JP6924496B2 - ワンステップ逆転写テンプレートスイッチpcr - Google Patents

ワンステップ逆転写テンプレートスイッチpcr Download PDF

Info

Publication number
JP6924496B2
JP6924496B2 JP2018523697A JP2018523697A JP6924496B2 JP 6924496 B2 JP6924496 B2 JP 6924496B2 JP 2018523697 A JP2018523697 A JP 2018523697A JP 2018523697 A JP2018523697 A JP 2018523697A JP 6924496 B2 JP6924496 B2 JP 6924496B2
Authority
JP
Japan
Prior art keywords
primer
reverse transcription
oligonucleotide primer
template
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018523697A
Other languages
English (en)
Other versions
JPWO2017222057A1 (ja
Inventor
克之 城口
克之 城口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Publication of JPWO2017222057A1 publication Critical patent/JPWO2017222057A1/ja
Application granted granted Critical
Publication of JP6924496B2 publication Critical patent/JP6924496B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1096Processes for the isolation, preparation or purification of DNA or RNA cDNA Synthesis; Subtracted cDNA library construction, e.g. RT, RT-PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/10Modifications characterised by
    • C12Q2525/173Modifications characterised by incorporating a polynucleotide run, e.g. polyAs, polyTs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/10Modifications characterised by
    • C12Q2525/186Modifications characterised by incorporating a non-extendable or blocking moiety

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、ワンステップで、逆転写テンプレートスイッチングPCRを実施するための技術に関する。
逆転写ポリメラーゼ連鎖反応(Reverse Transcription Polymerase Chain Reaction; RT-PCR)は、RNAを鋳型として、特定の遺伝子を増幅する手法として、遺伝子工学の分野において汎用されている。RT-PCRにおいては、まず、逆転写酵素(RNA依存性DNAポリメラーゼ)を用いてRNAをcDNAに逆転写し、さらに耐熱性DNAポリメラーゼによりこのcDNAを検出可能なレベルにまで増幅させる。この反応のコンビネーションは、オーソドックスには、ツーステップ(反応ごとに別のチューブを用い、継続して反応させる)で行われるが、逆転写酵素や反応溶液組成の工夫により、この反応のコンビネーションをワンステップ(1つのチューブ中で連続して反応させる)で行う技術が開発されている。
テンプレートスイッチング(Template Switching)は、鋳型となるRNAの5’末端の配列が未知であるか、共通配列を有していない場合でも、そのRNAを鋳型とするRT-PCR増幅を可能とする技術である。テンプレートスイッチングにおいては、逆転写酵素が鋳型RNAの5’末端に達すると、逆転写酵素の有するターミナルトランスフェラーゼ活性により、新たに合成したcDNAの3’末端に特定の短い配列(例えば、Moloney Murine Leukemia Virus由来の逆転写酵素(MMLV RT)の場合は、シトシンリッチな短い配列)が自動的に付加される現象を利用する。この短い付加配列に相補的な配列を、アンカー配列の3’末端に付加したオリゴヌクレオチド(テンプレートスイッチングオリゴヌクレオチド)を逆転写時に系内に加えると、当該テンプレートスイッチングオリゴヌクレオチドが合成されたcDNAの3’末端にハイブリダイズし、逆転写酵素のための鋳型を延長する。逆転写酵素は鋳型を乗り換え、アンカー配列の5’末端までcDNA合成を続けるため、cDNAの3’端にアンカー配列に相補的な配列が付加される。逆転写のプライマーとして、鋳型RNA中の特定の配列に相補的な配列を含むオリゴDNAか、特定の既知配列が5’末端に付加されたオリゴDNAを用いることにより、新たに合成されるcDNAは5’末端にも既知配列を有するので、結果として新たに合成されるcDNA(アンチセンス鎖)は、5’末端と3’末端の両端に既知配列を備えることとなる。従って、これらの既知配列に基づき設計されたプライマーセットを用いることにより、PCR増幅が可能となる。
ポリ(A)テイルを有するmRNAに対応するcDNAの合成は、ランダムプライマーまたはポリ(A)テイルに相補的なオリゴ(dT)含有プライマーを用いた逆転写によって達成される。この反応においては、ポリ(A)テイルを有する全てのmRNAから、cDNAが合成されるので、cDNAライブラリーが構築される。一方、特定の遺伝子に特異的なプライマーを逆転写において用いることにより、特定の遺伝子のcDNAのみを特異的に合成することが可能となる。
ハイスループットへ適用可能とするように、より迅速に、より簡便に、且つ高い特異性で、逆転写テンプレートスイッチングPCRを行う技術が求められている。
ところで、PCRにおける副反応を回避する技術として、種々のホットスタート技術が開発されている。即ち、PCRを行う際に、反応液を調製してからサーマルサイクラーの温度が上昇するまでの間、PCR反応混合液は室温〜50℃という温度にさらされる。プライマーのTmは通常、50℃以上に設定されるので、この温度域ではプライマーの特異性が充分発揮されない。一方、この温度域でもポリメラーゼは弱いながら活性を示すため、ミスアニールしたプライマーを起点とした伸長が生じ、様々な副反応(プライマーダイマー、エキストラバンド等)の原因となる。この副反応を回避する技術として、熱不安定性の修飾基が結合したオリゴヌクレオチドプライマーが開発されている(特許文献1及び2、非特許文献1及び2)。このオリゴヌクレオチドプライマーにおいては、1以上のヌクレオチド間結合或いは3’末端ヒドロキシル基に修飾基が置換している。この修飾基による保護のため、PCR増幅における最初の高温でのインキュベーション期間前におけるDNAポリメラーゼ媒介性オリゴヌクレオチドプライマー伸長が抑制される。修飾基の存在のため、プライマーは、最初の変性温度(多くの場合95℃)に達するまでは不活性状態にある。最初の変性温度に到達すると、修飾基が離脱することにより、ポリメラーゼによる伸長の可能な、対応する未修飾オリゴヌクレオチドプライマーとなる。
米国特許第8133669号明細書 米国特許第8361753号明細書
Curr Protoc Nucleic Acid Chem. 2009 Sep; Chapter 4: Unit 4.35 1-17 Nucleic Acids Res. 2008 Nov; 36(20):e131
本発明は、より迅速に、より簡便に、且つ高い特異性で、逆転写テンプレートスイッチングPCRを行う技術を提供する。
本発明を以下に詳細に説明する。本発明者は、逆転写テンプレートスイッチングPCRにおいて、逆転写用のプライマーとして、特定の遺伝子に特異的なプライマーを使用し、且つPCR用のプライマーセットとして、テンプレートスイッチングプライマー中のアンカー配列を有するオリゴヌクレオチドと、前記逆転写用のプライマーとの組み合わせを使用し、ワンステップ(同一の反応系において一段階)で、逆転写とPCRの反応コンビネーションを実施してみた。しかしながら、この方法では、副反応が生じてしまい、特に、鋳型となるRNAのコピー数が少なく、PCRのサイクル数を多くした時に、この傾向が顕著だった。副反応が生じる原因として、PCRの特異性が逆転写用のプライマーのみに依存すること、鋳型RNAのコピー数に対して、逆転写用プライマーが大過剰に存在するため、逆転写用プライマーが非特異的に鋳型RNAにハイブリダイズし、非特異的な逆転写が生じてしまうことが考えられた。
そこで、上記反応コンビネーションにおいては、逆転写用プライマーが、逆転写のみならずPCRにおけるプライマーとしても使用されるが、これを改め、逆転写用プライマーと同一のオリゴヌクレオチドの3’末端OHを、熱不安定性の修飾基で保護して不活化したプライマー(以下、不活化したプライマーをブロックプライマーと呼ぶことがある)を、PCR用のプライマーとし、逆転写用プライマーの添加量を減らすことにより、副反応の発生を抑制することに成功した。この方法によると、逆転写において、逆転写用プライマーとブロックプライマーが鋳型RNAにハイブリダイズするが、ブロックプライマーは修飾基による保護のため、逆転写に寄与することが出来ず、逆転写用プライマーのみを起点に逆転写が生じる。ブロックプライマーは、仮に非特異的に鋳型RNAにハイブリダイズしたとしても、逆転写産物を生じない。PCR増幅における最初の高温でのインキュベーションにより、ブロックプライマーから修飾基が離脱して未修飾プライマーに変換されると、伸長反応に寄与可能となるため、PCRが進行する。驚くべきことに、未修飾の逆転写用プライマーを添加せずに、ブロックプライマーのみを添加して、ワンステップで逆転写テンプレートスイッチングPCRを行っても、高い特異性を持ったPCR増幅を達成することができた。
本発明者は、上記知見に基づき更に検討を加え、本発明を完成するに至った。
即ち、本発明は下記を含む:
[1]改変オリゴヌクレオチドプライマーを用いてRNAの少なくとも一部の領域を増幅する核酸の増幅方法であって、
核酸の増幅反応は、RNAを鋳型とする逆転写工程a)と、工程a)で合成されたcDNAにテンプレートスイッチングオリゴヌクレオチドを付加するテンプレートスイッチング工程b)と、
工程b)で合成されたテンプレートスイッチcDNAを鋳型とするPCRによるDNA増幅工程c)、からなり、前記工程a)〜c)は同一の反応系において一段階で行われ、
該改変オリゴヌクレオチドプライマーは、当該改変により逆転写工程a)においてプライマー機能の一部又は全部が阻害されており、DNA増幅工程c)ではプライマー機能の阻害が解除されることを特徴とする、核酸の増幅方法。
[2]以下の工程:
1)i)テンプレートスイッチングオリゴヌクレオチド、ii)該テンプレートスイッチングオリゴヌクレオチドに含まれるアンカー配列の少なくとも一部を含む5’アンカーオリゴヌクレオチドプライマー、及び改変オリゴヌクレオチドプライマーからなるプライマーセット、並びにiii)鋳型RNA、を含む、該鋳型RNAをcDNAにテンプレートスイッチング逆転写するため、及び該cDNAの少なくとも一部の領域をPCR増幅するために必要な全ての試薬(但し、逆転写を開始するオリゴヌクレオチドプライマーを除く)を含む、組成物を提供すること;
2)1)で提供された組成物を、逆転写が進行可能な温度でインキュベートすることにより、該鋳型RNAから、アンカー配列に相補的なヌクレオチド配列が3’末端に付加されたcDNAを生成し、該cDNAを含む反応混合液を得ること;及び
3)2)で得られた反応混合液を、PCRが進行可能な複数回の熱サイクリングプロトコールに付すことにより、該cDNAを鋳型として、前記プライマーセットにより挟まれた領域が増幅された核酸を得ること
を含む、改変オリゴヌクレオチドプライマーを用いてRNAの少なくとも一部の領域を増幅する核酸の増幅方法であって、
該改変オリゴヌクレオチドプライマーは、当該改変により逆転写におけるプライマー機能の一部又は全部が阻害されており、且つ該逆転写の結果、又はPCRの初期熱変性処理によって、プライマー機能の阻害が解除される、方法。
[3]1)で提供される組成物が、逆転写を開始するオリゴヌクレオチドプライマーを更に含む、[2]記載の方法。
[4]改変オリゴヌクレオチドプライマーが、同一の改変オリゴヌクレオチドプライマーの配列上に1又はそれ以上の相補領域を有し、PCRの初期熱変性処理前までは当該相補領域によって折り返し構造を取る、或いは熱不安定性修飾基を含む、[1]〜[3]のいずれかに記載の方法。
[5]該改変オリゴヌクレオチドプライマーが、鋳型RNAの部分配列に相補的なヌクレオチド配列を含む、[4]記載の方法。
[6]プライマー機能が阻害されなかった一部の改変オリゴヌクレオチドプライマーが、鋳型RNAにハイブリダイズすることで逆転写を開始するオリゴヌクレオチドプライマーとして機能する、[5]記載の方法。
[7]逆転写を開始するオリゴヌクレオチドプライマーの濃度が40nM以下である、[1]〜[6]のいずれかに記載の方法。
[8]PCRの熱サイクリングの回数が40回以上である、[1]〜[7]のいずれか記載の方法。
[9]i)テンプレートスイッチングオリゴヌクレオチド;並びに
ii)該テンプレートスイッチングオリゴヌクレオチドに含まれるアンカー配列の少なくとも一部を含む5’アンカーオリゴヌクレオチドプライマー、及び改変オリゴヌクレオチドプライマーからなるプライマーセットを含む、ワンステップ逆転写テンプレートスイッチングPCRを実施するための、キットであって、
該改変オリゴヌクレオチドプライマーは、当該改変により逆転写におけるプライマー機能の一部又は全部が阻害されており、且つ該逆転写の結果、又は熱変性処理により、該逆転写の産物を鋳型とするPCRにおけるプライマー機能を獲得する、キット。
[10]i)のオリゴヌクレオチド、及びii)のプライマーセットを、両者の混合物を含む組成物として含む、[9]記載のキット。
[11]更に、逆転写を開始するオリゴヌクレオチドプライマーを含む、[9]又は[10]記載のキット。
[12]逆転写を開始するオリゴヌクレオチドプライマーを含まない、[9]又は[10]記載のキット。
[A1] 対象RNAの少なくとも一部の領域を増幅する方法であって、該方法は、
a)該対象RNAと、逆転写に必要な試薬と、テンプレートスイッチに必要な試薬と、ポリメラーゼ連鎖反応に必要な試薬とを混合し、混合物を逆転写が生じる条件に供して、テンプレートスイッチングオリゴヌクレオチドおよび該対象RNAに対応する核酸配列を含むcDNAを提供する工程と、
b)該工程a)から得られたcDNAを、ポリメラーゼ連鎖反応が生じる条件に供して、該cDNAの少なくとも一部の領域を増幅する工程と
を含み、
該ポリメラーゼ連鎖反応に必要な試薬は、該工程a)においてプライマー機能の一部又は全部が阻害されており、該工程b)ではプライマー機能の阻害が解除されるように設計された改変オリゴヌクレオチドプライマーを含む、方法。
[A2] 対象RNAの少なくとも一部の領域に基づいて増幅された核酸試料を生産する方法であって、該方法は、
a)該対象RNAと、逆転写に必要な試薬と、テンプレートスイッチに必要な試薬と、ポリメラーゼ連鎖反応に必要な試薬とを混合し、混合物を逆転写が生じる条件に供して、テンプレートスイッチングオリゴヌクレオチドおよび該対象RNAに対応する核酸配列を含むcDNAを提供する工程と、
b)該工程a)から得られたcDNAを、ポリメラーゼ連鎖反応が生じる条件に供する工程と
を含み、
該ポリメラーゼ連鎖反応に必要な試薬は、該工程a)においてプライマー機能の一部又は全部が阻害されており、該工程b)ではプライマー機能の阻害が解除されるように設計された改変オリゴヌクレオチドプライマーを含む、方法。
[A3] 前記ポリメラーゼ連鎖反応に必要な試薬は、必要に応じて、前記テンプレートスイッチングオリゴヌクレオチドに含まれるアンカー配列の少なくとも一部を含む5’アンカーオリゴヌクレオチドプライマーを含む、[A1]または[A2]に記載の方法。
[A4] 前記ポリメラーゼ連鎖反応に必要な試薬は、前記5’アンカーオリゴヌクレオチドプライマーを含まない、[A3]に記載の方法。
[A5] 前記逆転写に必要な試薬は、逆転写を開始するオリゴヌクレオチドプライマーを含み、該逆転写を開始するオリゴヌクレオチドプライマーは、前記混合物中に、約40nM以下の終濃度で、または前記改変オリゴヌクレオチドプライマーに対して約10分の1以下のモル比で含む、[A1]〜[A4]のいずれか一項に記載の方法。
[A6] 前記改変オリゴヌクレオチドプライマーが、同一の改変オリゴヌクレオチドプライマーの配列上に1又はそれ以上の相補領域を有し、PCRの初期熱変性処理前までは当該相補領域によって折り返し構造を取る、或いは熱不安定性修飾基を含む、[A1]〜[A5]のいずれか一項に記載の方法。
[A7] 前記改変オリゴヌクレオチドプライマーが、鋳型RNAの部分配列に相補的なヌクレオチド配列を含む、[A1]〜[A6]のいずれか一項に記載の方法。
[A8] プライマー機能が阻害されなかった一部の改変オリゴヌクレオチドプライマーが、鋳型RNAにハイブリダイズすることで逆転写を開始するオリゴヌクレオチドプライマーとして機能する、[A7]記載の方法。
[A9] 対象RNAの少なくとも一部の領域を増幅するためのキットであって、該キットは、
i)逆転写に必要な試薬と、
ii)テンプレートスイッチに必要な試薬と、
iii)改変オリゴヌクレオチドプライマーを用いたポリメラーゼ連鎖反応に必要な試薬と
iv)必要に応じて、使用説明書
を含み、
i)〜iii)の試薬および該改変オリゴヌクレオチドプライマーが反応開始時においてすべて反応系において混合されていることを特徴とし、該改変オリゴヌクレオチドプライマーは、逆転写が生じる条件下でプライマー機能の一部又は全部が阻害されており、ポリメラーゼ連鎖反応が生じる条件下でプライマー機能の阻害が解除されるように設計される、キット。
[A10] 前記テンプレートスイッチに必要な試薬は、テンプレートスイッチングオリゴヌクレオチドを含み、前記ポリメラーゼ連鎖反応に必要な試薬は、必要に応じて、該テンプレートスイッチングオリゴヌクレオチドに含まれるアンカー配列の少なくとも一部を含む5’アンカーオリゴヌクレオチドプライマーを含む、[A9]に記載のキット。
[A11] 前記ポリメラーゼ連鎖反応に必要な試薬は、前記5’アンカーオリゴヌクレオチドプライマーを含まない、[A10]に記載のキット。
[A12] 前記逆転写に必要な試薬は、逆転写を開始するオリゴヌクレオチドプライマーを含み、該逆転写を開始するオリゴヌクレオチドプライマーは、約40nM以下の終濃度で、または前記改変オリゴヌクレオチドプライマーに対して約10分の1以下のモル比で使用されることを特徴とする、[A9]〜[A11]のいずれか一項に記載のキット。
[A13] 前記改変オリゴヌクレオチドプライマーが、同一の改変オリゴヌクレオチドプライマーの配列上に1又はそれ以上の相補領域を有し、PCRの初期熱変性処理前までは当該相補領域によって折り返し構造を取る、或いは熱不安定性修飾基を含む、[A9]〜[A12]のいずれか一項に記載のキット。
[A14] 前記改変オリゴヌクレオチドプライマーが、鋳型RNAの部分配列に相補的なヌクレオチド配列を含む、[A9]〜[A13]のいずれか一項に記載のキット。
[A15] プライマー機能が阻害されなかった一部の改変オリゴヌクレオチドプライマーが、鋳型RNAにハイブリダイズすることで逆転写を開始するオリゴヌクレオチドプライマーとして機能する、[A14]に記載のキット。
[A16] 改変オリゴヌクレオチドプライマーを含む、対象RNAの少なくとも一部の領域を増幅するための組成物であって、該改変オリゴヌクレオチドプライマーは、逆転写が生じる条件下でプライマー機能の一部が阻害されており、ポリメラーゼ連鎖反応が生じる条件でプライマー機能の阻害が解除されるように設計されており、プライマー機能が阻害されなかった一部の改変オリゴヌクレオチドプライマーが、鋳型RNAにハイブリダイズすることで逆転写を開始するオリゴヌクレオチドプライマーとして機能する、組成物。
[A17] 前記改変オリゴヌクレオチドプライマーが、同一の改変オリゴヌクレオチドプライマーの配列上に1又はそれ以上の相補領域を有し、PCRの初期熱変性処理前までは当該相補領域によって折り返し構造を取る、或いは熱不安定性修飾基を含む、[A16]に記載の組成物。
[A18] 前記組成物は、ワンステップ逆転写テンプレートスイッチPCRにおいて使用されるものである、[A16]または[A17]に記載の組成物。
本発明において、上記1または複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供されうることが意図される。本発明のなおさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。
本発明によれば、逆転写テンプレートスイッチングPCRを、高い特異性で、ワンステップで実施することが期待できる。特に、鋳型となるRNAのコピー数が少なく、PCRのサイクル数を多くした場合であっても、副反応の発生を抑制しつつ、特異的PCR産物を増幅することが期待できる。
種々の条件における、ワンステップ逆転写テンプレートスイッチングPCRによるTCRβ鎖の増幅。矢印は、全長TCRβ鎖のバンドを示す。 種々の条件における、ワンステップ逆転写テンプレートスイッチングPCRによるTCRβ鎖の増幅。矢印は、全長TCRβ鎖のバンドを示す。 シングルセルのT細胞を鋳型として用いた、ワンステップ逆転写テンプレートスイッチングPCRによるTCRβ鎖の増幅。上側の矢印は、全長TCRβ鎖のバンドを示す。下側の矢印は、TCRβ鎖断片のバンドを示す。 種々の条件における、ワンステップ逆転写テンプレートスイッチングPCRによるTCRβ鎖の増幅。矢印は、全長TCRβ鎖のバンドを示す。 種々の条件における、ワンステップ逆転写テンプレートスイッチングPCRによるTCRβ鎖の増幅。矢印は、TCRβ鎖のターゲット配列全長のバンドを示す。 シングルセルのT細胞を鋳型として用いた、ワンステップ逆転写テンプレートスイッチングPCRによるTCRα鎖の増幅。矢印は、TCRα鎖のターゲット配列全長のバンドを示す。
以下、本発明を説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用されるすべての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。本明細書において、数値の前の「約」とは、後に続く数値の±10%を意味する。
本発明は、ワンステップ逆転写テンプレートスイッチングPCRにより、鋳型RNAの少なくとも一部の領域を増幅する方法に関する。
逆転写テンプレートスイッチングPCRは、鋳型となるRNAの5’末端の配列が未知であるか、共通配列を有していない場合にでも、そのRNAを鋳型とするRT-PCR増幅を可能とする技術である。逆転写テンプレートスイッチングPCRにおいては、逆転写酵素が鋳型RNAの5’末端に達すると、逆転写酵素の有するターミナルトランスフェラーゼ活性により、新たに合成したcDNAの3’末端に特定の短い配列が自動的に付加される現象を利用する。例えば、Moloney Murine Leukemia Virus由来の逆転写酵素(MMLV RT)は、シトシンリッチな短い配列(例、CC、CCC、CCCC)を、合成したcDNAの3’末端に付加する。この短い付加配列に相補的な配列を、特定のアンカー配列(第1のアンカー配列)の3’末端に付加したヌクレオチド配列を含むオリゴヌクレオチド(テンプレートスイッチングオリゴヌクレオチド)を逆転写時に系内に加えると、cDNAの3’末端の付加配列と、テンプレートスイッチングオリゴヌクレオチドの3’末端の当該付加配列の相補配列との間の相互作用を介して、テンプレートスイッチングオリゴヌクレオチドが合成されたcDNAの3’末端にハイブリダイズし、逆転写酵素のための鋳型を延長する。その結果、逆転写酵素は、鋳型RNAの5’末端に達すると、鋳型をテンプレートスイッチングオリゴヌクレオチドに乗り換え、その5’末端までcDNA合成を続けるため、cDNAの3’端に、テンプレートスイッチングオリゴヌクレオチドのアンカー配列(第1のアンカー配列)に相補的な配列が付加される。逆転写のプライマーとして、鋳型RNA中の特定配列に相補的な配列を含むオリゴヌクレオチドプライマーか、特定のアンカー配列(第2のアンカー配列)が5’末端に付加したオリゴヌクレオチドプライマー(ランダムプライマー、オリゴ(dT)プライマー等)を用いることにより、新たに合成されるcDNAは5’末端にも既知配列を備える。その結果、当該既知配列を含むオリゴヌクレオチドプライマー、及び前記第1のアンカー配列の少なくとも一部を含むオリゴヌクレオチドプライマーを含むプライマーセットを用いることにより、新たに合成されたcDNAを鋳型とするPCR増幅が可能となる。
いくつかの実施形態では、鋳型RNAの5'末端側の配列が既知である場合は、テンプレートスイッチを行わなくてもよい。
本発明の方法においては、「ワンステップ(一段階)」で逆転写テンプレートスイッチングPCRを実施する。「ワンステップ逆転写テンプレートスイッチPCR(RT-TS-PCR)」とは、逆転写、テンプレートスイッチおよびPCRに必要な試薬を反応開始時においてすべて混合しておき、さらなる逆転写に必要な試薬も、テンプレートスイッチに必要な試薬も、PCR増幅に必要な試薬も追加せずに、好ましくは、反応系を開放せずに(即ち、チューブの開閉や試薬の添加を行わずに)、同一の反応系において反応を進行することを特徴とする逆転写反応からの核酸増幅方法を意味する。
即ち、本発明の方法において、核酸の増幅反応は、RNAを鋳型とする逆転写工程a)と、工程a)で合成されたcDNAにテンプレートスイッチングオリゴヌクレオチドを付加するテンプレートスイッチング工程b)と、工程b)で合成されたテンプレートスイッチcDNAを鋳型とするPCRによるDNA増幅工程c)、からなり、前記工程a)〜c)は同一の反応系において一段階で行われる。
また、別の態様において、本発明は、対象RNAの少なくとも一部の領域を増幅する方法であって、該方法は、a)該対象RNAと、逆転写に必要な試薬と、ポリメラーゼ連鎖反応に必要な試薬とを混合し、混合物を逆転写が生じる条件に供する工程であって、該混合は、必要に応じて、テンプレートスイッチに必要な試薬を混合することを含む、工程と、b)該混合物を、ポリメラーゼ連鎖反応が生じる条件に供して、該対象RNAの少なくとも一部の領域を増幅する工程とを含み、該ポリメラーゼ連鎖反応に必要な試薬は、該工程a)においてプライマー機能の一部又は全部が阻害されており、該工程b)ではプライマー機能の阻害が解除されるように設計された改変オリゴヌクレオチドプライマーを含む、方法を提供する。
さらに、本発明は、対象RNAの少なくとも一部の領域に基づいて増幅された核酸試料を生産する方法であって、該方法は、a)該対象RNAと、逆転写に必要な試薬と、ポリメラーゼ連鎖反応に必要な試薬とを混合し、混合物を逆転写が生じる条件に供する工程であって、該混合は、必要に応じて、テンプレートスイッチに必要な試薬を混合することを含む、工程と、b)該混合物を、ポリメラーゼ連鎖反応が生じる条件に供する工程とを含み、該ポリメラーゼ連鎖反応に必要な試薬は、該工程a)においてプライマー機能の一部又は全部が阻害されており、該工程b)ではプライマー機能の阻害が解除されるように設計された改変オリゴヌクレオチドプライマーを含む、方法を提供する。
さらなる態様において、本発明は、対象RNAの少なくとも一部の領域を増幅する方法であって、該方法は、a)該対象RNAと、逆転写に必要な試薬と、テンプレートスイッチに必要な試薬と、ポリメラーゼ連鎖反応に必要な試薬とを混合し、混合物を逆転写が生じる条件に供して、テンプレートスイッチングオリゴヌクレオチドおよび該対象RNAに対応する核酸配列を含むcDNAを提供する工程と、b)該工程a)から得られたcDNAを、ポリメラーゼ連鎖反応が生じる条件に供して、該cDNAの少なくとも一部の領域を増幅する工程とを含み、該ポリメラーゼ連鎖反応に必要な試薬は、該工程a)においてプライマー機能の一部又は全部が阻害されており、該工程b)ではプライマー機能の阻害が解除されるように設計された改変オリゴヌクレオチドプライマーを含む、方法を提供する。
さらなる態様において、本発明は、対象RNAの少なくとも一部の領域に基づいて増幅された核酸試料を生産する方法であって、該方法は、a)該対象RNAと、逆転写に必要な試薬と、テンプレートスイッチに必要な試薬と、ポリメラーゼ連鎖反応に必要な試薬とを混合し、混合物を逆転写が生じる条件に供して、テンプレートスイッチングオリゴヌクレオチドおよび該対象RNAに対応する核酸配列を含むcDNAを提供する工程と、b)該工程a)から得られたcDNAを、ポリメラーゼ連鎖反応が生じる条件に供する工程とを含み、該ポリメラーゼ連鎖反応に必要な試薬は、該工程a)においてプライマー機能の一部又は全部が阻害されており、該工程b)ではプライマー機能の阻害が解除されるように設計された改変オリゴヌクレオチドプライマーを含む、方法を提供する。
鋳型となるRNAの5’末端の配列が未知であるか、共通配列を有していない場合、テンプレートスイッチを実施することによって、鋳型RNAの5'末端に特定のアンカー配列を付加することができるため有利である。一方、鋳型RNAの5'末端側の配列が既知である場合は、テンプレートスイッチを行わなくてもよい。
一態様において、前記テンプレートスイッチに必要な試薬は、テンプレートスイッチングオリゴヌクレオチドを含み得る。さらなる態様において、ポリメラーゼ連鎖反応に必要な試薬は、テンプレートスイッチングオリゴヌクレオチドに含まれるアンカー配列の少なくとも一部を含む5’アンカーオリゴヌクレオチドプライマーを含んでもよいし、含まなくてもよい。本明細書の実施例において実証されるように、テンプレートスイッチングオリゴヌクレオチド(TS-Oligo)は、予想外にもPCR増幅におけるフォワードプライマーとしても機能することができる。したがって、ポリメラーゼ連鎖反応に必要な試薬は、上記5’アンカーオリゴヌクレオチドプライマーを含まなくてもよいし、通常使用される量よりも少量であってもよい。
驚くべきことに、逆転写用プライマーを添加せずに、上記改変オリゴヌクレオチドプライマーのみを添加して、逆転写PCRを行っても、高い特異性でPCR増幅を達成することができた。理論に束縛されることを望まないが、逆転写反応時において、改変オリゴヌクレオチドプライマーのうちの一部は、その機能が阻害されておらず、機能が阻害されていない一部の改変オリゴヌクレオチドプライマーが逆転写プライマーとしても機能することができるか、あるいは、逆転写反応時において、改変オリゴヌクレオチドプライマーの機能が一部阻害されているため、機能が一部阻害された改変オリゴヌクレオチドプライマーが限定的に逆転写プライマーとして機能することができる。したがって、いくつかの実施形態では、逆転写に必要な試薬は、逆転写を開始するオリゴヌクレオチドプライマーを含まなくてもよいし、含んでいたとしても、本方法において使用される逆転写を開始するオリゴヌクレオチドプライマーは通常使用する量よりも少量であってもよい。いくつかの実施形態において、上記組成物中の逆転写を開始するオリゴヌクレオチドプライマーの濃度は、例えば、約40nM以下、好ましくは、約20nM以下、約10nM以下、約2.5nM以下、約2.0nM以下、約0.63nM以下、約0.2nM以下、約0.16nM以下、約0.02nM以下、約2.0pM以下、約0.2pM以下、又は約0.02pM以下である。別の実施形態において、上記組成物中の逆転写を開始するオリゴヌクレオチドプライマーは、改変オリゴヌクレオチドプライマーに対して約10分の1以下、好ましくは、約20分の1以下、約40分の1以下、約160分の1以下、約200分の1以下、約635分の1以下、約2,000分の1以下、約2,500分の1以下、約20,000分の1以下、約200,000分の1以下、約2,000,000分の1以下、又は約20,000,000分の1以下のモル比で含む。
本発明の方法は、PCRにおける少なくとも一方のオリゴヌクレオチドプライマーとして、改変により逆転写におけるプライマー機能の一部又は全部が阻害されており、PCRの核酸増幅の工程ではプライマー機能の阻害が解除される。このことによって、同一の反応系にありながら逆転写反応段階とPCRの核酸増幅段階の各段階で使われるプライマーを機能的に分けることが達成され、各反応段階におけるプライマー濃度を大きく差をつけることを特徴とする。
プライマー機能の阻害・解除する手段として、例えば、以下のアプローチが挙げられる。1)熱不安定性修飾基を含む、または逆転写反応段階では折り畳み構造を保持するように設計されたプライマーによって逆転写時のプライマー機能を阻害する。
逆転写反応後、熱処理によって熱不安定修飾基の乖離または折り畳み構造の解消により、プライマー機能の阻害が解除される。
2)人工塩基を含むプライマーによって逆転写反応段階ではプライマーとして機能を阻害する。
逆転写反応の結果、逆転写反応によって鋳型RNAから、プライマー中に含まれる人工塩基と対をなす核酸が組み込まれたcDNAを合成され、当該人工核酸に対してプライマーがアニーリング可能となり、プライマー機能の阻害が解除される。
ワンステップRT-PCRにおいては、一般的に、逆転写の開始時点において、反応系内に、鋳型RNAをcDNAに逆転写するために必要な全ての試薬と、得られたcDNAを鋳型としてPCRを行うために必要な全ての試薬が含まれる。PCRプライマーのTmは通常50℃以上に設定されるので、逆転写が進行可能な温度域(例えば、42℃)では、プライマーの特異性が十分発揮されない可能性がある。また、PCRにおいては鋳型のコピー数が指数関数的に増加するため、必要とされるPCRプライマーの濃度は、逆転写用のプライマー濃度よりも圧倒的に高い。従って、逆転写を行う際に、PCRプライマーが鋳型RNAにミスアニールし、そこを起点とした非特異的逆転写を生じ、最終的に非特異的なPCR産物を生じてしまうおそれがある。本発明においては、PCRにおけるリバースプライマーとして、改変により逆転写におけるプライマー機能の一部又は全部が阻害されており、且つ該逆転写の結果、又は熱変性処理により、該逆転写の産物を鋳型とするPCRにおけるプライマー機能を獲得する改変オリゴヌクレオチドプライマーを用いることにより、非特異的逆転写を抑制することができる。
本明細書において、「オリゴヌクレオチド」、「プライマー」、又は「オリゴヌクレオチドプライマー」は、通常は一本鎖であるポリヌクレオチドを表す。天然に生ずるものであっても合成のものであってもよい。通常は約5−約50ヌクレオチド,より好ましくは約10−約30ヌクレオチド,またはより好ましくは約15−約25ヌクレオチドの配列から構成される。オリゴヌクレオチドには、DNA、RNA、DNA/RNAキメラが包含される。
本明細書において、「フォワードプライマー」との用語は、RT-PCRにおける鋳型RNAをセンス鎖としたときに、そのアンチセンス鎖にアニーリングするオリゴヌクレオチドプライマーを意味する。「リバースプライマー」は、センス鎖にアニーリングするオリゴヌクレオチドプライマーを意味する。
一態様において、本発明に用いられる改変オリゴヌクレオチドプライマーは、鋳型RNAの部分配列に相補的な配列を含む。該部分配列の長さは、特に限定されないが、通常、10〜40塩基、好ましくは15〜30塩基、より好ましくは18〜25塩基である。該部分配列は、鋳型RNAに含まれる増幅を意図する領域の3’末端の部分配列であり得る。該改変オリゴヌクレオチドプライマーは、好ましくは、その3’末端に、鋳型RNAの部分配列に相補的な配列を含む。該改変オリゴヌクレオチドプライマーは、鋳型RNAの部分配列に相補的な配列の5’末端に、付加配列を含んでいてもよい。付加配列は、特に限定されないが、非特異的なハイブリダイゼーションを避ける観点から、好適には、鋳型RNAの部分配列に相補的な配列を含まない。付加配列としては、例えば、特定の制限酵素認識配列を挙げることが出来る。付加配列の長さは、特に限定されないが、非特異的なハイブリダイゼーションを避けるため、短い方が好ましい。付加配列の長さは、通常1〜50塩基、好ましくは1〜30塩基、より好ましくは1〜10塩基である。一態様において、該改変オリゴヌクレオチドプライマーは、鋳型RNAの部分配列に相補的な配列からなり、付加配列を含まない。
本発明に用いられる改変オリゴヌクレオチドプライマーにおける改変の態様として、例えば、以下を挙げることができる。
(1)熱不安定性修飾基を含む、オリゴヌクレオチドプライマー
(2)同一の改変オリゴヌクレオチドプライマーの配列上に1又はそれ以上の相補領域を有し、PCRの初期熱変性処理前までは当該相補領域によって折り返し構造を取ることで分子内ヘアピンループ形成し、鋳型RNAの部分配列に相補的な配列がマスクされた構造を呈する、オリゴヌクレオチドプライマー
(3)人工塩基を含む、オリゴヌクレオチドプライマー
以下各態様について詳述する。
(1)熱不安定性修飾基を含む、オリゴヌクレオチドプライマー
本態様においては、オリゴヌクレオチドプライマーが熱不安定性修飾基を含むことにより、修飾ヌクレオチドプライマーは、これがハイブリダイズしたポリヌクレオチドに沿って鎖を伸長することができず、すなわち,酵素の阻害により,または標的核酸へのハイブリダイゼーションの低下により、伸長可能ではない。好ましい態様において、オリゴヌクレオチドプライマーの1又はそれ以上のヌクレオチド間結合又は3’末端ヒドロキシル基に、熱不安定性修飾基が置換する。したがって,鎖伸長は,修飾または修飾されたヌクレオチドが除去されないかぎり,そして除去されるまで,実質的な程度では生じない。該修飾基は熱不安定性であるが、PCR増幅における最初の変性温度(例えば、約80−105℃、好ましくは約85−100℃、より好ましくは約90−96℃(例、95℃))に到達するまでは、殆ど解離しないため、逆転写におけるプライマー機能の一部又は全部が阻害される。最初の変性温度に到達すると、修飾オリゴヌクレオチドプライマーからの修飾基の部分的または完全な解離が熱的に誘導され、修飾オリゴヌクレオチドプライマーは対応する未修飾オリゴヌクレオチドプライマーに変換される。未修飾オリゴヌクレオチドプライマーは,活性状態のホスホジエステル結合を有し,ポリメラーゼによる伸長が可能である。
熱不安定性修飾基を含む、オリゴヌクレオチドプライマーとしては、US patent No. 8133669(開示内容は、本明細書での引用により、その全てが明示されたと同程度に本明細書に組み込まれる)に開示された、3’末端のヒドロキシル基が、熱不安定性修飾基に置換された修飾オリゴヌクレオチドプライマー、US patent No. 8361753(開示内容は、本明細書での引用により、その全てが明示されたと同程度に本明細書に組み込まれる)に開示された、1又はそれ以上のヌクレオチド間結合において熱不安定性修飾基を含む修飾オリゴヌクレオチドプライマー等を挙げることができる。
(1-1) 3’末端のヒドロキシル基が、熱不安定性修飾基に置換された修飾オリゴヌクレオチドプライマー(US patent No. 8133669)
一態様において、該修飾オリゴヌクレオチドプライマーの3’末端に含まれる該修飾基は、
Figure 0006924496
[式中、
Z10は、O、S、およびSeからなる群から選択され;
各R7、各R8、各R9、および各R10は、水素、直鎖状または分枝鎖状であり、置換されていてもよい、1〜20個の炭素原子、好ましくは1〜10個の炭素原子、好ましくは1〜6個の炭素原子を有するヒドロカルビル基からなる群から独立に選択され、
該ヒドロカルビルは、ハロ、オキソ、ヒドロキシル、アルコキシ、アミノ、アミド、シクロアルキル、ヘテロシクロアルキル、アリール、アリールオキシ、およびヘテロアリールからなる群から選択される少なくとも1個の置換基を包含していてもよい、アルキル、アルケニル、またはアルキニルであり;
各X6、各X7、各X8、および各X9は、アシル、アシルオキシ、アルケニル、アルケニルアリール、アルケニレン、アルキル、低級アルキル、アルキレン、アルキニル、アルキニルアリール、アルコキシ、低級アルコキシ、アルキルアリール、アルキルカルボニルアミノ、アルキルスルフィニル、アルキルスルホニル、アルキルスルホニルアミノ、アルキルチオ、アルキニレン、アミド、アミジノ、アミノ、アリールアルキニル、アラルキル、アロイル、アリールアルキル、アリール、アリールカルボニルアミノ、アリーレン、アリールオキシ、アリールスルホニルアミノ、カルバメート、ジチオカルバメート、シクロアルケニル、シクロアルキル、シクロアルキレン、グアニジニル、ハロ、ハロゲン、ヘテロアリール、ヘテロアリールカルボニルアミノ、ヘテロアリールオキシ、ヘテロアリールスルホニルアミノ、ヘテロ環、ヘテロ環、ヒドロカルビル、ヒドロカルビル、ヒドロカルビルカルボニル、ヒドロカルビルオキシカルボニル、ヒドロカルビルカルボニルオキシ、ヒドロカルビレン、オルガノスルフィニル、ヒドロキシル、オルガノスルフィニル、オルガノスルホニル、スルフィニル、スルホニル、スルホニルアミノ、およびスルフリルからなる任意の置換または非置換の基から独立に選択され;
各X10は、O、S、Se、NR11、N-OR11、およびCR11R12からなる群から独立に選択され;各R11および各R12は、アシル、アシルオキシ、アルケニル、アルケニルアリール、アルケニレン、アルキル、低級アルキル、アルキレン、アルキニル、アルキニルアリール、アルコキシ、低級アルコキシ、アルキルアリール、アルキルカルボニルアミノ、アルキルスルフィニル、アルキルスルホニル、アルキルスルホニルアミノ、アルキルチオ、アルキニレン、アミド、アミジノ、アミノ、アリールアルキニル、アラルキル、アロイル、アリールアルキル、アリール、アリールカルボニルアミノ、アリーレン、アリールオキシ、アリールスルホニルアミノ、カルバメート、ジチオカルバメート、シクロアルケニル、シクロアルキル、シクロアルキレン、グアニジニル、ハロ、ハロゲン、ヘテロアリール、ヘテロアリールカルボニルアミノ、ヘテロアリールオキシ、ヘテロアリールスルホニルアミノ、ヘテロ環、ヘテロ環、ヒドロカルビル、ヒドロカルビル、ヒドロカルビルカルボニル、ヒドロカルビルオキシカルボニル、ヒドロカルビルカルボニルオキシ、ヒドロカルビレン、オルガノスルフィニル、ヒドロキシル、オルガノスルフィニル、オルガノスルホニル、スルフィニル、スルホニル、スルホニルアミノ、およびスルフリルからなる任意の置換または非置換の基から独立に選択され;
各Y1は、O、S、Se、NR6、N-OR6、およびCR6R7からなる群から独立に選択される]
からなる群から選択されるいずれかの基である。
好ましい態様において、該修飾基は、O-(p-トルエン)スルホネート;O-リン酸;O-硝酸;O-[4-メトキシ]テトラヒドロピラニル;O-[4-メトキシ]-テトラヒドロチオピラニル;O-テトラヒドロチオピラニル;O-[5-メチル]-テトラヒドロフラニル;O-[2-メチル,4-メトキシ]-テトラヒドロピラニル;O-[5-メチル]-テトラヒドロピラニル;O-テトラヒドロピラニル;O-テトラヒドロフラニル;O-フェノキシアセチル;O-メトキシアセチル;O-アセチル;O-C(O)-OCH3;O-C(O)-CH2CH2CN;およびO-C(S)-OCH3からなる群から選択される。一部の特に好ましい形態において、該修飾基は、O-メトキシテトラヒドロピラニル;O-テトラヒドロピラニル;およびO-テトラヒドロフラニルからなる群から選択される。
別の態様において、修飾オリゴヌクレオチドプライマーは、式V
Figure 0006924496
[式中、
Z3は3’-O-オリゴヌクレオチジル残基、またはオリゴヌクレオチドプライマーであり、
Bは、置換もしくは非置換のプリンもしくはピリミジン、その任意のアザ誘導体もしくはデアザ誘導体、または核酸ポリメラーゼにより認識可能であることが好ましい、任意のNTP類似体による任意の「ユニバーサル塩基」もしくは「縮重塩基」から選択され;
Aは、O、S、Se、CR1R2、およびNR1からなる群から選択され;
各R1および各R2は、H、F、Cl、Br、I、OR3、SR3、NR3R4、C(Y)R5、ならびに置換または非置換のアルキル、アルケニル、アルキニル、アリール、およびアラルキルからなる群から独立に選択され、
任意の置換基は各々、場合によって、1つまたは複数のヘテロ原子を含有する可能性があり;
各Yは、O、S、Se、CR1R2、およびNR1からなる群から独立に選択され;
各R3および各R4は、H、または置換もしくは非置換のアルキル、置換もしくは非置換のアルケニル、置換もしくは非置換のアルキニル、置換もしくは非置換のアリール、および置換もしくは非置換のアラルキルからなる群から独立に選択され、
任意の置換基は各々、場合によって、1つまたは複数のヘテロ原子を含有する可能性があり;
各R5は、H、F、Cl、Br、OR3、SR3、NR3R4、ならびに置換または非置換のアルキル、置換もしくは非置換のアルケニル、置換もしくは非置換のアルキニル、置換もしくは非置換のアリール、および置換もしくは非置換のアラルキルからなる群から独立に選択され、
任意の置換基は各々、場合によって、1つまたは複数のヘテロ原子を含有する可能性があり;
X4は、R1、F、Cl、Br、I、OR3、SR3、SeR3、NR3R4、NR3OR3、NR3-NR3R4、CN、N3、C(Y)R5、NO2、CN、およびSSR3からなる群から独立に選択され;
X5は、O、S、Se、NR6、N-OR6、およびCR6R7からなる群から選択され;
Y1は、O、S、Se、NR6、N-OR6、CR6R7、およびC(Y)からなる群から選択され;
各R6および各R7は、水素、また、直鎖状または分枝鎖状であり、置換されていてもよい、
1〜20個の炭素原子、好ましくは1〜10個の炭素原子、好ましくは1〜6個の炭素原子を有するヒドロカルビル基からなる群から独立に選択され、
該ヒドロカルビルは、ハロ、オキソ、ヒドロキシル、アルコキシ、アミノ、アミド、シクロアルキル、ヘテロシクロアルキル、アリール、アリールオキシ、およびヘテロアリールからなる群から選択される少なくとも1個の置換基を包含していてもよい、アルキル、アルケニル、またはアルキニルであり;
X5およびY1は各々、場合によって、式IBで示されるNTP分子のX4、X5、Z3、A、W、またはB部分に対して、適切な原子または原子群を介して共有結合する可能性がある]
で表される化合物である。
式Vの特定の実施形態において、Bは、チミン、シトシン、アデニン、グアニン、ウラシル、アミノアリルウラシル、7-デアザグアニン、7-デアザ-7-メチルグアニン、7-デアザ-7-ヨードグアニン、7-デアザ-7-アミノアリルグアニン、7-デアザ-8-アザグアニン、7-デアザデニン、2,6-ジアミノプリン、5-ニトロシトシン、5-アミノアリルシトシン、5-(ビオチン-16)-シトシン、5-(フルオレセイン-11)-シトシン、4-メチルアミノ-シトシン、および2-チオ-5-メチルウラシル、または4-チオ-5-メチルウラシルである。
式Vの好ましい実施形態において、Bは、アデニン、グアニン、シトシン、チミン、またはウラシルである。
好ましい態様において、修飾オリゴヌクレオチドプライマーは、
Figure 0006924496
からなる群から選択されるいずれかの化合物である。
上記1-1の修飾オリゴヌクレオチドプライマーは、US patent No. 8361753に記載された方法により製造することができる。
(1-2) 1又はそれ以上のヌクレオチド間結合において熱不安定性修飾基を含む修飾オリゴヌクレオチドプライマー(US patent No. 8361753)
1つの態様においては、該修飾オリゴヌクレオチドプライマー中の修飾基は、式I:
Figure 0006924496
[式中、
Lは、1−10個の炭素原子、好ましくは2−5個の炭素原子、より好ましくは3−4個の炭素原子、さらにより好ましくは4個の炭素原子を有する、直鎖または分枝鎖の任意に置換されていてもよいヒドロカルビレン基であり;
Xは、O、S、S(O)、S(O)2、C(O)、C(S)またはC(O)NHであり;および
R1は、水素または1−20個の炭素原子、好ましくは1−10個の炭素原子、より好ましくは1−6個の炭素原子を有する、直鎖または分枝鎖の任意に置換されていてもよいヒドロカルビル基であり;好ましくは、ヒドロカルビルは、アルキル、アルケニルまたはアルキニルであり、これは任意に、ハロ、オキソ、ヒドロキシル、アルコキシ、アミノ、アミド、シクロアルキル、ヘテロシクロアルキル、アリール、アリールオキシ、およびヘテロアリールからなる群より選択される少なくとも1つの置換基を含んでいてもよい]
の化合物を含む。
1つの態様において、修飾基は、式Ia:
Figure 0006924496
[式中、
Lは、1−10個の炭素原子、好ましくは2−5個の炭素原子、より好ましくは3−4個の炭素原子、さらにより好ましくは4個の炭素原子を有する、直鎖または分枝鎖の任意に置換されていてもよいヒドロカルビレン基であり;および
R1は水素または1−20個の炭素原子、好ましくは1−10個の炭素原子、より好ましくは1−6個の炭素原子を有する、直鎖または分枝鎖の任意に置換されていてもよいヒドロカルビル基であり;好ましくは、ヒドロカルビルは、アルキル、アルケニルまたはアルキニルであり、これは任意に、ハロ、オキソ、ヒドロキシル、アルコキシ、アミノ、アミド、シクロアルキル、ヘテロシクロアルキル、アリール、アリールオキシ、およびヘテロアリールからなる群より選択される少なくとも1つの置換基を含んでいてもよい]
の化合物を提供する。
式Iaの修飾基の好ましい態様は以下のとおりである:
Figure 0006924496
4-オキソ-1-ペンチル、
Figure 0006924496
5-オキソ-1-ヘキシル、
Figure 0006924496
6-オキソ-1-ヘプチル、
Figure 0006924496
4-オキソ-1-ヘキシル、
Figure 0006924496
5-メチル-4-オキソ-1-ヘキシル、
Figure 0006924496
2-メチル-5-オキソ-ヘキシル、
Figure 0006924496
1-エチル-4-オキソ-ペンチル、
Figure 0006924496
1-メチル-4-オキソ-ペンチル、
Figure 0006924496
1、1-ジメチル-4-オキソ-ペンチル、
Figure 0006924496
4-オキソ-1-オクチル
Figure 0006924496
4-オキソ-1-テトラデシル、および
Figure 0006924496
4-オキソ-1-エイコサミル。
1つの態様において、修飾基は式Ib:
Figure 0006924496
[式中、
kは0−2の整数であり;
Lは、1−10個の炭素原子、好ましくは2−5個の炭素原子、より好ましくは3−4個の炭素原子、さらにより好ましくは4個の炭素原子を有する、直鎖または分枝鎖の任意に置換されていてもよいヒドロカルビレン基であり;および
R1は、水素または1−20個の炭素原子、好ましくは1−10個の炭素原子、より好ましくは1−6個の炭素原子を有する、直鎖または分枝鎖の任意に置換されていてもよいヒドロカルビル基であり;好ましくは、ヒドロカルビルは、アルキル、アルケニルまたはアルキニルであり、これは任意に、ハロ、オキソ、ヒドロキシル、アルコキシ、アミノ、アミド、シクロアルキル、ヘテロシクロアルキル、アリール、アリールオキシ、およびヘテロアリールからなる群より選択される少なくとも1つの置換基を含んでいてもよい]
の化合物を提供する。
好ましい態様において、式Ibの修飾基は下記に示す4-メチルチオ-1-ブチルである:
Figure 0006924496
1つの態様においては、修飾基は式Ic:
Figure 0006924496
[式中、
Lは、1−10個の炭素原子、好ましくは2−5個の炭素原子、より好ましくは3−4個の炭素原子、さらにより好ましくは4個の炭素原子を有する、直鎖または分枝鎖の任意に置換されていてもよいヒドロカルビレン基であり;および
R1は、水素または1−20個の炭素原子、好ましくは1−10個の炭素原子、より好ましくは1−6個の炭素原子を有する、直鎖または分枝鎖の任意に置換されていてもよいヒドロカルビル基であり;好ましくは、ヒドロカルビルは、アルキル、アルケニルまたはアルキニルであり、これは任意に、ハロ、オキソ、ヒドロキシル、アルコキシ、アミノ、アミド、シクロアルキル、ヘテロシクロアルキル、アリール、アリールオキシ、およびヘテロアリールからなる群より選択される少なくとも1つの置換基を含んでいてもよい]
の化合物を提供する。
好ましい態様において、式Icの修飾基は下記に示す3-(N-tert-ブチルカルボキサミド)-1-プロピルである:
Figure 0006924496
1つの態様において、修飾基は式Id:
Figure 0006924496
[式中、
Lは、1−10個の炭素原子、好ましくは2−5個の炭素原子、より好ましくは3−4個の炭素原子、さらにより好ましくは4個の炭素原子を有する、直鎖または分枝鎖のヒドロカルビレン基であり;および
各R1は、独立して、水素または1−20個の炭素原子、好ましくは1−10個の炭素原子、より好ましくは1−6個の炭素原子を有する、直鎖または分枝鎖の任意に置換されていてもよいヒドロカルビル基であり;好ましくは、ヒドロカルビルは、アルキル、アルケニルまたはアルキニルであり、これは任意に、ハロ、オキソ、ヒドロキシル、アルコキシ、アミノ、アミド、シクロアルキル、ヘテロシクロアルキル、アリール、アリールオキシ、およびヘテロアリールからなる群より選択される少なくとも1つの置換基を含んでいてもよい]
の化合物を提供する。
修飾基式Idの好ましい態様として、2-(N-ホルミル-N-メチル)アミノエチルまたは2-
(N-アセチル-N-メチル)アミノエチルが挙げられる(下記に示す):
Figure 0006924496
2-(N-アセチル-N-メチル)アミノエチル
別の態様において、修飾基は式II:
Figure 0006924496
[式中、
Lは、1−10個の炭素原子、好ましくは2−5個の炭素原子、より好ましくは3−4個の炭素原子、さらにより好ましくは4個の炭素原子を有する、直鎖または分枝鎖のヒドロカルビレン基であり;および
R2は、水素、シアノ、または5−10個の原子を有する任意に置換されていてもよい炭素環、複素環、アリールまたはヘテロアリールである]
の化合物を提供する。
好ましい態様において、式IIの修飾基は下記に示すN-(2-ヒドロキシエチル)-フタルイミドである:
Figure 0006924496
N-(2-ヒドロキシエチル)-フタルイミド
別の態様において、修飾基は式III:
Figure 0006924496
[式中、
LaおよびLbは、それぞれ独立して、単結合、または1−8個の炭素原子、好ましくは2−5個の炭素原子、より好ましくは3−4個の炭素原子を有する、直鎖または分枝鎖の任意に置換されていてもよいヒドロカルビレン基から選択され;
Aは、O、S、S(O)、S(O)2、Se、CR3R4、NR3、C(O)、C(S)またはCNR3であり;
Bは、C(O)R3、C(S)R3、C(O)NR3R4、OR3またはSR3であり;および
R3およびR4は、それぞれ独立して、水素または1−20個の炭素原子、好ましくは1−10個の炭素原子、好ましくは1−6個の炭素原子を有する、直鎖または分枝鎖の任意に置換されていてもよいヒドロカルビル基であり;好ましくは、ヒドロカルビルは、アルキル、アルケニルまたはアルキニルであり、これは任意に、ハロ、オキソ、ヒドロキシル、アルコキシ、アミノ、アミド、シクロアルキル、ヘテロシクロアルキル、アリール、アリールオキシ、およびヘテロアリールからなる群より選択される少なくとも1つの置換基を含んでいてもよい]
の化合物を提供する。
別の態様において、修飾基は、式IV:
Figure 0006924496
[式中、
La、LbおよびLcは、それぞれ独立して、単結合、または1−8個の炭素原子、好ましくは2−5個の炭素原子、より好ましくは3−4個の炭素原子を有する、直鎖または分枝鎖の任意に置換されていてもよいヒドロカルビレン基から選択され;
Dは、O、S、S(O)、S(O)2、CR5R6、またはNR5であり;
Eは、O、S、S(O)、S(O)2、CR5R6、またはNR6であり;
Fは、水素、C(O)R7、C(S)R7、C(O)NR7R8、OR7またはSR7であり;
R5およびR6は、それぞれ独立して、水素、アリール、アルキル、ハロ、オキソ、ヒドロキシル、アルコキシ、アリールオキシ、またはアミノであってもよく、またはR5およびR6は、一緒になって、5−10個の原子からなり、D、R5、R6、EおよびLbを含む単環または二環を形成してもよく、ただし、R5およびR6が一緒になって環を形成する場合、nは0−2であり;および
R7およびR8は、それぞれ独立して、アリール、アルキル、ハロ、オキソ、ヒドロキシル、アルコキシ、アリールオキシ、アミノ、アミド、任意に置換されていてもよいシクロアルキル、任意に置換されていてもよいヘテロシクロアルキル、任意に置換されていてもよいアリール、任意に置換されていてもよいアリールオキシ、または任意に置換されていてもよいヘテロアリールから選択される]
の化合物を提供する。
R5およびR6が一緒になって環を形成する式IVの化合物の1つの態様において、修飾基は下記に示すメトキシメチル-シクロヘキシ-1、3-イル-エチルである:
Figure 0006924496
メトキシメチル-シクロヘキシ-1、3-イル-エチル
1つの態様において、修飾オリゴヌクレオチドプライマーは、構造I:
Figure 0006924496
[式中、
Nucはプライマー配列中のヌクレオシドであり;
UおよびZは、独立して、O、S、Se、NR9、またはCR9R10であり;
R9およびR10は、それぞれ独立して、水素、または1−10個の炭素原子を有する直鎖または分枝鎖の任意に置換されていてもよいヒドロカルビルであり;好ましくは、ヒドロカルビルは、アルキル、アルケニルまたはアルキニルであり、それぞれは独立して、ハロ、オキソ、ヒドロキシル、アルコキシ、アリールオキシ、アミノ、アミドまたは検出可能な標識から選択される少なくとも1つの置換基を含んでいてもよく;
Yは、O、SまたはSeであり;
Wは、Qが熱的に切断されることを可能とする任意の化学成分、例えばO、S、S(O)、S(O)2、Se、C(O)、C(S)、C(O)NH、C(N)H、NH、-C(=NR11)-またはNR9であり;
R11は、水素または1−10個の炭素原子、好ましくは1−6個の炭素原子を有する任意に置換されていてもよいヒドロカルビルであり;好ましくは、R11は、H、アルキルまたは低級アルキルであり;および
Qは1またはそれ以上の熱切断性基を含む修飾基である]
の修飾骨格を有する。
1つの態様において、修飾基Qは、上記式I、Ia、Ib、Ic、Id、II、IIIまたはIVから選択される1またはそれ以上の熱切断性基を含む。
修飾オリゴヌクレオチドプライマーは、少なくとも1つのヌクレオチド間結合において、上述のいずれかの修飾基を含む。修飾オリゴヌクレオチドプライマーは、好ましくは、その3’末端に、1またはそれ以上の、上述のいずれかの修飾基を含む。修飾オリゴヌクレオチドプライマーは、好ましくは、その3’末端の最後の6個のヌクレオチド間結合のいずれか、好ましくは最後の3個のヌクレオチド間結合のいずれかに、1またはそれ以上の上述のいずれかの修飾基を含む。
別の態様において、オリゴヌクレオチドプライマーは、オリゴヌクレオチドプライマーの3’−末端で終わる2、3、4、5または6個の修飾ヌクレオチド間結合の連続する配列を含むことができる。さらに別の態様においては、オリゴヌクレオチドプライマーは、複数の非連続的3’修飾ヌクレオチド間結合を含んでいてもよい。修飾オリゴヌクレオチドプライマーの5’−末端も、修飾ヌクレオチド間結合を含むヌクレオチドの配列を有していてもよい。さらに別の態様においては、オリゴヌクレオチドのすべてのヌクレオチド間結合が修飾されていてもよい。
別の好ましい態様においては、修飾オリゴヌクレオチドプライマーはオリゴヌクレオチドプライマーの3’nヌクレオチド間結合に修飾基を含み、ここでnは3’末端のヌクレオチド間結合である。さらに別の態様においては、修飾基は、オリゴヌクレオチドの3’n−1、n−2、n−3またはn−4ヌクレオチド間結合に存在する。さらに別の態様においては、オリゴヌクレオチドは、n、n−1、n−2、n−3、n−4、n−5またはn−6位の2またはそれ以上;好ましくはn、n−1、n−2、n−3、n−4、n−5またはn−6位の2またはそれ以上;好ましくはn、n−1、n−2、n−3、n−4、n−5またはn−6位の3またはそれ以上;好ましくはn、n−1、n−2、n−3、n−4、n−5またはn−6位の4またはそれ以上;好ましくはn、n−1、n−2、n−3、n−4、n−5またはn−6位の5またはそれ以上、または好ましくはn、n−1、n−2、n−3、n−4、n−5またはn−6位の6またはそれ以上に修飾基を有する。
上記1-2の修飾オリゴヌクレオチドプライマーは、US patent No. 8361753に記載された方法により製造することができる。
(2)同一の改変オリゴヌクレオチドプライマーの配列上に1又はそれ以上の相補領域を有し、PCRの初期熱変性処理前までは当該相補領域によって折り返し構造を取ることで分子内ヘアピンループを形成し、鋳型RNAの部分配列に相補的な配列がマスクされた構造を呈する、オリゴヌクレオチドプライマー
該態様においては、同一の改変オリゴヌクレオチドプライマーの配列上に1又はそれ以上の相補領域を有し、PCRの初期熱変性処理前までは当該相補領域によって折り返し構造を取ることで分子内ヘアピンループを形成する。当該相補領域は、1又はそれ以上のオリゴヌクレオチドで構成される第1の配列と、それに対して1又はそれ以上の相補的なオリゴヌクレオチドを含む第2の配列の組みを指す。
第1の配列と第2の配列の位置は、互いに隣接していてもよいが、第1の配列と第2の配列の間には1又はそれ以上のオリゴヌクレオチドを介して位置することでもよい。第1の配列または第2の配列が、鋳型RNAの部分配列に相補的な配列を含む場合は、第1の配列と第2の配列の相補的結合によって、鋳型RNAの部分配列に相補的な配列がマスクされる。従って、この場合において、第1の配列と第2の配列のオリゴヌクレオチドの数は特に限定されない。
第1の配列または第2の配列が、鋳型RNAの部分配列に相補的な配列を含まない場合は、第1の配列と第2の配列のオリゴヌクレオチドの間には鋳型RNAの部分配列に相補的な配列が含まれ、分子内ヘアピンループ形成により、鋳型RNAの部分配列に相補的な配列がマスクされる。
鋳型RNAの部分配列に相補的な配列がマスクされているため、逆転写時においては、鋳型RNAの対応する部分配列にハイブリダイズすることができず、プライマー機能の一部又は全部が阻害されている。しかしながら、PCR増幅における変性温度(例えば、約55−105℃、好ましくは約85−100℃、より好ましくは約90−96℃(例、95℃))においては、ヘアピンループ構造が解離し、鋳型RNAの部分配列に相補的な配列が曝露されるため、引き続く対合温度において、cDNA中の対応する部分配列にハイブリダイズ可能となる(即ち、プライマー機能を獲得する)。ヘアピンループのループ部分の長さは、通常、5〜25塩基程度である。該ループ部分のヌクレオチド配列は、分子内ヘアピンループを形成することができる限り、特に限定されない。
(3)人工塩基を含む、オリゴヌクレオチドプライマー
該態様の改変オリゴヌクレオチドプライマーは、人工塩基(非天然塩基)を含むので、該改変オリゴヌクレオチドプライマーのヌクレオチド配列の相補配列が、鋳型RNA(人工塩基を含まない鋳型RNA)中に実質的に存在しない。そのため、鋳型RNAへの該改変オリゴヌクレオチドプライマーのハイブリダイゼーションが抑制されているので、逆転写におけるプライマー機能の一部又は全部が阻害されることになる。一態様において、該改変オリゴヌクレオチドプライマーの3’末端の15塩基のうち、1塩基以上、好ましくは、3塩基以上、5塩基以上、10塩基以上、12塩基以上、好ましくは15塩基全てが、人工塩基である。好ましい態様において、該改変オリゴヌクレオチドプライマーの最も3’末端の塩基が、人工塩基である。
該態様の改変オリゴヌクレオチドプライマーは、該改変オリゴヌクレオチドプライマーの人工塩基を含む部分配列を含む、逆転写を開始するためのオリゴヌクレオチドプライマーと組み合わせて使用される。人工塩基を含む部分配列の長さは、10〜40塩基、好ましくは15〜30塩基、より好ましくは18〜25塩基である。人工塩基を含む部分配列は、特に限定されないが、例えば、該改変オリゴヌクレオチドプライマーの3’末端の部分配列であり得る。逆転写を開始するためのオリゴヌクレオチドプライマーは、鋳型RNAの部分配列に相補的な配列、及び前記人工塩基を含む部分配列を含み、該人工塩基を含む部分配列は、鋳型RNAの部分配列に相補的な配列の5’側に付加される。鋳型RNAの部分配列の長さは、特に限定されないが、通常、10〜40塩基、好ましくは15〜30塩基、より好ましくは18〜25塩基である。該部分配列は、鋳型RNAに含まれる増幅を意図する領域の3’末端の部分配列であり得る。逆転写を開始するためのオリゴヌクレオチドプライマーは、好ましくは、その3’末端に、鋳型RNAの部分配列に相補的な配列を含む。
このような組み合わせを用いて、ワンステップ逆転写テンプレートスイッチングPCRを行うと、逆転写において、5’末端に、改変オリゴヌクレオチドプライマーの人工塩基を含む部分配列が付加されたcDNAが合成されるので、その結果、上記人工塩基を含む改変オリゴヌクレオチドプライマーは、該cDNAを鋳型とするPCRにおけるプライマー機能を獲得する。そして、該cDNAを鋳型とし、該改変オリゴヌクレオチドプライマーを一方のプライマーとするPCR増幅を行うことにより、目的とする領域を特異的に増幅することができる。
人工塩基としては、Z塩基/F塩基(Proc. Natl. Acad. Sci. USA 1997, 94, 105061;Nat. Struct. Biol. 1998, 5, 950;Nat. Struct. Biol. 1998, 5, 954)、Q塩基(J. Am. Chem. Soc. 1999, 121, 2323)、iso-G塩基/iso-C塩基(J. Am. Chem. Soc. 1989, 111, 8322)、2-チオT(TS)塩基(Nucleic Acids Res. 2005, 33, 5640)、P塩基/Z塩基(Nucleic Acids Res. 2007, 35, 4238)、PICS塩基(J. Am. Chem. Soc. 1999, 121, 11585)、5SICS塩基/MMO2塩基/NaM塩基(J. Am. Chem. Soc. 2009, 131, 14620)、2-amino-6-dimethylaminopurine(x)/2-oxopyridine(y)(Proc. Natl. Acad. Sci. USA 2001, 98, 4922)、2-アミノ-6-(2-チエニル)プリン(s)(J. Am. Chem. Soc. 2005, 127, 17286;Nucleic Acids Res. 2005, 33, e129;Biotechniques 2006, 40, 711)、imidazolin-2-one(z)(J. Am. Chem. Soc. 2004, 126, 13298)、Ds塩基/Pa塩基(Nat. Methods 2006, 3, 729)、Pn塩基(J. Am. Chem. Soc. 2007, 129, 15549)、Px塩基(Nucleic Acids Res. 2009, 37, e14)、xA塩基、xT塩基(J. Am. Chem. Soc. 2004, 126, 11826)、Im-NO塩基/Na-ON塩基、Im-ON塩基/Na-NO塩基(J. Am. Chem. Soc. 2009, 131, 1644;Angew. Chem. Int. Ed. 2005, 44, 596)等を挙げることができるが、これらに限定されない。これらの人工塩基は、以下の塩基対を形成することにより、逆転写及び/又はPCR増幅に寄与し得る:Z-F塩基対、Q-F塩基対、isoG-isoC塩基対、A-TS塩基対、P-Z塩基対、PICS-PICS塩基対(自己相補的)、5SICS-MMO2塩基対、5SICS-NaM塩基対、x-y塩基対、s-y塩基対、s-z塩基対、Ds-Pa塩基対、Ds-Pn塩基対、Ds-Px塩基対、xA-T塩基対、A-xT塩基対、Im-NO-Na-ON塩基対、Im-ON-Na-NO塩基対。
以下に、本発明の方法を、更に詳細に記載する。
本発明の方法においては、まず、
i)テンプレートスイッチングオリゴヌクレオチド、
ii)該テンプレートスイッチングオリゴヌクレオチドに含まれるアンカー配列の少なくとも一部を含む5’アンカーオリゴヌクレオチドプライマー、及び上記改変オリゴヌクレオチドプライマーからなるプライマーセット、並びに
iii)鋳型RNA
を含む、該鋳型RNAをcDNAにテンプレートスイッチング逆転写するため、及び該cDNAの少なくとも一部をPCR増幅するために必要な全ての試薬(但し、逆転写を開始するオリゴヌクレオチドプライマーを除く)を含む、組成物が提供される。
テンプレートスイッチングオリゴヌクレオチドは、逆転写酵素が鋳型RNAの5’末端に達した時に、逆転写酵素の有するターミナルトランスフェラーゼ活性により、新たに合成したcDNAの3’末端に付加される配列(単に、RT付加配列という場合がある)に相補的な配列、及びアンカー配列を含み、RT付加配列の相補配列の5’末端にアンカー配列(第1のアンカー配列)が付加されている。好ましくは、RT付加配列の相補配列は、テンプレートスイッチングオリゴヌクレオチドの3’末端に位置する。RT付加配列は、逆転写酵素の種類に依存する。例えば、Moloney Murine Leukemia Virus由来の逆転写酵素(MMLV RT)は、シトシンリッチな短い配列(例、CC、CCC、CCCC)を、合成したcDNAの3’末端に付加するので、その相補配列であるグアニンリッチな短い配列(例、GG、GGG、GGGG)が、RT付加配列の相補配列として、テンプレートスイッチングオリゴヌクレオチドに含まれる。アンカー配列とは、オリゴヌクレオチドの5’末端に付加される、人工的な配列を意味する。アンカー配列は自然界に存在しない配列であることが好ましい。アンカー配列の長さは、特に限定されないが、通常、10塩基〜100塩基程度、好ましくは15塩基〜50塩基程度である。
テンプレートスイッチングオリゴヌクレオチドは、DNAであってもRNAであってもよく、あるいはDNA/RNAキメラであってもよい。逆転写における鋳型として効率的に機能するため、テンプレートスイッチングオリゴヌクレオチドは、好適には、RNA又はDNA/RNAキメラであり、より好ましくはDNA/RNAキメラである。一態様において、RT付加配列の相補配列の部分がRNAであり、アンカー配列の部分がDNA又はDNA/RNAキメラである。テンプレートスイッチングオリゴヌクレオチドは、以下に説明する5’アンカーオリゴヌクレオチドプライマーとしても機能する。したがって、いくつかの実施形態では、5’アンカーオリゴヌクレオチドプライマーの添加を省略または少量にすることができる。逆転写テンプレートスイッチとPCR増幅を同一の反応系で実施した例はこれまでになく、テンプレートスイッチングオリゴヌクレオチドが、PCR増幅のフォワードプライマーとして機能することは、本明細書の実施例において初めて実証された。
5’アンカーオリゴヌクレオチドプライマーは、上記テンプレートスイッチングオリゴヌクレオチドに含まれるアンカー配列(第1のアンカー配列)の一部または全部を含む。アンカー配列の一部または全部の長さは、通常、10〜40塩基、好ましくは15〜30塩基、より好ましくは18〜25塩基である。PCRにおけるプライマーとして機能し得るよう、DNAまたはDNA/RNAキメラであり、好ましくはDNAである。5’アンカーオリゴヌクレオチドプライマーは、PCRにおけるフォワードプライマーであり得る。
鋳型RNAとしては、mRNA、rRNA、tRNA、non-coding RNA、化学的に合成したRNA等を用いることができるが、これらに限定されない。mRNA、rRNA及びtRNAは、如何なる細胞・組織に由来するものであってもよい。mRNA、rRNA及びtRNAは、セルソーター等を利用して得られた微量の細胞・組織(例えば、シングルセル)から採取されたものであってもよい。mRNA、rRNA及びtRNAは、トータルRNAの一部として含まれるような形態でもよい。
上記組成物には、該鋳型RNAをcDNAにテンプレートスイッチング逆転写するため、及び該cDNAの少なくとも一部をPCR増幅するために必要な全ての試薬(但し、逆転写を開始するオリゴヌクレオチドプライマーを除く)が含まれる。該試薬としては、上述のテンプレートスイッチングオリゴヌクレオチド、プライマーセット、及び鋳型RNA以外に、以下を挙げることが出来る。
・逆転写酵素(RNA依存性DNAポリメラーゼ)
・耐熱性DNAポリメラーゼ(DNA依存的DNAポリメラーゼ)
・dNTPs混合物
cDNAの3’末端にRT付加配列を形成するため、使用する逆転写酵素はターミナルトランスフェラーゼ活性を有する。ターミナルトランスフェラーゼ活性を有する逆転写酵素としては、Moloney Murine Leukemia Virus由来の逆転写酵素(MMLV RT)等が挙げられるが、これらに限定されない。ターミナルトランスフェラーゼ活性は、好ましくは、シトシンリッチな短い配列(例、CC、CCC、CCCC)を、合成したcDNAの3’末端に付加する活性である。
耐熱性DNAポリメラーゼとしては、代表的にはTaq、Tth、KOD、Pfu、Bst等を挙げることができるが、これらに限定されず、PCRに使用可能な様々な耐熱性DNAポリメラーゼが開発されており、いずれも本発明に使用可能である。PCRに使用可能な耐熱性DNAポリメラーゼは当業者に周知であり、適宜選択可能である。
一態様において、上記組成物は、逆転写を開始するオリゴヌクレオチドプライマーを更に含む。逆転写を開始するオリゴヌクレオチドプライマーは、鋳型RNAの部分配列に相補的な配列を含むことにより、鋳型RNAにハイブリダイズし、逆転写を開始する。該部分配列の長さは、特に限定されないが、通常、10〜40塩基、好ましくは15〜30塩基、より好ましくは18〜25塩基である。逆転写を開始するオリゴヌクレオチドプライマーは、好ましくは、その3’末端に、鋳型RNAの部分配列に相補的な配列を含む。鋳型RNAの部分配列に相補的な配列の5’末端にアンカー配列(第2のアンカー配列)が付加されていてもよい。第2のアンカー配列は自然界に存在しない配列であることが好ましい。第2のアンカー配列の長さは、特に限定されないが、通常、10塩基〜100塩基程度、好ましくは15塩基〜50塩基程度である。第2のアンカー配列は、上記第1のアンカー配列と非同一であることが好ましい。一態様において、第2のアンカー配列には、人工塩基が含まれる。一態様において、逆転写を開始するオリゴヌクレオチドプライマーは、第2のアンカー配列を含まない。逆転写を開始するオリゴヌクレオチドプライマーは、特定の遺伝子に特異的なプライマー、mRNAのポリAテイルに結合するオリゴdTプライマー、またはランダムヘキサマープライマーのようなランダムプライマーのいずれかであるが、好ましくは、特定の遺伝子に特異的なプライマーである。該プライマーは、目的とする遺伝子をコードするRNA(例、mRNA)の部分配列に相補的な配列を含む。逆転写を開始するオリゴヌクレオチドプライマーは、逆転写におけるプライマーとして機能し得るよう、DNAまたはDNA/RNAキメラであり、好ましくはDNAである。
一態様において、鋳型RNA上の、逆転写を開始するオリゴヌクレオチドプライマーがハイブリダイズする領域と、上記改変オリゴヌクレオチドプライマーがハイブリダイズする領域とが、少なくとも一部重複する。重複するハイブリダイゼーション領域の長さは、通常10塩基以上、好ましくは15塩基以上、より好ましくは18塩基以上であるが、特に限定されない。重複するハイブリダイゼーション領域の長さは、例えば、40塩基以下、30塩基以下、25塩基以下であり得る。
好ましい態様において、改変オリゴヌクレオチドプライマーがハイブリダイズする鋳型RNAの領域の5’末端が、逆転写を開始するオリゴヌクレオチドプライマーがハイブリダイズする鋳型RNAの領域の5’末端よりも、鋳型RNAの5’側(上流)に位置する。即ち、改変オリゴヌクレオチドプライマーの3’末端が、逆転写を開始するオリゴヌクレオチドプライマーの3’末端よりも、鋳型RNAの5’側(上流)で、鋳型RNAにハイブリダイズするように、両プライマーをデザインする。このように半入れ子状(semi-nested)の位置関係に上記2つのプライマーをデザインすることにより、増幅の特異性の上昇が期待できる。この場合、逆転写を開始するオリゴヌクレオチドプライマーがハイブリダイズする鋳型RNAの領域と、上記改変オリゴヌクレオチドプライマーがハイブリダイズする鋳型RNAの領域とを、一部重複させて半入れ子状(semi-nested)としてもよいし、重複させずに完全な入れ子状(full-nested)としてもよい。
逆転写を開始するオリゴヌクレオチドプライマーがハイブリダイズする鋳型RNAの領域と、上記改変オリゴヌクレオチドプライマーがハイブリダイズする鋳型RNAの領域とを、一部重複させる場合、例えば、改変オリゴヌクレオチドプライマーがハイブリダイズする鋳型RNAの領域の5’末端が、逆転写を開始するオリゴヌクレオチドプライマーがハイブリダイズする鋳型RNAの領域の5’末端よりも、例えば1〜12塩基、好ましくは1、2、3、4又は5塩基、鋳型RNAの5’側(上流)になるように(即ち、改変オリゴヌクレオチドプライマーの3’末端が、逆転写を開始するオリゴヌクレオチドプライマーの3’末端よりも、例えば1〜10塩基、好ましくは1、2、3、4又は5塩基、鋳型RNAの5’側(上流)にハイブリダイズするように)両プライマーをデザインすることが好ましいが、これらに限定されない。
別の態様において、逆転写を開始するオリゴヌクレオチドプライマーがハイブリダイズする鋳型RNAの領域と、上記改変オリゴヌクレオチドプライマーがハイブリダイズする鋳型RNAの領域とが、少なくとも一部重複し、改変オリゴヌクレオチドプライマーがハイブリダイズする鋳型RNAの領域の5’末端が、逆転写を開始するオリゴヌクレオチドプライマーがハイブリダイズする鋳型RNAの領域の5’末端と一致する。即ち、改変オリゴヌクレオチドプライマーの3’末端が、逆転写を開始するオリゴヌクレオチドプライマーの3’末端と同じ位置で、鋳型RNAにハイブリダイズする。
一態様において、逆転写を開始するオリゴヌクレオチドプライマーがハイブリダイズする鋳型RNAの領域と、上記改変オリゴヌクレオチドプライマーがハイブリダイズする鋳型RNAの領域が同一である。該態様においては、逆転写を開始するオリゴヌクレオチドプライマーが、上記改変オリゴヌクレオチドプライマーに対応する未修飾オリゴヌクレオチドプライマーであり得る。
別の態様において、上記改変オリゴヌクレオチドプライマーは、逆転写を開始するオリゴヌクレオチドプライマーの部分配列を、その3’末端に含む。当該部分配列(以下、共通配列と呼ぶ場合がある。)の長さは、通常10塩基以上、好ましくは15塩基以上、より好ましくは18塩基以上であるが、特に限定されない。当該3’末端部分配列の長さは、例えば、40塩基以下、30塩基以下、25塩基以下であり得る。一態様において、当該共通配列は、逆転写を開始するオリゴヌクレオチドプライマーの3’末端の部分配列であり得る。別の態様において、当該共通配列の3’末端は、逆転写を開始するオリゴヌクレオチドプライマーの3’末端よりも、少なくとも1塩基(例えば1〜20塩基、1〜10塩基、1〜8塩基)、5’側に位置する。一態様において、該共通配列は、逆転写を開始するオリゴヌクレオチドプライマーに含まれる、鋳型RNAの部分配列に相補的な配列、又はその部分配列である。一態様において、該共通配列は、第2のアンカー配列又はその部分配列である。一態様において、該共通配列は、鋳型RNAの部分配列に相補的な配列と第2のアンカー配列とに跨る、逆転写を開始するオリゴヌクレオチドプライマーの部分配列である。一態様において、上記改変オリゴヌクレオチドプライマーが人工塩基を含むオリゴヌクレオチドプライマーであり、逆転写を開始するオリゴヌクレオチドプライマーが人工塩基を含有する第2のアンカー配列を5’末端に含み、共通配列が、第2のアンカー配列又はその部分配列である。
上記組成物が、逆転写を開始するオリゴヌクレオチドプライマーを含む場合、該オリゴヌクレオチドプライマーの濃度は、逆転写を開始するのに十分な量があればよい。逆転写において、増幅を意図する領域を含むcDNAを1コピー合成することができれば、その後のPCRにより、これを検出可能なレベルにまで増幅することが可能である。従って、該組成物中に(反応系内に)少なくとも1コピー、好ましくは10コピー以上、より好ましくは100コピー以上の、逆転写を開始するオリゴヌクレオチドプライマーが含まれていればよい。逆転写を開始するオリゴヌクレオチドプライマーの濃度が高すぎると、非特異的なハイブリダイゼーションによる副反応を引き起こす可能性がある。上記組成物中の逆転写を開始するオリゴヌクレオチドプライマーの濃度は、例えば、約40nM以下、好ましくは、約20nM以下、約10nM以下、約2.5nM以下、約2.0nM以下、約0.63nM以下、約0.2nM以下、約0.16nM以下、約0.02nM以下、約2.0pM以下、約0.2pM以下、又は約0.02pM以下である。
別の態様において、上記組成物は、逆転写を開始するオリゴヌクレオチドプライマーを含まない。本態様においては、上述の改変オリゴヌクレオチドプライマーとして、熱不安定性修飾基を含み、且つ鋳型RNAの部分配列に相補的な配列を含む、オリゴヌクレオチドプライマーが用いられる。該改変オリゴヌクレオチドプライマーは、好ましくは、1又はそれ以上のヌクレオチド間結合或いは3’末端において熱不安定性修飾基を含む。該改変オリゴヌクレオチドプライマーに含まれる熱不安定性修飾基は、PCR増幅における最初の変性温度(例えば、約80−105℃、好ましくは約85−100℃、より好ましくは約90−96℃(例、95℃))に到達するまでは、殆ど解離しないが、本発明者は、この熱不安定性修飾基が逆転写を進行する温度(例、45℃)において、わずかに解離し、それにより生じた対応する未修飾オリゴヌクレオチドが、逆転写を開始するオリゴヌクレオチドプライマーとして機能し得ることを見出した。
上記組成物は、必要に応じてバッファー、塩(マグネシウムイオン等)、RNAase inhibitorを含んでいてもよい。
上記組成物中に含まれる、テンプレートスイッチングオリゴヌクレオチドの濃度は、本発明の方法を実施可能な限り特に限定されないが、例えば、0.05〜5.0μM、好ましくは0.1〜1.0μM程度である。
上記組成物中に含まれる、5’アンカーオリゴヌクレオチドプライマー及び上記改変オリゴヌクレオチドプライマーの濃度は、従来法のPCRを行う際のプライマー濃度と同等であり、例えば0.1〜1.0μM程度である。
上記組成物中に含まれ得るその他の構成因子(鋳型RNA、逆転写酵素、耐熱性DNAポリメラーゼ、dNTPs混合物、バッファー、塩、RNAase inhibitor)の濃度は、ワンステップRT-PCRの先行技術において周知であり、更に、本発明の文脈で使用される濃度の最適化がルーチン実験から得られ得る。
次に、上記で提供された組成物を、逆転写が進行可能な温度でインキュベートする。逆転写が進行可能な温度は、逆転写酵素の種類によって適宜調整することができるが、通常、37℃〜62℃、好ましくは37℃〜55℃である。インキュベート時間は、鋳型RNAのサイズ等を考慮して適宜調整することができるが、通常、30秒〜120分、好ましくは5分〜60分である。当該インキュベーションにより、組成物中に含まれていた逆転写を開始するオリゴヌクレオチドプライマー、或いは改変オリゴヌクレオチドプライマーから熱不安定性修飾基が解離することにより生じた未修飾オリゴヌクレオチドが、逆転写をプライムし、鋳型RNAに相補的なcDNA(アンチセンス鎖)が合成される。逆転写酵素は、鋳型RNAの5’末端に達すると、鋳型をテンプレートスイッチングオリゴヌクレオチドに乗り換え、その5’末端までcDNA合成を続けるため、3’端に、テンプレートスイッチングオリゴヌクレオチドのアンカー配列に相補的な配列が付加された1本鎖のcDNA(アンチセンス鎖)を生じる。
次に、得られたcDNAを含む反応混合液を、PCRが進行可能な複数回の熱サイクリングプロトコールに付す。該熱サイクリングプロトコールは、変性(熱変性とも呼ぶ。)、アニーリング、伸長の3つの温度ステップのサイクルで構成される。変性は二本鎖DNAを解離させるのに十分な温度であれば特に限定されず、好ましい熱変性温度の下限は90℃、上限は100℃である。アニーリングは解離したDNAにプライマーをアニーリングするステップで、その際の温度(アニーリング温度)は特に限定されないが、好ましいアニーリング温度の下限は45℃であり、さらに好ましくは50℃である。一方好ましい上限は75℃であり、さらに好ましくは70℃である。伸長はDNAポリメラーゼで相補鎖を合成するステップで、その際の温度(伸長温度)は特に限定されないが、好ましい伸長温度の下限は50℃であり、上限は80℃である。前記サイクルにおいて、アニーリング温度は伸長反応温度を超えない。アニーリングと伸長とを1つの温度で実施することにより、実質的に2つの温度ステップのサイクルとして熱サイクリングプロトコールを構成することも可能である。この場合、好ましいアニーリング及び伸長の温度の下限は50℃であり、更に好ましくは55℃である。一方好ましい上限は70℃であり、さらに好ましくは65℃である。各ステップにおけるインキュベーション時間としては、1秒〜5分を例示することができるが、当業者であれば、増幅産物のサイズ等を考慮し、容易に適切なインキュベーション時間を設定することができる。
反応混合液を熱サイクリングプロトコールに付す前に、逆転写酵素を失活させるための変性工程(プレインキュベーション工程)を実施してもよい。該変性温度は、逆転写酵素を失活させることが出来るかぎり特に限定されないが、好ましい熱変性温度の下限は90℃、上限は100℃である。変性時間は、逆転写酵素を失活させることが出来るかぎり特に限定されないが、通常1分以上15分以下である。
改変オリゴヌクレオチドプライマーとして、熱不安定性修飾基を含むオリゴヌクレオチドプライマーを用いた場合、熱サイクリングプロトコールの最初の変性工程、或いはプレインキュベーション工程において、修飾オリゴヌクレオチドプライマーから修飾基が解離し、対応する未修飾オリゴヌクレオチドプライマーに変換される。未修飾オリゴヌクレオチドプライマーは,活性状態のホスホジエステル結合を有し,ポリメラーゼによる伸長をプライムできる。
熱サイクリングの最初のアニーリング及び伸長工程においては、逆転写工程で得られた1本鎖のcDNA(アンチセンス鎖)の3’端に存在するアンカー配列に相補的な配列に、5’アンカーオリゴヌクレオチドプライマーがアニールし、ポリメラーゼによる伸長が生じ、5’末端にアンカー配列(第1のアンカー配列)が付加されたcDNA(センス鎖)が合成される結果、センス鎖の5’末端にアンカー配列が付加された2本鎖cDNAが生じる。
そして、上記2本鎖cDNAを含む反応混合物を、引き続き複数回の熱サイクリングプロトコールに付すことにより、5’アンカーオリゴヌクレオチドプライマーと改変オリゴヌクレオチドプライマーにはさまれた領域(即ち、5’末端アンカー配列から改変オリゴヌクレオチドプライマーがハイブリダイズする領域まで)が増幅される。
熱サイクリングの回数は、鋳型RNAの量等を考慮して適宜設定することができるが、例えば、20回以上、好ましくは30回以上、40回以上、45回以上、50回以上、又は55回以上である。一般的なRT-PCRの場合、鋳型RNAのコピー数が少ない場合(例えば、シングルコピー)であっても、40回程度熱サイクリングをおこなえば、増幅反応は飽和に達するが、本発明の方法においては(特に、熱不安定性修飾基を含む改変オリゴヌクレオチドプライマーを用いた場合)、45回以上、50回以上、又は55回以上の熱サイクリングを行っても、増幅反応が飽和に達せず、更なる増幅が可能であり得る。理論には拘束されないが、本発明の方法においては(特に、熱不安定性修飾基を含む改変オリゴヌクレオチドプライマーを用いた場合)、1回の熱サイクルあたりの増幅効率が一般的なRT-PCRよりも抑制されている可能性があり得る。従って、例えば増幅を意図する鋳型RNAのコピー数が少ない場合(例、100コピー以下、10コピー以下、シングルコピー)や、シングルセルから単離したRNA(特にトータルRNA)を鋳型RNAとして、本発明の方法を実施する場合、熱サイクリングの回数を、40回以上、45回以上、50回以上、又は55回以上とすることが好ましい。
本発明の方法によれば、逆転写テンプレートスイッチングPCRを、高い特異性で、ワンステップで実施することが期待できる。逆転写テンプレートスイッチングPCRにおいては、その特異性が実質的にリバースプライマーのみで決定され得るが、本発明においては、リバースプライマーとして、上述の改変オリゴヌクレオチドプライマーを採用することにより、高い特異性で目的とする遺伝子を増幅することができる。特に、鋳型となるRNAのコピー数が少ない場合(例えば、シングルセル由来のRNAを鋳型とする場合)、PCRのサイクル数を多くした場合であっても、副反応の発生を抑制しつつ、特異的PCR産物を増幅することが期待できる。従って、例えば、抗原受容体(例、抗体(重鎖、軽鎖)、T細胞受容体(α鎖、β鎖、γ鎖、δ鎖)の定常領域に特異的なリバースプライマーを、上述の改変オリゴヌクレオチドプライマーとして、抗原受容体(例、抗体(重鎖、軽鎖)、T細胞受容体(α鎖、β鎖、γ鎖、δ鎖)の定常領域に特異的なリバースプライマーを用いることにより、シングルセルレベルで、抗原受容体の抗原認識部位の配列解析を実施することができる。
また、本発明は、
i)テンプレートスイッチングオリゴヌクレオチド;並びに
ii)該テンプレートスイッチングオリゴヌクレオチドに含まれるアンカー配列の少なくとも一部を含む5’アンカーオリゴヌクレオチドプライマー、及び改変オリゴヌクレオチドプライマーからなるプライマーセット
を含む、ワンステップ逆転写テンプレートスイッチングPCRを実施するための、キットであって、
該改変オリゴヌクレオチドプライマーは、当該改変により逆転写におけるプライマー機能の一部又は全部が阻害されており、且つ該逆転写の結果、又は熱変性処理により、該逆転写の産物を鋳型とするPCRにおけるプライマー機能を獲得する、キットをも提供する。
一態様において、本発明のキットは、更に、逆転写を開始するオリゴヌクレオチドプライマーを含む。
一態様において、本発明のキットは、更に、逆転写を開始するオリゴヌクレオチドプライマーを含まない。
本発明のキットには、ワンステップ逆転写テンプレートスイッチングPCRを実施するために必要な他の試薬(例えば、逆転写酵素(RNA依存性DNAポリメラーゼ)、耐熱性DNAポリメラーゼ(DNA依存的DNAポリメラーゼ)、dNTPs混合物、バッファー、塩(マグネシウムイオン等)、RNAase inhibitor)が含まれていてもよい。
上記試薬は、それぞれ別個に容器に封入された上で、1つのパッケージ中に含まれていても良いし、その一部又は全部の混合物を含む組成物として提供されてもよい。
一態様において、本発明のキットは、i)のオリゴヌクレオチド、及びii)のプライマーセットを、両者の混合物を含む組成物として含む。
一態様において、該組成物は、更に、逆転写を開始するオリゴヌクレオチドプライマーを含む。
一態様において、該組成物は、更に、逆転写を開始するオリゴヌクレオチドプライマーを含まない。
該組成物は、逆転写酵素(RNA依存性DNAポリメラーゼ)、耐熱性DNAポリメラーゼ(DNA依存的DNAポリメラーゼ)、dNTPs混合物、バッファー、塩(マグネシウムイオン等)、及びRNAase inhibitorからなる群から選択される1、2、3、4、5又は6の試薬を含んでいてもよい。
本発明のキットを用いれば、任意の鋳型RNAを用いて、上記本発明の方法により、簡便に、ワンステップ逆転写テンプレートスイッチングPCRを実施することが出来る。
本発明のキットに含まれる各構成要素の用語の定義は、上記本発明の方法において記載した通りである。
また、本発明は、対象RNAの少なくとも一部の領域を増幅するためのキットであって、該キットは、i)逆転写に必要な試薬と、ii)必要に応じて、テンプレートスイッチに必要な試薬と、iii)改変オリゴヌクレオチドプライマーを用いたポリメラーゼ連鎖反応に必要な試薬とiv)必要に応じて、使用説明書を含み、i)の試薬、存在する場合ii)の試薬、iii)の試薬、および改変オリゴヌクレオチドプライマーが反応開始時においてすべて反応系において混合されていることを特徴とし、該改変オリゴヌクレオチドプライマーは、逆転写が生じる条件下でプライマー機能の一部又は全部が阻害されており、ポリメラーゼ連鎖反応が生じる条件下でプライマー機能の阻害が解除されるように設計される、キットを提供する。
本明細書において「キット」とは、通常2つ以上の区画に分けて、提供されるべき部分(例えば、試薬、プライマー、薬剤、標識、説明書など)が提供されるユニットをいう。安定性等のため、混合されて提供されるべきでなく、使用直前に混合して使用することが好ましいような組成物の提供を目的とするときに、このキットの形態は好ましい。そのようなキットは、好ましくは、提供される部分(例えば、薬剤をどのように使用するか、あるいは、試薬をどのように処理すべきかを記載する指示書または説明書を備えていることが有利である。本明細書においてキットが試薬キットとして使用される場合、キットには、通常、薬剤、抗体等の使い方などを記載した指示書などが含まれる。
本明細書において「指示書」は、本発明を使用する方法を使用者に対する説明を記載したものである。この指示書は、本発明の逆転写テンプレートスイッチングPCRおよび試薬の使用方法を指示する文言が記載されている。また、指示書には、使用方法(スクリーニング方法)を指示する文言が記載されていてもよい。この指示書は、本発明が実施される国の監督官庁が規定した様式に従って作成され、その監督官庁により承認を受けた旨が明記される。指示書は、いわゆる添付文書(package insert)であり、紙媒体で提供されてもよく、電子媒体(例えば、インターネットで提供されるホームページ、電子メール)のような形態でも提供され得る。
本発明のキットに含まれるポリメラーゼ連鎖反応に必要な試薬は、プライマーを含まなくてもよい。プライマーは、本発明のキットに備えられていてもよいし、別途提供されていてもよい。当業者は、対象RNAに基づいて適切にプライマーを設計し、製造することができるか、またはプライマーの提供会社に製造を依頼することができる。本発明のキットで使用されるリバースプライマーとして、上記改変オリゴヌクレオチドプライマーが使用される。鋳型RNAの5'末端側の配列が未知である場合は、本発明のキットで使用されるフォワードプライマーとして、テンプレートスイッチングオリゴヌクレオチド、またはテンプレートスイッチングオリゴヌクレオチドに含まれるアンカー配列の少なくとも一部を含む5’アンカーオリゴヌクレオチドプライマーが使用される。鋳型RNAの5'末端側の配列が既知である場合は、本発明のキットで使用されるフォワードプライマーとして、テンプレートスイッチングオリゴヌクレオチドまたは5’アンカーオリゴヌクレオチドプライマーが使用されてもよく、既知の5'末端側の配列に基づいて設計されたプライマーが使用されてもよい。
一態様において、本発明のキットにおけるテンプレートスイッチに必要な試薬は、テンプレートスイッチングオリゴヌクレオチドを含み得る。さらなる態様において、本発明のキットにおけるポリメラーゼ連鎖反応に必要な試薬は、テンプレートスイッチングオリゴヌクレオチドに含まれるアンカー配列の少なくとも一部を含む5’アンカーオリゴヌクレオチドプライマーを含んでもよいし、含まなくてもよい。本明細書の実施例において実証されるように、テンプレートスイッチングオリゴヌクレオチド(TS-Oligo)は、予想外にもPCR増幅におけるフォワードプライマーとしても機能することができる。したがって、ポリメラーゼ連鎖反応に必要な試薬は、上記5’アンカーオリゴヌクレオチドプライマーを含まなくてもよいし、通常使用される量よりも少量であってもよい。
驚くべきことに、逆転写用プライマーを添加せずに、上記改変オリゴヌクレオチドプライマーのみを添加して、逆転写PCRを行っても、高い特異性でPCR増幅を達成することができた。理論に束縛されることを望まないが、逆転写反応時において、改変オリゴヌクレオチドプライマーのうちの一部は、その機能が阻害されておらず、機能が阻害されていない一部の改変オリゴヌクレオチドプライマーが逆転写プライマーとしても機能することができるか、あるいは、逆転写反応時において、改変オリゴヌクレオチドプライマーの機能が一部阻害されているため、機能が一部阻害された改変オリゴヌクレオチドプライマーが限定的に逆転写プライマーとして機能することができる。したがって、いくつかの実施形態では、逆転写に必要な試薬は、逆転写を開始するオリゴヌクレオチドプライマーを含まなくてもよいし、含んでいたとしても、使用される逆転写を開始するオリゴヌクレオチドプライマーは通常使用する量よりも少量であってもよい。いくつかの実施形態において、使用される逆転写を開始するオリゴヌクレオチドプライマーの終濃度は、例えば、約40nM以下、好ましくは、約20nM以下、約10nM以下、約2.5nM以下、約2.0nM以下、約0.63nM以下、約0.2nM以下、約0.16nM以下、約0.02nM以下、約2.0pM以下、約0.2pM以下、又は約0.02pM以下である。別の実施形態において、使用される逆転写を開始するオリゴヌクレオチドプライマーは、改変オリゴヌクレオチドプライマーに対して約10分の1以下、好ましくは、約20分の1以下、約40分の1以下、約160分の1以下、約200分の1以下、約635分の1以下、約2,000分の1以下、約2,500分の1以下、約20,000分の1以下、約200,000分の1以下、約2,000,000分の1以下、又は約20,000,000分の1以下のモル比で使用される。
本発明のキットにおいて使用される改変オリゴヌクレオチドプライマーについては、上記に詳細に記載される。
また、本発明は、改変オリゴヌクレオチドプライマーを含む、対象RNAの少なくとも一部の領域を増幅するための組成物であって、該改変オリゴヌクレオチドプライマーは、逆転写が生じる条件下でプライマー機能の一部が阻害されており、ポリメラーゼ連鎖反応が生じる条件でプライマー機能の阻害が解除されるように設計されており、プライマー機能が阻害されなかった一部の改変オリゴヌクレオチドプライマーが、鋳型RNAにハイブリダイズすることで逆転写を開始するオリゴヌクレオチドプライマーとして機能する、組成物を提供する。本発明の組成物は、ワンステップ逆転写PCRまたはワンステップ逆転写テンプレートスイッチPCRにおいて使用され得る。上述のように、本発明の組成物で使用される改変オリゴヌクレオチドプライマーは、逆転写を開始するオリゴヌクレオチドプライマーとしても機能し得る。したがって、本発明の組成物が使用されるワンステップ逆転写PCRまたはワンステップ逆転写テンプレートスイッチPCRでは、逆転写を開始するオリゴヌクレオチドプライマーを必要としないか、または通常使用される量よりも少量で使用される。本発明の組成物において使用される改変オリゴヌクレオチドプライマーについては、上記に詳細に記載される。
本明細書中で挙げられた科学文献、特許公報、特許出願公報などの参考文献を含む全ての刊行物に記載された内容は、本明細書での引用により、その全てが明示されたと同程度に本明細書に組み込まれるものである。
以上、本発明を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本発明を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本発明を限定する目的で提供したのではない。従って、本発明の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。
以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明は下記実施例等に何ら制約されるものではない。
以下の試薬を用いた。
Figure 0006924496
使用したオリゴヌクレオチドの配列は以下の通りである。
Block primer: GAGGGTAGCCTTTTGTTTGTTTGCAATCTC(配列番号1)
RT primer: AAGCACACGAGGGTAGCCTTTTGTTTGTTTGCAA(配列番号2)
Template switch Oligo (3’の3塩基はRNA):AAGCAGTGGTATACCCGCAGAGTACATrGrGrG(配列番号3)
Block primer及びRT primerは、マウスTCRβ鎖の定常領域に特異的なリバースプライマーである。全配列がTCRβmRNAにハイブリダイズするように設計されている。RT primerは3’側に4塩基分、nestedに設計されている。またRT primerは、5’側を8塩基伸ばし、affinityを高くしている。これらのプライマーを用いて逆転写テンプレートスイッチングPCRを行うことにより、TCRβ鎖をコードするmRNAの定常領域から5’末端までを増幅することができる。増幅される領域には、抗原認識部位を含む再構成されたVDJや非翻訳領域などが含まれる。従って、T細胞集団から採取したtotal RNAを鋳型として、これらのプライマーを用いて逆転写テンプレートスイッチングPCRを行うことにより、TCRβ鎖の抗原認識部位や非翻訳領域などのcDNAライブラリーを構築することができる。また、セルソーター等によりソートしたシングルセルのT細胞をそのまま鋳型として用いれば(細胞内のRNAが鋳型となる)、個々の細胞のTCRβ鎖の抗原認識部位を特異的に増幅し、その配列を決定することができる。
本試験においては、ワンステップで逆転写テンプレートスイッチングPCRを行った。典型的には以下の表の組成の反応混合液を用いた。
Figure 0006924496
典型的には以下の熱サイクリング条件を用いた。
Figure 0006924496
尚、反応混合液の組成及び熱サイクリング条件の一部は、試験内容に応じて、適宜変更した。
[試験例1]
以下のTotal RNA濃度、ブロックプライマー濃度、及びRTプライマー濃度の条件で、ワンステップ逆転写テンプレートスイッチングPCRを行った。
Figure 0006924496
結果を図1に示す。ブロックプライマーを用いないときは、多数の非特異的なバンドが検出されたが(レーン1)、ブロックプライマーの添加により、非特異的なバンドが消失した(レーン2〜11)。0.04μM〜0.00016μMのRTプライマー濃度で、TCRβ鎖の特異的増幅が観察された。比較的高いRTプライマー濃度(0.4μMなど)において、マイナーな非特異的バンドを認めたが、RTプライマー濃度を低下させることにより、これを抑制することができた。
[試験例2]
以下の細胞数、ブロックプライマー濃度、及びRTプライマー濃度の条件で、ワンステップ逆転写テンプレートスイッチングPCRを行った。PCRのサイクル数は48とした。
Figure 0006924496
結果を図2に示す。いずれの条件においても、TCRβ鎖の特異的増幅が観察された。RTプライマーを添加しなくても、TCRβ鎖の特異的増幅が観察された(レーン3)。また、細胞数を10個とし、上記ブロックプライマーをCleanAmpTM Turbo Primers(TriLink社)に変更して前述の条件と同様にワンステップ逆転写テンプレートスイッチングPCRを行った結果、同様にTCRβ鎖の特異的増幅が観察された。
[試験例3]
シングルセルのマウスT細胞に、直接ワンステップで反応溶液を加え、ダイレクトワンステップ逆転写テンプレートスイッチングPCRを行った。PCRのサイクル数は56とした。
結果を図3に示す。TCRβ鎖の全長のみが増幅された細胞と、TCRβ鎖の全長及び断片が増幅された細胞が認められた。また、56回もの多サイクル数に関わらず、非特異的増幅は認められなかった。
[試験例4]
PCR増幅のサイクル数を種々変動させた(サイクル数:38、40、42及び44)。Block primer濃度は0.4μM、RT primer濃度は0.002nMとした。
結果を図4に示す(レーン1:38、レーン2:40、レーン3:42、レーン4:44)。44サイクルで、TCRβ鎖の特異的バンドが観察された。
[試験例5]
以下のTotal RNA濃度、ブロックプライマー濃度、及びRTプライマー濃度の条件で、ワンステップ逆転写テンプレートスイッチングPCRを行った。PCRのサイクル数は42回とした。
Figure 0006924496
結果を図5に示す。ブロックプライマーを用いないときは、スメア状の多数の非特異的なバンドが検出されたが(レーン1)、ブロックプライマーの添加により、非特異的なバンドが消失した(レーン2〜10)。比較的高いRTプライマー濃度(0.2μM)において、マイナーな非特異的バンドが残存したが、RTプライマー濃度を低下させることにより、これを抑制することができた。RTプライマーを添加しなくても、TCRβ鎖の特異的増幅が観察された(レーン10)。
[試験例6]
本試験例では、単一の制御性T細胞からTCRα鎖の抗原認識部位を特異的に増幅した。
以下の試薬を用いた。
Figure 0006924496
使用したオリゴヌクレオチドの配列は以下の通りである。
Block primer:GAGGATCTTTTAACTGGTACACAGCAGGTTCTG(配列番号4)
RT primer: CGG TGA ACA GGC AGA GGG TG(配列番号5)
Template switch Oligo(3'末端から1つ目はLNA, 二つ目と三つ目はRNA):AAGCAGTGGTATACCCGCAGAGTACATrGrG(L)G(配列番号3)
Block primer及びRT primerは、マウスTCRα鎖の定常領域に特異的なリバースプライマーである。これらのプライマーを用いて逆転写テンプレートスイッチングPCRを行うことにより、TCRα鎖をコードするmRNAの定常領域から5’末端までを増幅することができる。増幅される領域には、抗原認識部位を含む再構成されたVDJや非翻訳領域などが含まれる。従って、T細胞集団から採取したtotal RNAを鋳型として、これらのプライマーを用いて逆転写テンプレートスイッチングPCRを行うことにより、TCRβ鎖の抗原認識部位や非翻訳領域などのcDNAライブラリーを構築することができる。また、セルソーター等によりソートしたシングルセルのT細胞をそのまま鋳型として用いれば(細胞内のRNAが鋳型となる)、個々の細胞のTCRα鎖の抗原認識部位を特異的に増幅し、その配列を決定することができる。
本試験においては、ワンステップでテンプレートスイッチングRT-PCRを行った。典型的には以下の表の組成の反応混合液を用いた。
Figure 0006924496
典型的には以下の熱サイクリング条件を用いた。
Figure 0006924496
増幅産物をAMpure beadsにより精製した後、電気泳動で確認した結果、TCRα鎖の特異的増幅が単一のバンドとして観察された(図6)。TCRα鎖は、細胞毎に違う配列を持っているため、単一のバンドが確認されたことから、本発明の方法はシングルセル(本試験例では単一の制御性T細胞)から増幅できる方法であることが示された。
本発明を好ましい態様を強調して説明してきたが、好ましい態様が変更され得ることは当業者にとって自明であろう。本発明は、本発明が本明細書に詳細に記載された以外の方法で実施され得ることを意図する。したがって、本発明は添付の「請求の範囲」の精神および範囲に包含されるすべての変更を含むものである。
ここで述べられた特許および特許出願明細書を含む全ての刊行物に記載された内容は、ここに引用されたことによって、その全てが明示されたと同程度に本明細書に組み込まれるものである。本発明は、2016年6月23日に出願された日本国出願特願2016-125007号に対して優先権を主張するものであり、その内容はその全てが明示されたと同程度に本明細書に組み込まれる。
本発明によれば、逆転写テンプレートスイッチングPCRを、高い特異性で、ワンステップで実施することが期待できる。特に、鋳型となるRNAのコピー数が少なく、PCRのサイクル数を多くした場合であっても、副反応の発生を抑制しつつ、特異的PCR産物を増幅することが期待できる。

Claims (20)

  1. 対象RNAの少なくとも一部の領域を増幅する方法であって、該方法は、
    a)該対象RNAと、逆転写に必要な試薬と、テンプレートスイッチに必要な試薬と、ポリメラーゼ連鎖反応に必要な試薬とを混合し、混合物を逆転写が生じる条件に供して、テンプレートスイッチングオリゴヌクレオチドおよび該対象RNAに対応する核酸配列を含むcDNAを提供する工程と、
    b)該工程a)から得られたcDNAを、ポリメラーゼ連鎖反応が生じる条件に供して、該cDNAの少なくとも一部の領域を増幅する工程と
    を含み、
    該ポリメラーゼ連鎖反応に必要な試薬は、該工程a)においてプライマー機能の一部又は全部が阻害されており、該工程b)ではプライマー機能の阻害が解除されるように設計された改変オリゴヌクレオチドプライマーを含む、方法。
  2. 対象RNAの少なくとも一部の領域に基づいて増幅された核酸試料を生産する方法であって、該方法は、
    a)該対象RNAと、逆転写に必要な試薬と、テンプレートスイッチに必要な試薬と、ポリメラーゼ連鎖反応に必要な試薬とを混合し、混合物を逆転写が生じる条件に供して、テンプレートスイッチングオリゴヌクレオチドおよび該対象RNAに対応する核酸配列を含むcDNAを提供する工程と、
    b)該工程a)から得られたcDNAを、ポリメラーゼ連鎖反応が生じる条件に供する工程と
    を含み、
    該ポリメラーゼ連鎖反応に必要な試薬は、該工程a)においてプライマー機能の一部又は全部が阻害されており、該工程b)ではプライマー機能の阻害が解除されるように設計された改変オリゴヌクレオチドプライマーを含む、方法。
  3. 前記逆転写、前記テンプレートスイッチ、および前記ポリメラーゼ連鎖反応が、同一反応系で行われることを特徴とする、請求項1または2に記載の方法。
  4. 前記混合物にさらなる試薬を添加することなく、前記逆転写、前記テンプレートスイッチ、および前記ポリメラーゼ連鎖反応が、行われることを特徴とする、請求項1〜3のいずれか一項に記載の方法。
  5. 前記ポリメラーゼ連鎖反応に必要な試薬は、必要に応じて、前記テンプレートスイッチングオリゴヌクレオチドに含まれるアンカー配列の少なくとも一部を含む5’アンカーオリゴヌクレオチドプライマーを含む、請求項1〜4のいずれか一項に記載の方法。
  6. 前記ポリメラーゼ連鎖反応に必要な試薬は、前記5’アンカーオリゴヌクレオチドプライマーを含まない、請求項に記載の方法。
  7. 前記逆転写に必要な試薬は、逆転写を開始するオリゴヌクレオチドプライマーを含み、該逆転写を開始するオリゴヌクレオチドプライマーは、前記混合物中に、約40nM以下の終濃度で、または前記改変オリゴヌクレオチドプライマーに対して約10分の1以下のモル比で含む、請求項1〜のいずれか一項に記載の方法。
  8. 前記改変オリゴヌクレオチドプライマーが、同一の改変オリゴヌクレオチドプライマーの配列上に1又はそれ以上の相補領域を有し、PCRの初期熱変性処理前までは当該相補領域によって折り返し構造を取る、或いは熱不安定性修飾基を含む、請求項1〜のいずれか一項に記載の方法。
  9. 前記改変オリゴヌクレオチドプライマーが、鋳型RNAの部分配列に相補的なヌクレオチド配列を含む、請求項1〜のいずれか一項に記載の方法。
  10. プライマー機能が阻害されなかった一部の改変オリゴヌクレオチドプライマーが、鋳型RNAにハイブリダイズすることで逆転写を開始するオリゴヌクレオチドプライマーとして機能する、請求項記載の方法。
  11. 対象RNAの少なくとも一部の領域を増幅するためのキットであって、該キットは、
    i)逆転写に必要な試薬と、
    ii)テンプレートスイッチに必要な試薬と、
    iii)改変オリゴヌクレオチドプライマーを用いたポリメラーゼ連鎖反応に必要な試薬と
    iv)必要に応じて、使用説明書
    を含み、
    i)〜iii)の試薬および該改変オリゴヌクレオチドプライマーが反応開始時においてすべて反応系において混合されていることを特徴とし、該改変オリゴヌクレオチドプライマーは、逆転写が生じる条件下でプライマー機能の一部又は全部が阻害されており、ポリメラーゼ連鎖反応が生じる条件下でプライマー機能の阻害が解除されるように設計される、キット。
  12. 前記テンプレートスイッチに必要な試薬は、テンプレートスイッチングオリゴヌクレオチドを含み、前記ポリメラーゼ連鎖反応に必要な試薬は、必要に応じて、該テンプレートスイッチングオリゴヌクレオチドに含まれるアンカー配列の少なくとも一部を含む5’アンカーオリゴヌクレオチドプライマーを含む、請求項11に記載のキット。
  13. 前記ポリメラーゼ連鎖反応に必要な試薬は、前記5’アンカーオリゴヌクレオチドプライマーを含まない、請求項1に記載のキット。
  14. 前記逆転写に必要な試薬は、逆転写を開始するオリゴヌクレオチドプライマーを含み、該逆転写を開始するオリゴヌクレオチドプライマーは、約40nM以下の終濃度で、または前記改変オリゴヌクレオチドプライマーに対して約10分の1以下のモル比で使用されることを特徴とする、請求項11〜1のいずれか一項に記載のキット。
  15. 前記改変オリゴヌクレオチドプライマーが、同一の改変オリゴヌクレオチドプライマーの配列上に1又はそれ以上の相補領域を有し、PCRの初期熱変性処理前までは当該相補領域によって折り返し構造を取る、或いは熱不安定性修飾基を含む、請求項11〜1のいずれか一項に記載のキット。
  16. 前記改変オリゴヌクレオチドプライマーが、鋳型RNAの部分配列に相補的なヌクレオチド配列を含む、請求項11〜1のいずれか一項に記載のキット。
  17. プライマー機能が阻害されなかった一部の改変オリゴヌクレオチドプライマーが、鋳型RNAにハイブリダイズすることで逆転写を開始するオリゴヌクレオチドプライマーとして機能する、請求項1に記載のキット。
  18. 前記キットは、ワンステップ逆転写テンプレートスイッチPCRにおいて使用されるものである、請求項11〜17のいずれか一項に記載のキット。
  19. 改変オリゴヌクレオチドプライマーを含む、ワンステップ逆転写テンプレートスイッチPCRにおいて対象RNAの少なくとも一部の領域を増幅するための組成物であって、該改変オリゴヌクレオチドプライマーは、逆転写が生じる条件下でプライマー機能の一部が阻害されており、ポリメラーゼ連鎖反応が生じる条件でプライマー機能の阻害が解除されるように設計されており、プライマー機能が阻害されなかった一部の改変オリゴヌクレオチドプライマーが、鋳型RNAにハイブリダイズすることで逆転写を開始するオリゴヌクレオチドプライマーとして機能する、組成物。
  20. 前記改変オリゴヌクレオチドプライマーが、同一の改変オリゴヌクレオチドプライマーの配列上に1又はそれ以上の相補領域を有し、PCRの初期熱変性処理前までは当該相補領域によって折り返し構造を取る、或いは熱不安定性修飾基を含む、請求項1に記載の組成物。
JP2018523697A 2016-06-23 2017-06-23 ワンステップ逆転写テンプレートスイッチpcr Active JP6924496B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016125007 2016-06-23
JP2016125007 2016-06-23
PCT/JP2017/023254 WO2017222057A1 (ja) 2016-06-23 2017-06-23 ワンステップ逆転写テンプレートスイッチpcr

Publications (2)

Publication Number Publication Date
JPWO2017222057A1 JPWO2017222057A1 (ja) 2019-04-11
JP6924496B2 true JP6924496B2 (ja) 2021-08-25

Family

ID=60783868

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018524187A Active JP7066139B2 (ja) 2016-06-23 2017-06-23 ワンステップ逆転写テンプレートスイッチpcrを利用したt細胞受容体およびb細胞受容体レパトア解析システム
JP2018523697A Active JP6924496B2 (ja) 2016-06-23 2017-06-23 ワンステップ逆転写テンプレートスイッチpcr

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018524187A Active JP7066139B2 (ja) 2016-06-23 2017-06-23 ワンステップ逆転写テンプレートスイッチpcrを利用したt細胞受容体およびb細胞受容体レパトア解析システム

Country Status (6)

Country Link
US (2) US20190300934A1 (ja)
EP (2) EP3486321A4 (ja)
JP (2) JP7066139B2 (ja)
CN (2) CN109328235A (ja)
TW (1) TWI758298B (ja)
WO (2) WO2017222057A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110050067B (zh) * 2016-11-10 2023-05-23 宝生物工程(美国)有限公司 产生经扩增的双链脱氧核糖核酸的方法以及用于所述方法的组合物和试剂盒
WO2019191459A1 (en) * 2018-03-28 2019-10-03 Berkeley Lights, Inc. Methods for preparation of nucleic acid sequencing libraries
TW202022121A (zh) * 2018-08-22 2020-06-16 國立研究開發法人國立精神 神經醫療研究中心 肌痛性腦脊髓炎/慢性疲勞症候群(me/cfs)之生物標記
WO2020040302A1 (ja) 2018-08-24 2020-02-27 Repertoire Genesis株式会社 T細胞受容体およびb細胞受容体の機能的なサブユニットペア遺伝子の解析方法
WO2021037368A1 (en) * 2019-08-29 2021-03-04 Institute For Research In Biomedicine METHODS FOR RAPID cDNA PRODUCTION AND CLONING
CN113838528B (zh) * 2021-09-02 2023-09-19 浙江大学 基于单细胞免疫组库数据的单细胞水平耦合可视化方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773258A (en) * 1995-08-25 1998-06-30 Roche Molecular Systems, Inc. Nucleic acid amplification using a reversibly inactivated thermostable enzyme
US5962271A (en) * 1996-01-03 1999-10-05 Cloutech Laboratories, Inc. Methods and compositions for generating full-length cDNA having arbitrary nucleotide sequence at the 3'-end
EP2032714B1 (en) * 2006-06-01 2011-03-16 TriLink BioTechnologies Chemically modified oligonucleotide primers for nucleic acid amplification
US8133669B2 (en) 2008-05-27 2012-03-13 Trilink Biotechnologies Chemically modified nucleoside 5′-triphosphates for thermally initiated amplification of nucleic acid
CN103930570B (zh) * 2011-09-16 2018-01-09 莱克斯奥根有限公司 核酸转录方法
US9410173B2 (en) * 2012-10-24 2016-08-09 Clontech Laboratories, Inc. Template switch-based methods for producing a product nucleic acid
US9382581B2 (en) * 2012-12-13 2016-07-05 Roche Molecular Systems, Inc. Primers with modified phosphate and base in allele-specific PCR
EP3572510B1 (en) * 2013-11-21 2022-09-21 Repertoire Genesis Incorporation T cell receptor and b cell receptor repertoire analysis system, and use of same in treatment and diagnosis
US11371087B2 (en) * 2016-06-10 2022-06-28 Takara Bio Usa, Inc. Methods and compositions employing blocked primers

Also Published As

Publication number Publication date
JPWO2017222056A1 (ja) 2019-04-11
EP3486321A1 (en) 2019-05-22
TWI758298B (zh) 2022-03-21
WO2017222057A1 (ja) 2017-12-28
EP3486321A4 (en) 2020-01-15
TW201805432A (zh) 2018-02-16
CN109328235A (zh) 2019-02-12
JP7066139B2 (ja) 2022-05-13
US20190300934A1 (en) 2019-10-03
WO2017222056A1 (ja) 2017-12-28
EP3476944A4 (en) 2020-01-15
JPWO2017222057A1 (ja) 2019-04-11
US20190169679A1 (en) 2019-06-06
CN109312327A (zh) 2019-02-05
EP3476944A1 (en) 2019-05-01

Similar Documents

Publication Publication Date Title
JP6924496B2 (ja) ワンステップ逆転写テンプレートスイッチpcr
JP5558811B2 (ja) 核酸増幅のための化学的に修飾されたオリゴヌクレオチドプライマー
EP2321332B1 (en) Self-avoiding molecular recognition systems in dna amplification
TW567188B (en) A modified oligonucleotide, a method for amplifying a nucleic acid target sequence and a kit for carrying out a nucleic acid amplification reaction
JP6509723B2 (ja) 核酸ポリメラーゼによる基質ポリヌクレオチドの大きさ制御されたホモポリマーテーリングのための方法および組成物
KR101032750B1 (ko) 이중 특이성 올리고뉴클레오타이드를 사용한 방법 및 이중 특이성 올리고뉴클레오타이드
CN106912197B (zh) 用于多重pcr的方法和组合物
EP3954225A1 (en) Compositions and methods for synthesizing 5'-capped rnas
US10391467B2 (en) Fabrication of patterned arrays
JP2011521646A5 (ja)
JP6219944B2 (ja) 5’保護に依存した増幅
JP6889769B2 (ja) 核酸配列決定の非対称な鋳型および非対称な方法
EP3730628B1 (en) Polynucleotide adapter design for reduced bias
BRPI0609031A2 (pt) métodos para a sìntese de uma molécula de ácido nucleico, para seletivamente amplificar uma seqüência de ácido nucleico alvo de um dna ou de uma mistura de ácidos nucleicos, para amplificar duas ou mais seqüências de nucleotìdeos alvo simultaneamente, para seqüenciar uma molécula de ácido nucleico alvo, para detectar uma molécula de ácido nucleico com diversidade genética, para detectar uma seqüência de nucleotìdeos alvo em uma amostra da ácido nucléico, e para permitir que uma especifidade anelar de um oligonucleotìdeo seja dualmente determinada por meio de uma estrutura do oligonucleotìdeo, e, oligonucleotìdeo de especifidade dual
JP2001526053A (ja) 核酸の製造方法
AU2014233457A1 (en) Chemically modified ligase cofactors, donors and acceptors
JP2019517250A (ja) トランスポザーゼランダムプライミング法によるdna試料の調製
JP2007111048A (ja) プルーフリーディング特性を有するdnaポリメラーゼを用いるポリメラーゼ連鎖反応のための方法
WO2020184551A1 (ja) 核酸の生成および増幅
JP6612883B2 (ja) 相補的塩基配列ないしはミス−マッチされた塩基を含む相補的な塩基配列と連結されたpcrプライマー及びそれを用いた核酸増幅方法
JP4104285B2 (ja) Dna増幅方法及びそのキット
JPWO2021136263A5 (ja)
JP7426032B2 (ja) ヌクレオチド配列の増幅方法及び配列決定方法
US20230416804A1 (en) Whole transcriptome analysis in single cells
Santangelo et al. Formation of Long DNA Templates Containing Site-Specific Alkane–Disulfide DNA Interstrand Cross-Links for Use in Transcription Reactions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210726

R150 Certificate of patent or registration of utility model

Ref document number: 6924496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150