JP6914495B1 - 住宅 - Google Patents

住宅 Download PDF

Info

Publication number
JP6914495B1
JP6914495B1 JP2021097681A JP2021097681A JP6914495B1 JP 6914495 B1 JP6914495 B1 JP 6914495B1 JP 2021097681 A JP2021097681 A JP 2021097681A JP 2021097681 A JP2021097681 A JP 2021097681A JP 6914495 B1 JP6914495 B1 JP 6914495B1
Authority
JP
Japan
Prior art keywords
air
air layer
temperature
wall
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021097681A
Other languages
English (en)
Other versions
JP2022189216A (ja
Inventor
雄斗 黒川
雄斗 黒川
太郎 福田
太郎 福田
Original Assignee
フロンヴィルホームズ名古屋株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フロンヴィルホームズ名古屋株式会社 filed Critical フロンヴィルホームズ名古屋株式会社
Priority to JP2021097681A priority Critical patent/JP6914495B1/ja
Application granted granted Critical
Publication of JP6914495B1 publication Critical patent/JP6914495B1/ja
Publication of JP2022189216A publication Critical patent/JP2022189216A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Residential Or Office Buildings (AREA)
  • Ventilation (AREA)

Abstract

【課題】住宅の外周に設けられた空気層から、日射により加熱された空気又は放射冷却により冷やされた空気を住宅内に導入すると共に、室内空気と熱交換させ、温度が安定した床下の空気と混和させて、生活に適した室内温度の空気を1階床から吹き出させる住宅を提供する。【解決手段】 室内居住面積を損なわないように、住宅の外周に屋根面空気層61と壁面空気層40とを設け、日射熱エネルギーを蓄えた空気層又は外気よりも低い温度の空気層を選択して、住宅内に空気を導入し、室内から排気する空気と全熱交換器80により熱交換させ、温度が安定した床下空気層72の空気と混和させて、生活に適した室内温度の空気を1階床から吹き出させる住宅とした。【選択図】図1

Description

本発明は、住宅の外周に設けられた空気層から、日射により加熱された空気又は放射冷却により冷やされた空気を住宅内に導入すると共に、室内空気と熱交換させ、温度が安定した床下の空気と混和させて、生活に適した室内温度の空気を1階床から吹き出させる住宅に関する。詳細には、過大な日射熱エネルギーは空気層を通して排熱する一方、必要な日射熱エネルギーは温められた外気として室内に導入するだけでなく、熱容量の大きな外壁に蓄えさせ長時間活用させる住宅に関する。
更に、住宅の外周の空気層から導入する外気は、室内から排気する室内空気と全熱交換器により熱交換させてから、温度が一定の床下空気と混和させて、生活に適した室内温度とさせ、1階床から吹き出させる。日射熱エネルギーを有効活用すると共に、外壁をメンテナンスフリーにすることにより、持続可能社会の実現に寄与する住宅に関する。
従来から、煉瓦をモルタルにより接着した煉瓦組積壁とした外部壁と、木構造壁とした内部壁とを並べ、外壁を二重壁とし、外部からの室内への熱影響を抑制すると共に、外壁の維持管理を不要にした住宅が知られている。
特許文献1には、熟練した型枠大工を必要とせず、型枠工事に要する費用、資材保管に要する手間を減らすと共に、木造家屋の構造体に外壁をなす煉瓦の荷重を負担させないようにした、外張り断熱構造の技術が開示されている。この技術によれば、木造家屋の外周の基礎を連続基礎とし、その連続基礎の上に、断熱材、通気層、煉瓦を並べて、外面材の構造とさせている。連続基礎の上に煉瓦壁を自立させ、煉瓦壁は木造家屋の間柱、横架材若しくは筋交い等の斜材に帯体等により固定されている。
そうすることにより外面材による木造家屋への負担は、帯体から伝達される地震時の揺れによる水平力だけであり、木造家屋の耐久性を高めることができるとされている。また、この技術によれば、煉瓦壁の下方と窓回りには通気用目地を設け結露を防止するとされている。この技術によれば、煉瓦壁の下方から入った空気を窓回りの通気用目地から通気層の外に排出させているため、冬季に通気層内に蓄えられた日射熱エネルギーを活用できていないという課題があった。
特許文献2には、乾式煉瓦組積構造により形成された外部壁と内部壁からなる二重壁の中間に、非通気性の板状断熱材を挿入させ、板状断熱材の内側と二重壁の内部壁との間を循環空気層とした空気循環式空調システムの技術が開示されている。循環空気層は床下回収ダクトに連通され、1階床から小屋裏に達する乾式煉瓦組積構造による煉瓦ダクトが、建築物の居室に面して形成され、煉瓦ダクト内に床下から上方に延びる給気ダクトが配置されている。
室内空気は、乾式煉瓦組積構造からなる内部壁の目地部を通って、室内側から循環空気層に流入し、循環空気層から床下回収ダクトに誘引される。地中冷熱により冷却又は太陽熱により加熱された後、煉瓦ダクト又は給気ダクトに導入され、煉瓦ダクトを構成する煉瓦の目地部又は給気ダクトの吹出口から室内に流出するとされている。空調システム用の構成として、外部に面して太陽熱を蓄熱可能なトロンブウォール装置と、太陽熱を集熱する集熱パネルとを備えてもよいとされている。
この技術によれば、少なくとも居室に面した煉瓦ダクトが必要になり、中間に板状断熱材を挿入しているため二重壁の厚さが厚くなり、人が活動できる有効な面積が小さくなる。また、壁が乾式煉瓦組積構造とされているため、目地から温められた空気が漏出し、日射熱エネルギーが大きくなる板状断熱材の外側の日射熱エネルギーを室内環境の向上に活用できていなかった。
特許文献3には、乾式煉瓦組積構造の外部壁と、耐震性等が相対的に劣る内部壁とを組合せ、鉛直荷重、地震荷重、風荷重などの設計荷重を各部で負担する建築物の壁体構造を提供することを課題とした技術が開示されている。この技術によれば、外部壁の内側には、内部壁が構築され、剪断補強部材が内部壁及び外部壁を相互連結し、内部壁と外部壁との間に隙間空間がある二重壁の壁体構造の技術が開示されている。
この技術によれば、内部壁がなす構造物の二階床レベルで、外部壁と内部壁が剪断補強部材により水平に連結され、外部壁の最上端部と内部壁の最上端部とが剪断補強部材により水平に連続的に連結されるため、内部壁と外部壁との隙間を上下方向に空気を循環させる空間として活用することができないという課題があった。
また、外部壁が乾式煉瓦組積構造とされているため、日射により外部壁が温められ、日射エネルギーが外壁煉瓦に蓄積されても、煉瓦の目地から温められた2重壁内の空気が外部に漏出するため、特許文献1又は特許文献2と同様に、日射により加熱された煉瓦に蓄積された日射熱エネルギーが室内環境の向上に利用できないという課題があった。
特開2002−294894号公報 特開2002−81690号公報 特開2004−27819号公報
本発明は、住宅の外周に設けられた空気層から、日射により加熱された空気又は放射冷却により冷やされた空気を住宅内に導入すると共に、室内空気と熱交換させ、温度が安定した床下の空気と混和させて、生活に適した室内温度の空気を1階床から吹き出させる住宅を提供することを課題としている。
詳細には、二重壁をなす外部壁に熱容量の大きな煉瓦壁を使い、外壁面及び屋根面に沿って空気層を設ける。必要以上に温められた空気層の日射熱エネルギーは対流により自然に排気させ、必要な日射熱エネルギーは温められた外気として室内に導入するだけでなく、熱容量の大きな煉瓦壁に蓄えさせて、長時間活用できる住宅を提供することを課題としている。
本発明の第1の発明は、外壁が外部壁と内部壁とからなる二重壁とされた住宅において、日射熱エネルギーを利用する集熱系空気層と、日射熱エネルギーを利用しない非集熱系空気層と、外気温に変動されない恒温系空気層と、空気流路を決定させる空気流制御システムとを有し、前記外部壁が、下方に内外を通気する通気孔を備えた湿式組積造壁とされ、前記内部壁の外面に沿って断熱層を有し、前記断熱層と前記外部壁との隙間が壁面空気層とされ、屋根内面に沿った所定の厚さの隙間が、屋根面空気層とされ、住宅外部とは空気流が閉鎖された1階床下と地表面との隙間が床下空気層とされ、前記空気流制御システムが、温度検知手段と時刻管理手段と制御手段とを備え、前記温度検知手段が、前記壁面空気層と前記屋根面空気層の夫々に配設され、前記制御手段により、前記温度検知手段が計測した温度又は前記時刻管理手段が管理している時刻の少なくともいずれかに応じて、前記集熱系空気層と前記非集熱系空気層とが、前記壁面空気層と前記屋根面空気層の中から選択され、前記空気流路が決定され、前記壁面空気層又は前記屋根面空気層のいずれかから導入された外気が、前記恒温系空気層をなす前記床下空気層の空気と混和されて、1階床から室内に吹き出されることを特徴としている。
外部壁をなす湿式組積造壁は、煉瓦壁が好適であるが、熱容量が大きなコンクリートブロックであってもよく限定されない。内部壁は木造枠組壁構造が好適であるが、筋交いにより水平方向の変形が抑制された木造又は鉄骨造の軸組構造であってもよい。外部壁が湿式組積造壁とされているため、内部壁に断熱層を備えさせてから、その外部から壁面空気層を形成させるように外壁を構築することができる。
壁面空気層は20mmから50mmの厚さが好適であり、壁面空気層の内外を通気する通気孔が外部壁の下方に設けられているため、熱容量の大きな煉瓦壁に蓄えた日射熱エネルギーを無駄に放出しないで有効活用できる。温度上昇による下から上への対流により、壁面空気層から屋根面空気層へと空気流を発生させることができ好適である。外部壁の下方の縦目地を空目地にし通気孔とすればよい。屋根面空気層の厚さも、20mmから50mmが好適であり、床下空気層は、1階の床下から土間コンクリート版までの約50cmとされればよいが限定されない。
本発明の第1の発明によれば、内部壁に沿って断熱層を備えさせることにより、壁面空気層から直接室内に日射熱が入ることを抑制するだけでなく、熱容量の大きな外部壁に日射熱エネルギーを蓄えさせている。そして、温度検知手段が計測した温度又は前記時刻管理手段が管理している時刻に応じて、集熱系空気層と非集熱系空気層とが、壁面空気層と屋根面空気層の中から選択され空気流路が決定され、空調に適した温度の外気が室内に導入される。
住宅の外周を囲む壁面空気層、屋根面空気層、床下空気層により、室内居住面積を損なわないで、過大な日射熱エネルギーを排除しつつ、日射熱エネルギーを有効活用して、空調に適した温度とされた外気が、約15℃から17℃とされた床下空気層の空気と混和されて、1階床から吹き出される。これにより、室内空調に要する資源を抑制させても、快適な室内温度とすることができ、持続可能社会の実現に寄与する住宅を提供することができるという従来にない効果を奏する。
本発明の第2の発明は、第1の発明の住宅において、前記空気流制御システムが、全熱交換器を備え、前記壁面空気層と前記屋根面空気層とが、前記全熱交換器を介して、前記床下空気層と連通された空気流路をなし、前記全熱交換器が、前記外気と、屋外に排気する室内空気とを熱交換させることを特徴としている。
第2の発明によれば、冷房機又は暖房機により快適な室内温度とされた室内空気は、全熱交換器において外部から導入される外気と熱交換される。外部から導入された外気が、全熱交換により室内空気に近い温度とされるため、冷暖房の負荷がより小さくなり、室内空調に要する資源がより抑制される。
本発明の第3の発明は、第2の発明の住宅において、暖房が必要な場合には、前記制御手段により、前記外気の導入元として前記集熱系空気層が選択され、前記集熱系空気層で加熱された外気が、前記全熱交換器に導入されるように空気流路が決定されることを特徴としている。
第3の発明によれば、暖房が必要な際には、日射熱エネルギーを蓄えた温度の高い集熱系空気層を選択して、加熱された外気を室内に積極的に導入している。選択させる集熱系空気層は、室内に日射熱エネルギーを供給できればよく、屋根面空気層であってもよく、日射があたる壁面空気層であってもよい。これにより、日射を日射熱エネルギーとしてより有効活用でき、温度管理に要する資源を抑制させ、快適な室内環境とすることができる。
本発明の第4の発明は、第3の発明の住宅において、前記制御手段により、前記屋根面空気層の温度が所定の温度以上の場合には、前記屋根面空気層が前記集熱系空気層として選択され、前記屋根面空気層の温度が所定の温度未満の場合には、前記温度検知手段が計測した温度が高い壁面空気層が前記集熱系空気層として選択されることを特徴としている。
冬季でも日射があたる屋根面は比較的温度が高くなりやすい。所定の温度としては、室内の暖房温度より高い20℃が好適であるが限定されない。屋根面空気層の温度が好適な温度よりも高い場合は、屋根面空気層から外気を室内に導入すれば、空調機の暖房負荷が軽減される。
一方、冬季において屋根に雪が積もっている場合等には、屋根面空気層の温度も低くなる。そうした場合には、低い温度となりにくい日射を受けた面の壁面空気層を集熱系空気層として、その壁から室内に外気を導入させるようにすればよい。第4の発明によれば、屋根面空気層又は壁面空気層の中の高い温度の空気層を選択して、室内に外気を導入させているため、天候にかかわらず室内の温度環境の向上を図りやすい。
本発明の第5の発明は、第2の発明の住宅において、冷房が必要な場合には、前記制御手段により、前記外気の導入元として、前記時刻管理手段により管理されている所定の時間は、前記温度検知手段により計測された温度が低い壁面空気層が、前記非集熱系空気層として選択され、前記非集熱系空気層からの外気が、前記全熱交換器に導入されるように空気流路が決定されることを特徴としている。
夏季に、強い日射を受けた屋根面は70℃以上の高温になりやすく、屋根面空気層も50℃以上になる。屋根面空気層が高温となる状態は、屋根が日射を受けている時間継続する。第5の発明によれば、夏季において日出の時間の6時から、屋根面の温度が高温でなくなる22時までの間は、屋根面空気層から外気を導入させない。一方、周辺建物の状態にもよるが、日中でも壁面空気層は高温になりにくい。
第5の発明によれば、時刻に応じて非集熱系空気層として、温度が高温になりにくい壁面空気層を選択させ、そこから導入させた外気を、15℃から17℃の床下空気層の空気と混和させて室内に吹き出させることにより、小さな資源で快適な室内温度環境を実現できるという効果を奏する。
本発明の第6の発明は、第5の発明の住宅において、前記制御手段により、前記所定の時間以外は、前記非集熱系空気層として前記屋根面空気層が選択され、前記屋根面空気層において放射冷却作用により冷却された外気が、前記全熱交換器に導入されるように空気流路が決定されることを特徴としている。
夏季夜間の屋根から熱気が放散されてから日出までの時間、すなわち22時頃から6時頃までの時間は、屋根面の放射冷却作用により、周囲の壁面空気層や外気より温度が低下しやすい。第6の発明によれば、夏季夜間の屋根面において放射冷却作用が発生する時間帯は、外気等と比較して相対的に高温でない空気を、屋根面空気層から流入させることにより、小さな資源で快適な室内温度環境を実現できるという効果を奏する。
本発明の第7の発明は、第1の発明の住宅において、前記壁面空気層が、垂直に複数の縦空気層に区画され、縦空気層毎に前記温度検知手段が備えられ、前記温度検知手段が検知した温度に応じて、前記集熱系空気層と前記非集熱系空気層とが、複数の縦空気層の中から選択され、前記空気流路が決定されることを特徴としている。
第7の発明によれば、壁面空気層が垂直に複数の縦空気層に区画されているため、周辺の建物の建設による新たな日影の発生や、周囲の建物の屋外空調機の排熱の影響にかかわらず、きめ細かく適切な温度となっている縦空気層を外気を導入させる対象として選択することができる。これにより、壁面空気層に蓄えた日射熱エネルギーを無駄なく活用して、小さな資源で快適な室内温度環境を実現できるという効果を奏する。
・第1の発明によれば、室内居住面積を損なわないで、過大な日射熱エネルギーを排除しつつ、日射熱エネルギーを有効活用して、室内空調に要する資源を抑制させても、快適な室内温度とすることができ、持続可能社会の実現に寄与する住宅を提供することができるという従来にない効果を奏する。
・第2の発明によれば、冷暖房の負荷がより小さくなり、室内空調に要する資源がより抑制されるという効果を奏する。
・第3の発明によれば、日射を日射熱エネルギーとしてより有効活用でき、温度管理に要する資源を抑制させ、快適な室内環境とすることができる。
・第4の発明によれば、屋根面空気層又は壁面空気層の中の高い温度の空気層を選択して、室内に外気を導入させているため、天候にかかわらず室内の温度環境の向上を図りやすい。
・第5から第6の発明によれば、小さな資源で快適な室内温度環境を実現できるという効果を奏する。
・第7の発明によれば、壁面空気層に蓄えた日射熱エネルギーを無駄なく活用して、小さな資源で快適な室内温度環境を実現できるという効果を奏する。
建物の概要図(実施例1) 建物の詳細図(実施例1) 温度グラフ(実施例1) 冬季の空気流路の説明図(実施例1) 夏季の空気流路の説明図(実施例1) 温度グラフ(実施例1) 温度グラフ(実施例1) ブロック図(実施例1) 運転フロー図(実施例1) 複数区画の縦空気層の説明図(実施例2)
住宅の外周に空気層を設け、日射熱エネルギーを蓄えた空気層又は外気よりも低い温度の空気層を選択して、住宅内に空気を導入し、室内から排気する空気と熱交換させ、温度が安定した床下の空気と混和させて、生活に適した室内温度の空気を1階床から吹き出させる住宅とした。
実施例1では、図1から図9を参照して、住宅1を説明する。図1(A)図は、図1(B)図のα−α位置の断面により、住宅1の空気流路の説明図を示し、図1(B)図は住宅1の配置図を示している。図2(A)図は図1(A)図のA部分の詳細を示し、図2(B)図は図1(A)図における1階外壁の空気孔を示し、図2(C)図は図1(A)図におけるC部分の詳細を示している。
図3(A)図は外気と屋根面空気層の温度グラフを示し、図3(B)図は外気と南面の壁面空気層(以下、南壁面空気層という。)と、北寄りの東面の壁面空気層(以下、北壁面空気層という。)の温度変化を示している。いずれの図も、新築した住宅1において、2021年4月9日から4月11日までの晴天続きの3日間、10分間隔で温度を計測した値を示した温度グラフである。
図4(A)図は冬季日中の空気流路を示し、図4(B)図は冬季夜間の空気流路を示している。図5(A)図は夏季日中の空気経路を示し、図5(B)図は夏季夜間の空気流路を示している。図6から図7は3日間の連続計測による温度グラフを示し、図8はブロック図を示し、図9は運転フロー図を示している。
住宅1の敷地は、北側の道路200に接し、北面が僅かに西に傾いた矩形形状の敷地300に、東西の隣地400,400と約50cmの距離をあけて建設されている。住宅1の南側部分は一部にロフトを有し、広い吹き抜けを有する2階建てとされ、北側部分は1階建てとされ、北側部分と南側部分とが一体の居室空間をなしている。屋根形状は、南側部分も北側部分も切妻形状の屋根とされ、屋根頂部の棟部10に沿って排気用隙間11が設けられている。北側の1階建て部分の屋根を破線(図1(A)図参照)で示している。
住宅1の外壁は、外部壁が湿式煉瓦組積造壁20とされ、内部壁が木造枠組壁30とされた二重壁とされている。住宅1の床下の土間は、全面が鉄筋コンクリート版50とされ、外壁の位置には壁の基礎が連続して立ち上げられる。外壁の下部の基礎51は、外部側に張り出され、張り出された部分が煉瓦壁の基礎とされる。外壁の下部の基礎の内部側には、厚さ65mmの発泡樹脂製の断熱材52が添着され、建物外と床下空間との熱貫流を防いでいる。
外部壁をなす煉瓦21,21,・・は、75mm×70mm×230mmの大きさとされ、厚さが70mmの煉瓦組積造壁をなし、縦・横の目地は、下から4段の縦目地を除いてモルタルが詰められ、一体とされた湿式煉瓦組積造壁20の外部壁とされる。外部壁の全周囲の下から4段目の空目地22,22,・・が、壁面空気層の通気孔とされている。
内部壁は、ツーバイフォーと称されている木造枠組壁30からなり、壁内に厚さ80mmの発泡樹脂が断熱材31(図2(C)図参照)として吹き付けられている。内部壁の外面には遮熱透湿性を有する防水シート32が添着されている。防水シート32の外面と湿式煉瓦組積造壁20の内面との隙間が壁面空気層40とされる。壁面空気層40は厚さが30mmとされ、その上部が軒裏60まで貫通され、軒裏で屋根面空気層61と一体とされている。
1階床70には、1階床下から1階室内に空気がゆるやかに流入されるルーバー71が、床周囲に沿って分散配設されている。1階床面から床下コンクリート版の天面までの高さは約500mmとされ、この高さの床下空間が床下空気層72とされる。
屋根は、仕上げ材が平板スレート葺き屋根とされている。屋根下地は、下方から厚さ12mmの合板62、高さ15mmの通気区画用角材63、アルミシート材64、高さ15mmの通気区画用角材63、厚さ12mmの合板62、防水シート材65からなり、仕上げ材の平板スレート66が敷設されて屋根をなしている。アルミシート材64を挟み、重ねられた通気用角材がなす2枚の合板の間の30mmの空間が屋根面空気層61とされている。アルミシート材を挟んだ上層通気層67と下層通気層68は、屋根下部と屋根上部で一体とされている。
アルミシート材64は、夏季に高温となった平板スレート66から室内への輻射熱を反射する機能を有する。夏季に高温となった屋根面空気層内の空気は、上層空気層67と下層空気層68とに2分されたまま、屋根に沿って上昇し、屋根頂部の棟部10の空間で一体となり、棟部に沿った排気用隙間11から排出される。
ここで図1を参照して、空気流路を説明する。2階のロフトに設けられた設備スペースには、全熱交換器80が設置される。全熱交換器80の上流側には、前記上層通気層67からつながるダクトと、南壁面空気層81の上部の開口部からつながるダクトと、北壁面空気層82の上部の開口部からつながる外気を導入させるダクトと、1階居室の天井近くからの排気を排出させる内気排気ダクト83とが配設される。いずれのダクトの直径も約150mmとされ、電動ダンパー84,84,84を介して全熱交換器80に接続される。
電動ダンパーの開閉駆動により、上流側のいずれかの空気層からのダクトが選択され外気の空気流路とされ、外気が全熱交換器80に流入されると共に、内気排気ダクト83からの室内空気が全熱交換器80に流入される。全熱交換器80において、室内温度とされている排気と選択された空気流路からの外気とが、熱伝導率の高い部材を介して熱交換されて、外気が室内温度に近い温度とされる。
全熱交換器80の下流側には、排気を屋外に排出させるように軒裏につながる排気ダクト85と、熱交換された外気を床下空気層72まで案内するダクトとが接続される。床下空気層72までダクトを通して案内された外気は、一年中温度変化が小さい恒温とされている床下空気と混和されて、1階床面に形成されたルーバー71(図2(C)図参照)からゆるやかに1階室内に吹き出される。
1階室内においては、冷暖房手段86をなすヒートポンプ空調機を使って、暖房が必要な場合には温かい空気が供給がされ、冷房が必要な場合には冷やした空気が供給され、室内温度が、冬季は18℃から22℃、夏季は25℃から28℃の範囲の温度とされればよい。
建設した住宅1において、前記の春季の3日間に、10分間隔で計測した温度値による温度グラフを、図3及び図6、図7に示している。図3(A)図は外気温度と屋根面空気層の温度変化を示し、図3(B)図は外気と南面の壁面空気層(以下、南壁面空気層という。)と北寄りの東面の壁面空気層(以下、北壁面空気層という。)の温度変化を示している。
外気を室内に導入するダクトと外気を室外に排出するダクトの配置を図1(B)図において黒塗三角印で示している。なお、外気の温度を計測した位置(白抜三角印)、南壁面空気層、北壁面空気層の中の温度計測位置は、いずれも約3.0mの高さで計測した。屋根面空気層は、上層通気層67とダクトとの接続位置(図1(B)図黒塗丸印)、1階室内温度は1階の床面から1mの高さ、床下通気層72の温度はルーバー71の下面位置で計測した。
図3(A)図を参照して、屋根面空気層の温度101と外気温度100の温度推移の傾向を説明する。屋根面空気層の温度101は、外気温100に対して略同時に上昇又は低下し、最高温度は15℃から20℃高く、最低温度は約2℃低くなる。10時頃から22時頃までは、屋根面空気層の温度101の方が外気温100よりも高く、冬季日射を受けて屋根の温度が上がる場合には、屋根面空気層からの空気導入が適している。
一方、図3(A)図には、屋根面空気層の空気の温度が、22時頃から24時頃に外気温より低い温度になりはじめ、6時頃までは屋根面空気層の方が外気よりも約2℃の低く推移し(図3(A)図矢印参照)、9時から10時頃に外気温と略同じ温度になっていることが示されている。今回の春季の温度計測によっても、22時頃から10時頃までの間(図3(A)図太線温度範囲)は、地表面と同様に、屋根面においても放射冷却現象が発生していることが確認された。
実施例1の住宅1においては、今回の温度測定が春季の温度測定であることから、夏季の22時から6時までの時間帯(以下、「夏季夜間」(図3(A)図矢印Aの時間帯)を所定の時間帯とし、この放射冷却現象により低下した屋根面空気層の空気を外気として導入させている。なお、夏季夜間と区別するために、6時から22時までを「夏季日中」(図3(B)図矢印Bの時間帯)と称している。
一方、日中の屋根面空気層の温度101は、外気よりも15℃以上高くなる傾向があり、特に夏季には屋根面が非常に高温となることから、屋根面空気層の空気は夏季夜間と冬季日中に利用するだけとし、他の期間には屋根面空気層の空気は、自然換気により屋外に排気するだけとした。
次に、図3(B)図を参照して、春季における、外気100と南壁面空気層の温度91と北壁面空気層の温度92の温度変化を説明する。北壁面空気層は南壁面空気層と比較して、最高温度は約3℃低く、最低温度は約2℃高く、約2時間から3時間遅れて小さな温度幅で温度上昇し、一日の温度変化が緩やかであり、10時頃から22時頃までの日中においては、概ね南壁面空気層よりも低く、6時頃から10時頃の時間帯の温度も安定していた。また、外気温と比較しても、最高温度が外気温より全般に低く、約4時間遅れてゆるやかに温度変化したことから、北壁面空気層は夏季日中(図3(B)図矢印Bの時間帯)の外気導入先として適しているとした。
一方、南壁面空気層81の温度は、外気温の上昇とともに温度上昇し、温度変化は外気100よりも約2時間遅れる傾向があり、煉瓦壁の蓄熱の効果が認められる。南壁面空気層の温度は、外気温と比較して、最高温度は約1℃高く、最低温度も約2℃高い。また、北壁面空気層と比較すると、最高温度が約3℃高く、最低温度が約2℃低かった。しかし、南壁面空気層は、人の主な活動時間帯である9時頃から22時頃までは北壁面空気層と比較して温度が高いため、南壁面空気層が、冬季の夜間における外気導入先として適しているとした。
日照と外気温に支配される南壁面空気層81の温度、北壁面空気層82の温度、屋根面空気層の温度101と外気温100の推移により、夏季日中、夏季夜間、冬季日中、冬季夜間に適しているとして選定した空気導入元からの空気流路を図4、図5を参照して説明する。構成については各図に、図1と同一の符合を付している。図4(A)図は冬季日中の空気流路を示し、図4(B)図は冬季夜間の空気流路を示し、図5(A)図は夏季日中の空気流路を示し、図5(B)図は夏季夜間の空気流路を示している。図中、白抜き矢印は、室内空気の流れ方向を示し、塗潰し矢印は、室内に導入される空気の流れを示している。
冬季日中には、主に屋根面空気層61が集熱した日射エネルギーを利用し、冬季夜間には南壁面空気層81が集熱した日射エネルギーを利用するように、空気流路を構成している。ただし、屋根面に積雪されることもあり、時間帯だけでは日中と夜間を区分することは適切ではない。ここでは理解を容易にするため、屋根面空気層101の温度が20℃以上の場合を「冬季日中」(図6(A)図太線範囲参照)と称し、屋根面空気層101の温度が20℃未満の場合を「冬季夜間」と称している。また、外気温の高い季節の6時から22時までを夏季日中(図3(B)図矢印Bの時間帯)と称し、22時から6時までを夏季夜間(図3(A)図矢印Aの時間帯)と称している。
冬季日中には、全熱交換器80(図1(A)図参照)の上流の外気導入ダクトのうち、屋根面空気層の上層通気層67(図2(A)参照)からつながるダクトからのみ空気が全熱交換器80に流入されるように、北壁面空気層82と南壁面空気層81からのダンパーを閉じ、上層空気層67からのダクトのダンパーを開放し、日射により集熱された集熱系空気層をなす屋根面空気層61の日射熱エネルギーを利用する。冬季夜間には、前記上流のダクトのうち、南壁面空気層81からつながるダクトからのみ空気が全熱交換器80に流入されるように、集熱系空気層をなす南壁面空気層81からのダクトのダンパーのみを開放し、日射により集熱された南壁面空気層81の日射熱エネルギーを利用する。なお、日射熱を集めて利用する空気層を集熱系空気層と、日射熱を利用しない空気層を非集熱系空気層と称している。
夏季日中には、前記上流の外気導入ダクトのうち、北壁面空気層82からつながるダクトからのみ空気が全熱交換器80に流入されるように、北壁面空気層82からのダクトのダンパーのみを開放し、日射熱エネルギーが集熱されていない、非集熱系空気層をなす北壁面空気層82の空気を利用する。夏季夜間には、前記上流のダクトのうち、冬季日中と同様にダンパーを開閉させ、非集熱系空気層をなす屋根面空気層61における放射冷却作用により外気温よりも低い温度となった空気を利用する。
全熱交換器80の下流のダクト及び室内空気を排気させるダクトについては、季節を問わず、一定の方向の空気流とされる。全熱交換器80から、恒温空気層とされている床下空気層にダクトがつながり、床下に吹き出された空気は、1階床のルーバー71から1階室内にゆるやかに流入され、天井近くに溜まった室内空気が内気排気ダクト83を通して、全熱交換器80に流入され、導入された外気と熱交換がされて軒裏60につながるダクトから屋外に排気される。
ここで、図6(A)図を参照して、温度計測時の屋根面空気層61と床下空気層と1階室内の温度グラフを示し、冬季日中の1階室内の温度推移を説明する。温度計測をした3日間を通して、床下の温度は14℃から17℃の温度で安定し、1階室内の温度は床下よりやや高く15℃から17℃で安定し、室内温度は1階床下よりも狭い温度幅の2℃で安定していた。
冬季日中には、この室内温度に屋根面空気層の温度101の太線で示した範囲の空気流が加わり、室内温度を上昇させる。また、全熱交換器80による室内からの排気の熱を回収して外気の温度を高くすることから、暖房機の空調負荷が小さくなり、暖房に要する資源が節約できる。
図6(B)図は、温度計測時の1階室内と床下空気層と南壁面空気層81と北壁面空気層82の温度グラフを示し、冬季夜間の1階室内の温度推移を説明する。温度計測をした3日間において、人が主に活動する時間帯のうちの夜間を含む10時から22時(図6(B)図矢印Aの時間帯)については、南壁面空気層81は、北壁面空気層82よりも高く、且つ外気より高い温度である(図3(B)図参照)ことから、冬季日中と同様に、暖房機の空調負荷が小さくなり、暖房に要する資源が節約できる。
図7(A)図は、温度計測時の1階室内と床下空気層と北壁面空気層82の温度グラフを示し、夏季日中の1階室内の温度推移を説明する。前記したように、北壁面空気層82は夏季日中の外気導入先として適しており、太線で示した時間帯(太線矢印B参照)の外気を室内に導入することから、夏季日中において空調負荷が小さく、冷房に要する資源が節約できる。
図7(B)図は、温度計測時の1階室内と床下空気層と屋根面空気層の温度101を示す温度グラフを示し、夏季夜間の1階室内の温度推移を説明する。前記したように、屋根面空気層は夏季夜間の外気導入先として適しており、太線で示した時間帯(太線矢印A参照)の外気よりも低い屋根面空気層の空気を室内に導入することから、夏季夜間において最も空調負荷が小さく、冷房に要する資源が節約できる。
図8は住宅1の空気流制御システム90のブロック図を示している。住宅1の空気流制御システム90は、制御手段91と温度検知手段92と時刻管理手段93とダンパー駆動手段94と全熱交換器80とを備えている。更に、冷暖房手段86を備えさせてもよい。制御手段91にダンパー駆動手段94を駆動させて空気流路を決定させている。温度検知手段92は、全熱交換器80に至る上流側のダクトの夫々の空気導入口の近傍とに設けられる。
住宅1は、建設後に他の構造物の日影の影響を受け、隣接している住宅の空調機の屋外機の影響を受け、住宅自体の増改築等により壁面空気層、屋根面空気層の温度環境が大きく変動することがある。そのため、外気導入元として、新築時の空気流路の決定、又は、建設後に空気流路が変更される可能性がある空気層の夫々に温度検知手段をなす温度センサーを備えさせている。温度センサーは非接触式の熱電対であればよいが、限定されない。温度センサーにより、棟部10の空間の温度を検知して、棟部空間の温度に応じて、冬季日中、冬季夜間の運転状態を切り替えるようにしてもよい。
また、時刻管理手段93は時刻に応じてダンパー制御手段の電源を管理するタイマーであればよく、夏季日中と夏季夜間の運転モードが切り替えられればよい。温度検知手段により検知させた温度に基づいて、夏季日中と夏季夜間の運転の切替タイミングを変えるようにしてもよい。
制御手段91により、全熱交換器80の上流側の外気を導入させるダクトのいずれを活かすかが選択できればよく、新築時又は増改築時等に、温度検知手段92が検知した各空気層の温度に応じて最適な外気を導入させる空気流路が選択されてダンパー駆動手段94が駆動され、空気流路が開通される。冷暖房手段86は、室内に設けられるヒートポンプ空調機であり、外気温の変化に応じて、室内温度を快適にするように空気流制御システム90の補助手段とされればよい。
図9は、住宅1の外気導入モードの決定フローを示している。外気導入モードは、夏日中モード、夏夜間モード、冬日中モード、冬夜間モードに分かれている。春季、秋季の中間期においては、利用者の所望に応じて選択されればよい。まず、人が暑さを感じるか否かで、夏モードで運転するか否かが決定される(S10)。Yesの場合には、夏モードで運転される。Noの場合には、冬モードで運転される。
夏モードが選択された場合には、住宅1においては、時刻管理手段93により6時から22時までか否かが自動判定され(S20)、Yesの場合には、夏日中モード110となるように、ダンパー駆動手段94によりダンパーが駆動され、北壁面空気層82から外気が流入される。Noの場合には、夏夜間モード120となるように、ダンパーが駆動され、屋根面空気層61から外気が導入される。
冬モードが選択された場合には、住宅1においては、温度センサーが検知した棟部10の温度が20℃以上か否かが自動判定され(S30)、Yesの場合には、冬日中モード130となるように、ダンパー駆動手段94によりダンパーが駆動され、屋根面空気層61から外気が流入され、Noの場合には、冬夜間モード140となるようにダンパーが駆動され、南壁面空気層81から外気が流入される。
実施例2では、一つの壁面空気層が垂直に複数の縦空気層150に区画された住宅2を、図10を参照して説明する。住宅2は住宅1とは、同一の平面形状とされているが、東面及び西面の壁面空気層が複数の縦空気層150に区画されている。日本の住宅の敷地は、道路に接道する幅を限定し、奥行きを長くした敷地とされることが多い。奥行きの長い敷地が隣り合っているため、隣接した建物の日影や隣地の屋外空調機の影響を受けやすい。
隣地からの影響は新築時に留まらず、将来において発生することもある。住宅2においては、隣地に面した壁空気層を複数に縦空気層150に区画し、夫々に温度検知手段151と、図では省略しているが外気導入用のダクトとを設けている。新築時に温度検知手段151をなす温度センサーにより計測した縦空気層150の温度に応じて外気の導入元を決定させるだけでなく、定期的な住宅のメンテナンス時に温度センサーにより空気層の温度を再検知させ、外気導入元の縦空気層を決定させる。
(その他)
今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の技術的範囲は、上記した説明に限られず特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1,2…住宅、200…北側の道路、300…敷地、400…隣地、
10…棟部、11…排気用隙間、
20…湿式煉瓦組積造壁、30…木造枠組壁、40…壁面空気層、
50…鉄筋コンクリート版、51…基礎、52…断熱材、
21…煉瓦、22…空目地、
31…断熱材、32…防水シート、60…軒裏、61…屋根面空気層、
70…1階床、71…ルーバー、72…床下空気層、
63…通気区画用角材、64…アルミシート材、62…合板、65…防水シート材、
66…平板スレート、67…上層通気層、68…下層通気層、72…床下空気層、
80…全熱交換器、81…南壁面空気層、82…北壁面空気層、83…内気排気ダクト、
84…電動ダンパー、85…排気ダクト、86…冷暖房手段、
100…外気温度、101…屋根面空気層の温度、
90…空気流制御システム、91…制御手段、92…温度検知手段、
93…時刻管理手段、94…ダンパー駆動手段、
150…縦空気層、151…温度検知手段

Claims (7)

  1. 外壁が外部壁と内部壁とからなる二重壁とされた住宅において、
    日射熱エネルギーを利用する集熱系空気層と、日射熱エネルギーを利用しない非集熱系空気層と、外気温に変動されない恒温系空気層と、空気流路を決定させる空気流制御システムとを有し、
    前記外部壁が、下方に内外を通気する通気孔を備えた湿式組積造壁とされ、
    前記内部壁の外面に沿って断熱層を有し、前記断熱層と前記外部壁との隙間が壁面空気層とされ、
    屋根内面に沿った所定の厚さの隙間が、屋根面空気層とされ、
    住宅外部とは空気流が閉鎖された1階床下と地表面との隙間が床下空気層とされ、
    前記空気流制御システムが、温度検知手段と時刻管理手段と制御手段とを備え、
    前記温度検知手段が、前記壁面空気層と前記屋根面空気層の夫々に配設され、
    前記制御手段により、前記温度検知手段が計測した温度又は前記時刻管理手段が管理している時刻の少なくともいずれかに応じて、前記集熱系空気層と前記非集熱系空気層とが、前記壁面空気層と前記屋根面空気層の中から選択され、前記空気流路が決定され、
    前記壁面空気層又は前記屋根面空気層のいずれかから導入された外気が、前記恒温系空気層をなす前記床下空気層の空気と混和されて、1階床から室内に吹き出される、
    ことを特徴とする住宅。
  2. 前記空気流制御システムが、全熱交換器を備え、
    前記壁面空気層と前記屋根面空気層とが、前記全熱交換器を介して、前記床下空気層と連通された空気流路をなし、
    前記全熱交換器が、前記外気と、屋外に排気する室内空気とを熱交換させる、
    ことを特徴とする請求項1に記載の住宅。
  3. 暖房が必要な場合には、
    前記制御手段により、前記外気の導入元として前記集熱系空気層が選択され、
    前記集熱系空気層で加熱された外気が、前記全熱交換器に導入されるように空気流路が決定される、
    ことを特徴とする請求項2に記載の住宅。
  4. 前記制御手段により、
    前記屋根面空気層の温度が所定の温度以上の場合には、前記屋根面空気層が前記集熱系空気層として選択され、前記屋根面空気層の温度が所定の温度未満の場合には、前記温度検知手段が計測した温度が高い壁面空気層が前記集熱系空気層として選択される、
    ことを特徴とする請求項3に記載の住宅。
  5. 冷房が必要な場合には、
    前記制御手段により、前記外気の導入元として、
    前記時刻管理手段により管理されている所定の時間は、前記温度検知手段により計測された温度が低い壁面空気層が、前記非集熱系空気層として選択され、
    前記非集熱系空気層からの外気が、前記全熱交換器に導入されるように空気流路が決定される、
    ことを特徴とする請求項2に記載の住宅。
  6. 前記制御手段により、
    前記所定の時間以外は、前記非集熱系空気層として前記屋根面空気層が選択され、
    前記屋根面空気層において放射冷却作用により冷却された外気が、前記全熱交換器に導入されるように空気流路が決定される、
    ことを特徴とする請求項5に記載の住宅。
  7. 前記壁面空気層が、垂直に複数の縦空気層に区画され、縦空気層毎に前記温度検知手段が備えられ、
    前記温度検知手段が検知した温度に応じて、前記集熱系空気層と前記非集熱系空気層とが、複数の縦空気層の中から選択され、前記空気流路が決定される、
    ことを特徴とする請求項1に記載の住宅。
JP2021097681A 2021-06-11 2021-06-11 住宅 Active JP6914495B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021097681A JP6914495B1 (ja) 2021-06-11 2021-06-11 住宅

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021097681A JP6914495B1 (ja) 2021-06-11 2021-06-11 住宅

Publications (2)

Publication Number Publication Date
JP6914495B1 true JP6914495B1 (ja) 2021-08-04
JP2022189216A JP2022189216A (ja) 2022-12-22

Family

ID=77057500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021097681A Active JP6914495B1 (ja) 2021-06-11 2021-06-11 住宅

Country Status (1)

Country Link
JP (1) JP6914495B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118087931A (zh) * 2024-04-23 2024-05-28 湖南城建职业技术学院 一种绿色节能型钢结构建筑

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081690A (ja) * 2000-09-08 2002-03-22 Japan Science & Technology Corp 空気循環式空調システム
JP2002294894A (ja) * 2001-03-30 2002-10-09 Dow Kakoh Kk 外張り断熱構造及びその施工方法
JP2004027819A (ja) * 2002-03-06 2004-01-29 Japan Science & Technology Corp 建築物の壁体構造
JP2004060901A (ja) * 2002-07-24 2004-02-26 Takasago Thermal Eng Co Ltd 建屋内の結露防止装置
JP2007070893A (ja) * 2005-09-07 2007-03-22 Geo Power System:Kk スチールハウス
JP2013163924A (ja) * 2012-02-10 2013-08-22 Hiroaki Ishihara 建物
JP6850050B1 (ja) * 2020-02-26 2021-03-31 株式会社 ホームリサーチ 対流による全館空調システム
JP6875671B1 (ja) * 2020-12-20 2021-05-26 清政 上郡 住宅

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081690A (ja) * 2000-09-08 2002-03-22 Japan Science & Technology Corp 空気循環式空調システム
JP2002294894A (ja) * 2001-03-30 2002-10-09 Dow Kakoh Kk 外張り断熱構造及びその施工方法
JP2004027819A (ja) * 2002-03-06 2004-01-29 Japan Science & Technology Corp 建築物の壁体構造
JP2004060901A (ja) * 2002-07-24 2004-02-26 Takasago Thermal Eng Co Ltd 建屋内の結露防止装置
JP2007070893A (ja) * 2005-09-07 2007-03-22 Geo Power System:Kk スチールハウス
JP2013163924A (ja) * 2012-02-10 2013-08-22 Hiroaki Ishihara 建物
JP6850050B1 (ja) * 2020-02-26 2021-03-31 株式会社 ホームリサーチ 対流による全館空調システム
JP6875671B1 (ja) * 2020-12-20 2021-05-26 清政 上郡 住宅

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118087931A (zh) * 2024-04-23 2024-05-28 湖南城建职业技术学院 一种绿色节能型钢结构建筑

Also Published As

Publication number Publication date
JP2022189216A (ja) 2022-12-22

Similar Documents

Publication Publication Date Title
JP4851147B2 (ja) 建物空調システム
JP2009235677A (ja) 温熱環境改善システム
JP5945127B2 (ja) 建物
JP6914495B1 (ja) 住宅
JP6994284B1 (ja) 建造物
JP2021134653A (ja) 対流による全館空調システム
JP4607739B2 (ja) 建物
JP6009111B1 (ja) 空調システム、空調方法、及びプログラム
Sharaf et al. A comparative study of the use of energy conservation techniques in office building: Passive and solar energy applications: The case of Jordan
Jones Thermal environment
WO2012105134A1 (ja) 地中熱と太陽熱を利用した空調システム
JP2007092323A (ja) 通気外皮を有する屋根構造および通気外皮を有する屋根構造を備えた建築物
JPH0443172B2 (ja)
JPH085237Y2 (ja) 建築物の棟換気装置
JP2007285029A (ja) 屋根構造
JP2007139236A (ja) 床下空調装置および方法
JP5084407B2 (ja) 建物空調システム
JP7432954B2 (ja) 建造物
JP4482914B2 (ja) 木造建築物の常時開放通気と通気及び通気制御の専用ゾーン別通気構造から構成される断熱通気構造体の施工方法及び同構造体のハイブリッド通気及び通気制御の方法。
JPS63201440A (ja) 家屋
US20090229199A1 (en) Building structure with having spaces having improved temperature stability
RU157323U1 (ru) Малоэтажное здание
JP7029840B1 (ja) 建造物の外壁構造
Aggerholm Control of hybrid ventilation systems
JP5653413B2 (ja) 省エネルギー建物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210611

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210706

R150 Certificate of patent or registration of utility model

Ref document number: 6914495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150