JP6929021B2 - シリコン酸化膜の製造方法 - Google Patents

シリコン酸化膜の製造方法 Download PDF

Info

Publication number
JP6929021B2
JP6929021B2 JP2016087076A JP2016087076A JP6929021B2 JP 6929021 B2 JP6929021 B2 JP 6929021B2 JP 2016087076 A JP2016087076 A JP 2016087076A JP 2016087076 A JP2016087076 A JP 2016087076A JP 6929021 B2 JP6929021 B2 JP 6929021B2
Authority
JP
Japan
Prior art keywords
oxide film
silicon oxide
gas
frequency power
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016087076A
Other languages
English (en)
Other versions
JP2017197789A (ja
Inventor
彰一 村上
彰一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPP Technologies Co Ltd
Original Assignee
SPP Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPP Technologies Co Ltd filed Critical SPP Technologies Co Ltd
Priority to JP2016087076A priority Critical patent/JP6929021B2/ja
Publication of JP2017197789A publication Critical patent/JP2017197789A/ja
Application granted granted Critical
Publication of JP6929021B2 publication Critical patent/JP6929021B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、シリコン酸化膜の製造方に関する。特に、本発明は、経時変化が抑制されると共に、エッチング量の制御が容易なシリコン酸化膜を製造可能なシリコン酸化膜の製造方に関する。
従来、シリコン酸化膜の経時変化を抑制する方法として、特許文献1に記載の方法が知られている。
特許文献1に記載の方法は、化学気相成長法により被形成体上にシリコン酸化膜を形成する工程と、該シリコン酸化膜を、酸素、オゾン、水及びヘリウムを導入したプラズマガスへ被曝させる工程と、を含むことを特徴とする方法である。換言すれば、特許文献1に記載の方法は、シリコン酸化膜を形成した後に、プラズマガスに被曝させることでシリコン酸化膜の表面を改質し、この改質層で吸湿を抑制することで経時変化を抑制する方法である。
しかしながら、特許文献1に記載の方法で製造したシリコン酸化膜に対して、フッ化水素(蒸気)やバッファードフッ酸(BHF)等によるエッチングを施した場合、シリコン酸化膜表面の改質層におけるエッチングレートが、非改質層のエッチングレートよりも遅くなる。一方、エッチングが進んで非改質層に到達した場合、それ以降のエッチングレートは速くなる。特許文献1には、改質層の厚みを制御することについて何ら提案されておらず、改質層の厚みを精度良く制御することが困難であるため、エッチング前に改質層の厚みを精度良く予測することも困難である。このため、改質層と非改質層とでエッチングレートが異なると、エッチング量の制御が困難になるという問題がある。
また、特許文献1に記載の方法では、エッチングを施す前の改質層はある程度の厚み(例えば、数100nm。特許文献1の段落0037参照)を有するために吸湿し難いものの、エッチングを施すことで改質層が薄くなった場合には吸湿を抑制することが困難となり、結果的に経時変化が生じる可能性もある。
さらに、エッチングを施すことにより非改質層が露出した場合、露出した非改質層から吸湿が生じ、シリコン酸化膜の密着性が劣化して構造強度が弱まるおそれもある。
特開平8−203893号公報
本発明は、上記従来技術の問題点を解決するためになされたものであり、経時変化が抑制されると共に、エッチング量の制御が容易なシリコン酸化膜を製造可能なシリコン酸化膜の製造方を提供することを課題とする。
前記課題を解決するため、本発明者らは鋭意検討した結果、シリコン酸化膜の形成工程において、チャンバ内に導入する処理ガスに水素ガスを含ませると共に、チャンバ内に処理ガスを導入するガス導入部とチャンバ内に配置され基板を載置する載置台との双方に高周波電力を印加することで、従来のようにシリコン酸化膜の表面に改質層が形成されるのではなく、厚み方向全体に亘ってシリコン酸化膜が改質されることを見出した。そして、その結果、内部応力値等の経時変化が抑制されると共に、厚み方向におけるエッチングレートの変動幅が抑制されてエッチング量の制御が容易なシリコン酸化膜が得られることを見出した。
本発明は、本発明者らの上記の知見に基づき完成したものである。
すなわち、前記課題を解決するため、本発明は、チャンバ内に配置された載置台に基板を載置し、前記チャンバに設けられたガス導入部から該チャンバ内に処理ガスを導入してプラズマ成膜処理を実行することで、前記基板上にシリコン酸化膜を成膜する、シリコン酸化膜の製造方法であって、前記チャンバ内に導入する処理ガスに、流量が80sccm以上である水素ガスが含まれ、前記ガス導入部に周波数が20kHz〜100MHzで、大きさが1〜1000Wの第1高周波電力を印加すると共に、前記載置台に周波数が10kHz〜27MHzで前記第1高周波電力の周波数よりも低く、大きさが1〜1000Wである第2高周波電力を印加してフッ化水素(蒸気)又はバッファードフッ酸によるエッチングを施した場合に、厚み方向全体に亘るエッチングレートの変動率が30%以下であるシリコン酸化膜を製造することを特徴とするシリコン酸化膜の製造方法を提供する。ただし、前記変動率は、前記シリコン酸化膜の厚み方向全体に亘るエッチングレートの変動幅をエッチングレートの平均値で除算した値を意味する。
本発明によれば、ガス導入部に第1高周波電力を印加することによりチャンバ内に生成されるプラズマを構成する正のイオン(水素イオンを含む)は、プラズマを構成する電子に比べて質量が大きい。このため、第1高周波電力の周波数が高ければ、電子は載置台に向けて移動するものの、正のイオンは、第1高周波電力を印加することによるガス導入部の電位の切り替わりには追従できず、載置台に向けて移動し難い。
しかしながら、本発明によれば、載置台にも第2高周波電力を印加する。例えば、第2高周波電力の周波数が第1高周波電力の周波数よりも低い場合には、正のイオンが周波数の低い第2高周波電力を印加することによる載置台の電位の切り替わりに追従し、載置台が負の電位になったときに載置台に向けて移動することになる。また、第2高周波電力の周波数が第1高周波電力の周波数以上であったとしても、電子は載置台に向けて移動し蓄積されることでセルフバイアス電圧が生じるため、このセルフバイアス電圧によっても正のイオンが載置台に向けて移動すると考えられる。
そして、載置台に向けて移動し、基板に到達した正のイオンが成膜されると同時に、成膜された膜に正のイオンが衝突することで膜が押圧されると考えられる。本発明では、ガス導入部に第1高周波電力を印加するのみならず、基板に近い載置台に第2高周波電力を印加するため、成膜された膜への正のイオンの衝突エネルギーが大きくなり、成膜と同時に膜が押圧され易いと考えられる。このように、成膜及び膜の押圧が、成膜中に同時に生じることで、厚み方向全体に亘って緻密なシリコン酸化膜が形成されることになると考えられる。
また、本発明によれば、処理ガスに水素ガスが含まれることで、成膜中のシリコンのダングリングボンドが水素イオンによって終端されて疎水性を有することになる。前述のように、本発明では、第2高周波電力を印加するため、水素イオンの衝突エネルギーが大きくなり、水素イオンによる終端が促進されると考えられる。なお、処理ガスに含まれる水素ガスの供給は、第1高周波電力及び第2高周波電力の印加期間の全期間において行うことが好ましい。これにより、シリコン酸化膜の厚み方向全体に亘ってシリコンのダングリングボンドが水素イオンによって終端されることになり、厚み方向全体に亘る疎水性を確保可能である。
以上により、経時変化が抑制されると共に、エッチング量の制御が容易なシリコン酸化膜を製造可能である。具体的にはフッ化水素(蒸気)又はバッファードフッ酸によるエッチングを施した場合に、厚み方向全体に亘るエッチングレートの変動率が30%以下であるシリコン酸化膜を製造することが可能である。
なお、本発明において、前記第2高周波電力の周波数は、前記第1高周波電力の周波数よりも低い。
したがい、本発明によれば、前述のように、正のイオンが周波数の低い第2高周波電力を印加することによる載置台の電位の切り替わりに追従し、載置台が負の電位になったときに載置台に向けて移動し易いと考えられる。
好ましくは、前記チャンバ内に導入する処理ガスに一酸化二窒素ガス及び無機シランガスが含まれる。
本発明によれば、経時変化が抑制されると共に、エッチング量の制御が容易なシリコン酸化膜を製造可能である。
本発明の一実施形態に係るシリコン酸化膜の製造方法に用いるプラズマ処理装置の概略構成を示す一部断面図である。 本発明におけるシリコン酸化膜の内部応力について説明する説明図である。 参考例に係る製造方法によって製造したシリコン酸化膜の内部応力の経時変化を評価する試験を行った結果の一例を示すグラフである。 本発明の一実施形態に係る製造方法によって製造したシリコン酸化膜の内部応力の経時変化を評価する試験を行った結果の一例を示すグラフである。 本発明の一実施形態に係る製造方法によって製造したシリコン酸化膜のエッチングレートを評価した結果の一例を示すグラフである。
以下、添付図面を参照しつつ、本発明の一実施形態に係るシリコン酸化膜の製造方法について説明する。
図1は、本実施形態に係るシリコン酸化膜の製造方法に用いるプラズマ処理装置の概略構成を示す一部断面図である。
図1に示すように、本実施形態のプラズマ処理装置100は、チャンバ1と、チャンバ1の上部に設けられたガス導入部2と、チャンバ1内においてガス導入部2の下方に配置された載置台3とを備えている。また、本実施形態のプラズマ処理装置100は、第1高周波電源4と、第2高周波電源5と、ヒーター6a、6bと、ガスボンベ7a、7b、7cと、ガス流量調整器8a、8b、8cと、シール材9a、9bとを備えている。
チャンバ1の外壁には、ヒーター6aが取り付けられており、このヒーター6aによってチャンバ1内は加熱される。
ガス導入部2は、シール材9aによってチャンバ1と電気的に絶縁された状態で、チャンバ1の上部に設けられている。ガス導入部2には、ガス流量調整器8a〜8cをそれぞれ介して、ガスボンベ7a〜7cが接続されている。本実施形態のガスボンベ7aには一酸化二窒素(NO)ガスが収容され、ガスボンベ7bには無機シラン(SiH)ガスが収容され、ガスボンベ7cには水素(H)ガスが収容されている。各ガスボンベ7a〜7cから各ガス流量調整器8a〜8cを介して供給された所定流量の各処理ガスは、最終的には同一の経路を通ってガス導入部2に到達し、ガス導入部2からチャンバ1内に導入される。ガス導入部2には第1高周波電源4が接続されており、第1高周波電源4からガス導入部2に第1高周波電力が印加される。
なお、本実施形態では、処理ガスとして、一酸化二窒素ガス、無機シランガス及び水素ガスを用いることを例示したが、本発明はこれに限るものではなく、一酸化二窒素ガス及び無機シランガスの組み合わせに代えて、酸素(O)ガス及びTEOS(オルトケイ酸テトラエチル、Si(OC)を用いることも可能である。
載置台3は、シール材9bによってチャンバ1と電気的に絶縁された状態で、チャンバ1内に配置されている。載置台3には、基板Wが載置される。載置台3には第2高周波電源5が接続されており、第2高周波電源5から載置台3に第2高周波電力が印加される。また、載置台3の下面には、ヒーター6bが取り付けられており、このヒーター6bによって載置台3は加熱され、載置台3に載置された基板Wも加熱される。
なお、基板Wの材質は特に限定されてないものの、代表的な材質はシリコンである。また、その他の材質としては、石英ガラス及びホウケイ酸ガラスに代表される耐熱ガラス、シリコンカーバイド(SiC)、各種セラミックス、ガリウム砒素(GaAs)、サファイアを例示できる。
以下、上記の構成を有するプラズマ処理装置100を用いたシリコン酸化膜の製造方法について説明する。
まず、チャンバ1内を真空排気し、ヒーター6a、6bによって、チャンバ1内及び載置台2を200〜300℃程度に加熱する。これにより、載置台2に載置された基板Wも200〜300℃程度に加熱される。次に、各ガスボンベ7a〜7cから所定流量の処理ガスをガス導入部2に供給し、チャンバ1内が所定圧力となるように、排気流量を調整する。
次に、第1高周波電源4からガス導入部2に第1高周波電力を印加する。第1高周波電力は、周波数が20kHz〜100MHzで、大きさが1〜1000Wであることが好ましい。より好ましくは、第1高周波電力は、周波数が2MHz〜27MHzとされ、大きさが1〜500Wとされる。
また、第1高周波電源4からの第1高周波電力の印加と同時に、第2高周波電源5から載置台3に第2高周波電力を印加する。本実施形態では、好ましい方法として、第2高周波電力の周波数が、第1高周波電力の周波数よりも低くされている。第2高周波電力は、周波数が10kHz〜27MHzで、大きさが1〜1000Wであることが好ましい。より好ましくは、第2高周波電力は、周波数が100kHz〜2MHzとされ、大きさが1〜500Wとされる。
以上の手順により、ガス導入部2からチャンバ1内に導入された処理ガスはプラズマ化し、生成されたプラズマが載置台3に向けて移動することで、載置台3に載置された基板W上にシリコン酸化膜10が成膜される。
以下、本実施形態に係る製造方法及び参考例に係る製造方法によって製造したシリコン酸化膜10の内部応力の経時変化を評価する試験(試験1、試験2)を行った結果、及び、本実施形態に係る製造方法及び比較例に係る製造方法によって製造したシリコン酸化膜10のエッチングレートを評価する試験(試験3)を行った結果について説明する。
最初に、図2を参照して、本試験(試験1、試験2)におけるシリコン酸化膜10の内部応力について説明する。
図2(a)に示すように、本試験において、シリコン酸化膜10における「引張応力」とは、基板W上にシリコン酸化膜10が成膜された状態で、シリコン酸化膜10が収縮する向き(図2(a)に示す矢符10aの向き)に生じる内部応力を意味する。この引張応力により、基板Wの材質等によって程度の差はあるものの、基板Wが図2(a)に示す矢符W1の向きに湾曲するように変形することになる。本試験では、この引張応力の応力値を正の値としている。
一方、図2(b)に示すように、本試験において、シリコン酸化膜10における「圧縮応力」とは、基板W上にシリコン酸化膜10が成膜された状態で、シリコン酸化膜10が膨張する向き(図2(b)に示す矢符10bの向き)に生じる内部応力を意味する。この圧縮応力により、基板Wの材質等によって程度の差はあるものの、基板Wが図2(b)に示す矢符W2の方向に湾曲するように変形することになる。本試験では、この圧縮応力の応力値を負の値としている。
<試験1>
試験1は、参考例に係る製造方法によって製造したシリコン酸化膜10の内部応力の経時変化を評価した試験である。
試験1では、基板Wとして3インチのシリコンウェハを用い、ヒーター6a、6bによって、チャンバ1内及び載置台3を200℃に加熱した。次に、ガスボンベ7aから1000sccmの一酸化二窒素ガスを供給し、ガスボンベ7bから80sccmの無機シランガスを供給した(ガスボンベ7cに収容されている水素ガスは供給しなかった)。そして、チャンバ1内の圧力が120Paとなるように、排気流量を調整した。次に、第1高周波電源4からガス導入部2に、周波数が13.56MHzで大きさが300Wの第1高周波電力を印加し、第2高周波電源5から載置台3に、周波数が380kHzで大きさが0W、25W、50W、100W、200Wの第2高周波電力を印加して、30秒間のプラズマ成膜処理を施すことで、基板W上にシリコン酸化膜10を成膜した。最後に、シリコン酸化膜10が成膜された基板Wを大気中に放置し、内部応力の経時変化を評価した。内部応力は、シリコン酸化膜10の成膜直後、0.5時間後及び15時間後のタイミングで測定した。なお、内部応力は、基板Wの反り(曲率半径)の変化量を測定して応力値に換算することを測定原理とする薄膜応力測定装置(東朋テクノロジー社製、型式「FLX-2320-S」)を用いて測定した。
図3は、試験1の結果を示すグラフである。図3の横軸は第2高周波電力の大きさであり、縦軸はシリコン酸化膜10の内部応力である。
図3に示すように、第2高周波電力を印加しない場合(第2高周波電力の大きさが0W)に比べて、第2高周波電力を印加する場合(第2高周波電力の大きさが25W〜200W)によれば、内部応力の経時変化が抑制されることが分かった。具体的には、第2高周波電力を印加しない場合、シリコン酸化膜10の成膜直後から15時間後までの内部応力値の変動幅が101MPaであったのに対し、第2高周波電力の大きさが例えば25Wの場合には、シリコン酸化膜10の成膜直後から15時間後までの内部応力値の変動幅が77MPaに低減した。特に、第2高周波電力を大きくすればするほど、内部応力の経時変化の抑制効果が高くなった(内部応力値の変動幅が低減した)。ただし、第2高周波電力が大きすぎると、内部応力の絶対値も大きくなってしまう。図3に示す例では、第2高周波電力の大きさが200Wの場合、シリコン酸化膜10の成膜直後から15時間後までの内部応力値の変動幅が2MPaに低減したものの、内部応力(圧縮応力)の絶対値は約250MPaになっているため、内部応力の小さなシリコン酸化膜10を所望する場合には問題となる。したがい、たとえ内部応力の経時変化の抑制効果が高くても、過度に第2高周波電力を大きくすることはできない。これを解決するには、本実施形態に係る製造方法(試験2)のように、処理ガスとして水素ガスを供給することが有効である。
<試験2>
試験2は、本実施形態に係る製造方法によって製造したシリコン酸化膜10の内部応力の経時変化を評価した試験である。
試験2では、基板Wとして3インチのシリコンウェハを用い、ヒーター6a、6bによって、チャンバ1内及び載置台3を200℃に加熱した。次に、ガスボンベ7aから1000sccmの一酸化二窒素ガスを供給し、ガスボンベ7bから80sccmの無機シランガスを供給し、さらにガスボンベ7cから80sccm、450sccmの水素ガスを供給した。そして、チャンバ1内の圧力が120Paとなるように、排気流量を調整した。次に、第1高周波電源4からガス導入部2に、周波数が13.56MHzで大きさが300Wの第1高周波電力を印加し、第2高周波電源5から載置台3に、周波数が380kHzで大きさが50Wの第2高周波電力を印加して、30秒間のプラズマ成膜処理を施すことで、基板W上にシリコン酸化膜10を成膜した。最後に、シリコン酸化膜10が成膜された基板Wを大気中に放置し、内部応力の経時変化を評価した。内部応力は、シリコン酸化膜10の成膜直後、0.5時間後、5時間後及び24時間後のタイミングで測定した。なお、内部応力は、試験1と同じ装置を用いて測定した。
図4は、試験2の結果を示すグラフである。図4の横軸は水素ガスの流量であり、縦軸はシリコン酸化膜10の内部応力である。なお、図4には、試験1において大きさが50Wの第2高周波電力を印加して成膜したシリコン酸化膜10の内部応力(図4に示す水素ガスの流量が0sccmのときの内部応力)も図示している。
図4に示すように、試験1の水素ガスを供給しない場合(水素ガスの流量が0sccm)に比べて、水素ガスを供給することにより、第2高周波電力を過度に大きくしなくても(第2高周波の大きさが50Wであっても)、内部応力の経時変化が抑制されることが分かった。具体的には、水素ガスを供給しない場合、シリコン酸化膜10の成膜直後から5時間後までの内部応力値の変動幅が45MPaであったのに対し、水素ガスの流量が80sccmの場合には、シリコン酸化膜10の成膜直後から24時間後までの内部応力値の変動幅が39MPaに低減した。水素ガスの流量が450sccmの場合には、シリコン酸化膜10の成膜直後から24時間後までの内部応力値の変動幅が12MPaに低減した。また、第2高周波電力を過度に大きくする場合と異なり、内部応力の絶対値も大きくならず、図4に示す例では100MPa以下であることが分かった。
図4に示す水素ガスの流量が80sccm、450sccmの場合に得られたシリコン酸化膜10は、図示は省略するが、製造直後から48時間経過するまでの間に、内部応力値の絶対値が200MPa以下であり、内部応力値の変動幅が100MPa以下であった。
<試験3>
試験3は、試験2において450sccmの水素ガスを供給して成膜したシリコン酸化膜10のエッチングレートを評価した試験である。
試験3では、シリコン酸化膜10にフッ化水素(蒸気)によるエッチングを施した。具体的には、チャンバ1内に、175sccmのフッ化水素(HF)ガス、900sccmの窒素(N)ガス及び265sccmのエタノール(COH)を供給し、チャンバ1内の圧力が10kPaとなるように排気流量を調整して、エッチングを施した。エッチングレートは、大日本スクリーン社製の膜厚測定装置(型式「ラムダエースVM−1200」)を用いて、エッチング前後の膜厚を測定することによって評価した。
図5は、試験3の結果を示すグラフである。図5の横軸はエッチング時間であり、縦軸はエッチングレートである。なお、図5には、比較例として、前述の特許文献1に類似した方法を用いて成膜したシリコン酸化膜のエッチングレートも図示している。具体的には、比較例として、プラズマ成膜処理によってシリコン酸化膜を形成した後に、プラズマガスとしてのヘリウムガスに被曝させることで表面を改質したシリコン酸化膜のエッチングレートも図示している。
図5に示すように、本実施形態に係る製造方法によって製造したシリコン酸化膜10は、比較例と異なり、エッチングレートの変動率が30%以下である13.6%となり、大幅に低下することを確認できた。なお、図5に示す結果は、厳密にはシリコン酸化膜10の厚み方向全体をエッチングした結果ではない(図5に示すエッチング時間6分では厚み方向全体がエッチングされず、基板W上にシリコン酸化膜10がわずかに残存した)ものの、基板Wが露出するまでエッチングを施す又はシリコン酸化膜10を超えて基板Wにエッチングを施す場合であっても、シリコン酸化膜10の厚み方向全体に亘るエッチングレートの変動率が30%以下であることを確認できた。
1・・・チャンバ
2・・・ガス導入部
3・・・載置台
4・・・第1高周波電源
5・・・第2高周波電源
6a、6b・・・ヒーター
7a、7b、7c・・・ガスボンベ
8a、8b、8c・・・ガス流量調整器
10・・・シリコン酸化膜
W・・・基板

Claims (2)

  1. チャンバ内に配置された載置台に基板を載置し、前記チャンバに設けられたガス導入部から該チャンバ内に処理ガスを導入してプラズマ成膜処理を実行することで、前記基板上にシリコン酸化膜を成膜する、シリコン酸化膜の製造方法であって、
    前記チャンバ内に導入する処理ガスに、流量が80sccm以上である水素ガスが含まれ、
    前記ガス導入部に周波数が20kHz〜100MHzで、大きさが1〜1000Wの第1高周波電力を印加すると共に、前記載置台に周波数が10kHz〜27MHzで前記第1高周波電力の周波数よりも低く、大きさが1〜1000Wである第2高周波電力を印加してフッ化水素(蒸気)又はバッファードフッ酸によるエッチングを施した場合に、厚み方向全体に亘るエッチングレートの変動率が30%以下であるシリコン酸化膜を製造することを特徴とするシリコン酸化膜の製造方法。
    ただし、前記変動率は、前記シリコン酸化膜の厚み方向全体に亘るエッチングレートの変動幅をエッチングレートの平均値で除算した値を意味する。
  2. 前記チャンバ内に導入する処理ガスに一酸化二窒素ガス及び無機シランガスが含まれることを特徴とする請求項1に記載のシリコン酸化膜の製造方法。
JP2016087076A 2016-04-25 2016-04-25 シリコン酸化膜の製造方法 Active JP6929021B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016087076A JP6929021B2 (ja) 2016-04-25 2016-04-25 シリコン酸化膜の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016087076A JP6929021B2 (ja) 2016-04-25 2016-04-25 シリコン酸化膜の製造方法

Publications (2)

Publication Number Publication Date
JP2017197789A JP2017197789A (ja) 2017-11-02
JP6929021B2 true JP6929021B2 (ja) 2021-09-01

Family

ID=60237489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016087076A Active JP6929021B2 (ja) 2016-04-25 2016-04-25 シリコン酸化膜の製造方法

Country Status (1)

Country Link
JP (1) JP6929021B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240031411A (ko) * 2021-07-19 2024-03-07 램 리써치 코포레이션 옥사이드 막들의 증착 레이트들 상승

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315268A (ja) * 1992-05-13 1993-11-26 Matsushita Electric Ind Co Ltd プラズマcvd装置
JPH07111261A (ja) * 1993-08-16 1995-04-25 Canon Sales Co Inc 成膜装置及び成膜方法
JPH07172867A (ja) * 1993-12-15 1995-07-11 Sumitomo Osaka Cement Co Ltd 酸化シリコン膜光学素子及びその製造方法
JP4028032B2 (ja) * 1997-07-25 2007-12-26 日本テキサス・インスツルメンツ株式会社 半導体装置及びその製造方法
JP3818561B2 (ja) * 1998-10-29 2006-09-06 エルジー フィリップス エルシーディー カンパニー リミテッド シリコン酸化膜の成膜方法および薄膜トランジスタの製造方法
JP2000150389A (ja) * 1998-11-06 2000-05-30 Furontekku:Kk プラズマcvd装置およびこれを用いた半導体装置の製造方法
JP4408994B2 (ja) * 1999-07-13 2010-02-03 Azエレクトロニックマテリアルズ株式会社 低誘電率多孔質シリカ質膜、半導体装置およびコーティング組成物
JP2002030440A (ja) * 2000-07-18 2002-01-31 National Institute Of Advanced Industrial & Technology 傾斜材料およびその合成、加工方法
JP4574124B2 (ja) * 2003-05-01 2010-11-04 Azエレクトロニックマテリアルズ株式会社 コーティング組成物、多孔質シリカ質膜、多孔質シリカ質膜の製造方法及び半導体装置

Also Published As

Publication number Publication date
JP2017197789A (ja) 2017-11-02

Similar Documents

Publication Publication Date Title
EP2595180B1 (en) Etching method
JP2009071286A5 (ja)
US10347499B2 (en) Method for etching layer to be etched
TWI375259B (en) Film formation method and apparatus for semiconductor process
WO2009101979A1 (ja) Soi基板の表面処理方法
JP2018198288A (ja) シリコン窒化膜の成膜方法および成膜装置
CN103871867A (zh) 一种低应力氮化硅薄膜的形成方法
JP6929021B2 (ja) シリコン酸化膜の製造方法
JP2008300678A (ja) 半導体素子の製造方法、及び半導体素子
JP2007109984A (ja) 酸化膜形成方法
JP5922352B2 (ja) 窒化膜の製造装置及びその製造方法、並びにその製造プログラム
JP2016082010A (ja) シリコン窒化膜の製造方法及びシリコン窒化膜
JP5493345B2 (ja) Soiウェーハの製造方法
US11355320B2 (en) Plasma processing apparatus and method for plasma processing
CN105702575A (zh) 半导体器件制造方法
JP7299887B2 (ja) 窒化ケイ素膜のドライエッチング速度の低減
Longjuan et al. Dependence of wet etch rate on deposition, annealing conditions and etchants for PECVD silicon nitride film
JP6183965B2 (ja) シリコン酸化膜及びその製造方法、並びにシリコン酸化膜の製造装置
JP2004119938A (ja) 酸化シリコン膜製造方法及び装置
JPH06333917A (ja) 半導体ウエーハの酸化前処理方法
WO2017154202A1 (ja) シリコン窒化膜の製造方法及びシリコン窒化膜
KR101575131B1 (ko) 기판 처리 방법
JPH0215630A (ja) 半導体装置の保護膜形成方法
KR20230094745A (ko) 기판 처리 방법
KR20230090855A (ko) 기판처리방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210810

R150 Certificate of patent or registration of utility model

Ref document number: 6929021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250