JP3769948B2 - Liquid level automatic control device for electrolytic cell - Google Patents

Liquid level automatic control device for electrolytic cell Download PDF

Info

Publication number
JP3769948B2
JP3769948B2 JP31183098A JP31183098A JP3769948B2 JP 3769948 B2 JP3769948 B2 JP 3769948B2 JP 31183098 A JP31183098 A JP 31183098A JP 31183098 A JP31183098 A JP 31183098A JP 3769948 B2 JP3769948 B2 JP 3769948B2
Authority
JP
Japan
Prior art keywords
liquid level
electrolytic
drainage
electrolytic cell
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31183098A
Other languages
Japanese (ja)
Other versions
JP2000144476A (en
Inventor
修 中井
文次郎 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP31183098A priority Critical patent/JP3769948B2/en
Publication of JP2000144476A publication Critical patent/JP2000144476A/en
Application granted granted Critical
Publication of JP3769948B2 publication Critical patent/JP3769948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電解槽に関し、特に、該電解槽の液面自動制御装置に関する。
【0002】
【従来の技術】
銅の電解精製は、薄銅板製の種板に、導電性吊手部材を取り付け、導電性の棒状部材であるクロスビームに、前記吊手部材を通したカソードと、粗銅を鋳込んだアノードとを交互に装入した電解槽に電解液を通流し、アノードとカソード間に通電して行う。電気銅の製造操業は、通常、同時に複数の電解槽に通電して行う。
【0003】
しかし、電解精製の全通電期間を通じて電解液の液面を同じレベルに維持した場合、アノードの液面部分が溶解する問題や、液面部分で電気銅が厚くなり、電気銅の荷姿が悪くなるという問題があった。
【0004】
また、特に、カソードの吊手部材と種板とを接合した部分(打ち抜きかしめ部)で、銅が厚く電着するために、製品の電気銅を積み重ねたときに荷崩れし易いという問題があった。
【0005】
さらに、電解液の成分が気液境界面で濃縮、析出され、結晶としてカソードに固着するなどして電気銅の荷姿、外観が悪化する問題があった。この問題に対して、特開平8−277483号公報に開示されているように、電解槽の電解液の液面を変化させる電気銅の製造方法が開発された。しかし、電解槽の液面のレベル調整は作業者の感覚判断によって行われ、具体的には、電解槽から電解液を排出するための孔を有する堰板を、手作業で操作して排液量を調節し、電解槽の液面レベルを一定時間ごとに上昇あるいは下降させた。そのため、連続した調整とならず、液面レベルが一定に保持される時間が継続したり、また液面レベル間隔が一定にならず、必ずしも充分に問題が解決されてはいなかった。さらに、電解槽の数が多い場合には、作業者の負担が大きいという問題があった。
【0006】
【発明が解決しようとする課題】
前記問題を解決するために、本発明は、作業者の手間とならずに、自動的に電解液の液面を調整する手段を備え、荷姿の良い電気銅を製造できる電解槽用液面自動制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明による銅の電解精製用の電解槽用液面自動制御装置は、該電解槽の内部と連通する流出部と、該流出部内で電解液の最高液面で開口する第1排液配管と、該流出部内で電解液の最低液面よりも低い位置で開口する第2排液配管と、第2排液配管に接続する開閉弁と、該開閉弁の開閉により電解液の液面を制御する制御手段とを有する。
【0008】
本発明を複数の電解槽に適用する場合、複数の電解槽の各々の内部と連通する流出部と、各流出部内で電解液の最高液面で開口する第1排液配管と、各流出部内で電解液の最低液面よりも低い位置で開口する第2排液配管と、それぞれの第2排液配管に接続する共通で1つの開閉弁と、該開閉弁の開閉により電解液の液面を制御する制御手段とを有する。
【0009】
さらに、流出部が、電解液の最低液面を調整するV字状の孔を備える堰板で電解槽と区切られ、該堰板を介して電解液が通流する排液ボックスであり、前記第1排液配管の開口部および第2排液配管の開口部が該排液ボックス内に配置される
【0010】
【発明の実施の形態】
本発明の実施の形態を図を参照して説明する。
【0011】
図1に示すように、本発明の電解槽用液面自動制御装置は、銅電解の電解槽1に適用され、電解槽1の端部に位置して、電解槽1と連通する流出部すなわち排液ボックス3と、該排液ボックス3の内部に連通する第1排液配管11および第2排液配管22と、開閉弁31および制御手段(図示せず)とからなる。図3に、排液ボックスの一部破断斜視図を示す。
【0012】
電解槽1は、図示しないが、アノードとカソードを交互に並べる構造と、アノードとカソード間に通電する回路手段を含む。
【0013】
排液ボックス3は、電解液4の最低液面L2を調整できる堰板2で電解槽1と区切られ、該堰板2の孔を介して電解槽1と排液ボックス3とを電解液4が通流する構造である。堰板2は、電解液を電解槽1から流出させる開口を有し、該開口は下部において下方へ絞られる形になっている。
【0014】
第1排液配管11の開口部は排液ボックス3内に位置し、該開口部から排液を続ける構造とするので、該開口部が電解槽1の最高液面L1となる。
【0015】
すなわち、電解槽1の他端側から電解液4を給液し、堰板2の孔から電解液4が排液ボックス3に流入し、第1排液配管11から排液されることになる。最高液面L1と電解槽1の縁との間隔W1は15〜20mm程度とし、最高液面L1と最低液面L2との間隔、すなわち液面の制御幅W2は30〜40mm程度とする。これらは、電解槽の形状と電極の電流密度と種板上端から吊手下端までの長さを勘案して決定する。また、排液ボックス3の容積は、排液の速度を考慮して決められる。
【0016】
そして、本発明の特徴である第2排液配管22の開口部は、排液ボックス3内に配置され、特に、操業停止時に排液ボックス3内の電解液を残さず排出するために排液ボックス3内の底部に配置される。
【0017】
第2排液配管22の途中に、開閉弁31を設ける。そして、該開閉弁31の開閉を制御する自動制御手段により、主に周期的に開閉させる。
【0018】
該自動制御手段により第2排液配管22からの排液を制御するが、排液ボックスと電解槽1とは前記堰板2により区切られていて、電解槽1の他端から給液され続けるので、堰板2のV字状の孔の途中まで液面が達すると、給液と排液の平衡により、液面の下降が停止する。該液面が最低液面L2となる。
【0019】
電気銅の製造過程の初期は、開閉弁31を閉じておくので、電解液4は第1排液配管11から排出される。この時は、最高液面L1で排液が続くが、前述の問題点である液面での溶解や、電気銅の膨らみを防止するために、通電の過程途中において、前記自動制御手段により、開閉弁31を開く。開閉弁31を開いている間は、液面が下降し、最低液面L2に達する。このとき、堰板2の開口が下部で絞られているので、最低液面L2近くで、微調整が可能となる。一定時間通電後、開閉弁31を閉じる。開閉弁31を閉じると、液面が上昇し、最高液面L1に達する。
【0020】
すなわち、開閉弁31の開閉により、電解槽1の液面は上昇と下降を続けながら、最高液面L1と最低液面L2の間で変動する。このように、開閉弁31の周期的な開閉を繰り返すことにより、次々と新しい液面で銅電解のための通電を行えば、液面に近い部分の電着量を制御でき、また、液面における諸現象を生じる位置が徐々に上下動するので、溶けて切断したり、一カ所が膨らみすぎることはない。
【0021】
また、開閉弁31の動作異常の発生を、槽電圧か、あるいは組電圧のトレンドで監視する。例えば、開閉弁31が何らかの原因で開閉動作せず、電解槽1の液面が一定のままであれば、前記槽電圧や組電圧は一定値を示す。このことで、開閉弁31および制御手段の異常が検知できる。
【0022】
図2に、本発明の一実施例であり、複数の電解槽に適用した液面自動制御装置の側面図を示す。
【0023】
複数の電解槽1で同時に電気銅を製造する場合には、それぞれの第2排液配管22を第2排液集合配管23でひとまとめにし、共通の開閉弁31に接続する。それぞれの第1排液配管11も、第1排液集合配管から排液を行う。このような構成によれば、一組の開閉弁31と制御手段により、同時に複数の電解槽の液面を自動制御することができ、より効果的である。それぞれの電解槽1の最高液面は、第1排液配管11の開口部で決定するので、全ての開口部の高さを調整する必要がある。そこで、排液ボックス3と第1排液配管11との接続を、例えば図1、3に示したソケット12のように、容易に調整できるように構成するとよい。高さ調整は、電解液をそれぞれに流入させれば、容易に行える。
【0024】
なお、図1、2に示した実施例では、排液配管11、22を最終的に排液配管33にまとめて1本化しているが、別々に排液槽につなげてもよい。また、堰板2の孔の形状は、図示したくさび型の他に楕円型などの形も採りうる。
【0025】
さらに、排液配管11、22を、別個の排液ボックスに開口させてもよく、また、排液ボックスを省略して、排液配管11、22を電解槽1の槽壁に設けてもよい。
【0026】
また、異なる形の開口を有する複数の堰板2を用意しておけば、微調整の幅が広がる。
【0027】
(実施例)
次に、本発明の実施例について図を参照して説明する。
【0028】
図1に示す本発明の液面自動制御電解槽を使用した。
【0029】
電解槽1には、1015mm×1015mm×38mmのアノードを51枚と、1050mm×1070mm×0.7〜0.8mmのカソードを50枚とを装入し、最低液面L2をカソード(種板)の吊手下端のレベルに調整し、かつ最高液面L1をカソード(種板)の上端のレベルに調整して、電解液を25l/minで流した。
【0030】
得られた電気銅において、電気銅の打ち抜きかしめ部の厚さは、平均値が10mmであり、標準偏差が1mm、電気銅表面の高低差の標準偏差が5mmであった。
【0031】
また、同様の装置で液面を一定に維持して通電して得た電気銅では、電気銅の打ち抜きかしめ部の厚さは、平均値が13mmであり、標準偏差が3mm、電気銅表面の高低差の標準偏差が10mmであった。
【0032】
本実施例が示すように、本発明の液面自動制御装置により、打ち抜きかしめ部の厚さを大幅に低減でき、ばらつきが少なく、電気銅の表面が滑らかになることがわかる。また、電気銅を重ねた荷姿が非常によく改善され、荷崩れなどの異常の発生する危険性が低くなった。
【0033】
また、作業者の感覚判断によらないで液面管理をすることができるようになり、電解槽の液面レベルの管理に関する作業者の作業時間も、従来の40%に低減することができた。
【0034】
なお、本実施例は一例であり、適宜設計して各種の電気銅製造を行える。
【0035】
【発明の効果】
電解槽の液面の制御が、個々の電解槽もしくは複数の電解槽において、個人差なく、自動的、連続的に実施でき、電気銅の打ち抜きかしめ部の厚さが薄くなり、電気銅の高低差が少なくなった。さらに、気液境界面での電解液成分の濃縮、析出による結晶の固着が減少することにより、電気銅の荷姿のばらつきが低減でき、電気銅の荷姿および外観が安定する。
【0036】
これらのことにより、荷姿が不安定なために行っていた電気銅のフォークリフトなどでの差し替え作業がなくなり、電気銅の置き場スペースがより広く確保できるようになった。さらに、電解槽の液面の管理作業に必要な作業時間が低減できた。
【0037】
また、通電の際に、電解槽の液面が一定に維持され続けることにより、液面付近における銅の酸化反応(Cu→Cu2++2e- )が生じて、カソードの吊手部分が切断することが抑止できる。
【図面の簡単な説明】
【図1】 本発明の一実施例の電解槽用液面自動制御装置の縦断面図を示す。
【図2】 本発明の一実施例であり、複数の電解槽に液面自動制御装置を適用した例を側面図で示す。
【図3】 排液ボックスの一部破断斜視図を示す。
【符号の説明】
1 電解槽
2 堰板
3 排液ボックス
4 電解液
11 第1排液配管
12 ソケット
13 第1排液集合配管
22 第2排液配管
23 第2排液集合配管
31 開閉弁
33 排液配管
L1 最高液面
L2 最低液面
W1 縁部高
W2 制御幅
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolytic cell, and more particularly to an automatic liquid level control device for the electrolytic cell.
[0002]
[Prior art]
The electrolytic refining of copper is carried out by attaching a conductive suspension member to a thin copper plate seed plate, a cathode through which the suspension member is passed through a cross beam, which is a conductive rod member, and an anode in which crude copper is cast. The electrolytic solution is passed through the electrolytic cell charged alternately with the electric current between the anode and the cathode. The production operation of electrolytic copper is usually performed by energizing a plurality of electrolytic cells at the same time.
[0003]
However, if the electrolyte level is maintained at the same level throughout the entire energization period of electrolytic refining, the electrolytic level of the anode dissolves, and the electrolytic copper becomes thick at the level, resulting in poor packing of the electrolytic copper. There was a problem of becoming.
[0004]
In particular, the copper is electrodeposited thickly at the portion where the cathode hanger member and the seed plate are joined (punched caulking portion), so there is a problem that the load collapses easily when stacking the electrolytic copper of the product. It was.
[0005]
Furthermore, there has been a problem that the electrolytic copper packing and appearance deteriorate due to the components of the electrolytic solution being concentrated and deposited at the gas-liquid interface, and adhering to the cathode as crystals. In order to solve this problem, as disclosed in JP-A-8-277483, a method for producing electrolytic copper has been developed in which the liquid level of the electrolytic solution in the electrolytic cell is changed. However, the liquid level of the electrolytic cell is adjusted based on the operator's sensory judgment. Specifically, the drain plate is manually operated on a weir plate having a hole for discharging the electrolytic solution from the electrolytic cell. The amount was adjusted, and the level of the electrolytic cell was raised or lowered at regular intervals. Therefore, continuous adjustment is not performed, the time during which the liquid level is kept constant continues, and the interval between the liquid levels does not become constant, so that the problem has not necessarily been sufficiently solved. Further, when the number of electrolytic cells is large, there is a problem that the burden on the operator is large.
[0006]
[Problems to be solved by the invention]
In order to solve the above problems, the present invention provides an electrolytic cell liquid level which can be provided with a means for automatically adjusting the liquid level of the electrolytic solution without the labor of the operator, and which can produce electrolytic copper having a good packing shape. An object is to provide an automatic control device.
[0007]
[Means for Solving the Problems]
An electrolytic tank liquid level automatic control apparatus for electrolytic refining of copper according to the present invention includes an outflow part communicating with the inside of the electrolytic tank, and a first drain pipe that opens at the highest liquid level of the electrolytic solution in the outflow part. The second drainage pipe that opens at a position lower than the lowest electrolyte level in the outflow part, the on-off valve connected to the second drainage pipe, and the electrolyte level is controlled by opening and closing the on-off valve Control means.
[0008]
When the present invention is applied to a plurality of electrolytic cells, an outflow portion that communicates with the inside of each of the multiple electrolytic cells, a first drain pipe that opens at the highest liquid level of the electrolytic solution in each outflow portion, and in each outflow portion The second drainage pipe that opens at a position lower than the lowest liquid level of the electrolyte, one common on-off valve connected to each second drainage pipe, and the level of the electrolyte by opening and closing the on-off valve And control means for controlling.
[0009]
Further, the outflow portion is a drainage box that is separated from the electrolytic cell by a dam plate having a V-shaped hole for adjusting the minimum liquid level of the electrolyte solution, and through which the electrolyte solution flows, An opening of the first drainage pipe and an opening of the second drainage pipe are disposed in the drainage box .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
[0011]
As shown in FIG. 1, the liquid level automatic control device for an electrolytic cell of the present invention is applied to an electrolytic cell 1 for copper electrolysis, and is located at an end of the electrolytic cell 1, that is, an outflow part communicating with the electrolytic cell 1. It comprises a drainage box 3, a first drainage pipe 11 and a second drainage pipe 22 communicating with the inside of the drainage box 3, an on-off valve 31 and a control means (not shown). FIG. 3 is a partially broken perspective view of the drainage box.
[0012]
Although not shown, the electrolytic cell 1 includes a structure in which anodes and cathodes are alternately arranged, and circuit means for energizing between the anode and the cathode.
[0013]
The drainage box 3 is separated from the electrolytic cell 1 by a dam plate 2 that can adjust the minimum liquid level L2 of the electrolytic solution 4, and the electrolytic cell 1 and the drainage box 3 are connected to the electrolytic solution 4 through the holes of the dam plate 2. It is a structure that flows through. The dam plate 2 has an opening through which the electrolytic solution flows out of the electrolytic cell 1, and the opening is squeezed downward in the lower part.
[0014]
Since the opening of the first drainage pipe 11 is located in the drainage box 3 and continues to drain from the opening, the opening becomes the highest liquid level L1 of the electrolytic cell 1.
[0015]
That is, the electrolytic solution 4 is supplied from the other end side of the electrolytic cell 1, the electrolytic solution 4 flows into the drainage box 3 from the hole of the barrier plate 2, and is drained from the first drainage pipe 11. . The interval W1 between the highest liquid level L1 and the edge of the electrolytic cell 1 is about 15 to 20 mm, and the interval between the highest liquid level L1 and the lowest liquid level L2, that is, the liquid level control width W2 is about 30 to 40 mm. These are determined in consideration of the shape of the electrolytic cell, the current density of the electrode, and the length from the upper end of the seed plate to the lower end of the suspension. Further, the volume of the drainage box 3 is determined in consideration of the drainage speed.
[0016]
And the opening part of the 2nd drainage piping 22 which is the characteristics of this invention is arrange | positioned in the drainage box 3, especially in order to discharge | emit so that the electrolyte solution in the drainage box 3 may not be left at the time of an operation stop. Located at the bottom of the box 3.
[0017]
An on-off valve 31 is provided in the middle of the second drainage pipe 22. The automatic control means for controlling the opening and closing of the on-off valve 31 is mainly opened and closed periodically.
[0018]
The automatic control means controls the drainage from the second drainage pipe 22, but the drainage box and the electrolytic cell 1 are separated from each other by the barrier plate 2 and continue to be fed from the other end of the electrolytic cell 1. Therefore, when the liquid level reaches the middle of the V-shaped hole of the dam plate 2, the descent of the liquid level stops due to the balance between the liquid supply and the drainage. The liquid level is the lowest liquid level L2.
[0019]
In the initial stage of the electrolytic copper manufacturing process, the on-off valve 31 is closed, so that the electrolytic solution 4 is discharged from the first drainage pipe 11. At this time, drainage continues at the maximum liquid level L1, but in order to prevent dissolution at the liquid level and swelling of electrolytic copper, which are the aforementioned problems, during the energization process, the automatic control means, Open the on-off valve 31. While the on-off valve 31 is open, the liquid level descends and reaches the lowest liquid level L2. At this time, since the opening of the weir plate 2 is narrowed at the lower part, fine adjustment is possible near the lowest liquid level L2. After energization for a certain time, the on-off valve 31 is closed. When the on-off valve 31 is closed, the liquid level rises and reaches the maximum liquid level L1.
[0020]
That is, by opening / closing the on-off valve 31, the liquid level of the electrolytic cell 1 fluctuates between the highest liquid level L1 and the lowest liquid level L2 while continuing to rise and fall. In this way, by repeating the periodic opening and closing of the on-off valve 31, if energization for copper electrolysis is successively performed at a new liquid level, the amount of electrodeposition near the liquid level can be controlled. Since the position where various phenomena occur in the slab gradually moves up and down, it does not melt and cut, or one place does not swell too much.
[0021]
The occurrence of abnormal operation of the on-off valve 31 is monitored by the trend of the tank voltage or the assembled voltage. For example, if the on-off valve 31 does not open and close for some reason and the liquid level of the electrolytic cell 1 remains constant, the cell voltage and the assembled voltage show a constant value. Thereby, the abnormality of the on-off valve 31 and the control means can be detected.
[0022]
FIG. 2 shows a side view of a liquid level automatic control apparatus which is an embodiment of the present invention and is applied to a plurality of electrolytic cells.
[0023]
When electrolytic copper is simultaneously produced in a plurality of electrolytic cells 1, the second drainage pipes 22 are grouped together by the second drainage collecting pipe 23 and connected to a common on-off valve 31. Each first drainage pipe 11 also drains from the first drainage collection pipe. According to such a configuration, the liquid level of a plurality of electrolytic cells can be automatically controlled simultaneously by a pair of on-off valves 31 and control means, which is more effective. Since the highest liquid level of each electrolytic cell 1 is determined by the opening of the first drainage pipe 11, it is necessary to adjust the height of all the openings. Therefore, the connection between the drainage box 3 and the first drainage pipe 11 may be configured so that it can be easily adjusted, for example, like the socket 12 shown in FIGS. The height can be easily adjusted by flowing the electrolyte into each of them.
[0024]
In the embodiment shown in FIGS. 1 and 2, the drainage pipes 11 and 22 are finally combined into a single drainage pipe 33, but may be separately connected to a drainage tank. Moreover, the shape of the hole of the dam plate 2 can take an elliptical shape in addition to the wedge shape shown in the figure.
[0025]
Furthermore, the drainage pipes 11 and 22 may be opened in separate drainage boxes, or the drainage box may be omitted and the drainage pipes 11 and 22 may be provided on the tank wall of the electrolytic cell 1. .
[0026]
If a plurality of barrier plates 2 having different shaped openings are prepared, the range of fine adjustment is widened.
[0027]
(Example)
Next, embodiments of the present invention will be described with reference to the drawings.
[0028]
The liquid level automatic control electrolytic cell of the present invention shown in FIG. 1 was used.
[0029]
The electrolytic cell 1 is charged with 51 anodes of 1015 mm × 1015 mm × 38 mm and 50 cathodes of 1050 mm × 1070 mm × 0.7 to 0.8 mm, and the lowest liquid level L2 is the cathode (seed plate). The top liquid level L1 was adjusted to the level of the upper end of the cathode (seed plate), and the electrolyte was allowed to flow at 25 l / min.
[0030]
In the obtained electrolytic copper, the average thickness of the punched caulked portion of the electrolytic copper was 10 mm, the standard deviation was 1 mm, and the standard deviation of the height difference of the electrolytic copper surface was 5 mm.
[0031]
Moreover, in the electrolytic copper obtained by energizing while maintaining the liquid level constant in the same apparatus, the average thickness of the punched and crimped portion of the electrolytic copper is 13 mm, the standard deviation is 3 mm, and the surface of the electrolytic copper is The standard deviation of the height difference was 10 mm.
[0032]
As shown in this example, the automatic liquid level control device of the present invention can greatly reduce the thickness of the punched and crimped portion, has little variation, and smoothes the surface of electrolytic copper. In addition, the appearance of the electric copper piled up was improved very well, and the risk of abnormalities such as load collapse was reduced.
[0033]
In addition, the liquid level can be managed without relying on the judgment of the operator's sense, and the work time of the worker regarding the management of the liquid level of the electrolytic cell can be reduced to 40% of the conventional level. .
[0034]
In addition, a present Example is an example and it can design suitably and can manufacture various electrolytic copper.
[0035]
【The invention's effect】
The level of the electrolytic cell can be controlled automatically and continuously in individual electrolytic cells or in multiple electrolytic cells without individual differences, and the thickness of the punched caulking portion of electrolytic copper is reduced, and the level of electrolytic copper is reduced. The difference has decreased. Furthermore, by reducing the concentration of the electrolyte component at the gas-liquid interface and the fixation of the crystals due to the precipitation, variation in the package shape of electrolytic copper can be reduced, and the package shape and appearance of electrolytic copper can be stabilized.
[0036]
As a result, the replacement work with an electric copper forklift or the like, which has been performed due to the unstable packaging, has been eliminated, and a larger space for storage of electrolytic copper can be secured. Furthermore, the work time required for the liquid level management work of the electrolytic cell could be reduced.
[0037]
In addition, when energization is performed, the liquid level of the electrolytic cell is kept constant, so that an oxidation reaction of copper in the vicinity of the liquid level (Cu → Cu 2+ + 2e ) occurs, and the hanging part of the cathode is cut. Can be suppressed.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a liquid level automatic control device for an electrolytic cell according to an embodiment of the present invention.
FIG. 2 is a side view showing an example in which the liquid level automatic control device is applied to a plurality of electrolytic cells according to an embodiment of the present invention.
FIG. 3 is a partially broken perspective view of a drainage box.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolysis tank 2 Dam plate 3 Drainage box 4 Electrolyte 11 First drainage pipe 12 Socket 13 First drainage collection pipe 22 Second drainage pipe 23 Second drainage collection pipe 31 On-off valve 33 Drainage pipe L1 Maximum Liquid level L2 Minimum liquid level W1 Edge height W2 Control width

Claims (2)

電解槽内の電解液の液面を自動制御する装置であって、該電解槽の内部と連通する流出部と、該流出部内で電解液の最高液面で開口する第1排液配管と、該流出部内で電解液の最低液面よりも低い位置で開口する第2排液配管と、第2排液配管に接続する開閉弁と、該開閉弁の開閉により電解液の液面を制御する制御手段とを有し、流出部が電解液の最低液面を調整するV字状の孔を備える堰板で電解槽と区切られ、該堰板を介して電解液が通流する排液ボックスであり、前記第1排液配管の開口部および第2排液配管の開口部が該排液ボックス内に配置されていることを特徴とする銅の電解精製用の電解槽用液面自動制御装置。An apparatus for automatically controlling the liquid level of the electrolytic solution in the electrolytic cell, an outflow part communicating with the inside of the electrolytic cell, a first drain pipe opened at the highest liquid level of the electrolytic solution in the outflow part, The second drainage pipe that opens at a position lower than the lowest liquid level of the electrolyte in the outflow portion, the on-off valve connected to the second drainage pipe, and the level of the electrolyte by controlling the on-off valve have a control unit, the outflow portion is separated from the electrolytic bath at a dam plate having a V-shaped opening for adjusting the minimum level of the electrolytic solution, drained box electrolyte flowing through the weir plate The liquid level automatic control for an electrolytic bath for electrolytic purification of copper , wherein the opening of the first drainage pipe and the opening of the second drainage pipe are arranged in the drainage box apparatus. 複数の電解槽の各々の内部と連通する流出部と、各流出部内で電解液の最高液面で開口する第1排液配管と、各流出部内で電解液の最低液面よりも低い位置で開口する第2排液配管と、それぞれの第2排液配管に接続する共通で1つの開閉弁と、該開閉弁の開閉により電解液の液面を制御する制御手段とを有し、流出部が電解液の最低液面を調整するV字状の孔を備える堰板で電解槽と区切られ、該堰板を介して電解液が通流する排液ボックスであり、前記第1排液配管の開口部および第2排液配管の開口部が該排液ボックス内に配置されていることを特徴とする銅の電解精製用の電解槽用液面自動制御装置。An outflow portion that communicates with the inside of each of the plurality of electrolytic cells, a first drain pipe that opens at the highest liquid level of the electrolytic solution in each outflow portion, and a position that is lower than the lowest liquid level of the electrolytic solution in each outflow portion possess a second drain pipe which opens, a common one-off valves connected to the respective second drain pipe, and control means for controlling the liquid level of the electrolytic solution by opening and closing of the on-off valve, the outflow portion Is a drainage box that is separated from the electrolytic cell by a dam plate having a V-shaped hole for adjusting the minimum liquid level of the electrolyte solution, and through which the electrolyte solution flows, the first drainage pipe And an opening of the second drainage pipe are disposed in the drainage box . An automatic liquid surface control device for an electrolytic cell for electrolytic refining of copper .
JP31183098A 1998-11-02 1998-11-02 Liquid level automatic control device for electrolytic cell Expired - Lifetime JP3769948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31183098A JP3769948B2 (en) 1998-11-02 1998-11-02 Liquid level automatic control device for electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31183098A JP3769948B2 (en) 1998-11-02 1998-11-02 Liquid level automatic control device for electrolytic cell

Publications (2)

Publication Number Publication Date
JP2000144476A JP2000144476A (en) 2000-05-26
JP3769948B2 true JP3769948B2 (en) 2006-04-26

Family

ID=18021924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31183098A Expired - Lifetime JP3769948B2 (en) 1998-11-02 1998-11-02 Liquid level automatic control device for electrolytic cell

Country Status (1)

Country Link
JP (1) JP3769948B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103820821B (en) * 2014-02-28 2016-08-24 金川集团股份有限公司 A kind of liquid level regulation device for electrolytic nickel cell
CN106987892A (en) * 2017-04-25 2017-07-28 无锡市明骥智能机械有限公司 Electroplating bath with automatic liquid-feeding function
JP6929320B2 (en) * 2019-03-29 2021-09-01 Jx金属株式会社 Electrolyzer and electrolysis method
CN113631762B (en) * 2019-03-29 2024-03-01 Jx金属株式会社 Electrolysis apparatus and electrolysis method
JP7150769B2 (en) * 2020-01-30 2022-10-11 Jx金属株式会社 Electrolysis apparatus and electrolysis method
CN113235131A (en) * 2021-05-13 2021-08-10 铜陵有色金属集团股份有限公司 Electrolyte liquid level adjusting device of copper electrolytic cell

Also Published As

Publication number Publication date
JP2000144476A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
AU2008291662B2 (en) Method for operating copper electrolysis cells
US3974049A (en) Electrochemical process
DE4444114A1 (en) Pressure compensated electrochemical cell
JP3769948B2 (en) Liquid level automatic control device for electrolytic cell
US7335289B2 (en) High purity electrolytic copper and its production method
US3956086A (en) Electrolytic cells
JP2002105684A (en) Electrolytic method, and electrolytic tank used therefor
JP4055298B2 (en) Electrolyzer level adjustment device
EP3420123A1 (en) Equipment for a metal electrowinning or liberator process and way of operating the process
US4177117A (en) Bipolar refining of lead
US4957611A (en) Process and apparatus for the electro-deposition of copper sheets on the cathodic sides of bipolar electrodes made of lead
US4035278A (en) Electrolytic cells
EP3452640B1 (en) Equipment for decopperising an electrorefining process and way of operating the process
JP4342522B2 (en) Method for homogenizing electrolyte concentration and electrolytic cell
JP7023156B2 (en) How to recover metallic indium
JP2839401B2 (en) Supply / drainage method in an electrolytic cell for metal electrolytic refining
JP6507060B2 (en) Liquid level adjustment device
JP7002494B2 (en) Electrolyzer and electrolysis method
JPS6220452Y2 (en)
CN211445928U (en) Assembled anode for synthesizing stannous octoate by electrochemical reaction
JPH1192984A (en) Electrolytic refining method and electrolytic cell
JP7188239B2 (en) Method for producing electrolytic cell and acid solution
JP7309123B2 (en) Method for supplying electrolyte to electrolytic cell for electrorefining
US3567615A (en) Mercury cell
DE882847C (en) Electrolytic cells for chlor-alkali electrolysis with movable mercury cathode and process for carrying out the electrolysis in these cells

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

EXPY Cancellation because of completion of term