JP6927693B2 - 気流2分級機 - Google Patents

気流2分級機 Download PDF

Info

Publication number
JP6927693B2
JP6927693B2 JP2016230921A JP2016230921A JP6927693B2 JP 6927693 B2 JP6927693 B2 JP 6927693B2 JP 2016230921 A JP2016230921 A JP 2016230921A JP 2016230921 A JP2016230921 A JP 2016230921A JP 6927693 B2 JP6927693 B2 JP 6927693B2
Authority
JP
Japan
Prior art keywords
raw material
coanda
powder
material supply
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016230921A
Other languages
English (en)
Other versions
JP2018086627A (ja
Inventor
活規 大崎
活規 大崎
智一 杉山
智一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP2016230921A priority Critical patent/JP6927693B2/ja
Publication of JP2018086627A publication Critical patent/JP2018086627A/ja
Application granted granted Critical
Publication of JP6927693B2 publication Critical patent/JP6927693B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Description

本発明は、粉体原料を微粉と粗粉とに分ける気流2分級機に関する。
従来、粉体原料を微粉と粗粉とに分ける気流2分級機として、特許文献1に開示されたものが知られている。ここに示された従来の気流2分級機においては、原料の分級が行われる領域である分級領域へ上方から気体(例えば空気)が流入する。この気体は、原料供給ノズルによる原料供給方向(すなわち、原料噴射方向)に沿って流れるように構成されている。さらに、原料供給ノズルの近傍にコアンダブロックは設けられておらず、それに代えて、原料を下方へ流すような形状を有したブロックが設けられている。
この従来の気流2分級機によれば、コアンダ効果を利用しなくても原料から粗粉を効率よく取り除くことができるとされている。また、装置の構成が簡素化されていてメンテナンスコストが安いとされている。しかしながら、特許文献1に開示された従来の気流2分級機は、微粉と粗粉とを高い精度で分級することができない、すなわち分級精度が低いという問題があった。
従来、粉体原料を微粉と粗粉と中間粉との3つに分級する気流分級機、いわゆる気流3分級機が特許文献2に開示されている。この従来の気流分級機によれば、2つ有る分級エッジの一方をコアンダブロックに密着させることにより、微粉と粗粉との2段階への分級を行うことができるようになっている。
しかしながら、この従来の気流分級機においては、分級エッジの一方をコアンダブロックに密着させるので、コアンダ効果が得られ難いという問題があった。また、構造が複雑なので、高価であるという問題があった。
従来、原料の搬送路内において粉体原料に予旋回の現象を付与することにより、コアンダ効果を向上するという技術が特許文献3に開示されている。この従来の装置によれば、原料内の粒子に対して予旋回の現象に応じて粒子の質量に応じた遠心力を付与することができ、そのために予旋回の現象を生じている原料搬送路内において微粉と粗粉とを予め分けることができるとされている。
しかしながら、この従来の気流分級機においては、予旋回を生じさせるためにコアンダブロックの近傍の原料搬送路中に狭い曲がり部分を設けなければならない。このため、原料搬送路内の圧力損失が高くなり、その結果、原料の供給能力が低下したり、送気ブロアへの負担が大きくなってランニングコストが高くなったり、搬送路中の狭い曲がり部分の磨耗が著しいために保守費用が増大したりする、という問題があった。
特開2014−223618号公報 特開平6−226208号公報 特開2008−272714号公報
本発明は、上記の従来の気流分級機における問題点に鑑みて成されたものであって、微粉と粗粉との2つの段階への分級を簡単で安価な構成によって且つ高精度で行うことができるようにすることを目的とする。
本発明に係る気流2分級機は、粉体原料を微粉と粗粉とに分ける気流2分級機において、粉体原料に対してコアンダ効果を実現するように設けられたコアンダブロック及び原料供給ノズルと、微粉を搬送する微粉搬送路と粗粉を搬送する粗粉搬送路とを形成する分級エッジと、前記原料供給ノズルへ向けて原料を搬送する原料搬送管と、を有しており、前記コアンダブロックの表面は当該コアンダブロックの前を上から下へ向けて流れる気流の下流側を向くように当該気流の上流側へ向けて傾斜しており、前記原料供給ノズルは前記コアンダブロックの表面に接触して直線状に延在しており、前記原料供給ノズルによって規定される原料供給方向は前記コアンダブロックの表面の傾斜に対応して水平方向に対して傾斜しており、前記原料搬送管は前記コアンダブロックの前を上から下へ向けて流れる気流の流れ方向側へ湾曲しており、前記原料搬送管は、前記原料供給ノズルの前段に、当該原料供給ノズルとは別に設けられていることを特徴とする。
コアンダ効果とは、粘性流体の噴流(ジェット)が近くの壁に引き寄せられることである。これは、噴流が周りの流体を引き込む性質を有していることに起因するものである。
原料供給ノズルによって規定される原料供給方向の水平方向に対する傾斜角度は、コアンダ効果を実現する部分(例えばコアンダブロックの先端の断面円弧状部分)の形状に合わせて適宜に設定される。
また、原料搬送管の湾曲方向は、分級本体内において粉体粒子を搬送するためにコアンダブロックの前方を流れる気流の方向に関連して決められる。例えばコアンダブロックの前で気流が上から下へ流れる場合、原料搬送管は下方へ向けて曲げられる。
本発明に係る気流2分級機によれば、原料供給ノズルによる原料供給方向を水平に対して傾斜させたので、原料供給方向を水平方向としていた従来の場合に比べて、コアンダブロックのコアンダ効果を実現する部分(例えばコアンダブロックの先端の断面円弧状部分)へ粉体原料を無理なく円滑に供給できる。そのため、コアンダブロックによるコアンダ効果を有効に活用できる。
本発明では、それと同時に、原料供給ノズルの前段(すなわち原料供給ノズルの上流側)に設けられた原料搬送管は1つの方向(例えば下方向)へ湾曲しているので、遠心力の働きにより粉体原料のうちの粗粉が原料搬送管中の外側領域へ集まり、微粉が原料搬送管中の内側領域へ集まる。このため、コアンダブロックのコアンダ効果を実現する部分(例えばコアンダブロックの先端の断面円弧状部分)におけるコアンダ効果をより一層有効に活用して、微粉と粗粉とを精度高く分級できる。
粉体流路を湾曲させることによって発生する遠心力によって粗粉と微粉とを分ける処理をコアンダブロックの先端部の近傍において行おうとすると、その先端部において気流が乱れるおそれがあり、その場合にはコアンダ効果による微粉の分級処理を有効に行うことが難しくなるおそれがある。これに対し、本発明では、コアンダブロックの先端部から距離的に離れた原料搬送管の所で遠心力による粗粉と微粉との分離を行うようにしたので、コアンダブロックの先端部における気流が乱れることはなく、従ってコアンダ効果を有効に活用できる。
本発明に係る気流2分級機の第2の発明態様において、前記コアンダブロックにおいてコアンダ効果を実現する部分(例えばコアンダブロックの先端部)の断面形状は円弧形状であり、前記原料供給ノズルによる前記原料供給方向は前記コアンダブロックの円弧形状の接線方向と平行の方向である。
この構成により、粉体原料を含んだ気流を原料供給ノズルによってコアンダブロックの先端部(すなわちコアンダ効果を生じさせる部分)へ無理なく導くことが可能になり、その結果、その先端部の所で粉体原料に対して発生するコアンダ効果の機能をより一層高めることができる。
本発明に係る気流2分級機の第3の発明態様において、前記コアンダブロックにおいてコアンダ効果を実現する部分(例えばコアンダブロックの先端部)の断面形状は、半径が小さい第1の円弧形状と、当該第1の円弧形状に連続していて半径が大きい第2の円弧形状とを有しており、前記第1の円弧形状が前記原料供給ノズルのノズル開口に隣接している。
この構成により、原料供給ノズルのノズル開口から出射された粉体流をコアンダブロックの先端部の始点から終点にわたって円滑に流すことが可能になり、その結果、粉体原料に対して発生するコアンダ効果の機能をより一層高めることができる。
本発明に係る気流2分級機の第4の発明態様において、前記コアンダブロックの表面は、前記原料供給ノズルの外周側面と接触するように、水平方向に対して傾斜している。
既述した本発明の第1の発明態様によれば、原料供給ノズルによって規定される原料供給方向が水平方向に対して傾斜して配置される。この構成は、例えば図7(a)に示すように原料供給ノズル12自体を水平方向Hに対して傾斜させることによって実現できる。この場合、原料供給ノズル12に対向するコアンダブロック8の表面8aは図7(b)に符号28aで示すように水平方向Hと平行に延びるように設置できる。従来の気流分級機においてはコアンダブロックの表面はそのような水平方向の設置状態であった。このようにコアンダブロックの表面が水平状態である装置において原料供給ノズル12を傾斜させる際には、コアンダブロックの表面を図7(b)に示すような水平状態のままに維持することもできる。しかしながらそのような構成の場合には、原料供給ノズルの外周側面とコアンダブロックの表面との間に空間が形成されることになる。この状態では原料供給ノズルをコアンダブロックに対してしっかりと固定することに関して特別な構造が必要になる。これに対し、上記構成の第4の発明態様のようにコアンダブロックの表面を原料供給ノズルの傾斜角度と同じ角度で傾斜させれば(図7(a)参照)、コアンダブロックによって原料供給ノズルを支持して固定することができ、分級本体の構成を簡単で安定した状態に維持できる。
本発明に係る気流2分級機の第5の発明態様においては、前記コアンダブロックに対向して対向ブロックが設けられており、当該対向ブロックは前記コアンダブロックに向かって突出する突出部と、当該突出部に連続すると共に前記分級エッジに対向している傾斜壁部とを有しており、当該傾斜壁部は前記突出部から遠ざかるに従って前記コアンダブロックから離れるように傾斜している。
この構成により、原料供給ノズルのノズル開口から出射された粉体原料のうち慣性力によって遠くへ飛ばされた粉体粒子、すなわち粗粉を対向ブロックの傾斜壁部によって受け止めて粗粉搬送路へ正確に導くことができる。
本発明に係る気流2分級機によれば、原料供給ノズルによる原料供給方向を水平に対して傾斜させたので、原料供給方向を水平方向としていた従来の場合に比べて、コアンダブロックのコアンダ効果を実現する部分(例えばコアンダブロックの先端の断面円弧状部分)へ粉体原料を無理なく円滑に供給できる。そのため、コアンダブロックによるコアンダ効果を有効に活用できる。
本発明では、それと同時に、原料供給ノズルの前段(すなわち原料供給ノズルの上流側)に設けられた原料搬送管は1つの方向(例えば下方向)へ湾曲しているので、遠心力の働きにより粉体原料のうちの粗粉が原料搬送管中の外側領域へ集まり、微粉が原料搬送管中の内側領域へ集まる。このため、コアンダブロックのコアンダ効果を実現する部分(例えばコアンダブロックの先端の断面円弧状部分)におけるコアンダ効果をより一層有効に活用して、微粉と粗粉とを精度高く分級できる。
粉体流路を湾曲させることによって発生する遠心力によって粗粉と微粉とを分ける処理をコアンダブロックの先端部の近傍において行おうとすると、その先端部において気流が乱れるおそれがあり、その場合にはコアンダ効果による微粉の分級処理を有効に行うことが難しくなるおそれがある。これに対し、本発明では、コアンダブロックの先端部から距離的に離れた原料搬送管の所で遠心力による粗粉と微粉との分離を行うようにしたので、コアンダブロックの先端部における気流が乱れることはなく、従ってコアンダ効果を有効に活用できる。
本発明に係る気流2分級機の一実施形態を示す図である。 図1の主要部である分級本体の一実施形態を示す斜視図である。 図2の分級本体の正面図である。 図3の主要部を拡大して示す図であり、コアンダブロックの先端部を示す図である。 図3の主要部を拡大して示す図であり、原料供給ノズルの先端部を示す図である。 図1の気流2分級機の主要部である原料搬送管を示す図である。 コアンダブロックの近傍における粉体粒子の流れを示す図であり、(a)は本発明のものであり、(b)は従来のものである。
以下、本発明に係る気流2分級機を実施形態に基づいて説明する。なお、本発明がこの実施形態に限定されないことはもちろんである。また、本明細書に添付した図面では特徴的な部分を分かり易く示すために実際のものとは異なった比率で構成要素を示す場合がある。
(全体構成)
図1は本発明に係る気流2分級機の一実施形態を示している。ここに示す気流2分級機1は、分級本体2と、原料供給系3と、粉体回収系4とを有している。分級本体2は、原料粉体を微粉と粗粉とに分ける(すなわち分級する)処理が行われる部分である。原料供給系3は原料粉体を分級本体2へ供給する部分である。粉体回収系4は分級処理によって得られた製品としての微粉及び製品ではない粗粉を回収する部分である。図1において、矢印H−H方向は水平方向を示している。水平方向Hに直角の方向が垂直方向である。垂直の下方向は重力が作用する方向である。
分級本体2は、図2に示すように、前側板7aと後側板7bとを有している。前側板7aと後側板7bとの間に、コアンダブロック8と、対向ブロック9と、分級エッジ10と、搬送ブロック11とが設けられている。
気流2分級機1によって生成する製品は種々の粉とすることができるが、本実施形態ではレーザプリンタ等といった電子写真装置で用いられるトナーを生成するものとする。トナーとは、帯電性を持ったプラスチック粒子に黒鉛、顔料等といった色粒子を付着させたミクロサイズの粒から成る粉である。もちろん、製品はトナーに限られない。
本実施形態では、粉体原料のうちの分級境界値以下の大きさの粉である微粉がトナーとなる製品である。そして、分級境界値を越える大きさの粉である粗粉は製品から除去される粉である。粗粉は粉砕処理を施された後、粉体原料として再度、気流2分級機1によって分級処理を受ける。分級境界値は、好ましくは8μmから12μmの範囲内の値であり、より好ましくは10μmである。
(分級本体)
図3は図2の分級本体2から前側板7aを除去した状態を示している。図3に示すように、コアンダブロック8の上側の表面8a上に原料供給ノズル12が設けられている。原料供給ノズル12の下側側面12aがコアンダブロック8の表面8aに接触している。
分級エッジ10の右側面と搬送ブロック11の右側面とコアンダブロック8の下面とによって粉体搬送路としての微粉搬送路T1が形成されている。対向ブロック9は突出部9aと上傾斜面9bと下傾斜面9cとを有している。突出部9aはコアンダブロック8へ向けて突出している。上傾斜面9bは突出部9aから上方へ遠ざかるに従ってコアンダブロック8から離れるように傾斜している。下傾斜面9cは突出部9aから下方へ遠ざかるに従ってコアンダブロック8から離れるように傾斜している。分級エッジ10の左側面と搬送ブロック11の左側面と対向ブロック9の下傾斜面9cとによって粉体搬送路としての粗粉搬送路T2が形成されている。
分級エッジ10は軸13を中心として回動可能である。この回動により分級エッジ10の先端の位置を左右方向で変化させることができる。この分級エッジ10の回動により、微粉搬送路T1及び粗粉搬送路T2の上端開口の面積(すなわち、粉体の取込み口の面積)を変化させることができる。このように粉体の取込み口の面積を変化させることにより、粉体原料の分級境界値を調整することが可能になる。
図2において、分級本体2の上端において、両側板7a,7bの上端と、対向ブロック9の上端と、原料供給ノズル12の先端と、コアンダブロック8の先端とによって気流導入口M1が形成されている。微粉搬送路T1の下端部に微粉排出口M2が形成されている。粗粉搬送路T2の下端部に粗粉排出口M3が形成されている。
(コアンダブロック及び原料供給ノズル)
図4はコアンダブロック8及び原料供給ノズル12を拡大して示している。コアンダブロック8の先端部Eの断面形状は円弧形状に形成されている。先端部Eは第1の先端部E1と第2の先端部E2とを有している。第1の先端部E1と第2の先端部E2は連続している。第1の先端部E1の断面形状は半径r1の円弧形状である。第2の先端部E2の断面形状は半径r2の円弧形状である。r1<r2である。
r1及びr2は粉体原料の種類及びコアンダブロック8の材質に応じて適宜に設定されるが、粉体原料をトナーとしている本実施形態では、好ましくは5mm<r1<30mm、より好ましくは10mm<r1<20mm、さらに好ましくはr1=15mmである。一方、好ましくは15mm<r2<40mm、より好ましくは20mm<r2<30mm、さらに好ましくはr2=25mmである。
原料供給ノズル12の先端の位置、すなわちノズル開口12cの位置は、コアンダブロック8の先端よりも距離D1だけ後方へ退いている。この距離D1は任意の距離のことであるが、本実施形態ではこの距離D1は図4に示すように、コアンダブロック8の先端部Eの円弧形状が開始する点P1に合わされている。しかしながら、コアンダブロック8の先端に対してノズル開口12cを配置する距離D1は必ずしも円弧形状が開始する点P1に合わせる必要はない。
このことに関し、従来の気流分級機においては、コアンダブロック8の上側表面8aにおいてコアンダブロック8の先端部Eが始まる点、すなわち円弧形状が始まる点P1から原料供給の上流側に向かって10mmの位置に距離D1を設定していた。本実施形態においても、円弧形状が始まる点P1から原料供給の上流側に向かって10mmの位置に距離D1を設定することができる。あるいは、その他の適宜の距離の位置に距離D1を設定することもできる。
また、原料供給ノズル12は水平方向Hに対して角度αだけ傾斜している。ここにいう「水平方向」とは、粉体搬送路としての微粉搬送路T1及び粗粉搬送路T2が垂直方向を向くように配置したとき(すなわち、分級本体2が図1において垂直方向に立っているとき)の水平方向の意味である。なお、本実施形態では、コアンダブロック8の表面8aの直線部分8bが水平に対して同じ角度αだけ傾斜している。従って、原料供給ノズル12の下側側面12aがコアンダブロック8の表面8aの直線部分8に全面的に接触している。
角度αは粉体原料の種類及び原料供給ノズル12の材質に応じて適宜に設定されるが、粉体原料をトナーとしている本実施形態では、角度αは0°<α<90°、好ましくは10°<α<45°、より好ましくは20°<α<40°である。さらに好ましくはα=28°である。
コアンダブロック8の表面8aの直線部分8bはコアンダブロック8の第1の先端部E1の円弧形状の接線方向に延びている。従って、原料供給ノズル12はコアンダブロックの先端部Eの円弧形状の接線方向に延在している。
コアンダブロック8の先端部Eの断面形状を円弧形状に形成し、さらに、原料供給ノズル12の先端のノズル開口12cの位置をコアンダブロック8の先端よりも距離D1だけ後方へ退いて設けたことによりノズル開口12cから出射された粉体原料のうちの微粉はコアンダ効果に従ってコアンダブロック8の先端部Eに引き寄せられながら微粉搬送路T1内へ進入する。
コアンダ効果とは、粘性流体の噴流(ジェット)が近くの壁に引き寄せられることである。これは、噴流が周りの流体を引き込む性質を有していることに起因するものである。
既述の通り距離D1は任意の値に設定できるが、図4に示すようにコアンダブロック8の先端部Eが始まる点、すなわち円弧形状が始まる点P1に距離D1を合わせることにすれば、上記のように原料供給ノズル12を角度αで傾斜させたときにコアンダ効果を実現する上で好都合である。
(原料供給ノズルの先端部)
図5(a)及び図5(b)はコアンダブロック8及び原料供給ノズル12を拡大して示している。図5(b)は図5(a)における矢印Aに従った図である。図5(a)において、コアンダブロック8の上側の表面8aから原料供給ノズル12のノズル開口12cの底辺12dまでの距離はZ1である。また、コアンダブロック8の上側の表面8aから原料供給ノズル12の中心線X0までの距離はZ2である。これらの距離Z1及びZ2は、原料供給ノズル12の下側の壁部材の厚さを含んだ距離である。よって、原料供給ノズル12の下側の壁部材の厚さを調整することによりZ1及びZ2を調整することができる。
Z1及びZ2は粉体原料の種類及び原料供給ノズル12の材質に応じて適宜に設定されるが、粉体原料をトナーとしている本実施形態では、好ましくは2mm<Z1<5mm、さらに好ましくはZ1=3mmである。一方、好ましくは4mm<Z2<8mm、より好ましくは5mm<Z2<7mm、さらに好ましくはZ2=6mmである。
図5(b)において、原料供給ノズル12の断面形状は必要に応じて適宜の形状とすることができるが、本実施形態では長方形状である。この長方形状の縦長さL1は例えばL1=12mmであり、横長さL2は例えばL2=25mmである。
原料供給ノズル12のノズル開口12cの断面形状は必要に応じて適宜の形状とすることができるが、本実施形態では水平方向に長い長方形状である。この長方形状の縦長さL3は例えばL3=6mmであり、横長さL4は例えばL4=15mmである。
図7(b)はノズル開口底辺の高さZ1が2mmを下回っている従来の構造を示している。具体的にはノズル開口12cの底辺12dのコアンダブロック表面28aからの高さZ1=0mmである。図5(a)に示す本実施形態(Z1が存在)の場合でも、図7(b)に示す従来例(Z1が存在しない)の場合でも、ノズル開口12cから気流が噴射するとき、その気流はノズル開口12cから出た瞬間に膨張して噴流となる。Z1が2mmを下回っている図7(b)に示す従来例においては、ノズル開口12cで膨張した噴流がコアンダブロック28の表面28aで反発し、そのため、気流が上方向側のみに膨らんでコアンダブロック28から離れてしまう。こうなると、期待したコアンダ効果が得られないおそれがある。
他方、図5(a)のZ1が5mmを越える場合には、ノズル開口12cから噴射された気流がコアンダブロック8から遠く離れた領域に進むことになる。このため、気流はコアンダ効果を十分に受けることが出来ず、その結果、微粉を精度高く分級することができなくなる。
以上を考慮すると、2mm<Z1<5mmであることが好ましい。これにより、図7(a)に示すように、ノズル開口12cから噴射された直後の気流の噴流をバランス良く膨張させながら進行させることが可能となる。このため、コアンダブロック8の先端部Eに沿った滑らかな気流を形成することが可能になり、その結果、高精度な分級効果を得ることができる。
(原料供給系)
図1に戻って、原料供給系3は、気流供給源としてのエアーポンプ16と、原料分散装置としてのエジェクタ17と、粉体原料を原料供給ノズル12へ向けて搬送する原料搬送管18とを有している。エアーポンプ16は原料搬送管18内を流れる気流を形成する。エジェクタ17は粉体原料を気流内へ分散させる。
原料供給ノズル12の上流側に設けられた原料搬送管18は1つの方向(本実施形態では重力が作用する方向である下方向)へ湾曲している。原料搬送管18を曲げる方向は分級本体2を設置する方向と関連している。本実施形態の分級本体2は図1に示すように垂直上下方向へ立った状態で設けられている。そして、粉体原料は垂直下方向へ流れる間に分級処理を受ける。この状態のときに、原料搬送管18は1つの方向である下方向へ曲げられている。
本実施形態の場合は、例えば図6に示すように、曲げ角度範囲β=28°、曲げ長さL5=260mm、曲げ半径r3=562mmの条件で原料搬送管18が曲げられている。原料搬送管18をこのように曲げたことにより、原料搬送管18の中を流れる粉体原料に含まれる粉体粒子の質量に応じた大きさの遠心力が各粉体粒子に加わる。これにより、粗粉は原料搬送管18の外周側へ集められ、微粉は原料搬送管18の内周側へ集められ、その結果、粉体原料の粒子の大きさに応じた分散が促される。このように、コアンダブロック8の先端部においてコアンダ効果を実行する前に、湾曲する原料搬送管18によって粉体原料の分散処理を行うようにすれば、コアンダ効果によって微粉をコアンダブロック8の先端部Eに沿って流動させる現象を確実に実行することができる。
このような遠心力による分散処理をコアンダブロック8の先端のコアンダ効果領域又はその近傍において行うと、気流に乱れが生じて良好なコアンダ効果を得ることができなくなるおそれがある。これに対し、本実施形態のように、前もって原料搬送管18の内部において遠心力に応じた分散処理を行うようにすれば、気流の乱れを生じることなく安定した効率の良いコアンダ効果を実現できる。
(粉体回収系)
図1において、粉体回収系4は、分級本体2の微粉排出口M2に接続された微粉吸引管21と、粉体を貯留する粉体回収手段としての微粉用サイクロン22と、分級本体2の粗粉排出口M3に接続された粗粉吸引管23と、粉体を貯留する粉体回収手段としての粗粉用サイクロン24とを有する。サイクロン22,24の後段には気体吸引装置であるブロア25が設けられている。ブロア25が作動すると、分級本体2の内部の空気が吸引され、気流導入口M1から空気が気流になって導入される。この気流はコアンダブロック8の先端部Eの前の近傍を通って粉体搬送路としての微粉搬送路T1及び粗粉搬送路T2へ流れ込む。なお、粉体回収手段はサイクロンに限られない。
(全体的な動作)
図1において、ブロア25が作動して、分級本体2の内部に気流が形成される。具体的には、上部の気流導入口M1から下部の微粉排出口M2へ向かう気流、及び気流導入口M1から下部の粗粉排出口M3へ向かう気流がコアンダブロック8の先端部Eの前方の近傍に形成される。さらに、エアーポンプ16が作動し、さらにエジェクタ17に粉体原料Gが投入されると、エジェクタ17により空気の気流中に粉体原料が分散する。粉体原料を含んだ気流が、湾曲している原料搬送管18に入ると、遠心力の働きにより、粗粉は外側へ微粉は内側へ揃えられる。
その後、図3において、原料供給ノズル12のノズル開口12cから粉体原料が噴射される。噴射された粉体原料のうちの粗粉は、慣性力の影響により、遠くまで飛んで粗粉搬送路T2へ入る。原料供給ノズル12による粉体原料の噴射方向Sは原料供給ノズル12の中心線X0に沿った方向である。この噴射方向Sは、対向ブロック9の突出部9aの頂点よりも下の位置を指向している。このため、慣性力によって飛ばされた粗粉は確実に粗粉搬送路T2へ進入する。
他方、粉体原料のうちの微粉は、コアンダブロック8の先端部Eに生じるコアンダ効果の働きにより、先端部Eの円弧面に沿って進行して微粉搬送路T1へ進入する。本実施形態では直径10μmを越える粒子が粗粉であり、直径10μm以下の粒子が微粉である。本実施形態では、図6に示したように原料供給ノズル12の前段に設けられた原料搬送管18を湾曲させたので、遠心力の働きにより粗粉が外側領域へ集められ、微粉が内側領域へ集められる。このため、コアンダブロック8の先端部Eにおけるコアンダ効果が有効に機能して、分級エッジ10によって粗粉と微粉とが精度高く分級される。
図1において、分級によって得られた微粉は微粉吸引管21を通して微粉用サイクロン22に製品として収容される。他方、分級によって得られた粗粉は粗粉吸引管23を通して粗粉用サイクロン24に収容される。粗粉は製品でない粉として収容される。粗粉は必要に応じて粉砕処理を受けた後、再度、粉体原料としてエジェクタ17へ投入される。
(本実施形態によって得られる効果)
(1) 本実施形態では、図4において、原料供給ノズル12による原料供給方向Sを水平に対して角度αだけ傾斜させたので、図7(b)に示すように原料供給方向を水平方向としていた従来の場合に比べて、図4のコアンダブロック8の先端部Eへ粉体原料を滑らかな気流として供給できる。そのため、先端部Eの所で粉体原料に付与されるコアンダ効果の機能を一層高めることができる。
(2) また、図6において原料供給ノズル12の前段に設けられた原料搬送管18は1つの方向である下方向へ湾曲しているので、遠心力の働きにより粉体原料のうちの粗粉が原料搬送管18中の外側領域へ集まり、微粉が原料搬送管18中の内側領域へ集まる。このため、コアンダブロック8の先端部Eにおけるコアンダ効果を有効に活用して、微粉と粗粉とを精度高く分級できる。
粉体流を湾曲させることによって発生する遠心力によって粗粉と微粉とを分ける処理をコアンダブロック8の先端部Eの近傍において行おうとすると、その先端部Eにおいて気流が乱れるおそれがあり、その場合にはコアンダ効果による微粉の分級処理を有効に行うことが難しくなるおそれがある。これに対し、本実施形態では図6に示すようにコアンダブロック8の先端部Eから距離的に離れた原料搬送管18の所で遠心力による粗粉と微粉との分離を行うようにしたので、コアンダブロック8の先端部Eにおける気流が乱れることはなく、従ってコアンダ効果を有効に活用できる。
(3) また、図3及び図4において、原料供給ノズル12はコアンダブロック8の先端部Eの円弧形状の接線方向に延在しているので、粉体原料を含んだ気流をコアンダブロック8の先端部Eへ無理なく導くことが可能になり、その結果、その先端部Eの所で粉体原料に対して発生するコアンダ効果の機能をより一層高めることができる。
(4) また、コアンダブロック8の先端部Eの断面形状は、半径の小さい第1の先端部E1と、それに連続する半径の大きい第2の先端部E2とによって形成されているので、コアンダブロック8の先端部Eの所で粉体原料に対して発生するコアンダ効果の機能をより一層高めることができる。
(5) また、図5(a)に示したように、コアンダブロック8の上側の表面8aからノズル開口12cの底辺12dまでの間に距離Z1を設けた。このため、ノズル開口12cから噴射された気流が膨らんだ場合でも、その気流がコアンダブロック8の表面8aで反発することがない。従って、その気流は図7(a)に示すようにコアンダブロック8の先端部Eに沿って滑らかな気流を形成し、その結果、高精度な分級効果を得ることができる。
(他の実施形態)
以上、好ましい実施形態を挙げて本発明を説明したが、本発明はその実施形態に限定されるものでなく、請求の範囲に記載した発明の範囲内で種々に改変できる。
また、図4に示した実施形態では、コアンダ効果を実現する部分を円弧形状部分Eとし、特に径の小さい第1の部分E1と径の大きい第2の部分E2の連続構造とした。しかしながら、コアンダ効果を実現する部分は、単一の径の部分とすることもできるし、場合によっては円弧形状以外の曲面形状とすることもできる。
1.気流2分級機、 2.分級本体、 3.原料供給系、 4.粉体回収系、 7a.前側板、 7b.後側板、 8.コアンダブロック、 8a.上側の表面、 8b.直線部分、 9.対向ブロック、 9a.突出部、 9b.上傾斜面、 9c.下傾斜面、 10.分級エッジ、 11.搬送ブロック、 12.原料供給ノズル、 12a.下側側面、 12b.ノズル内底面、12c.ノズル開口、 12d.ノズル開口底辺、 13.軸、 16.エアーポンプ(気流供給源)、 17.エジェクタ(原料分散装置)、 18.原料搬送管、 21.微粉吸引管、 22.微粉用サイクロン、 23.粗粉吸引管、 24.粗粉用サイクロン、 25.ブロア(気体吸引装置)、 28.コアンダブロック、 28a.上側の表面、 28b.辺面、 α.ノズル角度、 β.曲げ角度範囲、 D1.ノズル先端の距離、 E.コアンダブロックの先端部、 E1.径の小さい第1の先端部、 E2.径の大きい第2の先端部、 G.粉体原料、 H.水平方向、 L1,L2,L3,L4.長さ、 L5.曲げ長さ、 M1.気流導入口、 M2.微粉排出口、 M3.粗粉排出口、 P1.円弧形状が始まる点、 r1,r2.半径、 r3.曲げ半径、 S.粉体原料の噴射方向、 T1.微粉搬送路、 T2.粗粉搬送路、 X0.原料供給ノズルの中心線、 Z1.ノズル開口の底辺までの距離、 Z2.ノズル中心線までの距離

Claims (4)

  1. 粉体原料を微粉と粗粉とに分ける気流2分級機において、
    粉体原料に対してコアンダ効果を実現するように設けられたコアンダブロック及び原料供給ノズルと、
    微粉を搬送する微粉搬送路と粗粉を搬送する粗粉搬送路とを形成する分級エッジと、
    前記原料供給ノズルへ向けて原料を搬送する原料搬送管と、を有しており、
    前記コアンダブロックの表面は当該コアンダブロックの前を上から下へ向けて流れる気流の下流側を向くように当該気流の上流側へ向けて傾斜しており、
    前記原料供給ノズルは前記コアンダブロックの表面に接触して直線状に延在しており、
    前記原料供給ノズルによって規定される原料供給方向は前記コアンダブロックの傾斜に対応して水平方向に対して傾斜しており、
    前記原料搬送管は前記コアンダブロックの前を上から下へ向けて流れる気流の流れ方向側へ湾曲しており、
    前記原料搬送管は、前記原料供給ノズルの前段に、当該原料供給ノズルとは別に設けられている
    ことを特徴とする気流2分級機。
  2. 前記コアンダブロックにおいてコアンダ効果を実現する部分の断面形状は円弧形状であり、
    前記原料供給ノズルによる前記原料供給方向は前記コアンダブロックの円弧形状の接線方向と平行の方向である、
    ことを特徴とする請求項1記載の気流2分級機。
  3. 前記コアンダブロックにおいてコアンダ効果を実現する部分の断面形状は、半径が小さい第1の円弧形状と、当該第1の円弧形状に連続していて半径が大きい第2の円弧形状とを有しており、
    前記第1の円弧形状が前記原料供給ノズルのノズル開口に隣接している、
    ことを特徴とする請求項2記載の気流2分級機。
  4. 前記コアンダブロックに対向して対向ブロックが設けられており、
    当該対向ブロックは前記コアンダブロックに向かって突出する突出部と、当該突出部に連続する傾斜壁部と、を有しており、
    当該傾斜壁部は、前記分級エッジに対向しており、且つ前記突出部から遠ざかるに従って前記コアンダブロックから離れるように傾斜している、
    ことを特徴とする請求項1から請求項3のいずれか1つに記載の気流2分級機。
JP2016230921A 2016-11-29 2016-11-29 気流2分級機 Active JP6927693B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016230921A JP6927693B2 (ja) 2016-11-29 2016-11-29 気流2分級機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016230921A JP6927693B2 (ja) 2016-11-29 2016-11-29 気流2分級機

Publications (2)

Publication Number Publication Date
JP2018086627A JP2018086627A (ja) 2018-06-07
JP6927693B2 true JP6927693B2 (ja) 2021-09-01

Family

ID=62493274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016230921A Active JP6927693B2 (ja) 2016-11-29 2016-11-29 気流2分級機

Country Status (1)

Country Link
JP (1) JP6927693B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114849868A (zh) * 2022-03-22 2022-08-05 湘潭大学 一种粉体动态射流分级装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194782A (ja) * 1987-02-09 1988-08-11 川崎重工業株式会社 微粉の分級装置
JP2727245B2 (ja) * 1989-12-06 1998-03-11 キヤノン株式会社 気流分級機及び気流分級方法
JP3679163B2 (ja) * 1995-09-18 2005-08-03 日鉄鉱業株式会社 気流分級機
JPH1115196A (ja) * 1997-06-24 1999-01-22 Canon Inc トナーの製造方法及び製造システム

Also Published As

Publication number Publication date
JP2018086627A (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
JP6927693B2 (ja) 気流2分級機
JP2018086628A (ja) 気流分級機
TWI587934B (zh) 粉體分級裝置
JP6255681B2 (ja) トナーの製造方法およびトナーの製造装置
JP6980599B2 (ja) 気流分級機
US6015648A (en) Gas stream classifier and process for producing toner
KR20170102496A (ko) 분체 분급 장치
JP5778934B2 (ja) 粉砕装置
JPH06230606A (ja) トナーの製造方法及びそのための製造装置システム
JP2011045819A (ja) 粉体分級装置
JP7137378B2 (ja) 気流分級装置
JP2016083638A (ja) 竪型ローラミル
JP2727245B2 (ja) 気流分級機及び気流分級方法
JP6238104B2 (ja) 分級装置及び粉砕分級装置
JP3176779B2 (ja) 気流分級機及び気流分級方法
JP3679163B2 (ja) 気流分級機
JP6569060B2 (ja) 分級機
JP6660701B2 (ja) 粉砕装置
JP6327919B2 (ja) 気流式分級装置
US8777139B2 (en) Pulverizer, pulverization method, toner production method, and toner
JP3327773B2 (ja) 静電荷現像用トナーの製造方法
JP3606710B2 (ja) 気流式ds分級装置
JPH11169793A (ja) 気流式分級装置
JPH0889900A (ja) 気流分級方法及び気流分級機並びに該分級機を備えた分級装置
JPH11290783A (ja) 気流式分級装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210601

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210601

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210610

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210805

R150 Certificate of patent or registration of utility model

Ref document number: 6927693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150