記電解液と接する側の側壁に、前記電解槽内の電解液中の異物を前記排液ボックスへ送るための切り欠き部を備えることを特徴とする請求項1〜3のいずれか1項に記載の電解装置。 Claims 1 to 3 characterized in that the drainage box is provided with a notch portion on a side wall on the side in contact with the electrolytic solution for sending foreign matter in the electrolytic solution in the electrolytic cell to the drainage box. The electrolytic apparatus according to any one of the above. 前記排液ボックスと前記排液部との間に配置され、前記排液ボックス内の電解液の液面の高さと前記電解槽内の電解液の液面の高さの差を調整する調整板を更に備えることを特徴とする請求項1〜4のいずれか1項に記載の電解装置。 An adjusting plate that is arranged between the drainage box and the drainage portion and adjusts the difference between the height of the electrolytic solution in the drainage box and the height of the electrolytic solution in the electrolytic cell. The electrolytic apparatus according to any one of claims 1 to 4, further comprising. 電解液を循環しながら電解処理する電解方法であって、
電解槽の長手方向に延びる第1の側壁に沿って延びる給液配管が備える複数の給液口から前記第1の側壁と対向する第2の側壁側へ向けて前記電解液を給液し、
前記給液配管よりも下方において前記第2の側壁に沿って延びる排液配管が備える複数の排液口を介して前記電解液を排液させ、
前記排液配管内の電解液を、前記電解液の液面よりも下方となる底面を備え、前記底面に前記排液配管の出口が接続された排液ボックスにより汲み上げて前記電解槽外へ排出させること
を含むことを特徴とする電解方法。
It is an electrolysis method that electrolyzes while circulating an electrolytic solution.
The electrolytic solution is supplied from a plurality of liquid supply ports provided in the liquid supply pipe extending along the first side wall extending in the longitudinal direction of the electrolytic cell toward the second side wall side facing the first side wall.
The electrolytic solution is drained through a plurality of drainage ports provided in the drainage pipe extending along the second side wall below the liquid supply pipe.
The electrolytic solution in the drainage pipe is pumped up by a drainage box having a bottom surface below the liquid level of the electrolytic solution and to which the outlet of the drainage pipe is connected to the bottom surface and discharged to the outside of the electrolytic cell. An electrolysis method characterized by including letting.
JP2019069347A 2019-03-29 2019-03-29 Electrolyzer and electrolysis method Active JP6962960B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019069347A JP6962960B2 (en) 2019-03-29 2019-03-29 Electrolyzer and electrolysis method
PCT/JP2020/014682 WO2020204003A1 (en) 2019-03-29 2020-03-30 Electrolysis apparatus and electrolysis method
CN202080024892.2A CN113631762B (en) 2019-03-29 2020-03-30 Electrolysis apparatus and electrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019069347A JP6962960B2 (en) 2019-03-29 2019-03-29 Electrolyzer and electrolysis method

Publications (2)

Publication Number Publication Date
JP2020164961A true JP2020164961A (en) 2020-10-08
JP6962960B2 JP6962960B2 (en) 2021-11-05

Family

ID=72716805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019069347A Active JP6962960B2 (en) 2019-03-29 2019-03-29 Electrolyzer and electrolysis method

Country Status (1)

Country Link
JP (1) JP6962960B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587716B2 (en) * 1975-09-11 1983-02-10 三井金属鉱業株式会社 Denkaisou
JP2002105684A (en) * 2000-09-29 2002-04-10 Dowa Mining Co Ltd Electrolytic method, and electrolytic tank used therefor
JP2013108135A (en) * 2011-11-21 2013-06-06 Sumitomo Metal Mining Co Ltd Weir for electrolytic cell
JP2013237921A (en) * 2012-05-17 2013-11-28 Sumitomo Metal Mining Co Ltd Solution supply piping of electrolytic solution
JP2015040327A (en) * 2013-08-22 2015-03-02 住友金属鉱山株式会社 Electrolytic smelting installation and method of feeding electrolytic solution
JP2017057508A (en) * 2017-01-04 2017-03-23 三菱マテリアル株式会社 Electrolytic refining method of metal, electrolytic refining apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587716B2 (en) * 1975-09-11 1983-02-10 三井金属鉱業株式会社 Denkaisou
JP2002105684A (en) * 2000-09-29 2002-04-10 Dowa Mining Co Ltd Electrolytic method, and electrolytic tank used therefor
JP2013108135A (en) * 2011-11-21 2013-06-06 Sumitomo Metal Mining Co Ltd Weir for electrolytic cell
JP2013237921A (en) * 2012-05-17 2013-11-28 Sumitomo Metal Mining Co Ltd Solution supply piping of electrolytic solution
JP2015040327A (en) * 2013-08-22 2015-03-02 住友金属鉱山株式会社 Electrolytic smelting installation and method of feeding electrolytic solution
JP2017057508A (en) * 2017-01-04 2017-03-23 三菱マテリアル株式会社 Electrolytic refining method of metal, electrolytic refining apparatus

Also Published As

Publication number Publication date
JP6962960B2 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
JP2021120478A (en) Electrolysis device and electrolysis method
JP2021120477A (en) Electrolysis device and electrolysis method
US6872288B2 (en) Apparatus for controlling flow in an electrodeposition process
US8454818B2 (en) Method for operating copper electrolysis cells
JP2017057508A (en) Electrolytic refining method of metal, electrolytic refining apparatus
JP6065706B2 (en) Electrolytic purification method of metal, electrolytic purification equipment
JP6967032B2 (en) Electrolyzer and electrolysis method
JP5085474B2 (en) Method for electrolytic purification of copper
JP2002105684A (en) Electrolytic method, and electrolytic tank used therefor
WO2020204003A1 (en) Electrolysis apparatus and electrolysis method
JP6962960B2 (en) Electrolyzer and electrolysis method
JP7002494B2 (en) Electrolyzer and electrolysis method
JP6929320B2 (en) Electrolyzer and electrolysis method
JP6364920B2 (en) Electrolytic refining method
JP2020164960A (en) Electrolyzer and electrolysis method
JP4342522B2 (en) Method for homogenizing electrolyte concentration and electrolytic cell
JP7309123B2 (en) Method for supplying electrolyte to electrolytic cell for electrorefining
JP2018168406A (en) Apparatus for electrolysis, and method for electrolysis using the same
JPH0730688Y2 (en) Vertical electroplating equipment
JP4323674B2 (en) Iron electrolyzer
JPH0448880Y2 (en)
JP2018168405A (en) Apparatus for electrolysis, and method for electrolysis using the same
JP2020128579A (en) Drain method of electrolytic solution in electrolytic refining
JPS6053117B2 (en) Copper electrolysis operation method
SE441013B (en) DEVICE FOR ELECTROLYTIC TREATMENT OF LONG-TERM METAL BANDS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211014

R151 Written notification of patent or utility model registration

Ref document number: 6962960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250