JP2018086628A - 気流分級機 - Google Patents

気流分級機 Download PDF

Info

Publication number
JP2018086628A
JP2018086628A JP2016230922A JP2016230922A JP2018086628A JP 2018086628 A JP2018086628 A JP 2018086628A JP 2016230922 A JP2016230922 A JP 2016230922A JP 2016230922 A JP2016230922 A JP 2016230922A JP 2018086628 A JP2018086628 A JP 2018086628A
Authority
JP
Japan
Prior art keywords
raw material
powder
material supply
coanda
supply nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016230922A
Other languages
English (en)
Inventor
活規 大崎
Katsunori Osaki
活規 大崎
智一 杉山
Tomokazu Sugiyama
智一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP2016230922A priority Critical patent/JP2018086628A/ja
Publication of JP2018086628A publication Critical patent/JP2018086628A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Abstract

【課題】原料供給ノズルのノズル開口の近傍における粉体流に乱れが発生することを防止して、コアンダ効果に基づく分級の精度を向上する。
【解決手段】粉体原料を少なくとも2つの階級に分級する気流分級機において、粉体原料に対してコアンダ効果を実現するように設けられたコアンダブロック8及び原料供給ノズル12と、少なくとも2つの階級に対応した粉体搬送路T1を形成する少なくとも1つの分級エッジ10とを有しており、原料供給ノズル12のノズル開口12cの底辺12dはコアンダブロック8の表面8aに対して間隔Z1をもって配置されている。
【選択図】図5

Description

本発明は、粉体原料を少なくとも2つの階級に分級する気流分級機に関する。また、本発明は、粉体原料を微粉と粗粉の2種類だけに分ける気流分級機、いわゆる気流2分級機に関する。
従来、気流分級機として特許文献1及び特許文献2に示されたものが知られている。これらの従来の気流分級機は、本願の図7(b)に示すように、コアンダブロック28と原料供給ノズル12とを有している。コアンダブロック28の上側の表面28aには段差を付けて辺面28bが形成されている。原料供給ノズル12は下側側面12a及びノズル内底面12bを有している。原料供給ノズル12の先端にはノズル開口12cが設けられている。粉体原料はこのノズル開口12cから分級領域内へ出射される。
この従来の気流分級機においては、コアンダブロック28の先端Eが湾曲面となっている。また、原料供給ノズル12の下側の側壁が段差付きの辺面28bの中に収められている。その結果、ノズル内底面12bの先端、すなわちノズル開口12cの底辺12dがコアンダブロック28の表面28aと同一の高さに合わされていた。従来は、このようにノズル開口12cの底辺12dとコアンダブロック28の表面28aとが同一の面になっていた方が、コアンダブロック28の先端部Eにおいて発生するコアンダ効果を有効に活用する上で有利であると考えられていた。
しかしながら、本発明者の実験によれば、ノズル開口12cの底辺12dとコアンダブロック28の表面28aとが連続した同一の面になっていると、分級の精度が必ずしも高くならないのではないかという知見に至った。このことの原因を解明するために本発明者は多くの実験を行った。その実験の結果、ノズル開口12cの底辺12dとコアンダブロック28の表面28aとが同一の面になっていると、原料供給ノズル12のノズル開口12cから噴射された粉体流は噴射の直後に膨らみ、そのため、コアンダブロック28の表面28aで反発して上方向へ膨らみ、そのため、粉体流がコアンダブロック28の先端部Eから離れてしまい、そのため、先端部Eの所で実現されるコアンダ効果を適切に受けることができなくなり、その結果、分級効果が低下するのではないか、とうい知見に至った。
特開2004−230313号公報 特開平6−226208号公報
本発明は、上記の知見に基づいて成されたものであって、原料供給ノズルのノズル開口の近傍における粉体流に乱れが発生することを防止して、コアンダ効果に基づく分級の精度を向上することを目的とする。
本発明に係る第1の気流分級機は、粉体原料を少なくとも2つの階級に分級する気流分級機において、粉体原料に対してコアンダ効果を実現するように設けられたコアンダブロック及び原料供給ノズルと、前記少なくとも2つの階級に対応した粉体搬送路を形成する少なくとも1つの分級エッジとを有しており、前記原料供給ノズルのノズル開口の底辺は前記コアンダブロックの表面に対して間隔をもって配置されていることを特徴とする。
本発明に係る第2の気流分級機は、粉体原料を微粉と粗粉の2種類だけに分ける気流分級機において、粉体原料に対してコアンダ効果を実現するように設けられたコアンダブロック及び原料供給ノズルと、微粉を搬送する粉体搬送路と粗粉を搬送する粉体搬送路とを形成する分級エッジとを有しており、前記原料供給ノズルのノズル開口の底辺は前記コアンダブロックの表面に対して間隔をもって配置されていることを特徴とする。
上記第1の気流分級機は粉体原料を2階級以上の粉体に分級する気流分級機である。上記第2の気流分級機は粉体原料を微粉及び粗粉の2階級の粉体だけに分級する気流分級機、いわゆる気流2分級機である。
従来の気流分級機においては、例えば図7(b)に示すように、原料供給ノズル12のノズル開口12cの底辺12dとコアンダブロック28の表面28aとが同一の面上に合わされていた。この構成の場合には、ノズル開口12cから噴射された気流が噴射の直後に膨らみ、膨らんだ気流がコアンダブロック28の表面28aで反発し、反発した気流がコアンダブロック28の先端部Eから離れる方向へ進行し、その結果、コアンダブロック8の先端部Eの所で発生するコアンダ効果を微粉の分級のために有効に活用することができなかった。
これに対し、本発明においては、例えば図5(a)に示したように、コアンダブロック8の上側の表面8aからノズル開口12cの底辺12dまでの間に間隔Z1を設けた。このため、ノズル開口12cから噴射された気流が膨らんだ場合でも、その気流がコアンダブロック8の表面8aで反発することがない。従って、その気流は、例えば図7(a)に示すようにコアンダブロック8の先端部Eに沿って滑らかな気流を形成し、その結果、高精度な分級効果を得ることができる。
本発明に係る気流分級機の第3の発明態様において、前記コアンダブロックにおいてコアンダ効果を実現する部分の断面形状は円弧形状であり、前記原料供給ノズルのノズル開口の底辺は前記円弧形状が始まる点に合わせて配置されている。
この構成により、粉体原料を含んだ気流をコアンダブロックにおけるコアンダ効果を実現する部分へ無理なく滑らかに送り込むことが可能になり、その結果、粉体原料の分級を高精度に行うことができる。
従来、原料供給ノズルのノズル開口は、コアンダブロックの上側表面におけるコアンダブロックの先端部が始まる点(すなわち、円弧形状が始まる点)(例えば図4の符号P1で示す点)から、原料供給方向の上流側へ向かって例えば10mmの位置に配置していた。これに対し、本第3の発明態様においては、コアンダブロックの先端部が始まる点(例えば図4の符号P1の所)にノズル開口を配置した。すなわち、従来の構成に比べてノズル開口の位置を原料供給方向の下流側に向かって例えば10mm下げた位置に配置した。
この構成により、粉体原料を含んだ気流をコアンダブロックにおけるコアンダ効果を実現する部分へ無理なく滑らかに送り込むことが可能になり、その結果、粉体原料の分級を高精度に行うことができるようになった。
本発明に係る気流分級機の第4の発明態様において、前記原料供給ノズルのノズル開口の底辺と前記コアンダブロックの表面との間の間隔は、前記原料供給ノズルを形成している壁部材の厚さによって形成されている。この構成によれば、本発明の構成を容易に実現できる。
本発明に係る気流分級機の第5の発明態様において、前記原料供給ノズルによって規定される原料供給方向は、前記粉体搬送路を垂直方向に配置したときの水平方向に対して傾斜している。
この構成によれば、コアンダブロックにおけるコアンダ効果を実現する部分(例えば、コアンダブロックの先端部の断面円弧形状部分)へ粉体原料を無理なく円滑に送り込むことが可能になる。その結果、コアンダ効果を有効に活用して粉体原料から微粉を高精度に分級できる。
本発明においては、例えば図5(a)に示すように、コアンダブロックの上側の表面からノズル開口の底辺までの間に間隔を設けたので、ノズル開口から噴射された気流が膨らんだ場合でも、その気流がコアンダブロックの表面で反発することがない。従って、その気流は、例えば図7(a)に示すようにコアンダブロック(8)の先端部(E)に沿って滑らかな気流を形成し、その結果、高精度な分級効果を得ることができる。
本発明に係る気流分級機の一実施形態を示す図である。 図1の主要部である分級本体の一実施形態を示す斜視図である。 図2の分級本体の正面図である。 図3の主要部であるコアンダブロックの先端部を拡大して示す図である。 図3の主要部である原料供給ノズルの先端部を拡大して示す図である。 図1の気流分級機の主要部である原料搬送管を示す図である。 コアンダブロックの近傍における粉体粒子の流れを示す図であり、(a)は本発明のものであり、(b)は従来のものである。
以下、本発明に係る気流分級機を実施形態に基づいて説明する。なお、本発明がこの実施形態に限定されないことはもちろんである。また、本明細書に添付した図面では特徴的な部分を分かり易く示すために実際のものとは異なった比率で構成要素を示す場合がある。
(全体構成)
図1は本発明に係る気流分級機の一実施形態を示している。ここに示す気流分級機1は、分級本体2と、原料供給系3と、粉体回収系4とを有している。分級本体2は、原料粉体を微粉と粗粉とに分ける(すなわち分級する)処理が行われる部分である。原料供給系3は原料粉体を分級本体2へ供給する部分である。粉体回収系4は分級処理によって得られた製品としての微粉及び製品ではない粗粉を回収する部分である。図1において、矢印H−H方向は水平方向を示している。水平方向Hに直角の方向が垂直方向である。垂直の下方向は重力が作用する方向である。
分級本体2は、図2に示すように、前側板7aと後側板7bとを有している。前側板7aと後側板7bとの間に、コアンダブロック8と、対向ブロック9と、分級エッジ10と、搬送ブロック11とが設けられている。
図1の気流分級機1によって生成する製品は種々の粉とすることができるが、本実施形態ではレーザプリンタ等といった電子写真装置で用いられるトナーを生成するものとする。トナーとは、帯電性を持ったプラスチック粒子に黒鉛、顔料等といった色粒子を付着させたミクロサイズの粒から成る粉である。もちろん、製品はトナーに限られない。
本実施形態では、粉体原料のうちの分級境界値以下の大きさの粉である微粉がトナーとなる製品である。そして、分級境界値を越える大きさの粉である粗粉は製品から除去される粉である。粗粉は粉砕処理を施された後、粉体原料として再度、気流分級機1によって分級処理を受ける。分級境界値は、好ましくは8μmから12μmの範囲内の値であり、より好ましくは10μmである。
なお、本実施形態では、粉体原料を微粉及び粗粉の2種類の階級に分ける機能を有する気流分級機、いわゆる気流2分級機に対して本発明を適用することにした。しかしながら、本発明は粉体原料を3種類以上の階級に分ける機能を持った気流分級機に対しても適用できる。
(分級本体)
図3は図2の分級本体2から前側板7aを除去した状態を示している。図3に示すように、コアンダブロック8の上側の表面8a上に原料供給ノズル12が設けられている。原料供給ノズル12の下側側面12aがコアンダブロック8の表面8aに接触している。
分級エッジ10の右側面と搬送ブロック11の右側面とコアンダブロック8の下面とによって粉体搬送路としての微粉搬送路T1が形成されている。対向ブロック9は突出部9aと上傾斜面9bと下傾斜面9cとを有している。突出部9aはコアンダブロック8へ向けて突出している。上傾斜面9bは突出部9aから上方へ遠ざかるに従ってコアンダブロック8から離れるように傾斜している。下傾斜面9cは突出部9aから下方へ遠ざかるに従ってコアンダブロック8から離れるように傾斜している。分級エッジ10の左側面と搬送ブロック11の左側面と対向ブロック9の下傾斜面9cとによって粉体搬送路としての粗粉搬送路T2が形成されている。
分級エッジ10は軸13を中心として回動可能である。この回動により分級エッジ10の先端の位置を左右方向で変化させることができる。この分級エッジ10の回動により、微粉搬送路T1及び粗粉搬送路T2の上端開口の面積(すなわち、粉体の取込み口の面積)を変化させることができる。このように粉体の取込み口の面積を変化させることにより、粉体原料の分級境界値を調整することが可能になる。
図2において、分級本体2の上端において、両側板7a,7bの上端と、対向ブロック9の上端と、原料供給ノズル12の先端と、コアンダブロック8の先端とによって気流導入口M1が形成されている。微粉搬送路T1の下端部に微粉排出口M2が形成されている。粗粉搬送路T2の下端部に粗粉排出口M3が形成されている。
(コアンダブロック及び原料供給ノズル)
図4はコアンダブロック8及び原料供給ノズル12を拡大して示している。コアンダブロック8の先端部Eの断面形状は円弧形状に形成されている。先端部Eは第1の先端部E1と第2の先端部E2とを有している。第1の先端部E1と第2の先端部E2は連続している。第1の先端部E1の断面形状は半径r1の円弧形状である。第2の先端部E2の断面形状は半径r2の円弧形状である。r1<r2である。
r1及びr2は粉体原料の種類及びコアンダブロック8の材質に応じて適宜に設定されるが、粉体原料をトナーとしている本実施形態では、好ましくは5mm<r1<30mm、より好ましくは10mm<r1<20mm、さらに好ましくはr1=15mmである。一方、好ましくは15mm<r2<40mm、より好ましくは20mm<r2<30mm、さらに好ましくはr2=25mmである。
原料供給ノズル12の先端の位置、すなわちノズル開口12cの位置は、コアンダブロック8の先端よりも距離D1だけ後方へ退いている。この距離D1は任意の距離のことであるが、本実施形態ではこの距離D1は図4に示すように、コアンダブロック8の先端部Eの円弧形状が開始する点P1に合わされている。しかしながら、コアンダブロック8の先端に対してノズル開口12cを配置する距離D1は必ずしも円弧形状が開始する点P1に合わせる必要はない。
このことに関し従来の気流分級機においては、コアンダブロック8の上側表面8aにおいてコアンダブロック8の先端部Eが始まる点、すなわち円弧形状が始まる点P1から原料供給の上流側に向かって10mmの位置に距離D1を設定していた。本実施形態においても、円弧形状が始まる点P1から原料供給の上流側に向かって10mmの位置に距離D1を設定することができる。あるいは、その他の適宜の距離の位置に距離D1を設定することもできる。
また、原料供給ノズル12は水平方向Hに対して角度αだけ傾斜している。ここにいう「水平方向」とは、粉体搬送路としての微粉搬送路T1及び粗粉搬送路T2が垂直方向を向くように配置したとき(すなわち、分級本体2が図1において垂直方向に立っているとき)の水平方向の意味である。なお、本実施形態では、コアンダブロック8の表面8aの直線部分8bが水平に対して同じ角度αだけ傾斜している。従って、原料供給ノズル12の下側側面12aがコアンダブロック8の表面8aの直線部分8bに全面的に接触している。
角度αは粉体原料の種類及び原料供給ノズル12の材質に応じて適宜に設定されるが、粉体原料をトナーとしている本実施形態では、角度αは0°<α<90°、好ましくは10°<α<45°、より好ましくは20°<α<40°である。さらに好ましくはα=28°である。
コアンダブロック8の表面8aの直線部分8bはコアンダブロック8の第1の先端部E1の円弧形状の接線方向に延びている。従って、原料供給ノズル12はコアンダブロックの先端部Eの円弧形状の接線方向に延在している。
コアンダブロック8の先端部Eの断面形状を円弧形状に形成し、さらに、原料供給ノズル12の先端のノズル開口12cの位置をコアンダブロック8の先端よりも距離D1だけ後方へ退いて設けたことにより、ノズル開口12cから出射された粉体原料のうちの微粉はコアンダ効果に従ってコアンダブロック8の先端部Eに引き寄せられながら微粉搬送路T1内へ進入する。
コアンダ効果とは、粘性流体の噴流(ジェット)が近くの壁に引き寄せられることである。これは、噴流が周りの流体を引き込む性質を有していることに起因するものである。
既述の通り距離D1は任意の値に設定できるが、図4に示すようにコアンダブロック8の先端部Eが始まる点、すなわち円弧形状が始まる点P1に距離D1を合わせることにすれば、上記のように原料供給ノズル12を角度αで傾斜させたときにコアンダ効果を実現する上で好都合である。
(原料供給ノズルの先端部)
図5(a)及び図5(b)はコアンダブロック8及び原料供給ノズル12を拡大して示している。図5(b)は図5(a)における矢印Aに従った図である。図5(a)において、コアンダブロック8の上側の表面8aから原料供給ノズル12のノズル開口12cの底辺12dまでの距離はZ1である。また、コアンダブロック8の上側の表面8aから原料供給ノズル12の中心線X0までの距離はZ2である。これらの距離Z1及びZ2は、原料供給ノズル12の下側の壁部材の厚さを含んだ距離である。よって、原料供給ノズル12の下側の壁部材の厚さを調整することによりZ1及びZ2を調整することができる。
Z1及びZ2は粉体原料の種類及び原料供給ノズル12の材質に応じて適宜に設定されるが、粉体原料をトナーとしている本実施形態では、好ましくは2mm<Z1<5mm、さらに好ましくはZ1=3mmである。一方、好ましくは4mm<Z2<8mm、より好ましくは5mm<Z2<7mm、さらに好ましくはZ2=6mmである。
図5(b)において、原料供給ノズル12の断面形状は必要に応じて適宜の形状とすることができるが、本実施形態では長方形状である。この長方形状の縦長さL1は例えばL1=12mmであり、横長さL2は例えばL2=25mmである。
原料供給ノズル12のノズル開口12cの断面形状は必要に応じて適宜の形状とすることができるが、本実施形態では水平方向に長い長方形状である。この長方形状の縦長さL3は例えばL3=6mmであり、横長さL4は例えばL4=15mmである。
図7(b)はノズル底辺の高さZ1が2mmを下回っている従来の構造を示している。具体的にはノズル開口12cの底辺12dのコアンダブロック表面28aからの高さZ1=0mmである。図5(a)に示す本実施形態(Z1が存在)の場合でも、図7(b)に示す従来例(Z1が存在しない)の場合でも、ノズル開口12cから気流が噴射するとき、その気流はノズル開口12cから出た瞬間に膨張して噴流となる。Z1が2mmを下回っている図7(b)に示す従来例においては、ノズル開口12cで膨張した噴流がコアンダブロック28の表面28aで反発し、そのため、気流が上方向側のみに膨らんでコアンダブロック28から離れてしまう。こうなると、期待したコアンダ効果が得られないおそれがある。
他方、図5(a)のZ1が5mmを越える場合には、ノズル開口12cから噴射された気流がコアンダブロック8から遠く離れた領域に進むことになる。このため、気流はコアンダ効果を十分に受けることが出来ず、その結果、微粉を精度高く分級することができなくなる。
以上を考慮すると、2mm<Z1<5mmであることが好ましい。これにより、図7(a)に示すように、ノズル開口12cから噴射された直後の気流の噴流をバランス良く膨張させながら進行させることが可能となる。このため、コアンダブロック8の先端部Eに沿った滑らかな気流を形成することが可能になり、その結果、高精度な分級効果を得ることができる。
(原料供給系)
図1に戻って、原料供給系3は、気流供給源としてのエアーポンプ16と、原料分散装置としてのエジェクタ17と、粉体原料を原料供給ノズル12へ向けて搬送する原料搬送管18とを有している。エアーポンプ16は原料搬送管18内を流れる気流を形成する。エジェクタ17は粉体原料を気流内へ分散させる。
原料供給ノズル12の上流側に設けられた原料搬送管18は1つの方向(本実施形態では重力が作用する方向である下方向)へ湾曲している。原料搬送管18を曲げる方向は分級本体2を設置する方向と関連している。本実施形態の分級本体2は図1に示すように垂直上下方向へ立った状態で設けられている。そして、粉体原料は垂直下方向へ流れる間に分級処理を受ける。この状態のときに、原料搬送管18は1つの方向である下方向へ曲げられている。
仮に、粉体原料が垂直上方向へ流れる間に分級処理を受けるのであれば、原料搬送管18は1つの方向である上方向へ曲げられる。仮に、粉体原料が左右方向へ流れる間に分級処理を受けるのであれば、原料搬送管18は1つの方向である左方向又は右方向へ曲げられる。
本実施形態の場合は、例えば図6に示すように、曲げ角度範囲β=28°、曲げ長さL5=260mm、曲げ半径r3=562mmの条件で原料搬送管18が曲げられている。原料搬送管18をこのように曲げたことにより、原料搬送管18の中を流れる粉体原料に含まれる粉体粒子の質量に応じた大きさの遠心力が各粉体粒子に加わる。これにより、粗粉は原料搬送管18の外周側へ集められ、微粉は原料搬送管18の内周側へ集められ、その結果、粉体原料の粒子の大きさに応じた分散が促される。このように、コアンダブロック8の先端部Eにおいてコアンダ効果を実行する前に、湾曲する原料搬送管18によって粉体原料の分散処理を行うようにすれば、コアンダ効果によって微粉をコアンダブロック8の先端部Eに沿って流動させる現象を確実に実行することができる。
このような遠心力による分散処理をコアンダブロック8の先端のコアンダ効果領域又はその近傍において行うと、気流に乱れが生じて良好なコアンダ効果を得ることができなくなるおそれがある。これに対し、本実施形態のように、前もって原料搬送管18の内部において遠心力に応じた分散処理を行うようにすれば、気流の乱れを生じることなく安定した効率の良いコアンダ効果を実現できる。
(粉体回収系)
図1において、粉体回収系4は、分級本体2の微粉排出口M2に接続された微粉吸引管21と、粉体を貯留する粉体回収手段としての微粉用サイクロン22と、分級本体2の粗粉排出口M3に接続された粗粉吸引管23と、粉体を貯留する粉体回収手段としての粗粉用サイクロン24とを有する。サイクロン22,24の後段には気体吸引装置であるブロア25が設けられている。ブロア25が作動すると、分級本体2の内部の空気が吸引され、気流導入口M1から空気が気流になって導入される。この気流はコアンダブロック8の先端部Eの前の近傍を通って粉体搬送路としての微粉搬送路T1及び粗粉搬送路T2へ流れ込む。なお、粉体回収手段はサイクロンに限られない。
(全体的な動作)
図1において、ブロア25が作動して、分級本体2の内部に気流が形成される。具体的には、上部の気流導入口M1から下部の微粉排出口M2へ向かう気流、及び気流導入口M1から下部の粗粉排出口M3へ向かう気流がコアンダブロック8の先端部Eの前方の近傍に形成される。さらに、エアーポンプ16が作動し、さらにエジェクタ17に粉体原料Gが投入されると、エジェクタ17により空気の気流中に粉体原料が分散する。粉体原料を含んだ気流が、湾曲している原料搬送管18に入ると、遠心力の働きにより、粗粉は外側へ微粉は内側へ揃えられる。
その後、図3において、原料供給ノズル12のノズル開口12cから粉体原料が噴射される。噴射された粉体原料のうちの粗粉は、慣性力の影響により、遠くまで飛んで粗粉搬送路T2へ入る。原料供給ノズル12による粉体原料の噴射方向Sは原料供給ノズル12の中心線X0に沿った方向である。この噴射方向Sは、対向ブロック9の突出部9aの頂点よりも下の位置を指向している。このため、慣性力によって飛ばされた粗粉は確実に粗粉搬送路T2へ進入する。
他方、粉体原料のうちの微粉は、コアンダブロック8の先端部Eに生じるコアンダ効果の働きにより、先端部Eの円弧面に沿って進行して微粉搬送路T1へ進入する。本実施形態では直径10μmを越える粒子が粗粉であり、直径10μm以下の粒子が微粉である。本実施形態では、図6に示したように原料供給ノズル12の前段に設けられた原料搬送管18を湾曲させたので、遠心力の働きにより粗粉が外側領域へ集められ、微粉が内側領域へ集められる。このため、コアンダブロック8の先端部Eにおけるコアンダ効果が有効に機能して、分級エッジ10によって粗粉と微粉とが精度高く分級される。
図1において、分級によって得られた微粉は微粉吸引管21を通して微粉用サイクロン22に製品として収容される。他方、分級によって得られた粗粉は粗粉吸引管23を通して粗粉用サイクロン24に収容される。粗粉は製品でない粉として収容される。粗粉は必要に応じて粉砕処理を受けた後、再度、粉体原料としてエジェクタ17へ投入される。
(本実施形態によって得られる効果)
(1) 本実施形態においては、図5(a)に示したように、コアンダブロック8の上側の表面8aからノズル開口12cの底辺12dまでの間に距離Z1を設けた。このため、ノズル開口12cから噴射された気流が膨らんだ場合でも、その気流がコアンダブロック8の表面8aで反発することがない。従って、その気流は図7(a)に示すようにコアンダブロック8の先端部Eに沿って滑らかな気流を形成し、その結果、高精度な分級効果を得ることができる。
(2) また、図4において、原料供給ノズル12による原料供給方向Sを水平に対して角度αだけ傾斜させたので、図7(b)に示すように原料供給方向を水平方向としていた従来の場合に比べて、図4のコアンダブロック8の先端部Eへ粉体原料を滑らかな気流として供給できる。そのため、先端部Eの所で粉体原料に付与されるコアンダ効果の機能を一層高めることができる。
(3) また、図6において原料供給ノズル12の前段に設けられた原料搬送管18は1つの方向である下方向へ湾曲しているので、遠心力の働きにより粉体原料のうちの粗粉が原料搬送管18中の外側領域へ集まり、微粉が原料搬送管18中の内側領域へ集まる。このため、コアンダブロック8の先端部Eにおけるコアンダ効果を有効に活用して、微粉と粗粉とを精度高く分級できる。
粉体流を湾曲させることによって発生する遠心力によって粗粉と微粉とを分ける処理をコアンダブロック8の先端部Eの近傍において行おうとすると、その先端部Eにおいて気流が乱れるおそれがあり、その場合にはコアンダ効果による微粉の分級処理を有効に行うことが難しくなるおそれがある。これに対し、本実施形態では図6に示すようにコアンダブロック8の先端部Eから距離的に離れた原料搬送管18の所で遠心力による粗粉と微粉との分離を行うようにしたので、コアンダブロック8の先端部Eにおける気流が乱れることはなく、従ってコアンダ効果を有効に活用できる。
(4) また、図3及び図4において、原料供給ノズル12はコアンダブロック8の先端部Eの円弧形状の接線方向に延在しているので、粉体原料を含んだ気流をコアンダブロック8の先端部Eへ無理なく導くことが可能になり、その結果、その先端部Eの所で粉体原料に対して発生するコアンダ効果の機能をより一層高めることができる。
(5) また、コアンダブロック8の先端部Eの断面形状は、半径の小さい第1の先端部E1と、それに連続する半径の大きい第2の先端部E2とによって形成されているので、コアンダブロック8の先端部Eの所で粉体原料に対して発生するコアンダ効果の機能をより一層高めることができる。
(他の実施形態)
以上、好ましい実施形態を挙げて本発明を説明したが、本発明はその実施形態に限定されるものでなく、請求の範囲に記載した発明の範囲内で種々に改変できる。
例えば、上記の実施形態においては、粉体原料を粗粉と微粉の2階級に分級する、いわゆる気流2分級機に対して本発明を適用した。しかしながら、本発明は粉体原料を粗粉、中間粉、微粉の3階級に分級する気流分級機(例えば、特開2004−230313号公報、特にその図6に示された気流分級機)に対しても適用できる。あるいは、本発明は粉体原料を4階級以上に分級する気流分級機に対しても適用できる。なお、分級の階級数を増やすことは、例えば、図3において分級エッジ10の数を2個以上とすることにより実現できる。
次に、図1に示す実施形態では、分級本体2内の気流の流れ方向を上から下に設定した関連で、原料搬送管18を下向きに湾曲させた。しかしながら、分級本体2内の気流の流れ方向が下から上に向かう方向や、左右方向に設定される場合には、原料搬送管18の湾曲方向はそれらに応じて適宜に選定する。
次に、図4に示した実施形態では、コアンダ効果を実現する部分を円弧形状部分Eとし、特に径の小さい第1の部分E1と径の大きい第2の部分E2の連続構造とした。しかしながら、コアンダ効果を実現する部分は、単一の径の部分とすることもできるし、場合によっては円弧形状以外の曲面形状とすることもできる。
1.気流分級機、 2.分級本体、 3.原料供給系、 4.粉体回収系、 7a.前側板、 7b.後側板、 8.コアンダブロック、 8a.表面、 8b.直線部分、 9.対向ブロック、 9a.突出部、 9b.上傾斜面、 9c.下傾斜面、 10.分級エッジ、 11.搬送ブロック、 12.原料供給ノズル、 12a.下側側面、 12b.ノズル内底面、 12c.ノズル開口、 12d.ノズル開口底辺、 13.軸、 16.エアーポンプ(気流供給源)、 17.エジェクタ(原料分散装置)、 18.原料搬送管、 21.微粉吸引管、 22.微粉用サイクロン、 23.粗粉吸引管、 24.粗粉用サイクロン、 25.ブロア(気体吸引装置)、 28.コアンダブロック、 28a.上側の表面、 28b.辺面、 α.原料供給ノズルの傾斜角度、 β.原料搬送管の曲げ角度範囲、 D1.ノズル開口の退避距離、 E.先端部、 E1.第1の先端部、 E2.第2の先端部、 G.粉体原料、 H.水平方向、
L1,L2,L3,L4.長さ、 L5.曲げ長さ、 M1.気流導入口、 M2.微粉排出口、 M3.粗粉排出口、 P1.円弧形状が始まる点、 r1,r2.半径、 r3.曲げ半径、 T1.微粉搬送路(粉体搬送路)、 T2.粗粉搬送路(粉体搬送路)、 X0.原料供給ノズルの中心線、 Z1.ノズル開口の底辺までの距離、 Z2.ノズル中心線までの距離

Claims (5)

  1. 粉体原料を少なくとも2つの階級に分級する気流分級機において、
    粉体原料に対してコアンダ効果を実現するように設けられたコアンダブロック及び原料供給ノズルと、
    前記少なくとも2つの階級に対応した粉体搬送路を形成する少なくとも1つの分級エッジと、を有しており、
    前記原料供給ノズルのノズル開口の底辺は前記コアンダブロックの表面に対して間隔をもって配置されている
    ことを特徴とする気流分級機。
  2. 粉体原料を微粉と粗粉の2種類だけに分ける気流分級機において、
    粉体原料に対してコアンダ効果を実現するように設けられたコアンダブロック及び原料供給ノズルと、
    微粉を搬送する粉体搬送路と粗粉を搬送する粉体搬送路とを形成する分級エッジと、を有しており、
    前記原料供給ノズルのノズル開口の底辺は前記コアンダブロックの表面に対して間隔をもって配置されている
    ことを特徴とする気流分級機。
  3. 前記コアンダブロックにおいてコアンダ効果を実現する部分の断面形状は円弧形状であり、
    前記原料供給ノズルのノズル開口の底辺は前記円弧形状が始まる点に合わせて配置されている
    ことを特徴とする請求項1又は請求項2記載の気流分級機。
  4. 前記原料供給ノズルのノズル開口の底辺と前記コアンダブロックの表面との間の間隔は、前記原料供給ノズルを形成している壁部材の厚さによって形成されていることを特徴とする請求項1から請求項3のいずれか1つに記載の気流分級機。
  5. 前記原料供給ノズルによって規定される原料供給方向は、前記粉体搬送路を垂直方向に配置したときの水平方向に対して傾斜していることを特徴とする請求項1から請求項4のいずれか1つに記載の気流分級機。
JP2016230922A 2016-11-29 2016-11-29 気流分級機 Pending JP2018086628A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016230922A JP2018086628A (ja) 2016-11-29 2016-11-29 気流分級機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016230922A JP2018086628A (ja) 2016-11-29 2016-11-29 気流分級機

Publications (1)

Publication Number Publication Date
JP2018086628A true JP2018086628A (ja) 2018-06-07

Family

ID=62494141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016230922A Pending JP2018086628A (ja) 2016-11-29 2016-11-29 気流分級機

Country Status (1)

Country Link
JP (1) JP2018086628A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2761802C1 (ru) * 2018-11-05 2021-12-13 Уси Литтл Суон Электрик Ко., Лтд. Генератор микропузырьков и устройство для обработки белья
US11598041B2 (en) 2018-11-05 2023-03-07 Wuxi Little Swan Electric Co., Ltd. Microbubble generator and laundry treating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2761802C1 (ru) * 2018-11-05 2021-12-13 Уси Литтл Суон Электрик Ко., Лтд. Генератор микропузырьков и устройство для обработки белья
US11598041B2 (en) 2018-11-05 2023-03-07 Wuxi Little Swan Electric Co., Ltd. Microbubble generator and laundry treating device

Similar Documents

Publication Publication Date Title
JP2018086628A (ja) 気流分級機
KR102201557B1 (ko) 분체 분급장치
JP6255681B2 (ja) トナーの製造方法およびトナーの製造装置
US5934478A (en) Gas stream classifier and process for producing toner
JP6927693B2 (ja) 気流2分級機
JP6980599B2 (ja) 気流分級機
JPH06230606A (ja) トナーの製造方法及びそのための製造装置システム
JP2000042494A (ja) 気流式分級方法
JP7137378B2 (ja) 気流分級装置
JP3176779B2 (ja) 気流分級機及び気流分級方法
JP2727245B2 (ja) 気流分級機及び気流分級方法
JP3679163B2 (ja) 気流分級機
JP6238104B2 (ja) 分級装置及び粉砕分級装置
JP5234411B2 (ja) トナー製造方法およびトナー製造装置
JP6327919B2 (ja) 気流式分級装置
JP3185065B2 (ja) 衝突式気流粉砕装置
JP6569060B2 (ja) 分級機
JP6660701B2 (ja) 粉砕装置
JP2007007523A (ja) 分級装置および分級システム
JPH0889900A (ja) 気流分級方法及び気流分級機並びに該分級機を備えた分級装置
JP4066422B2 (ja) 気流分級装置
JPH0780415A (ja) 気流式分級機及び気流式分級方法
JPH07132241A (ja) 微粉砕装置
JP2001121086A (ja) 気流式分級装置
JPH11290783A (ja) 気流式分級装置