JP6927150B2 - Method for manufacturing silicon single crystal - Google Patents

Method for manufacturing silicon single crystal Download PDF

Info

Publication number
JP6927150B2
JP6927150B2 JP2018102016A JP2018102016A JP6927150B2 JP 6927150 B2 JP6927150 B2 JP 6927150B2 JP 2018102016 A JP2018102016 A JP 2018102016A JP 2018102016 A JP2018102016 A JP 2018102016A JP 6927150 B2 JP6927150 B2 JP 6927150B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
raw material
material melt
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018102016A
Other languages
Japanese (ja)
Other versions
JP2019206451A (en
Inventor
孝世 菅原
孝世 菅原
星 亮二
亮二 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2018102016A priority Critical patent/JP6927150B2/en
Priority to KR1020190045181A priority patent/KR20190135913A/en
Priority to CN201910458568.0A priority patent/CN110541191B/en
Publication of JP2019206451A publication Critical patent/JP2019206451A/en
Application granted granted Critical
Publication of JP6927150B2 publication Critical patent/JP6927150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Description

本発明は、シリコン単結晶の製造方法、エピタキシャルシリコンウェーハ及びシリコン単結晶基板に関する。 The present invention relates to a method for producing a silicon single crystal, an epitaxial silicon wafer, and a silicon single crystal substrate.

近年、微細化が進む半導体デバイス(Logic、NAND、DRAM等)においては、二つの大きな課題がある。 In recent years, semiconductor devices (Logic, NAND, DRAM, etc.) that have been miniaturized have two major problems.

一つは、ウェーハ表面近傍の極小さな欠陥もデバイス不良の要因となり得るため、デバイス動作領域となる表面近傍で欠陥が少ないもしくは無い高品質なウェーハを製造しなければならないことである。 One is that even extremely small defects near the wafer surface can cause device defects, so it is necessary to manufacture a high-quality wafer with few or no defects near the surface, which is the device operating region.

もう一つは、プロセスが低温・短時間化してきている影響で、従来はデバイスプロセス中に十分に形成が可能であった、不純物金属のゲッタリングサイトとなるBMD(Bulk Micro Defect)が形成されにくく、デバイスの歩留りの低下要因となることである。 The other is the formation of BMD (Bulk Micro Defect), which is a gettering site for impurity metals, which was conventionally sufficiently formed during the device process due to the effect of the process becoming colder and shorter. It is difficult and causes a decrease in the yield of the device.

前者のウェーハ表面近傍の欠陥に対する要求を満足するものとしては、空孔起因のCOP(Crystal Originated Particle)を有するV−rich領域や熱酸化時にリング状に酸化誘起積層欠陥が発生するR−OSF領域、格子間シリコン起因の転位ループや転位クラスターのいずれも含まないN(Neutral)領域で製造された低/無欠陥結晶のシリコン単結晶基板や、基板上に無欠陥の層を形成するエピタキシャルシリコンウェーハ、アニールウェーハがある。 The former requirement for defects near the wafer surface is a V-rich region having a COP (Crystal Organized Particle) due to vacancies and an R-OSF region in which ring-shaped oxidation-induced stacking defects occur during thermal oxidation. Low / defect-free crystalline silicon single crystal substrates manufactured in the N (Neutral) region that do not contain any dislocation loops or dislocation clusters due to interstitial silicon, or epitaxial silicon wafers that form defect-free layers on the substrate. , There are annealed wafers.

このうち、アニールウェーハにおいては、無欠陥層を形成するために要する後処理時間が長く、大量供給には不向きで高コストになり易いという問題がある。 Of these, the annealed wafer has a problem that the post-processing time required to form the defect-free layer is long, it is not suitable for mass supply, and the cost tends to be high.

エピタキシャルシリコンウェーハは比較的短時間の後処理で無欠陥層形成が可能であるが、低/無欠陥結晶のシリコン単結晶基板と比べると追加のコストがかかってしまう。 The epitaxial silicon wafer can form a defect-free layer in a relatively short time after treatment, but it costs an additional cost as compared with a silicon single crystal substrate having a low / defect-free crystal.

また、エピタキシャルシリコンウェーハでは、後処理の追加コストを相殺するため、低/無欠陥結晶よりも高速で結晶成長させた高生産性のV−rich結晶を用いるのが一般的となっている。 Further, in the epitaxial silicon wafer, in order to offset the additional cost of post-processing, it is common to use a highly productive V-rich crystal in which the crystal is grown at a higher speed than the low / defect-free crystal.

不純物金属のゲッタリングサイトとなるBMDを増やすには、窒素ドープが有効であることが知られている。しかしながら、窒素ドープしたV−rich結晶においては、ウェーハ外周部でR−OSF領域起因のBMD密度低下、EP欠陥化、及び、高窒素原子濃度でドープした際の板状または棒状のCOPに起因するEP欠陥化が問題になる場合がある。 Nitrogen doping is known to be effective in increasing BMD, which is a gettering site for impurity metals. However, in the nitrogen-doped V-rich crystal, it is caused by the decrease in BMD density due to the R-OSF region, EP defectation, and the plate-like or rod-like COP when doped at a high nitrogen atom concentration in the outer peripheral portion of the wafer. EP defects can be a problem.

これを回避するために、結晶を製品直径よりも太く成長させて、円筒研削でR−OSFにあたる部分を取り除く方法があるが、研削ロス、研削加工のコスト、及び、時間がかかってしまう。また、別の方法として、R−OSFを含まないN−領域の結晶を用いる方法があるが、窒素をドープして、歩留り良く、R−OSFを含まない結晶を得ることは困難であった。 In order to avoid this, there is a method of growing the crystal thicker than the product diameter and removing the portion corresponding to R-OSF by cylindrical grinding, but grinding loss, grinding cost, and time are required. Another method is to use crystals in the N- region that do not contain R-OSF, but it has been difficult to obtain crystals that do not contain R-OSF and have good yield by doping with nitrogen.

次に、後者の微細化に伴う低温・短時間プロセスの影響について説明する。 Next, the effect of the low-temperature, short-time process due to the latter miniaturization will be described.

MOSFETの動作(ソース・ドレイン電流)には、ゲート絶縁膜の静電容量(=絶縁膜比誘電率×ゲート面積/絶縁膜厚さ)が必要量確保されなければならない。そこで、半導体デバイスの微細化の進行で、ゲート長が短くなってゲート面積が減少する分を、ゲート絶縁膜の薄膜化で補っている。 For the operation of the MOSFET (source / drain current), the required amount of capacitance (= insulating film relative permittivity x gate area / insulating film thickness) of the gate insulating film must be secured. Therefore, the reduction in the gate area due to the shortening of the gate length due to the progress of miniaturization of the semiconductor device is compensated for by thinning the gate insulating film.

そのため、近年の半導体デバイスにおいては、ゲート絶縁膜は0.5nm程度と極薄いEOT(等価酸化膜厚)となっており、ゲート絶縁膜の均一性がデバイス動作の信頼性に対する重要なファクターを占めることとなっている。そこで、デバイス工程の各種熱処理を低温・短時間化することでゲート絶縁膜の膜厚・膜質の均一化が図られている。 Therefore, in recent semiconductor devices, the gate insulating film has an extremely thin EOT (equivalent oxide film thickness) of about 0.5 nm, and the uniformity of the gate insulating film occupies an important factor for the reliability of device operation. It is supposed to be. Therefore, the film thickness and film quality of the gate insulating film are made uniform by shortening the temperature and time of various heat treatments in the device process.

しかしながら、デバイスプロセスの低温・短時間化の弊害として、従来は、不純物金属のゲッタリングサイトとなるBMDが、デバイスプロセス中において、基板中に十分に形成されていたのに対して、低温・短時間のデバイスプロセス中ではBMD形成が少なく、不純物金属に対するゲッタリング能力が減少してしまい、デバイス歩留りの低下要因となることがある。 However, as an adverse effect of lowering the temperature and shortening the time required for the device process, BMD, which is a gettering site for impurity metals, was sufficiently formed in the substrate during the device process, whereas it is low temperature and short. BMD formation is low during the time device process, and the gettering ability for impurity metals is reduced, which may cause a decrease in device yield.

このような問題があるため、先端の低温・短時間のデバイスプロセスにおいて、従来よりもBMDを形成しやすく、低温・短時間のデバイスプロセス中においても高ゲッタリング能力を得ることができるウェーハが必要とされている。 Due to these problems, it is necessary to have a wafer that is easier to form BMD than before in a low-temperature, short-time device process at the tip and can obtain high gettering ability even during a low-temperature, short-time device process. It is said that.

低温・短時間のデバイスプロセス中に十分なBMDを形成するためには、特許文献1に示されているように、窒素ドープによって空孔凝集を抑制して、残存過剰空孔による析出核形成の促進によって、デバイスプロセス前に熱的に安定な(大きいサイズの)析出核を増加させる方法が有効であることが知られている。 In order to form a sufficient BMD during a low-temperature, short-time device process, as shown in Patent Document 1, vacancy aggregation is suppressed by nitrogen doping, and precipitation nucleation due to residual excess vacancy is formed. It is known that a method of increasing thermally stable (large size) precipitated nuclei by facilitation is effective before the device process.

しかしながら、先に述べた窒素ドープしたV−rich結晶を基板に用いたエピタキシャルシリコンウェーハにおいては、ウェーハ外周部でR−OSF領域起因のBMD密度低下、EP欠陥化、及び、高濃度で窒素ドープした際の板状または棒状のCOPに起因するEP欠陥化が問題になる場合があった。 However, in the epitaxial silicon wafer using the nitrogen-doped V-rich crystal described above as a substrate, the BMD density was lowered due to the R-OSF region, EP defects were formed, and nitrogen was doped at a high concentration on the outer peripheral portion of the wafer. EP defects due to plate-shaped or rod-shaped COP may be a problem.

特開2001−139396号公報Japanese Unexamined Patent Publication No. 2001-139396 特開2000−53497号公報Japanese Unexamined Patent Publication No. 2000-53497 特開平11−79889号公報Japanese Unexamined Patent Publication No. 11-79889 特開2000−178099号公報Japanese Unexamined Patent Publication No. 2000-178099 WO2002/000969WO2002 / 000969 特開2000−16897号公報Japanese Unexamined Patent Publication No. 2000-16897 特開2000−159595号公報Japanese Unexamined Patent Publication No. 2000-159595 特開2008−66357号公報Japanese Unexamined Patent Publication No. 2008-66357 特開2007−70132号公報JP-A-2007-701132 特開2016−13957号公報Japanese Unexamined Patent Publication No. 2016-13957

本発明は上記問題に鑑みてなされたものであり、窒素ドープによって析出(BMD形成)が促進された低/無欠陥結晶シリコン単結晶基板及びそれを基板に用いたエピタキシャルシリコンウェーハにおいて、先端の低温・短時間のデバイスプロセスにおいても十分なBMD形成が可能で、高いゲッタリング能力を有するウェーハを高い歩留りで製造可能とするシリコン単結晶の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and in a low / defect-free crystalline silicon single crystal substrate in which precipitation (BMD formation) is promoted by nitrogen doping and an epitaxial silicon wafer using the substrate, the low temperature at the tip is used. -It is an object of the present invention to provide a method for producing a silicon single crystal, which enables sufficient BMD formation even in a short-time device process and can produce a wafer having a high gettering ability with a high yield.

上記課題を解決するために、本発明は、チョクラルスキー法によって、結晶全面がN−領域となる条件で引上げることによってシリコン単結晶を育成する方法であって、前記シリコン単結晶を育成する際に、窒素を2×1013atoms/cm以上3.2×1014atoms/cm以下の窒素濃度でドープし、前記シリコン単結晶の引上げ軸方向の結晶中心部の温度勾配Gcと結晶周辺部(結晶外周部)の温度勾配Geの比をGe/Gc>1となるようにし、前記Ge/Gcを、前記シリコン単結晶の引上げの際の偏析による窒素濃度の増加に応じて、徐々に大きくすることを特徴とするシリコン単結晶の製造方法を提供する。 In order to solve the above problems, the present invention is a method for growing a silicon single crystal by pulling it up under the condition that the entire surface of the crystal is in the N- region by the Czochralski method, and the silicon single crystal is grown. At that time, nitrogen was doped at a nitrogen concentration of 2 × 10 13 atoms / cm 3 or more and 3.2 × 10 14 atoms / cm 3 or less, and the temperature gradient Gc and the crystal at the center of the crystal in the pulling axis direction of the silicon single crystal. The ratio of the temperature gradient Ge of the peripheral portion (outer peripheral portion of the crystal) is set to Ge / Gc> 1, and the Ge / Gc is gradually increased according to the increase in nitrogen concentration due to segregation during pulling of the silicon single crystal. Provided is a method for producing a silicon single crystal, which is characterized in that the size of the silicon single crystal is increased.

このようなシリコン単結晶の製造方法であれば、高濃度に窒素をドープすることによって、熱的に安定な大きいサイズの析出核を増加させて、低温・短時間のデバイスプロセスにおいても高いBMD形成能力(ゲッタリング能力)を達成しつつ、結晶育成中の偏析による窒素高濃度化によって生じる欠陥分布変化を矯正・調整して、結晶全長の広い窒素濃度範囲においてもR−OSF領域を回避したシリコン単結晶を製造することができる。 In such a method for producing a silicon single crystal, by doping nitrogen at a high concentration, the number of thermally stable large-sized precipitated nuclei is increased, and high BMD is formed even in a low-temperature, short-time device process. Silicon that avoids the R-OSF region even in the wide nitrogen concentration range of the entire crystal length by correcting and adjusting the defect distribution change caused by the high nitrogen concentration due to segregation during crystal growth while achieving the ability (gettering ability). A single crystal can be produced.

このとき、前記Ge/Gcの調整を、石英ルツボ内の原料融液直上に配置された熱遮蔽体と前記原料融液の液面との間隔を制御すること、前記石英ルツボを囲うように配置されたヒーターの位置を前記原料融液の液面に対して低くすること、前記シリコン単結晶の製造装置のメインチャンバーの外側に配置された磁場印加装置の磁場強度を弱くすること、及び、前記磁場印加装置の位置を低くすること、のうちいずれか一つあるいは二つ以上の組み合わせによって行なうことが好ましい。 At this time, the Ge / Gc is adjusted so as to control the distance between the heat shield arranged directly above the raw material melt in the quartz crucible and the liquid level of the raw material melt, and to surround the quartz crucible. The position of the heater is lowered with respect to the liquid level of the raw material melt, the magnetic field strength of the magnetic field applying device arranged outside the main chamber of the silicon single crystal manufacturing device is weakened, and the above. It is preferable to lower the position of the magnetic field applying device by any one or a combination of two or more.

このようなGe/Gcの調整方法であれば、製造装置を大きく変更することがないため、簡便にGe/Gcを調整することが可能となる。 With such an adjustment method of Ge / Gc, since the manufacturing apparatus is not significantly changed, it is possible to easily adjust Ge / Gc.

またこのとき、前記Ge/Gcの調整を、前記熱遮蔽体と前記原料融液の液面との間隔を制御することによって行なう際に、窒素をドープしない場合に結晶全面がN−領域となる条件における前記熱遮蔽体と前記原料融液の液面との間隔をDとしたときに、窒素をドープする場合の前記熱遮蔽体と前記原料融液の液面との間隔D’を、窒素濃度に応じて、D’/D=0.94−窒素濃度/(2.41×1015)から求めたD’となるように変化させることが好ましい。 At this time, when the Ge / Gc is adjusted by controlling the distance between the heat shield and the liquid surface of the raw material melt, the entire surface of the crystal becomes an N-region when nitrogen is not doped. When the distance between the heat shield and the liquid level of the raw material melt under the conditions is D, the distance D'between the heat shield and the liquid level of the raw material melt when nitrogen is doped is set to nitrogen. It is preferable to change the concentration so that D'/ D = 0.94-nitrogen concentration / (2.41 × 10 15) gives D'.

このようなGe/Gcの調整方法であれば、Ge/Gcの調整を、簡便かつ正確に窒素濃度に応じて、熱遮蔽体と原料融液の液面との間隔を調整することによって行うことができるため、より簡便にGe/Gcを調整することが可能となる。 In such a Ge / Gc adjusting method, Ge / Gc is adjusted simply and accurately by adjusting the distance between the heat shield and the liquid level of the raw material melt according to the nitrogen concentration. Therefore, Ge / Gc can be adjusted more easily.

またこのとき、前記求めたD’が20mmより大きくなる場合には、前記熱遮蔽体と前記原料融液の液面との間隔を前記求めたD’とすることで前記Ge/Gcを調整し、前記求めたD’が20mm以下となる場合には、前記熱遮蔽体と前記原料融液の液面との間隔を20mmとし、さらに、前記石英ルツボを囲うように配置されたヒーターの位置を前記原料融液の液面に対して低くすること、前記シリコン単結晶の製造装置のメインチャンバーの外側に配置された磁場印加装置の磁場強度を弱くすること、及び、前記磁場印加装置の位置を低くすること、のうちいずれか一つあるいは二つ以上の組み合わせによって前記Ge/Gcを調整することが好ましい。 At this time, when the obtained D'is larger than 20 mm, the Ge / Gc is adjusted by setting the distance between the heat shield and the liquid surface of the raw material melt to the obtained D'. When the obtained D'is 20 mm or less, the distance between the heat shield and the liquid surface of the raw material melt is set to 20 mm, and the position of the heater arranged so as to surround the quartz rut is set. Lowering the level of the raw material melt with respect to the liquid level, weakening the magnetic field strength of the magnetic field applying device arranged outside the main chamber of the silicon single crystal manufacturing device, and setting the position of the magnetic field applying device. It is preferable to adjust the Ge / Gc by lowering the Ge / Gc by any one or a combination of two or more.

このようなシリコン単結晶の製造方法であれば、熱遮蔽体と原料融液の液面との間隔が狭くなりすぎることがないため、熱遮蔽体によりシリコン単結晶の引き上げを妨げることなくシリコン単結晶を製造することができる。 With such a method for producing a silicon single crystal, the distance between the heat shield and the liquid surface of the raw material melt does not become too narrow, so that the heat shield does not prevent the silicon single crystal from being pulled up. Crystals can be produced.

また、本発明は、結晶全面がN−領域のシリコン単結晶基板上にエピタキシャル層を有するエピタキシャルシリコンウェーハであって、前記シリコン単結晶基板に、窒素が2×1013atoms/cm以上3.2×1014atoms/cm以下の窒素濃度でドープされており、サイズが28nm以上の欠陥の数が10cm以上のシリコン単結晶ブロック内の全基板平均で2個/枚以下で、800℃、3hr+1000℃、2hrの熱処理をした後に検出される平均サイズ45nm以上のBMDが1×10/cm以上の密度のものであることを特徴とするエピタキシャルシリコンウェーハを提供する。 Further, the present invention is an epitaxial silicon wafer having an epitaxial layer on a silicon single crystal substrate in which the entire surface of the crystal is in the N- region, and the silicon single crystal substrate contains 2 × 10 13 atoms / cm 3 or more of nitrogen. It is doped with a nitrogen concentration of 2 × 10 14 atoms / cm 3 or less, and the average number of all substrates in a silicon single crystal block having a size of 28 nm or more and a number of defects of 10 cm or more is 2 / sheet or less, at 800 ° C. Provided is an epitaxial silicon wafer characterized in that the BMD having an average size of 45 nm or more detected after heat treatment at 3 hr + 1000 ° C. and 2 hr has a density of 1 × 10 8 / cm 3 or more.

このようなエピタキシャルシリコンウェーハであれば、R−OSF領域起因のBMD密度低下、EP欠陥化、及び、高濃度での窒素ドープした際の板状または棒状のCOPに起因するEP欠陥化がないものとなる。 Such an epitaxial silicon wafer does not have BMD density reduction due to the R-OSF region, EP defects, and EP defects due to plate-shaped or rod-shaped COPs when nitrogen-doped at a high concentration. It becomes.

また、本発明は、鏡面研磨加工された表面を有する結晶全面がN−領域のシリコン単結晶基板であって、窒素が2×1013atoms/cm以上3.2×1014atoms/cm以下の窒素濃度でドープされており、TDDB特性の良品率が90%以上で、サイズが45nm以上の欠陥の数が10cm以上のシリコン単結晶ブロック内の全基板平均で2個/枚以下であり、800℃、3hr+1000℃、2hrの熱処理をした後に検出される平均サイズ45nm以上のBMDが1×10/cm以上の密度のものであることを特徴とするシリコン単結晶基板を提供する。 Further, in the present invention, the entire surface of the crystal having a mirror-polished surface is a silicon single crystal substrate in the N- region, and the nitrogen content is 2 × 10 13 atoms / cm 3 or more and 3.2 × 10 14 atoms / cm 3 It is doped with the following nitrogen concentration, the non-defective rate of TDDB characteristics is 90% or more, the number of defects of size 45 nm or more is 10 cm or more, and the average number of all substrates in a silicon single crystal block is 2 or less. Provided is a silicon single crystal substrate characterized in that the BMD having an average size of 45 nm or more detected after heat treatment at 800 ° C., 3 hr + 1000 ° C., and 2 hr has a density of 1 × 10 8 / cm 3 or more.

このようなシリコン単結晶基板であれば、R−OSF領域起因のBMD密度低下なく、TDDB特性が良好なものとなる。 With such a silicon single crystal substrate, the TDDB characteristics are good without a decrease in BMD density due to the R-OSF region.

本発明のシリコン単結晶の製造方法であれば、高濃度に窒素をドープすることによって、熱的に安定な大きいサイズの析出核を増加させて、低温・短時間のデバイスプロセスにおいても高いBMD形成能力(ゲッタリング能力)を達成しつつ、結晶育成中の偏析による窒素高濃度化によって生じる欠陥分布変化を矯正・調整して、結晶全長の広い窒素濃度範囲においてもR−OSF領域を回避したシリコン単結晶を製造することができる。
さらに、本発明のエピタキシャルシリコンウェーハであれば、R−OSF領域起因のBMD密度低下、EP欠陥化、及び、高濃度での窒素ドープによる板状または棒状のCOPに起因するEP欠陥化のないものとなる。また、本発明のシリコン単結晶基板であれば、R−OSF領域起因のBMD密度の低下がなく、TDDB特性が良好なものとなる。
In the method for producing a silicon single crystal of the present invention, by doping nitrogen at a high concentration, the number of thermally stable large-sized precipitated nuclei is increased, and high BMD is formed even in a low-temperature, short-time device process. Silicon that avoids the R-OSF region even in the wide nitrogen concentration range of the entire crystal length by correcting and adjusting the defect distribution change caused by the high nitrogen concentration due to segregation during crystal growth while achieving the ability (gettering ability). A single crystal can be produced.
Further, the epitaxial silicon wafer of the present invention does not have BMD density decrease due to the R-OSF region, EP defect formation, and EP defect formation due to plate-shaped or rod-shaped COP due to nitrogen doping at a high concentration. It becomes. Further, in the case of the silicon single crystal substrate of the present invention, there is no decrease in BMD density due to the R-OSF region, and the TDDB characteristics are good.

本発明に用いることができるチョクラルスキー法によるシリコン単結晶の製造装置の一例を示す図である。It is a figure which shows an example of the silicon single crystal manufacturing apparatus by the Czochralski method which can be used in this invention. 比較例1、比較例2、及び、実施例1の引上げ条件でシリコン単結晶を製造した場合の、シリコン単結晶の径方向位置を横軸としたシリコン単結晶の引上げ軸方向における欠陥分布図である。In the defect distribution diagram in the pulling axis direction of the silicon single crystal with the radial position of the silicon single crystal as the horizontal axis when the silicon single crystal is manufactured under the pulling conditions of Comparative Example 1, Comparative Example 2, and Example 1. be. 比較例3におけるエピタキシャルウェーハの欠陥評価の結果を示すグラフである。It is a graph which shows the result of the defect evaluation of the epitaxial wafer in the comparative example 3. 比較例4におけるエピタキシャルウェーハの欠陥評価の結果を示すグラフである。It is a graph which shows the result of the defect evaluation of the epitaxial wafer in the comparative example 4. 実施例2におけるエピタキシャルウェーハの欠陥評価の結果を示すグラフである。It is a graph which shows the result of the defect evaluation of the epitaxial wafer in Example 2. 比較例5におけるシリコン単結晶基板のTDDB特性評価の結果を示すグラフである。It is a graph which shows the result of the TDDB characteristic evaluation of the silicon single crystal substrate in the comparative example 5. 比較例6におけるシリコン単結晶基板のTDDB特性評価の結果を示すグラフである。It is a graph which shows the result of the TDDB characteristic evaluation of the silicon single crystal substrate in the comparative example 6. 実施例3におけるシリコン単結晶基板のTDDB特性評価の結果を示すグラフである。It is a graph which shows the result of the TDDB characteristic evaluation of the silicon single crystal substrate in Example 3.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
なお、本発明者らが本発明を見出すに至るまでの考察や実験の内容も併せて記載しつつ、本発明のシリコン単結晶の製造方法、エピタキシャルシリコンウェーハ、及び、シリコン単結晶基板を説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings as an example of an embodiment, but the present invention is not limited thereto.
The method for producing a silicon single crystal, an epitaxial silicon wafer, and a silicon single crystal substrate of the present invention will be described while also describing the contents of considerations and experiments leading up to the present invention finding the present invention. ..

上述のように、窒素ドープしたV−rich結晶を基板に用いたエピタキシャルシリコンウェーハにおいては、ウェーハ外周部でR−OSF領域起因のBMD密度低下、EP欠陥化、及び、高濃度で窒素ドープした際の板状または棒状のCOPに起因するEP欠陥化が問題になる場合があった。 As described above, in an epitaxial silicon wafer using a nitrogen-doped V-rich crystal as a substrate, when the BMD density is lowered due to the R-OSF region at the outer periphery of the wafer, EP defects are formed, and nitrogen is doped at a high concentration. EP defects due to plate-shaped or rod-shaped COPs may be a problem.

これに対して、本発明者らは、特許文献2にあるような、窒素ドープしたN(Neutral)領域で製造された低/無欠陥結晶のシリコン単結晶基板またはそれを基板に用いたエピタキシャルシリコンウェーハであれば、R−OSF領域起因のBMD密度低下の問題を解消しつつ、窒素ドープによる熱的に安定な(大きいサイズの)析出核の増加とウェーハ表層デバイス動作領域の低/無欠陥要求を両立することができると考えた。 On the other hand, the present inventors have a low / defect-free silicon single crystal substrate manufactured in a nitrogen-doped N (Neutral) region as described in Patent Document 2, or epitaxial silicon using the same as the substrate. For wafers, while solving the problem of BMD density decrease due to the R-OSF region, the increase in thermally stable (large size) precipitated nuclei due to nitrogen doping and the low / defect-free requirement for the wafer surface device operating region. I thought that it was possible to achieve both.

しかしながら、このような考えに基づき、本発明者らが鋭意研究を進める中、窒素ドープをおこない、N−領域で低/無欠陥結晶をチョクラルスキー法により製造する際に、結晶成長軸方向全長においてR−OSF領域を回避することが困難で、結晶一本の中での歩留りが極めて低くなる問題に直面した。 However, based on this idea, while the present inventors are conducting diligent research, when nitrogen doping is performed to produce a low / defect-free crystal in the N- region by the Czochralski method, the total length in the crystal growth axis direction is used. In Japan, it was difficult to avoid the R-OSF region, and the problem was that the yield in a single crystal was extremely low.

具体的には、窒素をドープしないN−領域での低/無欠陥結晶の製造において、R−OSF領域を回避して結晶成長軸方向全長においてN−領域を高歩留まりで採取するような育成方法(特許文献3から7)を用いても、窒素をドープした際には、結晶成長軸方向全長のうち窒素濃度の低い一部の範囲でしかR−OSFを回避したN−領域での低/無欠陥結晶の製造はできなかった。 Specifically, in the production of low / defect-free crystals in the N-region not doped with nitrogen, a growing method in which the N-region is collected at a high yield over the entire length in the crystal growth axis direction while avoiding the R-OSF region. Even when (Patent Documents 3 to 7) are used, when nitrogen is doped, the low / is low in the N- region in which R-OSF is avoided only in a part of the total length in the crystal growth axis direction where the nitrogen concentration is low. It was not possible to produce defect-free crystals.

また、窒素をドープしたN−領域での低/無欠陥結晶の製造に関する特許文献8に示されているように、TDDB特性が優れ、BMD密度バラツキの小さいウェーハを提供可能とする3×1013atoms/cm以下の窒素濃度では、デバイスプロセス前に熱的に安定な(大きいサイズの)析出核を増加させるには不十分で、先端の低温・短時間のデバイスプロセスにおける高BMD密度(ゲッタリング能力)に対する要求を満たすものではなかった。 Further, as shown in Patent Document 8 for the production of low / no-defect crystal of the nitrogen doped N- region, excellent TDDB characteristic, 3 × 10 13 to be provided a small wafer of BMD density variation Nitrogen concentrations below atoms / cm 3 are not sufficient to increase thermally stable (large size) precipitated nuclei prior to the device process and have high BMD densities (getters) in the tip low temperature, short time device process. It did not meet the requirements for ring ability).

また、窒素濃度を、デバイスプロセス前に熱的に安定な(大きいサイズの)析出核を増加させるに十分な3×1013atoms/cm以上の高窒素濃度とすると、特許文献2に記載されているように結晶中心部の温度勾配Gcと結晶周辺部分の温度勾配Geとの差をΔG=Ge−Gc≦5℃/cmとしても、特許文献9に記載されているように結晶育成中の偏析による窒素濃度変化に応じた引上げ速度の調整を行なっても、ウェーハ外周部でR−OSF領域が発生し易くなり、それを回避するために結晶成長速度を低下させるとウェーハ中心部のBMDの数が減少して面内のBMD密度(ゲッタリング能力)の不均一化が生じることや、場合によってはウェーハ中心部で転位ループや転位クラスターを有するI−rich領域となってしまう問題が生じた。 Further, it is described in Patent Document 2 that the nitrogen concentration is set to a high nitrogen concentration of 3 × 10 13 atoms / cm 3 or more, which is sufficient to increase the thermally stable (large size) precipitated nuclei before the device process. As described above, even if the difference between the temperature gradient Gc at the center of the crystal and the temperature gradient Ge at the periphery of the crystal is ΔG = Ge−Gc ≦ 5 ° C./cm, the crystal is being grown as described in Patent Document 9. Even if the pulling rate is adjusted according to the change in nitrogen concentration due to segregation, the R-OSF region is likely to occur at the outer periphery of the wafer, and if the crystal growth rate is reduced to avoid this, the BMD at the center of the wafer There was a problem that the number decreased and the BMD density (gettering ability) in the plane became non-uniform, and in some cases, the I-rich region had dislocation loops and dislocation clusters in the center of the wafer. ..

これらの問題に直面し、更に本発明者が鋭意研究を進めた結果、窒素をドープしたN−領域での低/無欠陥結晶の製造においては、窒素濃度に応じて結晶周辺部(結晶外周部)で欠陥領域の変化が生じることを見出した。 Faced with these problems, as a result of diligent research by the present inventor, in the production of low / defect-free crystals in the nitrogen-doped N-region, the crystal peripheral portion (crystal outer peripheral portion) is determined according to the nitrogen concentration. ), It was found that the defect region changes.

次に、窒素濃度に応じた結晶周辺部での欠陥領域の変化について具体的に説明する。 Next, the change of the defect region in the peripheral portion of the crystal according to the nitrogen concentration will be specifically described.

結晶の熱環境以外の要因による欠陥分布の変化は、特許文献10にあるように、点欠陥の外方拡散によるものとして理解できる。結晶周辺部では、格子間シリコンや空孔などの点欠陥の外方拡散の影響が大きくなり、空孔の外方拡散は結晶周辺部での残留空孔濃度を減少させる効果がある。しかしながら、窒素が高濃度でドープされると、窒素と空孔のペア(NVペア)形成によって空孔の外方拡散が抑制される。 Changes in the defect distribution due to factors other than the thermal environment of the crystal can be understood as being due to the outward diffusion of point defects, as described in Patent Document 10. In the peripheral portion of the crystal, the influence of the outward diffusion of point defects such as interstitial silicon and vacancies becomes large, and the outward diffusion of the vacancies has the effect of reducing the concentration of residual vacancies in the peripheral portion of the crystal. However, when nitrogen is doped at a high concentration, the outward diffusion of the pores is suppressed by the formation of a pair (NV pair) of the nitrogen and the pores.

そのため、窒素をドープしない場合と比べて窒素をドープした場合には、窒素の濃度が高くなるほど結晶周辺部の残留空孔濃度が上昇してしまい、結晶周辺部の欠陥領域がR−OSF領域側にシフトしていくこととなる。 Therefore, when nitrogen is doped as compared with the case where nitrogen is not doped, the concentration of residual pores in the peripheral portion of the crystal increases as the concentration of nitrogen increases, and the defect region in the peripheral portion of the crystal is on the R-OSF region side. Will shift to.

本発明者らは、これが、窒素をドープしてN−領域での低/無欠陥結晶を製造した際に、ウェーハ外周部でR−OSF領域が発生し易くなり、それを回避するために結晶成長速度を低下させるとウェーハ中心部のBMDが減少して面内のBMD密度(ゲッタリング能力)の不均一化が生じることや、場合によってはウェーハ中心部で転位ループや転位クラスターを有するI−rich領域となってしまった問題の原因であり、概ね窒素濃度が2×1013atoms/cmから空孔の外方拡散抑制の影響がみられ、3×1013atoms/cm以上となると深刻に結晶歩留りに影響を与えるレベルとなっていることを見出した。 The present inventors tend to generate an R-OSF region on the outer peripheral portion of the wafer when a low / defect-free crystal in the N- region is produced by doping with nitrogen, and the crystals are used to avoid the R-OSF region. When the growth rate is lowered, the BMD at the center of the wafer decreases, causing in-plane BMD density (gettering ability) non-uniformity, and in some cases, I- having dislocation loops or dislocation clusters at the center of the wafer. It is the cause of the problem that it has become a rich region, and the effect of suppressing the outward diffusion of pores is generally seen from the nitrogen concentration of 2 × 10 13 atoms / cm 3, and when it becomes 3 × 10 13 atoms / cm 3 or more. It was found that the level seriously affects the crystal yield.

本発明は、このように本発明者らの鋭意研究によって完成されたものであり、窒素ドープのN−領域で製造された低/無欠陥結晶のシリコン単結晶基板及びそれを基板に用いたエピタキシャルシリコンウェーハにおいて、窒素の偏析の影響を考慮したシリコン単結晶の結晶育成を行ない、この育成したシリコン単結晶を用いてシリコン単結晶基板及びそれを基板に用いたエピタキシャルシリコンウェーハを作製することで、R−OSF領域起因の問題を完全に解消し、窒素ドープによる熱的に安定な(大きいサイズの)析出核の増加とウェーハ表層デバイス動作領域の低/無欠陥要求の両立が可能となることを見出し、本発明に到達した。 The present invention has been completed by the diligent research of the present inventors in this way, and is a low / defect-free silicon single crystal substrate produced in the N- region of nitrogen doping and an epitaxial using the same as the substrate. In a silicon wafer, a silicon single crystal crystal is grown in consideration of the influence of nitrogen segregation, and the grown silicon single crystal is used to produce a silicon single crystal substrate and an epitaxial silicon wafer using the grown silicon single crystal. The problem caused by the R-OSF region can be completely solved, and it is possible to achieve both the increase of thermally stable (large size) precipitated nuclei due to nitrogen doping and the low / defect-free requirement of the wafer surface device operating region. The heading has reached the present invention.

まず、本発明のシリコン単結晶育成方法について詳述する。 First, the method for growing a silicon single crystal of the present invention will be described in detail.

本発明は、チョクラルスキー法によって、結晶全面がN−領域となる条件で引上げることによってシリコン単結晶を育成する方法であって、シリコン単結晶を育成する際に、窒素を2×1013atoms/cm以上3.2×1014atoms/cm以下の窒素濃度でドープし、シリコン単結晶の引上げ軸方向の結晶中心部の温度勾配Gcと結晶周辺部の温度勾配Geの比をGe/Gc>1となるようにし、Ge/Gcを、シリコン単結晶の引上げの際の偏析による窒素濃度の増加に応じて、徐々に大きくすることを特徴とするシリコン単結晶の製造方法である。ここで、結晶周辺部はシリコン単結晶の外周端から概ね直径の1/3以下の領域内で適宜決定する。 The present invention is a method for growing a silicon single crystal by pulling it up under the condition that the entire surface of the crystal is in the N- region by the Czochralski method, and when growing the silicon single crystal, nitrogen is 2 × 10 13 Dope with nitrogen concentration of atoms / cm 3 or more and 3.2 × 10 14 atoms / cm 3 or less, and set the ratio of the temperature gradient Gc at the center of the crystal in the pulling axial direction of the silicon single crystal to the temperature gradient Ge at the periphery of the crystal. This is a method for producing a silicon single crystal, characterized in that / Gc> 1 and Ge / Gc is gradually increased in accordance with an increase in nitrogen concentration due to segregation during pulling of the silicon single crystal. Here, the peripheral portion of the crystal is appropriately determined within a region of approximately 1/3 or less of the diameter from the outer peripheral edge of the silicon single crystal.

このようなシリコン単結晶の製造方法であれば、高濃度に窒素をドープすることによって、熱的に安定な大きいサイズの析出核を増加させて、低温・短時間のデバイスプロセスにおいても高いBMD形成能力(ゲッタリング能力)を達成しつつ、結晶育成中の偏析による窒素高濃度化によって生じる欠陥分布変化を矯正・調整して、結晶全長の広い窒素濃度範囲においてもR−OSF領域を回避したシリコン単結晶を製造することができる。 In such a method for producing a silicon single crystal, by doping nitrogen at a high concentration, the number of thermally stable large-sized precipitated nuclei is increased, and high BMD is formed even in a low-temperature, short-time device process. Silicon that avoids the R-OSF region even in the wide nitrogen concentration range of the entire crystal length by correcting and adjusting the defect distribution change caused by the high nitrogen concentration due to segregation during crystal growth while achieving the ability (gettering ability). A single crystal can be produced.

また、本発明のシリコン単結晶の製造方法により製造されたシリコン単結晶を用いることで、シリコン単結晶基板及びそれを用いたエピタキシャルシリコンウェーハにおいて、高窒素濃度でドープすることによるR−OSF領域起因の弊害がなくなるため、低温・短時間のデバイスプロセスにおいても高いBMD形成能力(ゲッタリング能力)を有するウェーハを高歩留まりで得ることが可能となる。 Further, by using the silicon single crystal produced by the method for producing a silicon single crystal of the present invention, the R-OSF region is caused by doping with a high nitrogen concentration in the silicon single crystal substrate and the epitaxial silicon wafer using the silicon single crystal. It is possible to obtain a wafer having a high BMD forming ability (gettering ability) with a high yield even in a device process at a low temperature and for a short time.

窒素をドープしない際に結晶全長・全面でN−領域を得られるように結晶成長中の温度分布が調整された条件において、窒素ドープ量を、2×1013atoms/cmより小さい窒素濃度とした場合には、欠陥分布への影響は軽微で、シリコン単結晶基板とした状態でのTDDB特性やシリコン単結晶基板を用いたエピタキシャルシリコンウェーハでのEP欠陥発生はほとんど問題にならない。 Nitrogen under a condition that the temperature distribution is adjusted during crystal growth so as to obtain the N- region in the crystal length, end the entire surface when not doped, the nitrogen doping amount, 2 × 10 13 atoms / cm 3 less than the nitrogen concentration and In this case, the effect on the defect distribution is minor, and the TDDB characteristics in the state of using a silicon single crystal substrate and the occurrence of EP defects in an epitaxial silicon wafer using a silicon single crystal substrate are hardly problematic.

しかしながら、3×1013atoms/cmの窒素濃度になると、欠陥分布への影響がみられ、シリコン単結晶基板とした状態でのTDDB特性の悪化や、シリコン単結晶基板を用いたエピタキシャルシリコンウェーハでのEP欠陥発生が生じてくる。また、特許文献9に示されているように、窒素濃度に応じて引上げ速度を調整(窒素濃度増加に応じて引上げ速度を遅く調整)しても、この窒素濃度では先端デバイスプロセスに用いるような低温・短時間の熱処理では十分なBMD密度は得られない。 However, when the nitrogen concentration is 3 × 10 13 atoms / cm 3 , the defect distribution is affected, the TDDB characteristics deteriorate in the state of using a silicon single crystal substrate, and the epitaxial silicon wafer using a silicon single crystal substrate is used. EP defects occur in. Further, as shown in Patent Document 9, even if the pulling speed is adjusted according to the nitrogen concentration (the pulling speed is adjusted to be slower according to the increase in the nitrogen concentration), this nitrogen concentration is used for the advanced device process. Sufficient BMD density cannot be obtained by low-temperature, short-time heat treatment.

3×1013atoms/cm以上の窒素濃度であれば、先端デバイスプロセスに用いるような低温・短時間の熱処理で十分なBMD密度を得るのに有効であるが、特に結晶周辺部で欠陥分布変化が大きくなり、シリコン単結晶基板とした状態でのTDDB特性の更なる悪化や、エピタキシャルシリコンウェーハでのEP欠陥発生が重度化する。この窒素濃度範囲においては、特許文献9の窒素濃度増加に対して引上げ速度を遅く調整することによって十分に改善することはできず、結晶外周部におけるシリコン単結晶ウェーハとした場合のTDDB特性やエピタキシャルシリコンウェーハでのEP欠陥発生を改善できるまで引上げ速度を遅くすると、ウェーハ中心部のBMDが減少して面内のBMD密度(ゲッタリング能力)の不均一が生じることや、場合によってはウェーハ中心部で転位ループや転位クラスターを有するI−rich領域となってしまって中心部でEP欠陥が生じてしまう。 A nitrogen concentration of 3 × 10 13 atoms / cm 3 or more is effective for obtaining a sufficient BMD density by low-temperature, short-time heat treatment as used in advanced device processes, but defect distribution is particularly high in the periphery of the crystal. The change becomes large, and the TDDB characteristics in the state of being a silicon single crystal substrate are further deteriorated, and the occurrence of EP defects in the epitaxial silicon wafer becomes severe. In this nitrogen concentration range, it cannot be sufficiently improved by adjusting the pulling speed to be slower with respect to the increase in the nitrogen concentration of Patent Document 9, and the TDDB characteristics and epitaxials when a silicon single crystal wafer is formed on the outer periphery of the crystal. If the pulling speed is slowed down until the occurrence of EP defects on the silicon wafer can be improved, the BMD at the center of the wafer decreases, causing in-plane BMD density (gettering capacity) non-uniformity, and in some cases, the center of the wafer. In the I-rich region having dislocation loops and dislocation clusters, EP defects occur in the central part.

6×1013atoms/cm以上の窒素濃度では、先端デバイスプロセスに用いるような低温・短時間の熱処理で十分なBMD密度を得るのにより好ましいが、特に結晶周辺部で欠陥分布変化が更に大きくなり、シリコン単結晶基板とした状態でのTDDB特性の悪化や、シリコン単結晶基板を用いたエピタキシャルシリコンウェーハでのEP欠陥発生がより重度となる。この窒素濃度範囲においては、特許文献9の窒素濃度増加に対して引上げ速度を遅く調整することによって十分に改善することはできず、結晶周辺部におけるシリコン単結晶基板とした状態でのTDDB特性やシリコン単結晶基板を用いたエピタキシャルシリコンウェーハでのEP欠陥発生を改善できるまで引上げ速度を遅くすると、もはや全面N−領域を保持することができず、ウェーハ中心部で転位ループや転位クラスターを有するI−rich領域となって、それを元にした中心部でEP欠陥が生じてしまう。 At a nitrogen concentration of 6 × 10 13 atoms / cm 3 or more, it is more preferable to obtain a sufficient BMD density by low-temperature, short-time heat treatment as used in advanced device processes, but the change in defect distribution is particularly large in the periphery of the crystal. Therefore, the deterioration of the TDDB characteristics in the state of using the silicon single crystal substrate and the occurrence of EP defects in the epitaxial silicon wafer using the silicon single crystal substrate become more severe. In this nitrogen concentration range, it cannot be sufficiently improved by adjusting the pulling rate to be slower with respect to the increase in the nitrogen concentration of Patent Document 9, and the TDDB characteristics in the state of a silicon single crystal substrate in the peripheral portion of the crystal and When the pulling speed is slowed down until the EP defect generation in the epitaxial silicon wafer using the silicon single crystal substrate can be improved, the entire N- region can no longer be retained, and I has dislocation loops and dislocation clusters in the center of the wafer. It becomes a -rich region, and EP defects occur in the central part based on it.

本発明のシリコン単結晶の製造方法であれば、先端デバイスプロセスに用いるような低温・短時間の熱処理で十分なBMD密度を得るのに最適な窒素濃度3.2×1014atoms/cmまで、製造されたシリコン単結晶を用いてシリコン単結晶基板を製造したときのTDDB特性が良好で、このシリコン単結晶基板を用いてエピタキシャルシリコンウェーハとした状態でのEP欠陥発生もないウェーハを得ることができる。 According to the method for producing a silicon single crystal of the present invention, the optimum nitrogen concentration is 3.2 × 10 14 atoms / cm 3 for obtaining a sufficient BMD density by low-temperature, short-time heat treatment as used in advanced device processes. To obtain a wafer having good TDDB characteristics when a silicon single crystal substrate is manufactured using the manufactured silicon single crystal, and without EP defects occurring in the state of forming an epitaxial silicon wafer using this silicon single crystal substrate. Can be done.

本発明においては、例えば図1に示すようなシリコン単結晶の製造装置14であって、チョクラルスキー法によって結晶全面がN−領域となる条件で引上げることでシリコン単結晶を育成することが可能なシリコン単結晶の製造装置を用いる。このようなシリコン単結晶の製造装置について図1を参照して説明するが、本発明において用いることができる単結晶製造装置は、これに限定されない。 In the present invention, for example, in the silicon single crystal manufacturing apparatus 14 as shown in FIG. 1, the silicon single crystal can be grown by pulling up the silicon single crystal under the condition that the entire surface of the crystal becomes the N- region by the Czochralski method. Use a possible silicon single crystal manufacturing device. Such a silicon single crystal manufacturing apparatus will be described with reference to FIG. 1, but the single crystal manufacturing apparatus that can be used in the present invention is not limited thereto.

図1に示すシリコン単結晶の製造装置14の外観は、メインチャンバー1、これに連通する引上げチャンバー2で構成されている。メインチャンバー1の内部には、黒鉛ルツボ6及び石英ルツボ5が設置されている。黒鉛ルツボ6及び石英ルツボ5を囲むようにヒーター7が設けられており、ヒーター7によって、石英ルツボ5内に収容された原料シリコン多結晶が溶融されて原料融液4とされる。また、断熱部材8が設けられており、ヒーター7からの輻射熱のメインチャンバー1等への影響を防いでいる。 The appearance of the silicon single crystal manufacturing apparatus 14 shown in FIG. 1 is composed of a main chamber 1 and a pulling chamber 2 communicating with the main chamber 1. A graphite crucible 6 and a quartz crucible 5 are installed inside the main chamber 1. A heater 7 is provided so as to surround the graphite crucible 6 and the quartz crucible 5, and the heater 7 melts the raw material silicon polycrystalline contained in the quartz crucible 5 to obtain the raw material melt 4. Further, a heat insulating member 8 is provided to prevent the influence of the radiant heat from the heater 7 on the main chamber 1 and the like.

原料融液4の融液面上では熱遮蔽体12が、融液面に所定間隔で対向配置され、原料融液4の融液面からの輻射熱を遮断している。このルツボ中に種結晶を浸漬した後、原料融液4から棒状の単結晶棒3が引き上げられる。ルツボは結晶成長軸方向に昇降可能であり、単結晶の成長が進行して減少した原料融液4の液面下降分を補うように、成長中にルツボを上昇させることにより、原料融液4の融液面の高さはおおよそ一定に保たれる。 On the melt surface of the raw material melt 4, heat shields 12 are arranged to face the melt surface at predetermined intervals to block radiant heat from the melt surface of the raw material melt 4. After immersing the seed crystal in this crucible, the rod-shaped single crystal rod 3 is pulled up from the raw material melt 4. The crucible can be raised and lowered in the direction of the crystal growth axis, and the crucible is raised during the growth so as to compensate for the decrease in the liquid level of the raw material melt 4 as the growth of the single crystal progresses, so that the raw material melt 4 The height of the melt surface is kept approximately constant.

さらに、単結晶育成時にパージガスとしてアルゴンガス等の不活性ガスが、ガス導入口10から導入され、引き上げ中の単結晶棒3とガス整流筒11との間を通過した後、熱遮蔽体12と原料融液4の融液面との間を通過し、ガス流出口9から排出している。導入するガスの流量と、ポンプや弁によるガスの排出量を制御することにより、引上げ中のチャンバー内の圧力が制御される。 Further, an inert gas such as argon gas is introduced as a purge gas during single crystal growth, passes between the single crystal rod 3 being pulled up and the gas rectifying cylinder 11, and then becomes a heat shield 12. It passes between the raw material melt 4 and the melt surface, and is discharged from the gas outlet 9. By controlling the flow rate of the gas to be introduced and the amount of gas discharged by the pump or valve, the pressure in the chamber being pulled up is controlled.

また、CZ法によって結晶を育成するに際し、磁場印加装置13によって磁場を印加してもよい。 Further, when growing a crystal by the CZ method, a magnetic field may be applied by the magnetic field application device 13.

ここで、なぜ、シリコン単結晶の引上げ軸方向の結晶中心部の温度勾配Gcと結晶周辺部の温度勾配Geを、Ge/Gc>1となるようにし、Ge/Gcを、シリコン単結晶の引上げの際の偏析による窒素濃度の増加に応じて、徐々に大きくするとよいのかを論理的に説明する。 Here, why is the temperature gradient Gc at the center of the crystal and the temperature gradient Ge at the periphery of the crystal in the pulling axis direction of the silicon single crystal set to Ge / Gc> 1, and Ge / Gc is pulled up by the silicon single crystal. It is logically explained whether it should be gradually increased according to the increase in the nitrogen concentration due to the segregation at the time of.

偏析により窒素濃度が増加するに従って、NVペア形成が増加して、結晶外表面への空孔(Vacancy)の外方拡散が減少し、結晶周辺の残留Vacancy濃度が高濃度化するため、結晶周辺がVacancy優勢の欠陥領域にシフトしていく。 As the nitrogen concentration increases due to segregation, NV pair formation increases, the outward diffusion of pores (vacancy) on the outer surface of the crystal decreases, and the residual vacuum concentration around the crystal increases, so that the concentration around the crystal increases. Shifts to the defect area where Vacancy predominates.

窒素の偏析によって結晶周辺の欠陥領域がVacancy優勢側にシフトしたままでは、結晶周辺の残留Vacancy濃度が結晶中心〜r/2(ここでrはシリコン単結晶の半径である。)の残留Vacancy濃度より高いことによるBMD分布の不均一化や、外周部での欠陥領域のN−領域からR−OSF領域へのシフトがおこってしまう。 When the defect region around the crystal is shifted to the vacancy dominant side due to the segregation of nitrogen, the residual vacancy concentration around the crystal is from the crystal center to r / 2 (where r is the radius of the silicon single crystal). Due to the higher value, the BMD distribution becomes non-uniform, and the defect region on the outer peripheral portion shifts from the N- region to the R-OSF region.

これを回避するには、NVペア形成の影響によって結晶周辺で残留Vacancyが多くなる分を、予め固液界面のVacancy取込み量で調整することが有効となる。 In order to avoid this, it is effective to adjust the amount of residual vacancy around the crystal due to the influence of NV pair formation in advance by adjusting the vacancy uptake amount at the solid-liquid interface.

つまり、固液界面の結晶周辺以外の部分で取り込まれるVacancy量よりも、結晶周辺部で取り込まれるVacancy量を少なくする。 That is, the amount of vacancy taken up at the periphery of the crystal is smaller than the amount of vacancy taken up at the portion other than the periphery of the crystal at the solid-liquid interface.

シリコン単結晶成長における点欠陥の取り込みに関しては、ボロンコフの理論が広く知られており、シリコン単結晶の成長速度Vと界面近傍の温度勾配Gとの比V/Gに依存して点欠陥濃度が決定される。 Boronkov's theory is widely known regarding the incorporation of point defects in silicon single crystal growth, and the point defect concentration depends on the ratio V / G of the growth rate V of the silicon single crystal and the temperature gradient G near the interface. It is determined.

Vacancy濃度と格子間シリコン(Interstial−Si)濃度が拮抗するV/Gに対して、V/Gが大きければ固液界面でのVacancy濃度が増加し、小さければ固液界面のInterstial−Si濃度が増加する。 When the V / G is large, the vacancy concentration at the solid-liquid interface increases, and when the V / G is small, the interstitial-Si concentration at the solid-liquid interface increases. To increase.

そのため、ボロンコフの理論に基づき、NVペア形成の影響によって結晶周辺で残留Vacancyが多くなる分を、予め、結晶周辺のV/Geを中心のV/Gcよりも小さい値になるようにする。すなわち、
V/Gc>V/Ge
とする。
Therefore, based on Boronkov's theory, the amount of residual vacancy around the crystal due to the influence of NV pair formation is set to be smaller than the central V / Gc in advance. That is,
V / Gc> V / Ge
And.

定常的な単結晶育成中、結晶成長方向に垂直な面での成長速度Vは結晶中心部から結晶周辺部で同一であるため、1/Gc>1/Ge、Ge/Gc>1とすることが有効であり、窒素濃度が増加するに従ってNVペア形成の影響によって結晶周辺部で残留Vacancyが多くなる分を、Ge/Gcが徐々に大きくなるようにして相殺することが可能となる。 During steady single crystal growth, the growth rate V on the plane perpendicular to the crystal growth direction is the same from the center of the crystal to the periphery of the crystal, so 1 / Gc> 1 / Ge and Ge / Gc> 1. Is effective, and as the nitrogen concentration increases, the amount of residual vacancy increasing in the peripheral portion of the crystal due to the influence of NV pair formation can be offset by gradually increasing Ge / Gc.

Ge/Gcの調整は、石英ルツボ5内の原料融液直上に配置された熱遮蔽体12と前記原料融液の液面との間隔を制御すること、前記石英ルツボ5を囲うように配置されたヒーター7の位置を前記原料融液の液面に対して低くすること、前記シリコン単結晶の製造装置のメインチャンバー1の外側に配置された磁場印加装置13の磁場強度を弱くすること、及び、前記磁場印加装置13の位置を低くすること、のうちいずれか一つあるいは二つ以上の組み合わせによって行なうことが好ましい。このようなGe/Gcの調整方法であれば、製造装置を大きく変更することがないため、簡便にGe/Gcを調整することが可能となる。 The adjustment of Ge / Gc is to control the distance between the heat shield 12 arranged directly above the raw material melt in the quartz crucible 5 and the liquid level of the raw material melt, and is arranged so as to surround the quartz crucible 5. The position of the heater 7 is lowered with respect to the liquid level of the raw material melt, the magnetic field strength of the magnetic field applying device 13 arranged outside the main chamber 1 of the silicon single crystal manufacturing device is weakened, and , It is preferable to lower the position of the magnetic field applying device 13 by any one or a combination of two or more. With such an adjustment method of Ge / Gc, since the manufacturing apparatus is not significantly changed, it is possible to easily adjust Ge / Gc.

なぜ、このようなGe/Gcの調整方法によって、Ge/Gcが大きくなるのかを説明する。 The reason why Ge / Gc is increased by such an adjustment method of Ge / Gc will be described.

Ge/Gcを大きくする方法には、Geを大きくする方法とGcを小さくする方法の二つがある。 There are two methods for increasing Ge / Gc, one is to increase Ge and the other is to decrease Gc.

Geを大きくするには、固液界面上部の結晶側面部への熱輻射(輻射による熱供給)を減らすことが有効である。その具体的方法としては、原料融液4直上の熱遮蔽体12と原料融液4の液面との間隔を狭くして、黒鉛ルツボ6外側に配置されている熱源の加熱用のヒーター7からの熱輻射の一部を遮熱する方法、熱源の加熱用のヒーター7を原料融液4の液面位置に対して低く配置して固液界面上部への熱輻射を減らす方法がある。 In order to increase Ge, it is effective to reduce heat radiation (heat supply by radiation) to the crystal side surface portion above the solid-liquid interface. As a specific method thereof, the distance between the heat shield 12 directly above the raw material melt 4 and the liquid level of the raw material melt 4 is narrowed, and the heater 7 for heating the heat source arranged outside the graphite pot 6 is used. There is a method of shielding a part of the heat radiation of the above, and a method of arranging the heater 7 for heating the heat source lower than the liquid level position of the raw material melt 4 to reduce the heat radiation to the upper part of the solid-liquid interface.

なお、炉内ガスの熱伝導やガスの流れによる対流伝熱によっても僅かにGeは変化するが、融点1420℃以上の高温環境が主となるCZ法によるシリコン単結晶製造環境においては熱輻射の影響が支配的となるため、熱輻射による制御が重要となる。 Although Ge changes slightly due to heat conduction of gas in the furnace and convection heat transfer due to gas flow, heat radiation occurs in a silicon single crystal manufacturing environment by the CZ method, which is mainly in a high temperature environment with a melting point of 1420 ° C or higher. Control by heat transfer is important because the effect is dominant.

Gcを小さくする方法は、固液界面(融点等温線)の高さを低下させ、固液界面上部との温度勾配を緩和する方法となり、磁場による結晶成長界面下部の融液対流の抑制を弱め、結晶育成中に発生した凝固潜熱を対流で取り除きやすくする。凝固潜熱が対流によって取り除かれるようになると、そうでない場合と比較して、熱バランスによって固液界面の高さが低下することとなる。このとき、結晶最外周部の融点等温線は常に原料融液4表面につながっているため、Gcが選択的に小さくなることとなる。 The method of reducing Gc is a method of lowering the height of the solid-liquid interface (melting point isotherm) and relaxing the temperature gradient with the upper part of the solid-liquid interface, weakening the suppression of melt convection at the lower part of the crystal growth interface by the magnetic field. , Makes it easier to remove the latent heat of solidification generated during crystal growth by convection. When the latent heat of solidification is removed by convection, the height of the solid-liquid interface is lowered by the heat balance as compared with the case where it is not. At this time, since the melting point isotherm at the outermost periphery of the crystal is always connected to the surface of the raw material melt 4, Gc is selectively reduced.

磁場により結晶成長界面下部の融液対流の抑制を弱める方法としては、磁場位置を同一のままにする場合には、磁場強度を弱める方法がある。また、磁場強度を固定とする場合は、磁場位置を原料融液4表面位置から離す方法がある。磁場位置、磁場強度どちらも変更可能な場合には、磁場強度を弱くする方法と磁場位置を変更する方法を組み合わせてもよい。 As a method of weakening the suppression of melt convection at the lower part of the crystal growth interface by a magnetic field, there is a method of weakening the magnetic field strength when the magnetic field positions are kept the same. Further, when the magnetic field strength is fixed, there is a method of separating the magnetic field position from the surface position of the raw material melt 4. When both the magnetic field position and the magnetic field strength can be changed, a method of weakening the magnetic field strength and a method of changing the magnetic field position may be combined.

固液界面の高さを低下させる方法として、結晶回転を弱めることでも固液界面を低下させることができるが、面内のドーパント濃度、酸素濃度の不均一につながるため、固液界面部の磁場強度を弱める方法が好ましい。 As a method of lowering the height of the solid-liquid interface, the solid-liquid interface can also be lowered by weakening the crystal rotation, but since it leads to non-uniformity of the dopant concentration and the oxygen concentration in the plane, the magnetic field at the solid-liquid interface A method of weakening the strength is preferable.

また、Ge/Gcの調整を、熱遮蔽体12と原料融液4の液面との間隔を制御することによって行なう際に、窒素をドープしない場合に結晶全面がN−領域となる条件における熱遮蔽体12と原料融液4の液面との間隔をDとしたときに、窒素をドープする場合の熱遮蔽体12と原料融液4の液面との間隔を、窒素濃度に応じて、D’/D=0.94−窒素濃度/(2.41×1015)から求めたD’となるように変化させることが好ましい。 Further, when the Ge / Gc is adjusted by controlling the distance between the heat shield 12 and the liquid level of the raw material melt 4, the heat under the condition that the entire surface of the crystal is in the N- region when nitrogen is not doped. When the distance between the shield 12 and the liquid level of the raw material melt 4 is D, the distance between the heat shield 12 and the liquid level of the raw material melt 4 when nitrogen is doped is set according to the nitrogen concentration. It is preferable to change the D'/ D = 0.94-nitrogen concentration / (2.41 × 10 15 ) so as to obtain D'.

このようなGe/Gcの調整方法であれば、Ge/Gcの調整を、窒素濃度に応じて、熱遮蔽体12と原料融液4の液面との間隔を調整することによって行うことができるため、より簡便かつ正確にGe/Gcを調整することが可能となる。 With such an adjustment method of Ge / Gc, the adjustment of Ge / Gc can be performed by adjusting the distance between the heat shield 12 and the liquid level of the raw material melt 4 according to the nitrogen concentration. Therefore, Ge / Gc can be adjusted more easily and accurately.

どのようにして、このD’の関係式を導いたのかを記載する。 Describe how this relational expression of D'was derived.

第一に、全面でN−領域を得られる原料融液4直上の熱遮蔽体12と融液との間隔Dとして、窒素をドープしない場合、窒素を2−2.2×1013、3−3.2×1013、6−6.2×1013、1−1.2×1014、1.5−1.7×1014、2.2−2.4×1014、3−3.2×1014atoms/cmの窒素濃度でドープした場合それぞれに対して、窒素以外の条件は同一として、直胴成長中に引上げ速度を徐々に漸減させて、シリコン単結晶ブロック内に欠陥領域V−rich、R−OSF領域、Nv領域、Ni領域、I−rich領域を含むようにし、得られたシリコン単結晶ブロックから結晶成長軸方向に平行なサンプルを切り出し、ウェット酸化雰囲気で800℃4hr+1000℃16hrの熱処理を施し、X線トポグラフ法(XRT)にて各窒素濃度による欠陥分布の変化を調査した。 First, when the distance D between the heat shield 12 and the melt directly above the raw material melt 4 from which the N- region can be obtained over the entire surface is not doped with nitrogen, nitrogen is 2-2.2 × 10 13 , 3-. 3.2 × 10 13, 6-6.2 × 10 13, 1-1.2 × 10 14, 1.5-1.7 × 10 14, 2.2-2.4 × 10 14, 3-3 defects for each case doped with nitrogen concentration of .2 × 10 14 atoms / cm 3 , conditions other than nitrogen as the same, is gradually decreasing the pulling rate during straight body growth, the silicon single crystal block A sample parallel to the crystal growth axis direction was cut out from the obtained silicon single crystal block so as to include the region V-rich, R-OSF region, Nv region, Ni region, and I-rich region, and 800 ° C. in a wet oxidation atmosphere. Heat treatment was performed at 4 hr + 1000 ° C. for 16 hr, and the change in defect distribution depending on each nitrogen concentration was investigated by the X-ray topograph method (XRT).

第二に、各窒素濃度において、原料融液4直上の熱遮蔽体12と原料融液4の液面との間隔を変化させ、窒素をドープしない場合と同等のN−領域の分布が得られる原料融液4直上の熱遮蔽体12と原料融液4の液面との間隔D’を求めた。 Secondly, at each nitrogen concentration, the distance between the heat shield 12 directly above the raw material melt 4 and the liquid level of the raw material melt 4 is changed, and the distribution of the N- region equivalent to that in the case where nitrogen is not doped can be obtained. The distance D'between the heat shield 12 directly above the raw material melt 4 and the liquid level of the raw material melt 4 was determined.

第三に、窒素濃度に対する熱遮蔽体12と原料融液4の液面との間隔D’と間隔Dの比の変化の関係式を最小二乗法によって求め、D’/D=0.94−窒素濃度/(2.41×1015)を得た。 Third, the relational expression of the change in the ratio of the interval D'and the interval D between the heat shield 12 and the liquid level of the raw material melt 4 with respect to the nitrogen concentration was obtained by the least squares method, and D'/ D = 0.94-. Nitrogen concentration / (2.41 × 10 15 ) was obtained.

求めたD’が20mmより大きくなる場合には、熱遮蔽体12と原料融液4の液面との間隔を求めたD’とすることでGe/Gcを調整し、求めたD’が20mm以下となる場合には、熱遮蔽体12と原料融液4の液面との間隔を20mmとし、さらに、石英ルツボ5を囲うように配置されたヒーター7の位置を前記原料融液4の液面に対して低くすること、シリコン単結晶の製造装置14のメインチャンバー1の外側に配置された磁場印加装置13の磁場強度を弱くすること、及び、磁場印加装置13の位置を低くすること、のうちいずれか一つあるいは二つ以上の組み合わせによって前記Ge/Gcを調整することが好ましい。 When the obtained D'is larger than 20 mm, Ge / Gc is adjusted by setting the distance between the heat shield 12 and the liquid surface of the raw material melt 4 as the obtained D', and the obtained D'is 20 mm. In the following cases, the distance between the heat shield 12 and the liquid surface of the raw material melt 4 is 20 mm, and the position of the heater 7 arranged so as to surround the quartz rut 5 is set to the liquid of the raw material melt 4. Lowering the surface, weakening the magnetic field strength of the magnetic field applying device 13 arranged outside the main chamber 1 of the silicon single crystal manufacturing device 14, and lowering the position of the magnetic field applying device 13. It is preferable to adjust the Ge / Gc by any one or a combination of two or more of them.

このようなシリコン単結晶の製造方法であれば、熱遮蔽体12と原料融液4の液面との間隔が20mm以下と狭くなった場合に、熱遮蔽体12が原料融液4と接触してしまう等によりシリコン単結晶の引き上げを妨げることなくシリコン単結晶を製造することができる。 In such a method for producing a silicon single crystal, when the distance between the heat shield 12 and the liquid surface of the raw material melt 4 is as narrow as 20 mm or less, the heat shield 12 comes into contact with the raw material melt 4. It is possible to produce a silicon single crystal without hindering the pulling up of the silicon single crystal due to such factors.

上記のような、本発明の方法により、結晶全面がN−領域のシリコン単結晶基板上にエピタキシャル層を有するエピタキシャルシリコンウェーハであって、シリコン単結晶基板に、窒素が2×1013atoms/cm以上3.2×1014atoms/cm以下の窒素濃度でドープされており、サイズが28nm以上の欠陥の数が10cm以上のシリコン単結晶ブロック内の全基板平均で2個/枚以下で、800℃、3hr+1000℃、2hrの熱処理をした後に検出される平均サイズ45nm以上のBMDが1×10/cm以上の密度のものであることを特徴とするエピタキシャルシリコンウェーハが提供される。 According to the method of the present invention as described above, an epitaxial silicon wafer having an epitaxial layer on a silicon single crystal substrate in which the entire crystal surface is in the N- region, and nitrogen is 2 × 10 13 atoms / cm on the silicon single crystal substrate. 3 or more 3.2 × 10 14 atoms / cm Dopeed with a nitrogen concentration of 3 or less, and the number of defects with a size of 28 nm or more is 2 or less on average for all substrates in a silicon single crystal block of 10 cm or more. , 800 ° C., 3 hr + 1000 ° C., 2 hr, an epitaxial silicon wafer characterized in that the BMD having an average size of 45 nm or more detected after the heat treatment has a density of 1 × 10 8 / cm 3 or more.

このようなエピタキシャルシリコンウェーハであれば、R−OSF領域起因のBMD密度低下、EP欠陥化、及び、高濃度での窒素ドープによる板状または棒状のCOPに起因するEP欠陥化がないものとなる。また、800℃、3hr+1000℃、2hrの熱処理により十分なBMD密度が形成され、面内BMD品質が均一なエピタキシャルシリコンウェーハとなる。 With such an epitaxial silicon wafer, there is no decrease in BMD density due to the R-OSF region, EP defect formation, and EP defect formation due to plate-shaped or rod-shaped COP due to nitrogen doping at a high concentration. .. Further, a sufficient BMD density is formed by heat treatment at 800 ° C., 3 hr + 1000 ° C., and 2 hr, and an epitaxial silicon wafer having uniform in-plane BMD quality is obtained.

また、本発明の方法により、鏡面研磨加工された表面を有する結晶全面がN−領域のシリコン単結晶基板であって、窒素が2×1013atoms/cm以上3.2×1014atoms/cm以下の窒素濃度でドープされており、TDDB特性の良品率が90%以上で、サイズが45nm以上の欠陥の数が10cm以上のシリコン単結晶ブロック内の全基板平均で2個/枚以下であり、800℃、3hr+1000℃、2hrの熱処理をした後に検出される平均サイズ45nm以上のBMDが1×10/cm以上の密度のものであることを特徴とするシリコン単結晶基板を提供することができる。 Further, according to the method of the present invention, the entire surface of the crystal having a mirror-polished surface is a silicon single crystal substrate in the N- region, and the nitrogen content is 2 × 10 13 atoms / cm 3 or more and 3.2 × 10 14 atoms /. It is doped with a nitrogen concentration of cm 3 or less, the non-defective rate of TDDB characteristics is 90% or more, and the number of defects with a size of 45 nm or more is 10 cm or more. Provided is a silicon single crystal substrate characterized in that the BMD having an average size of 45 nm or more detected after heat treatment at 800 ° C., 3 hr + 1000 ° C., and 2 hr has a density of 1 × 10 8 / cm 3 or more. can do.

このようなシリコン単結晶基板であれば、R−OSF領域起因のBMD密度の低下がなく、TDDB特性が良好なものとなる。また、800℃、3hr+1000℃、2hrの熱処理により十分なBMD密度が形成され、面内BMD品質が均一なシリコン単結晶基板となる。 With such a silicon single crystal substrate, there is no decrease in BMD density due to the R-OSF region, and the TDDB characteristics are good. Further, a sufficient BMD density is formed by heat treatment at 800 ° C., 3 hr + 1000 ° C., and 2 hr, and a silicon single crystal substrate having uniform in-plane BMD quality is obtained.

以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらに制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

(比較例1)
窒素をドープせず、32インチ(812.8mm)ルツボに410kgの原料を溶融し、4000Gの磁場印加下で直径300mmの結晶製造を実施した。このとき、予め原料融液直上の熱遮蔽体と原料融液との間隔(50mm)、ヒーター位置、磁場印加装置の位置を調整して、結晶全長に亘り全面でN(Neutral)領域を得られるように結晶成長中の温度分布を調整した。この条件において、直胴成長中に引上げ速度を徐々に漸減させて、シリコン単結晶ブロック内に欠陥領域V−rich、R−OSF領域、Nv領域、Ni領域、I−rich領域(V−richからI−richの各領域)を含むようにし、得られたシリコン単結晶ブロックから結晶成長軸方向に平行なサンプルを切り出し、ウェット酸化雰囲気で800℃4hr+1000℃16hrの熱処理を施し、XRT(X線トポグラフ法)にて欠陥分布を評価した。
(Comparative Example 1)
A crystal having a diameter of 300 mm was produced by melting 410 kg of a raw material in a 32-inch (812.8 mm) crucible without doping with nitrogen and applying a magnetic field of 4000 G. At this time, the distance (50 mm) between the heat shield directly above the raw material melt and the raw material melt, the heater position, and the position of the magnetic field applying device are adjusted in advance to obtain an N (Neutral) region over the entire crystal length. The temperature distribution during crystal growth was adjusted as described above. Under this condition, the pulling speed is gradually reduced during straight body growth, and the defect region V-rich, R-OSF region, Nv region, Ni region, and I-rich region (from V-rich) are contained in the silicon single crystal block. A sample parallel to the crystal growth axis direction was cut out from the obtained silicon single crystal block so as to include each region of I-rich, and heat-treated at 800 ° C. 4 hr + 1000 ° C. 16 hr in a wet oxidation atmosphere, and XRT (X-ray topograph) was applied. The defect distribution was evaluated by the method).

(比較例2)
比較例1と同様の原料融液直上の熱遮蔽体と原料融液との間隔(50mm)、ヒーター位置、磁場位置、磁場強度において、窒素をドープして、直胴成長中に引上げ速度を徐々に漸減させてシリコン単結晶ブロック内にV−richからI−richの各領域を含む欠陥分布評価シリコン単結晶ブロックを製造した。窒素濃度は、2×1013atoms/cm水準(シリコン単結晶ブロック内窒素濃度2×1013−2.2×1013atoms/cm)、3×1013atoms/cm水準(シリコン単結晶ブロック内窒素濃度3×1013−3.2×1013atoms/cm)、6×1013atoms/cm水準(シリコン単結晶ブロック内窒素濃度6×1013−6.2×1013atoms/cm)、3×1014atoms/cm水準(シリコン単結晶ブロック内窒素濃度3×1014−3.2×1014atoms/cm)として、それぞれのシリコン単結晶ブロックを製造し、各窒素濃度での欠陥分布を比較例1と同様に評価した。
(Comparative Example 2)
Nitrogen is doped in the distance (50 mm) between the heat shield directly above the raw material melt and the raw material melt, the heater position, the magnetic field position, and the magnetic field strength similar to those in Comparative Example 1, and the pulling speed is gradually increased during the straight body growth. A silicon single crystal block for evaluating defect distribution containing each region from V-rich to I-rich was produced in the silicon single crystal block. Nitrogen concentration is 2 × 10 13 atoms / cm 3 levels (nitrogen concentration in silicon single crystal block 2 × 10 13 -2.2 × 10 13 atoms / cm 3 ), 3 × 10 13 atoms / cm 3 levels (single silicon silicon). crystal block nitrogen concentration 3 × 10 13 -3.2 × 10 13 atoms / cm 3), 6 × 10 13 atoms / cm 3 levels (silicon single crystal block nitrogen concentration 6 × 10 13 -6.2 × 10 13 atoms / cm 3), 3 × as 10 14 atoms / cm 3 levels (nitrogen concentration in the silicon single crystal block 3 × 10 14 -3.2 × 10 14 atoms / cm 3), to produce respective silicon single crystal block , The defect distribution at each nitrogen concentration was evaluated in the same manner as in Comparative Example 1.

(実施例1)
原料融液直上の熱遮蔽体と原料融液の液面との間隔を、D’/D=0.94−窒素濃度/2.41×1015から求まるD’とした以外は、比較例2と同様に実施した。原料融液直上の熱遮蔽体と原料融液の液面との間隔をこのように変化させることで、シリコン単結晶の引上げ軸方向の結晶中心部の温度勾配Gcと結晶周辺部の温度勾配Geを、Ge/Gc>1となるようにし、Ge/Gcを、シリコン単結晶の引上げの際の偏析による窒素濃度の増加に応じて、徐々に大きくした。ここで、Dは50mmである。原料融液直上の熱遮蔽体と原料融液の液面との間隔を2×1013atoms/cm水準(シリコン単結晶ブロック内窒素濃度2−2.2×1013atoms/cm)ではD’=46.6mm(D’/D=0.932)、3×1013atoms/cm水準(シリコン単結晶ブロック内窒素濃度3−3.2×1013atoms/cm)ではD’=46.3mm(D’/D=0.926)、6×1013atoms/cm水準(シリコン単結晶ブロック内窒素濃度6−6.2×1013atoms/cm)ではD’=45.8mm(D’/D=0.916)、3×1014atoms/cm水準(シリコン単結晶ブロック内窒素濃度3−3.2×1014atoms/cm)ではD’=40.8mm(D’/D=0.816)としてシリコン単結晶ブロックを製造し、各窒素濃度で原料融液直上の熱遮蔽体と原料融液の液面との間隔を調整した際の欠陥分布を評価した。原料融液直上の熱遮蔽体と原料融液の液面との間隔の変更は、ルツボの高さ位置の変更によって実施した。
(Example 1)
Comparative Example 2 except that the distance between the heat shield directly above the raw material melt and the liquid level of the raw material melt was set to D' obtained from D'/ D = 0.94-nitrogen concentration / 2.41 × 10 15. It was carried out in the same manner as. By changing the distance between the heat shield directly above the raw material melt and the liquid level of the raw material melt in this way, the temperature gradient Gc at the center of the crystal and the temperature gradient Ge at the periphery of the crystal in the pulling axis direction of the silicon single crystal. Was set to Ge / Gc> 1, and Ge / Gc was gradually increased in accordance with the increase in nitrogen concentration due to segregation during pulling of the silicon single crystal. Here, D is 50 mm. The distance between the heat shield directly above the raw material melt and the liquid level of the raw material melt is 2 × 10 13 atoms / cm at 3 levels (nitrogen concentration in the silicon single crystal block 2-2.2 × 10 13 atoms / cm 3 ). D'= 46.6 mm (D'/ D = 0.932), 3 × 10 13 atoms / cm 3 levels (nitrogen concentration in silicon single crystal block 3-3.2 × 10 13 atoms / cm 3 ) = 46.3 mm (D'/ D = 0.926), 6 × 10 13 atoms / cm 3 levels (nitrogen concentration in silicon single crystal block 6-6.2 × 10 13 atoms / cm 3 ) D'= 45 At 0.8 mm (D'/ D = 0.916), 3 × 10 14 atoms / cm 3 levels (nitrogen concentration in silicon single crystal block 3-3.2 × 10 14 atoms / cm 3 ), D'= 40.8 mm A silicon single crystal block was produced as (D'/ D = 0.816), and the defect distribution when the distance between the heat shield directly above the raw material melt and the liquid level of the raw material melt was adjusted at each nitrogen concentration was evaluated. bottom. The distance between the heat shield directly above the raw material melt and the liquid level of the raw material melt was changed by changing the height position of the crucible.

図2に、比較例1、比較例2、及び、実施例1の引上げ条件でシリコン単結晶を製造した場合の、シリコン単結晶の径方向位置を横軸としたシリコン単結晶の引上げ軸方向における欠陥分布図を示す。 FIG. 2 shows the pulling axis direction of the silicon single crystal with the radial position of the silicon single crystal as the horizontal axis when the silicon single crystal is manufactured under the pulling conditions of Comparative Example 1, Comparative Example 2, and Example 1. The defect distribution map is shown.

比較例1に対して、窒素をドープした比較例2の欠陥分布は、窒素ドープ量2×1013atoms/cm水準、3×1013atoms/cm水準、6×1013atoms/cm水準、3×1014atoms/cm水準それぞれにおいて、窒素濃度が増加するに従って窒素と空孔のペア(NVペア)形成によって結晶育成中の空孔(Vacancy)の外方拡散が減少するため、結晶外周側の欠陥領域がVacancy優勢側(高V/G側)にシフトし、R−OSF領域が外周部でダレた分布に変化している。 Compared to Comparative Example 1, the defect distribution of Comparative Example 2 doped with nitrogen was as follows: Nitrogen-doped amount 2 × 10 13 atoms / cm 3 levels, 3 × 10 13 atoms / cm 3 levels, 6 × 10 13 atoms / cm 3 level 3 in the × 10 14 atoms / cm 3 levels, respectively, since the out-diffusion of nitrogen and vacancy pairs (NV pair) vacancies during crystal growth by the formation (vacancy) decreases with the nitrogen concentration is increased, The defect region on the outer peripheral side of the crystal is shifted to the Vacancy dominant side (high V / G side), and the R-OSF region is changed to a sagging distribution on the outer peripheral portion.

このような欠陥分布では、ウェーハを作製した際に、面内で残留Vacancy濃度が大きく異なる欠陥領域が混在(外周部のR−OSF領域+R/2〜中心部のNv領域、外周部のNv領域+R/2〜中心部のNi領域、外周部のR−OSF領域+R/2部のNv領域+中心部のNi領域)することや、面内全て同一のNv領域であってもウェーハ外周は残留Vacancyが多くなることとなる。そのため、800℃、3hr+1000℃、2hrの熱処理をした後の面内のBMD(Bulk Micro Defect)密度が大きく異なってしまうことになり、ウェーハ面内の低BMD領域でのゲッタリング能力不足によるデバイス歩留り低下などの要因となる。 In such a defect distribution, when a wafer is manufactured, defect regions having significantly different residual vacancy concentrations are mixed in the plane (R-OSF region in the outer peripheral portion + R / 2-Nv region in the central portion, Nv region in the outer peripheral portion). + R / 2-Ni region in the center, R-OSF region in the outer circumference + Nv region in the R / 2 + Ni region in the center) The number of vacancy will increase. Therefore, the in-plane BMD (Bulk Micro Defect) density after the heat treatment at 800 ° C., 3 hr + 1000 ° C., and 2 hr is significantly different, and the device yield due to insufficient gettering ability in the low BMD region in the wafer plane. It becomes a factor such as a decrease.

これに対して、本発明の実施例1では、窒素濃度増加に伴う欠陥分布変化(結晶外周側の欠陥領域がVacancy優勢側にシフトし、R−OSF領域が外周部でダレた分布へ変化)が矯正されており、ウェーハを作製した際に、ウェーハ面内全面を均一な欠陥領域とできるため、低温、短時間、例えば800℃、3hr+1000℃、2hrの熱処理をした後のウェーハ面内BMD密度を均一にコントロールすることができる。また、R−OSF領域の混在によるシリコン単結晶基板状態でのTDDB特性悪化や、製造したシリコン単結晶基板をエピタキシャルシリコンウェーハ用基板に用いた場合のEP欠陥化も抑制できる点でもデバイス歩留り、ウェーハ歩留りが良好となる。 On the other hand, in Example 1 of the present invention, the defect distribution changes with the increase in nitrogen concentration (the defect region on the outer peripheral side of the crystal shifts to the Vacancy dominant side, and the R-OSF region changes to a sagging distribution on the outer peripheral portion). Since the entire surface of the wafer surface can be made into a uniform defect region when the wafer is manufactured, the BMD density in the wafer surface after heat treatment at a low temperature for a short time, for example, 800 ° C., 3 hr + 1000 ° C., and 2 hr. Can be controlled uniformly. In addition, device yield and wafers can be suppressed in that TDDB characteristics deteriorate in the state of a silicon single crystal substrate due to the mixture of R-OSF regions and EP defects can be suppressed when the manufactured silicon single crystal substrate is used as a substrate for an epitaxial silicon wafer. The yield is good.

また、窒素は結晶育成中の偏析現象(平衡偏析係数7×10−4)によって、結晶育成が進むと徐々に高濃度化していくため、長尺結晶全長から歩留り良く製品を得るために、本発明は非常に有効となる。 In addition, nitrogen gradually increases in concentration as the crystal growth progresses due to the segregation phenomenon during crystal growth (equilibrium segregation coefficient 7 × 10 -4). The invention is very effective.

[エピタキシャルシリコンウェーハの良品率変化(シリコン単結晶1本中の品質推移)]
次に、本発明を実際の製品製造に適用した際に得られる効果について、エピタキシャルウェーハの良品率を例として詳細に説明する。
[Change in non-defective rate of epitaxial silicon wafer (quality transition in one silicon single crystal)]
Next, the effect obtained when the present invention is applied to actual product manufacturing will be described in detail by taking the non-defective rate of the epitaxial wafer as an example.

(比較例3)
32インチ(812.8mm)ルツボに410kgの原料を溶融し、4000Gの磁場印加下で直径300mmの結晶製造を実施した。原料融液直上の熱遮蔽体と原料融液の液面との間隔50mmで、窒素をドープしない際に結晶全長に亘り全面でN−領域を得られるように結晶育成中のヒーター位置、磁場印加装置の位置を調整した条件において、直胴製品採取部において、窒素ノンドープ(比較例3−1)、2×1013−6×1013atoms/cmの窒素濃度(比較例3−2)、1×1014−3.2×1014atoms/cmの窒素濃度(比較例3−3)となるように3本の結晶製造を行い、得られた結晶からシリコン単結晶基板を作製し、エピタキシャルシリコンウェーハ用基板として用いてエピタキシャルシリコンウェーハの製造を行なった。エピタキシャルシリコンウェーハの欠陥評価のため、KLA Tencor社製のSP3を用い、Obliqueモードで28nm以上で検出される欠陥を評価した。また、作製したエピタキシャルウェーハを800℃、3hr+1000℃、2hrの熱処理後、赤外散乱法により30nm以上のBMD密度を測定した。
(Comparative Example 3)
410 kg of the raw material was melted in a 32 inch (812.8 mm) crucible, and a crystal having a diameter of 300 mm was produced under the application of a magnetic field of 4000 G. The distance between the heat shield directly above the raw material melt and the liquid level of the raw material melt is 50 mm, and the heater position and magnetic field are applied during crystal growth so that the N- region can be obtained over the entire length of the crystal when nitrogen is not doped. in the position adjusted condition of the apparatus, the straight body product collection unit, nitrogen doped (Comparative example 3-1), the nitrogen concentration of 2 × 10 13 -6 × 10 13 atoms / cm 3 ( Comparative example 3-2), 1 × 10 14 -3.2 × 10 14 and so as to three nitrogen concentration of atoms / cm 3 (Comparative example 3-3) performs a crystal production, to produce a silicon single crystal substrate from the obtained crystals, An epitaxial silicon wafer was manufactured by using it as a substrate for an epitaxial silicon wafer. In order to evaluate the defects of the epitaxial silicon wafer, SP3 manufactured by KLA Tencor was used to evaluate the defects detected at 28 nm or more in the Oblique mode. Further, the produced epitaxial wafer was heat-treated at 800 ° C., 3 hr + 1000 ° C., and 2 hr, and then the BMD density of 30 nm or more was measured by an infrared scattering method.

(比較例4)
原料融液直上の熱遮蔽体と原料融液の液面との間隔も50mmのまま、特許文献9に示されているように窒素濃度に応じて引上げ速度を調整(窒素濃度増加に対して引上げ速度を遅く調整)した以外は、比較例3−2と同じ(比較例4−1)、比較例3−3と同じ(比較例4−2)として、比較例3と同様に、エピタキシャルシリコンウェーハを製造し、欠陥評価を行なった。また、作製したエピタキシャルウェーハを800℃、3hr+1000℃、2hrの熱処理後、赤外散乱法により30nm以上のBMD密度を測定した。
(Comparative Example 4)
While the distance between the heat shield directly above the raw material melt and the liquid level of the raw material melt remains 50 mm, the pulling speed is adjusted according to the nitrogen concentration as shown in Patent Document 9 (pulling with respect to the increase in nitrogen concentration). Except that the speed was adjusted to be slower), it was the same as Comparative Example 3-2 (Comparative Example 4-1) and the same as Comparative Example 3-3 (Comparative Example 4-2). Was manufactured and defect evaluation was performed. Further, the produced epitaxial wafer was heat-treated at 800 ° C., 3 hr + 1000 ° C., and 2 hr, and then the BMD density of 30 nm or more was measured by an infrared scattering method.

(実施例2)
原料融液直上の熱遮蔽体と原料融液の液面との間隔D’を、D’/D=0.94−窒素濃度/(2.41×1015)から求まるD’とした。実施例2−1は、2×1013−6×1013atoms/cmの窒素濃度で、結晶育成中の窒素偏析の影響を相殺するため結晶コーン側からTail側における窒素による偏析での窒素濃度変化に合せてD’=46.6mmから45.8mmに原料融液直上の熱遮蔽体と原料融液の液面との間隔を調整した以外は比較例4−1と同じとし、実施例2−2は、1×1014−3.2×1014atoms/cmの窒素濃度で、D’=44.9mmから40.3mmに原料融液直上の熱遮蔽体と原料融液の液面との間隔を調整した以外は比較例4−2と同じとして、比較例3と同様に、エピタキシャルウェーハ製造し、欠陥評価を行なった。また、作製したエピタキシャルウェーハを800℃、3hr+1000℃、2hrの熱処理後、赤外散乱法により30nm以上のBMD密度を測定した。原料融液直上の熱遮蔽体と原料融液の液面との間隔をこのように変化させることで、シリコン単結晶の引上げ軸方向の結晶中心部の温度勾配Gcと結晶周辺部の温度勾配Geを、Ge/Gc>1となるようにし、Ge/Gcを、シリコン単結晶の引上げの際の偏析による窒素濃度の増加に応じて、徐々に大きくした。
(Example 2)
The distance D'between the heat shield directly above the raw material melt and the liquid surface of the raw material melt was defined as D'obtained from D'/ D = 0.94-nitrogen concentration / (2.41 × 10 15). Examples 2-1, 2 × with nitrogen concentration of 10 13 -6 × 10 13 atoms / cm 3, nitrogen segregation from the crystal cone side to offset the effects of nitrogen segregation during the growth of crystal with nitrogen at Tail side The same as in Comparative Example 4-1 except that the distance between the heat shield directly above the raw material melt and the liquid level of the raw material melt was adjusted from D'= 46.6 mm to 45.8 mm according to the change in concentration. 2-2, 1 × 10 14 nitrogen concentration of -3.2 × 10 14 atoms / cm 3 , D '= thermal shield and liquid material melt just above the raw material melt to 40.3mm from 44.9mm The same as in Comparative Example 4-2 except that the distance from the surface was adjusted, an epitaxial wafer was manufactured and defect evaluation was performed in the same manner as in Comparative Example 3. Further, the produced epitaxial wafer was heat-treated at 800 ° C., 3 hr + 1000 ° C., and 2 hr, and then the BMD density of 30 nm or more was measured by an infrared scattering method. By changing the distance between the heat shield directly above the raw material melt and the liquid level of the raw material melt in this way, the temperature gradient Gc at the center of the crystal and the temperature gradient Ge at the periphery of the crystal in the pulling axis direction of the silicon single crystal. Was set to Ge / Gc> 1, and Ge / Gc was gradually increased in accordance with the increase in nitrogen concentration due to segregation during pulling of the silicon single crystal.

図3、4、及び、5は、それぞれ比較例3、比較例4、及び、実施例2におけるエピタキシャルウェーハの欠陥評価の結果を示すグラフである。高プロセスコストの先端デバイスにおいては、ウェーハ一枚当たり数個の欠陥であっても、それによって生じる不良チップが大きな問題となる。 FIGS. 3, 4, and 5 are graphs showing the results of defect evaluation of epitaxial wafers in Comparative Example 3, Comparative Example 4, and Example 2, respectively. In advanced devices with high process cost, even if there are only a few defects per wafer, the defective chips caused by them become a big problem.

比較例3において、2×1013atoms/cmの窒素濃度まではEP欠陥発生はほとんど問題にならないが、熱的に安定な(大きいサイズの)析出核を増加させるに十分な高窒素濃度となる3×1013atoms/cmの窒素濃度になるとEP欠陥発生がみられるようになった。更に窒素濃度が高い3×1013atoms/cm以上では、窒素濃度の増加に伴ってEP欠陥が増加し、高プロセスコストの先端デバイスへの使用には耐えられないレベルとなっている。また、比較例3−1、3−2、及び、3−3における、800℃、3hr+1000℃、2hrの熱処理後のエピタキシャルシリコンウェーハのBMD密度はそれぞれ1−3×10、1−2×10、及び、2.5−15×10/cmであった。窒素濃度2×1013atoms/cm以上で先端デバイスで十分なゲッタリング能力を有すると思われる平均サイズ45nm以上のBMD密度を1×10以上とすることができた。 In Comparative Example 3, EP defects were hardly a problem up to a nitrogen concentration of 2 × 10 13 atoms / cm 3 , but the nitrogen concentration was high enough to increase the thermally stable (large size) precipitated nuclei. It becomes 3 × 10 13 becomes nitrogen concentration of atoms / cm 3 when EP defects have come to be seen. Further, when the nitrogen concentration is 3 × 10 13 atoms / cm 3 or more, EP defects increase as the nitrogen concentration increases, and the level is unbearable for use in advanced devices with high process cost. The BMD densities of the epitaxial silicon wafers after heat treatment at 800 ° C., 3 hr + 1000 ° C., and 2 hr in Comparative Examples 3-1, 3-2, and 3-3 were 1-3 × 10 7 , 1-2 × 10, respectively. It was 8 and 2.5-15 × 10 8 / cm 3 . The average size 45nm or more BMD density appears to have a sufficient gettering capability tip device with nitrogen concentration 2 × 10 13 atoms / cm 3 or more was possible to 1 × 10 8 or more.

比較例4では、窒素濃度増加に対して引上げ速度を低下させたことで改善効果がみられるが、先端デバイスプロセスに用いるような低温・短時間の熱処理で十分なBMD密度を得るのにより好ましい6×1013atoms/cm以上の窒素濃度からEP欠陥が増加し始め、窒素1×1014atoms/cm以上では先端デバイスに使用に適するレベルにはなっていない。更に、より引上げ速度を低下させた場合、800℃、3hr+1000℃、2hrの熱処理をした際に、ウェーハ中心部のBMDが減少して、面内のBMD密度(ゲッタリング能力)の不均一が生じることや、場合によってはウェーハ中心部で転位ループや転位クラスターを有するI−rich領域となってしまって、中心部でEP欠陥が生じてしまったため、窒素濃度に対する引上げ速度調整だけでは完全にEP欠陥を抑制することは不可能であった。また、比較例4−1、及び、4−2における、800℃、3hr+1000℃、2hrの熱処理後のエピタキシャルシリコンウェーハのBMD密度はそれぞれ1−2×10、及び、2.5−15×10/cmであった。窒素濃度2×1013atoms/cm以上で先端デバイスで十分なゲッタリング能力を有すると思われる平均サイズ45nm以上のBMD密度を1×10以上とすることができた。 In Comparative Example 4, an improvement effect can be seen by lowering the pulling rate with respect to the increase in nitrogen concentration, but it is more preferable to obtain a sufficient BMD density by low-temperature, short-time heat treatment as used in the advanced device process6. EP defects began to increase from nitrogen concentrations of × 10 13 atoms / cm 3 and above, and nitrogen 1 × 10 14 atoms / cm 3 and above were not at levels suitable for use in advanced devices. Further, when the pulling speed is further lowered, the BMD at the center of the wafer decreases when the heat treatment is performed at 800 ° C., 3 hr + 1000 ° C., and 2 hr, resulting in non-uniformity of the in-plane BMD density (gettering ability). In some cases, the I-rich region has dislocation loops and dislocation clusters in the center of the wafer, causing EP defects in the center. Therefore, adjusting the pulling speed with respect to the nitrogen concentration is sufficient for EP defects. It was impossible to suppress. In Comparative Example 4-1, and, in 4-2, 800 ℃, 3hr + 1000 ℃, respectively BMD density of the epitaxial silicon wafer after the heat treatment of 2 hr 1-2 × 10 8, and, 2.5-15 × 10 It was 8 / cm 3. The average size 45nm or more BMD density appears to have a sufficient gettering capability tip device with nitrogen concentration 2 × 10 13 atoms / cm 3 or more was possible to 1 × 10 8 or more.

対して、実施例2では、3.2×1014atoms/cmの窒素濃度までEP欠陥は良好なレベルに抑制することができている。その結果、28nm以上での欠陥は、10cm以上のシリコン単結晶ブロック内の全基板平均で2個/枚以下と極めて良好な欠陥レベルであり、比較例3及び4よりも欠陥の少ないエピタキシャルシリコンウェーハを得ることができた。また、800℃、3hr+1000℃、2hrの熱処理後のエピタキシャルシリコンウェーハのBMD密度は実施例2−1で1−2×10/cm、実施例2−2で2.5−5×10/cmであり、窒素濃度2×1013atoms/cm以上で先端デバイスで十分なゲッタリング能力を有すると思われる平均サイズ45nm以上のBMDの密度を1×10/cm以上とすることができた。なお、3.5×1014atoms/cmの窒素濃度では析出物起因のEP欠陥発生が生じる場合があったため、窒素濃度は3.2×1014atoms/cm以下とすることが望ましい。 In contrast, in Example 2, EP defect until the nitrogen concentration of 3.2 × 10 14 atoms / cm 3 is able to be suppressed to a good level. As a result, the defects at 28 nm or more are extremely good defect levels of 2 or less on average for all the substrates in the silicon single crystal block of 10 cm or more, and the epitaxial silicon wafer has fewer defects than Comparative Examples 3 and 4. I was able to get. The BMD density of the epitaxial silicon wafer after heat treatment at 800 ° C., 3 hr + 1000 ° C., and 2 hr was 1-2 × 10 8 / cm 3 in Example 2-1 and 2.5-5 × 10 8 in Example 2-2. The density of BMD with an average size of 45 nm or more, which is / cm 3 and is considered to have sufficient gettering ability in advanced devices at a nitrogen concentration of 2 × 10 13 atoms / cm 3 or more, shall be 1 × 10 8 / cm 3 or more. I was able to. Since EP defects caused by precipitates may occur at a nitrogen concentration of 3.5 × 10 14 atoms / cm 3 , it is desirable that the nitrogen concentration be 3.2 × 10 14 atoms / cm 3 or less.

このように、本発明を用いれば、先端の低温・短時間デバイスプロセスにおいて高いゲッタリング能力が期待できる高窒素濃度条件においても、良好なEP欠陥レベルを有するエピタキシャルシリコンウェーハを結晶全長で非常に高い歩留りで製造することが可能となる。 As described above, according to the present invention, an epitaxial silicon wafer having a good EP defect level can be obtained in a very high crystal length even under high nitrogen concentration conditions where high gettering ability can be expected in a low-temperature, short-time device process at the tip. It becomes possible to manufacture by yield.

[シリコン単結晶基板の良品率変化(シリコン単結晶1本中の品質推移)]
次に、本発明を実際の製品製造に適用した際に得られる効果について、シリコン単結晶基板の良品率を例として詳細に説明する。
[Change in non-defective rate of silicon single crystal substrate (quality transition in one silicon single crystal)]
Next, the effects obtained when the present invention is applied to actual product manufacturing will be described in detail using the non-defective rate of the silicon single crystal substrate as an example.

(比較例5)
32インチ(812.8mm)ルツボに410kgの原料を溶融し、4000Gの磁場印加下で直径300mmの結晶製造を実施した。原料融液直上の熱遮蔽体と原料融液の液面との間隔50mmで、窒素をドープしない際に結晶全長に亘り全面でN(Neutral)領域を得られるように結晶育成中のヒーター位置、磁場印加装置の位置を調整した条件において、直胴製品採取部において、窒素ノンドープ(比較例5−1)、2×1013−6×1013atoms/cmの窒素濃度(比較例5−2)、1×1014−3.2×1014atoms/cmの窒素濃度(比較例5−3)となるように3本の結晶製造を行い、得られた結晶からシリコン単結晶基板を作製し、TDDB特性を評価した。また、シリコン単結晶基板の欠陥評価のため、KLA Tencor社製のSP3を用い、Obliqueモードで45nm以上で検出される欠陥を評価した。また、作製したシリコン単結晶基板を800℃、3hr+1000℃、2hrの熱処理後、赤外散乱法により30nm以上のBMD密度を測定した。
(Comparative Example 5)
410 kg of the raw material was melted in a 32 inch (812.8 mm) crucible, and a crystal having a diameter of 300 mm was produced under the application of a magnetic field of 4000 G. The position of the heater during crystal growth so that the N (Neutral) region can be obtained over the entire length of the crystal when the distance between the heat shield directly above the raw material melt and the liquid level of the raw material melt is 50 mm and nitrogen is not doped. in the position adjusted condition of the magnetic field applying device, in straight body product collection unit, nitrogen doped (Comparative example 5-1), 2 × 10 13 -6 × 10 13 atoms / nitrogen concentration of cm 3 (Comparative example 5-2 ), 1 × 10 14 -3.2 × such that the nitrogen concentration of 10 14 atoms / cm 3 (Comparative example 5-3) performs three crystal production, producing a silicon single crystal substrate from the obtained crystals Then, the TDDB characteristics were evaluated. Further, in order to evaluate the defects of the silicon single crystal substrate, SP3 manufactured by KLA Tencor was used to evaluate the defects detected at 45 nm or more in the Oblique mode. Further, the prepared silicon single crystal substrate was heat-treated at 800 ° C., 3 hr + 1000 ° C., and 2 hr, and then the BMD density of 30 nm or more was measured by an infrared scattering method.

(比較例6)
原料融液直上の熱遮蔽体と原料融液の液面との間隔を50mmのまま、特許文献9に示されているように窒素濃度に応じて引上げ速度を調整(窒素濃度増加に対して引上げ速度を遅く調整)した以外は、比較例5−2と同じ(比較例6−1)、比較例5−3と同じ(比較例6−2)として、比較例5と同様に製造したシリコン単結晶基板のTDDB特性及び欠陥を評価した。また、作製したシリコン単結晶基板を800℃、3hr+1000℃、2hrの熱処理後、赤外散乱法により30nm以上のBMD密度を測定した。
(Comparative Example 6)
While keeping the distance between the heat shield directly above the raw material melt and the liquid level of the raw material melt at 50 mm, the pulling speed is adjusted according to the nitrogen concentration as shown in Patent Document 9 (pulling with respect to the increase in nitrogen concentration). A single silicon produced in the same manner as in Comparative Example 5 as the same as Comparative Example 5-2 (Comparative Example 6-1) and the same as Comparative Example 5-3 (Comparative Example 6-2) except that the speed was adjusted to be slower). The TDDB characteristics and defects of the crystal substrate were evaluated. Further, the prepared silicon single crystal substrate was heat-treated at 800 ° C., 3 hr + 1000 ° C., and 2 hr, and then the BMD density of 30 nm or more was measured by an infrared scattering method.

(実施例3)
原料融液直上の熱遮蔽体と原料融液の液面との間隔を、D’/D=0.94−窒素濃度/(2.41×1015)から求まるD’とした。実施例3−1は、2×1013−6×1013atoms/cmの窒素濃度で、結晶育成中の窒素偏析の影響を相殺するため結晶コーン側からTail側における窒素による偏析での窒素濃度変化に合せてD’=46.6mmから45.8mmに原料融液直上の熱遮蔽体と原料融液の液面との間隔を調整した以外は比較例6−1と同じとし、実施例3−2は、1×1014−3.2×1014atoms/cmの窒素濃度で、D’=44.9mmから40.3mmに原料融液直上の熱遮蔽体と原料融液の液面との間隔を調整した以外は比較例6−2と同じとして、比較例5と同様に、シリコン単結晶基板を製造し、TDDB特性及び欠陥を評価した。また、作製したシリコン単結晶基板を800℃、3hr+1000℃、2hrの熱処理後、赤外散乱法により30nm以上のBMD密度を測定した。原料融液直上の熱遮蔽体と原料融液の液面との間隔をこのように変化させることで、シリコン単結晶の引上げ軸方向の結晶中心部の温度勾配Gcと結晶周辺部の温度勾配Geを、Ge/Gc>1となるようにし、Ge/Gcを、シリコン単結晶の引上げの際の偏析による窒素濃度の増加に応じて、徐々に大きくした。
(Example 3)
The distance between the heat shield directly above the raw material melt and the liquid level of the raw material melt was defined as D'obtained from D'/ D = 0.94-nitrogen concentration / (2.41 × 10 15). Examples 3-1, 2 × with nitrogen concentration of 10 13 -6 × 10 13 atoms / cm 3, nitrogen segregation from the crystal cone side to offset the effects of nitrogen segregation during the growth of crystal with nitrogen at Tail side The same as in Comparative Example 6-1 except that the distance between the heat shield directly above the raw material melt and the liquid level of the raw material melt was adjusted from D'= 46.6 mm to 45.8 mm according to the change in concentration. 3-2, 1 × 10 14 nitrogen concentration of -3.2 × 10 14 atoms / cm 3 , D '= thermal shield and liquid material melt just above the raw material melt to 40.3mm from 44.9mm As in Comparative Example 6-2, a silicon single crystal substrate was produced and the TDDB characteristics and defects were evaluated in the same manner as in Comparative Example 5 except that the distance from the surface was adjusted. Further, the prepared silicon single crystal substrate was heat-treated at 800 ° C., 3 hr + 1000 ° C., and 2 hr, and then the BMD density of 30 nm or more was measured by an infrared scattering method. By changing the distance between the heat shield directly above the raw material melt and the liquid level of the raw material melt in this way, the temperature gradient Gc at the center of the crystal and the temperature gradient Ge at the periphery of the crystal in the pulling axis direction of the silicon single crystal. Was set to Ge / Gc> 1, and Ge / Gc was gradually increased in accordance with the increase in nitrogen concentration due to segregation during pulling of the silicon single crystal.

図6、7、及び、8は、それぞれ比較例5、比較例6、及び、実施例3におけるシリコン単結晶基板のTDDB特性評価の結果を示すグラフである。 FIGS. 6, 7, and 8 are graphs showing the results of TDDB characteristic evaluation of the silicon single crystal substrate in Comparative Example 5, Comparative Example 6, and Example 3, respectively.

図6、7、及び、8において、灰色セルがTDDB不良箇所となっている。TDDB不良欠陥とEP欠陥源は関係性があり、比較例3、比較例4、及び、実施例2のEP欠陥の評価(図3、4、及び、5)と同様の結果となっている。比較例5においては、3×1013atoms/cm以上の窒素濃度で、窒素濃度増加に従って徐々にTDDB不良が増加している。比較例5におけるTDDB特性の良品率は、比較例5−1、比較例5−2及び比較例5−3において、それぞれ99.7−99.3、99.3−69.2、及び、50.7−14.7%であった。また、比較例5−1、5−2、及び、5−3における、45nm以上での欠陥は、10cm以上のシリコン単結晶ブロック内の全基板平均で1−2、1.8−158、及び、73−1250個/枚であった。また、比較例5−1、5−2、及び、5−3における、800℃、3hr+1000℃、2hrの熱処理後のシリコン単結晶基板のBMD密度はそれぞれ1−3×10、1−2×10、及び、2.5−15×10/cmであった。窒素濃度2×1013atoms/cm以上で先端デバイスで十分なゲッタリング能力を有すると思われる平均サイズ45nm以上のBMD密度を1×10以上とすることができた。 In FIGS. 6, 7, and 8, gray cells are TDDB defective parts. The TDDB defective defect and the EP defect source are related, and the results are the same as the evaluation of the EP defect in Comparative Example 3, Comparative Example 4, and Example 2 (FIGS. 3, 4, and 5). In Comparative Example 5, at a nitrogen concentration of 3 × 10 13 atoms / cm 3 or more, TDDB defects gradually increased as the nitrogen concentration increased. The non-defective rate of TDDB characteristics in Comparative Example 5 was 99.7-99.3, 99.3-69.2, and 50 in Comparative Example 5-1 and Comparative Example 5-2 and 5-3, respectively. It was .7-14.7%. Further, in Comparative Examples 5-1, 5-2, and 5-3, the defects at 45 nm or more were 1-2, 1.8-158, and the average of all the substrates in the silicon single crystal block of 10 cm or more. , 73-1250 pieces / sheet. The BMD densities of the silicon single crystal substrates after heat treatment at 800 ° C., 3 hr + 1000 ° C., and 2 hr in Comparative Examples 5-1, 5-2, and 5-3 were 1-3 × 10 7 , 1-2 ×, respectively. It was 10 8 and 2.5-15 × 10 8 / cm 3 . The average size 45nm or more BMD density appears to have a sufficient gettering capability tip device with nitrogen concentration 2 × 10 13 atoms / cm 3 or more was possible to 1 × 10 8 or more.

比較例6でも、EP欠陥の傾向と同様に、比較例5に対しては改善効果がみられるものの、完全には改善できず、6×1013atoms/cm以上の窒素濃度からTDDB不良が増加し、悪化していく。比較例6におけるTDDB特性の良品率は、比較例6−1及び比較例6−2において、それぞれ99.7−87.3、69.9−51.7%であった。また、比較例6−1及び比較例6−2における45nm以上での欠陥は、10cm以上のシリコン単結晶ブロック内の全基板平均で1−57個/枚、及び、160−364個/枚であった。また、比較例6−1、及び、6−2における、800℃、3hr+1000℃、2hrの熱処理後のシリコン単結晶基板のBMD密度はそれぞれ1−2×10、及び、2.5−15×10/cmであった。窒素濃度2×1013atoms/cm以上で先端デバイスで十分なゲッタリング能力を有すると思われる平均サイズ45nm以上のBMD密度を1×10以上とすることができた。 Similar to the tendency of EP defects, Comparative Example 6 also showed an improvement effect on Comparative Example 5, but could not be completely improved, and TDDB defects were observed from a nitrogen concentration of 6 × 10 13 atoms / cm 3 or more. It will increase and worsen. The non-defective rate of TDDB characteristics in Comparative Example 6 was 99.7-87.3 and 69.9-51.7%, respectively, in Comparative Example 6-1 and Comparative Example 6-2. Further, the defects at 45 nm or more in Comparative Example 6-1 and Comparative Example 6-2 were 1-57 / sheet and 160-364 / sheet on average of all the substrates in the silicon single crystal block of 10 cm or more. there were. In Comparative Example 6-1, and, in 6-2, 800 ℃, 3hr + 1000 ℃, respectively BMD density of the silicon single crystal substrate after the heat treatment of 2 hr 1-2 × 10 8, and, 2.5-15 × It was 10 8 / cm 3 . The average size 45nm or more BMD density appears to have a sufficient gettering capability tip device with nitrogen concentration 2 × 10 13 atoms / cm 3 or more was possible to 1 × 10 8 or more.

対して、実施例3では、3.2×1014atoms/cmの窒素濃度までTDDB不良を抑制することができている。実施例3におけるTDDB特性の良品率は、実施例3−1及び実施例3−2において、窒素濃度2−3.2×1014atoms/cmの範囲で、それぞれ99.7−99.3%であった。また、実施例3−1及び実施例3−2における45nm以上での欠陥は、10cm以上のシリコン単結晶ブロック内の全基板平均で1−1.9、及び、1.2−2個/枚であった。また、実施例3−1及び実施例3−2における、800℃、3hr+1000℃、2hrの熱処理後のシリコン単結晶基板のBMD密度はそれぞれ1−2×10、及び、2.5−15×10/cmであった。窒素濃度2×1013atoms/cm以上で先端デバイスで十分なゲッタリング能力を有すると思われる平均サイズ45nm以上のBMD密度を1×10以上とすることができた。 In contrast, in Example 3, and it is possible to suppress the TDDB failure until the nitrogen concentration of 3.2 × 10 14 atoms / cm 3 . The non-defective rate of TDDB characteristics in Example 3 was 99.7-99.3 in the range of nitrogen concentration 2-3.2 × 10 14 atoms / cm 3 in Examples 3-1 and 3-2, respectively. %Met. In addition, the defects at 45 nm or more in Examples 3-1 and 3-2 were 1-1.9 on average and 1.2-2 pieces / sheet on the average of all the substrates in the silicon single crystal block of 10 cm or more. Met. In Examples 3-1 and in Example 3-2, 800 ℃, 3hr + 1000 ℃, respectively BMD density of the silicon single crystal substrate after the heat treatment of 2 hr 1-2 × 10 8, and, 2.5-15 × It was 10 8 / cm 3 . The average size 45nm or more BMD density appears to have a sufficient gettering capability tip device with nitrogen concentration 2 × 10 13 atoms / cm 3 or more was possible to 1 × 10 8 or more.

このように、本発明を用いれば、先端の低温・短時間デバイスプロセスにおいて高いゲッタリング能力が期待できる高窒素濃度条件においても、TDDB不良の増加がなく、良好な欠陥レベルを有するシリコン単結晶基板を、結晶全長で非常に高い歩留りで製造することが可能となる。 As described above, according to the present invention, there is no increase in TDDB defects even under high nitrogen concentration conditions where high gettering ability can be expected in the advanced low temperature and short time device process, and the silicon single crystal substrate has a good defect level. Can be produced with a very high yield in the entire crystal length.

以上のように、本発明を用いれば、先端デバイスプロセスに用いるような低温・短時間の熱処理で十分なBMD密度を得るのに最適な窒素濃度3×1013atoms/cmから3.2×1014atoms/cmまで、シリコン単結晶基板とした状態でのTDDB特性が良好で、エピタキシャルシリコンウェーハでのEP欠陥発生もないウェーハを得ることができる。 As described above, according to the present invention, the optimum nitrogen concentration 3 × 10 13 atoms / cm 3 to 3.2 × for obtaining a sufficient BMD density by low-temperature, short-time heat treatment as used in advanced device processes. Up to 10 14 atoms / cm 3 , it is possible to obtain a wafer having good TDDB characteristics in a silicon single crystal substrate and without EP defects occurring in an epitaxial silicon wafer.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above embodiment is an example, and any one having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. It is included in the technical scope of the invention.

1…メインチャンバー、 2…引上げチャンバー、 3…単結晶棒、
4…原料融液、 5…石英ルツボ、 6…黒鉛ルツボ、 7…ヒーター、
8…断熱部材、 9…ガス流出口、 10…ガス導入口、 11…ガス整流筒、
12…熱遮蔽体、 13…磁場印加装置、 14…シリコン単結晶の製造装置。
1 ... Main chamber, 2 ... Pull-up chamber, 3 ... Single crystal rod,
4 ... Raw material melt, 5 ... Quartz crucible, 6 ... Graphite crucible, 7 ... Heater,
8 ... Insulation member, 9 ... Gas outlet, 10 ... Gas inlet, 11 ... Gas rectifier tube,
12 ... Heat shield, 13 ... Magnetic field application device, 14 ... Silicon single crystal manufacturing device.

Claims (4)

チョクラルスキー法によって、結晶全面がNeutral領域となる条件で引上げることによってシリコン単結晶を育成する方法であって、
前記シリコン単結晶を育成する際に、窒素を2×1013atoms/cm以上3.2×1014atoms/cm以下の窒素濃度でドープし、
前記シリコン単結晶の引上げ軸方向の結晶中心部の温度勾配Gcと結晶周辺部の温度勾配Geの比をGe/Gc>1となるようにし、
前記Ge/Gcを、前記シリコン単結晶の引上げの際の偏析による窒素濃度の増加に応じて、徐々に大きくすることを特徴とするシリコン単結晶の製造方法。
It is a method of growing a silicon single crystal by pulling it up under the condition that the entire surface of the crystal becomes a Neutral region by the Czochralski method.
When growing the silicon single crystal, nitrogen was doped at a nitrogen concentration of 2 × 10 13 atoms / cm 3 or more and 3.2 × 10 14 atoms / cm 3 or less.
The ratio of the temperature gradient Gc at the center of the crystal in the pull-up axis direction of the silicon single crystal to the temperature gradient Ge at the periphery of the crystal is set to Ge / Gc> 1.
A method for producing a silicon single crystal, which comprises gradually increasing the Ge / Gc in accordance with an increase in nitrogen concentration due to segregation during pulling of the silicon single crystal.
前記Ge/Gcの調整を、石英ルツボ内の原料融液直上に配置された熱遮蔽体と前記原料融液の液面との間隔を制御すること、前記石英ルツボを囲うように配置されたヒーターの位置を前記原料融液の液面に対して低くすること、前記シリコン単結晶の製造装置のメインチャンバーの外側に配置された磁場印加装置の磁場強度を弱くすること、及び、前記磁場印加装置の位置を低くすること、のうちいずれか一つあるいは二つ以上の組み合わせによって行なうことを特徴とする請求項1に記載のシリコン単結晶の製造方法。 The Ge / Gc is adjusted by controlling the distance between the heat shield arranged directly above the raw material melt in the quartz crucible and the liquid level of the raw material melt, and the heater arranged so as to surround the quartz crucible. The position of the raw material melt is lowered with respect to the liquid level of the raw material melt, the magnetic field strength of the magnetic field applying device arranged outside the main chamber of the silicon single crystal manufacturing device is weakened, and the magnetic field applying device is used. The method for producing a silicon single crystal according to claim 1, wherein the position of the silicon single crystal is lowered, which is performed by any one or a combination of two or more. 前記Ge/Gcの調整を、前記熱遮蔽体と前記原料融液の液面との間隔を制御することによって行なう際に、窒素をドープしない場合に結晶全面がNeutral領域となる条件における前記熱遮蔽体と前記原料融液の液面との間隔をDとしたときに、窒素をドープする場合の前記熱遮蔽体と前記原料融液の液面との間隔を、窒素濃度に応じて、D’/D=0.94−窒素濃度/(2.41×1015)から求めたD’となるように変化させることを特徴とする請求項2に記載のシリコン単結晶の製造方法。 When the Ge / Gc adjustment is performed by controlling the distance between the heat shield and the liquid level of the raw material melt, the heat shield under the condition that the entire surface of the crystal becomes a Neutral region when nitrogen is not doped. When the distance between the body and the liquid level of the raw material melt is D, the distance between the heat shield and the liquid level of the raw material melt when nitrogen is doped is set to D'depending on the nitrogen concentration. The method for producing a silicon single crystal according to claim 2, wherein the amount is changed so as to be D'obtained from / D = 0.94-nitrogen concentration / (2.41 × 10 15). 前記求めたD’が20mmより大きくなる場合には、前記熱遮蔽体と前記原料融液の液面との間隔を前記求めたD’とすることで前記Ge/Gcを調整し、前記求めたD’が20mm以下となる場合には、前記熱遮蔽体と前記原料融液の液面との間隔を20mmとし、さらに、前記石英ルツボを囲うように配置されたヒーターの位置を前記原料融液の液面に対して低くすること、前記シリコン単結晶の製造装置のメインチャンバーの外側に配置された磁場印加装置の磁場強度を弱くすること、及び、前記磁場印加装置の位置を低くすること、のうちいずれか一つあるいは二つ以上の組み合わせによって前記Ge/Gcを調整することを特徴とする請求項3に記載のシリコン単結晶の製造方法。 When the determined D'is larger than 20 mm, the Ge / Gc is adjusted by setting the distance between the heat shield and the liquid surface of the raw material melt to the determined D', and the determination is made. When D'is 20 mm or less, the distance between the heat shield and the liquid level of the raw material melt is set to 20 mm, and the position of the heater arranged so as to surround the quartz ruts is set to the raw material melt. To lower the liquid level of the silicon single crystal, to weaken the magnetic field strength of the magnetic field applying device arranged outside the main chamber of the silicon single crystal manufacturing device, and to lower the position of the magnetic field applying device. The method for producing a silicon single crystal according to claim 3, wherein the Ge / Gc is adjusted by any one or a combination of two or more of them.
JP2018102016A 2018-05-29 2018-05-29 Method for manufacturing silicon single crystal Active JP6927150B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018102016A JP6927150B2 (en) 2018-05-29 2018-05-29 Method for manufacturing silicon single crystal
KR1020190045181A KR20190135913A (en) 2018-05-29 2019-04-18 Method for manufacturing silicon single crystal, epitaxial silicon wafer and silicon single crystal substrate
CN201910458568.0A CN110541191B (en) 2018-05-29 2019-05-29 Method for producing single crystal silicon, epitaxial silicon wafer, and single crystal silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018102016A JP6927150B2 (en) 2018-05-29 2018-05-29 Method for manufacturing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2019206451A JP2019206451A (en) 2019-12-05
JP6927150B2 true JP6927150B2 (en) 2021-08-25

Family

ID=68709593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018102016A Active JP6927150B2 (en) 2018-05-29 2018-05-29 Method for manufacturing silicon single crystal

Country Status (3)

Country Link
JP (1) JP6927150B2 (en)
KR (1) KR20190135913A (en)
CN (1) CN110541191B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862791A (en) * 2021-09-28 2021-12-31 西安奕斯伟材料科技有限公司 Crystal pulling furnace for pulling monocrystalline silicon rod
CN113897671B (en) * 2021-09-30 2023-05-05 西安奕斯伟材料科技股份有限公司 Preparation method of nitrogen-doped monocrystalline silicon rod
CN115404539A (en) * 2022-08-30 2022-11-29 西安奕斯伟材料科技有限公司 Method for pulling single crystal silicon rod by Czochralski method, single crystal silicon rod, silicon wafer and epitaxial silicon wafer
CN115574722B (en) * 2022-11-04 2024-03-29 中国计量科学研究院 Self-tracing interference type displacement sensor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179889A (en) 1997-07-09 1999-03-23 Shin Etsu Handotai Co Ltd Production of and production unit for silicon single crystal with few crystal defect, and silicon single crystal and silicon wafer produced thereby
JP2000016897A (en) 1998-07-03 2000-01-18 Sumitomo Metal Ind Ltd Production of high quality silicon single crystal
JP3692812B2 (en) 1998-06-04 2005-09-07 信越半導体株式会社 Nitrogen-doped low-defect silicon single crystal wafer and manufacturing method thereof
JP4358333B2 (en) 1998-11-20 2009-11-04 Sumco Techxiv株式会社 Method for producing silicon single crystal
JP3601328B2 (en) 1998-12-14 2004-12-15 信越半導体株式会社 Method for producing silicon single crystal and silicon single crystal and silicon wafer produced by this method
JP3787472B2 (en) 1999-11-12 2006-06-21 信越半導体株式会社 Silicon wafer, method for manufacturing the same, and method for evaluating silicon wafer
JP4102988B2 (en) 2000-06-26 2008-06-18 信越半導体株式会社 Method for producing silicon wafer and epitaxial wafer, and epitaxial wafer
JP4463950B2 (en) * 2000-08-11 2010-05-19 信越半導体株式会社 Method for manufacturing silicon wafer
JP3624827B2 (en) * 2000-12-20 2005-03-02 三菱住友シリコン株式会社 Method for producing silicon single crystal
JP4806975B2 (en) * 2005-06-20 2011-11-02 株式会社Sumco Method for growing silicon single crystal
JP4715402B2 (en) 2005-09-05 2011-07-06 株式会社Sumco Single crystal silicon wafer manufacturing method, single crystal silicon wafer, and wafer inspection method
JP2008066357A (en) 2006-09-05 2008-03-21 Shin Etsu Handotai Co Ltd Silicon single crystal wafer and method of manufacturing the same
JP6044530B2 (en) * 2013-12-05 2016-12-14 株式会社Sumco Method for growing silicon single crystal
JP6135611B2 (en) 2014-07-03 2017-05-31 信越半導体株式会社 Point defect concentration calculation method, Grown-in defect calculation method, Grown-in defect in-plane distribution calculation method, and silicon single crystal manufacturing method using them

Also Published As

Publication number Publication date
CN110541191B (en) 2022-08-09
CN110541191A (en) 2019-12-06
JP2019206451A (en) 2019-12-05
KR20190135913A (en) 2019-12-09

Similar Documents

Publication Publication Date Title
JP6927150B2 (en) Method for manufacturing silicon single crystal
KR100847112B1 (en) Single crystal silicon wafer for insulated gate bipolar transistors and process for producing the same
EP2110466B1 (en) Silicon single crystal manufacturing method
KR100840751B1 (en) High quality silicon single crystalline ingot producing method, Apparatus for growing the same, Ingot, and Wafer
US8211228B2 (en) Method for producing single crystal and a method for producing annealed wafer
CN108368638B (en) Semiconductor wafer made of monocrystalline silicon and method for producing the same
WO2012120789A1 (en) Silicon single crystal wafer
KR100747726B1 (en) Silicon wafer and production method thereof
JP6044277B2 (en) Manufacturing method of silicon single crystal wafer
JP2012246218A (en) Silicon single crystal wafer, and method for producing silicon single crystal
JP4196602B2 (en) Epitaxial growth silicon wafer, epitaxial wafer, and manufacturing method thereof
US20100127354A1 (en) Silicon single crystal and method for growing thereof, and silicon wafer and method for manufacturing thereof
JP4151474B2 (en) Method for producing single crystal and single crystal
JP2009274888A (en) Production method of silicon single crystal, and silicon single crystal wafer
KR101266701B1 (en) Cooling Apparatus of Silicon Crystal and Single Crystal Grower including the same
JP3719088B2 (en) Single crystal growth method
JP4293188B2 (en) Single crystal manufacturing method and silicon single crystal wafer
JP4089137B2 (en) Method for producing silicon single crystal and method for producing epitaxial wafer
JP4080657B2 (en) Method for producing silicon single crystal ingot
JP4463950B2 (en) Method for manufacturing silicon wafer
JP4688984B2 (en) Silicon wafer and crystal growth method
JP5282762B2 (en) Method for producing silicon single crystal
JP2007210820A (en) Method of manufacturing silicon single crystal
JP4360208B2 (en) Method for producing silicon single crystal
JP7384264B1 (en) Silicon wafers and epitaxial wafers for epitaxial growth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210719

R150 Certificate of patent or registration of utility model

Ref document number: 6927150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150