JP6912938B2 - Separation device and separation method - Google Patents

Separation device and separation method Download PDF

Info

Publication number
JP6912938B2
JP6912938B2 JP2017105561A JP2017105561A JP6912938B2 JP 6912938 B2 JP6912938 B2 JP 6912938B2 JP 2017105561 A JP2017105561 A JP 2017105561A JP 2017105561 A JP2017105561 A JP 2017105561A JP 6912938 B2 JP6912938 B2 JP 6912938B2
Authority
JP
Japan
Prior art keywords
adhesive sheet
holding
chip
target value
holding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017105561A
Other languages
Japanese (ja)
Other versions
JP2018200973A (en
Inventor
岡本 直也
直也 岡本
忠知 山田
忠知 山田
真也 田久
真也 田久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP2017105561A priority Critical patent/JP6912938B2/en
Priority to KR1020180054193A priority patent/KR102434544B1/en
Priority to TW107116556A priority patent/TWI763846B/en
Priority to CN201810533974.4A priority patent/CN108933085B/en
Publication of JP2018200973A publication Critical patent/JP2018200973A/en
Application granted granted Critical
Publication of JP6912938B2 publication Critical patent/JP6912938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dicing (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、離間装置および離間方法に関する。 The present invention relates to a separation device and a separation method.

従来、半導体製造工程において、半導体ウエハ(以下、単に「ウエハ」という場合がある)を所定の形状、所定のサイズに切断して複数の半導体チップ(以下、単に「チップ」という場合がある)に個片化し、個片化した各チップの相互間隔を広げてからリードフレームや基板等の被搭載物上に搭載することが行われている。各チップは、計算で導き出される位置(以下、「理論上の位置」という場合がある)を基準として搬送装置やピックアップ装置等の搬送手段によって搬送され、被搭載物上に搭載される。 Conventionally, in a semiconductor manufacturing process, a semiconductor wafer (hereinafter, may be simply referred to as a “wafer”) is cut into a predetermined shape and a predetermined size into a plurality of semiconductor chips (hereinafter, may be simply referred to as a “chip”). It is individualized, and after widening the mutual spacing between the individualized chips, it is mounted on an object to be mounted such as a lead frame or a substrate. Each chip is transported by a transport means such as a transport device or a pickup device based on a position derived by calculation (hereinafter, may be referred to as a "theoretical position"), and is mounted on an object to be mounted.

また、近年、電子機器の小型化、軽量化、及び高機能化が進んでおり、電子機器に搭載される半導体装置にも、小型化、薄型化、及び高密度化が求められている。このため、チップは、そのサイズに近いパッケージに実装されることがある。このようなパッケージは、チップスケールパッケージ(Chip Scale Package;CSP)と称されることもある。CSPを製造するプロセスの一つとして、ウエハレベルパッケージ(Wafer Level Package;WLP)が挙げられる。WLPにおいては、ダイシングによりパッケージを個片化する前に、チップ回路形成面に外部電極などを形成し、最終的にはチップを含むパッケージウエハをダイシングして、個片化する。WLPとしては、ファンイン(Fan−In)型とファンアウト(Fan−Out)型が挙げられる。ファンアウト型のWLP(以下、FO−WLPと略記する場合がある。)においては、チップを、チップサイズよりも大きな領域となるように封止部材で覆ってチップ封止体を形成し、再配線層や外部電極を、チップの回路面だけでなく封止部材の表面領域においても形成する。この場合、個片化した各チップを封止部材で囲う前に、エキスパンド用のウエハマウントテープに貼り替え、ウエハマウントテープを展延して複数のチップの間の距離を拡大させる。 Further, in recent years, electronic devices have been made smaller, lighter, and more sophisticated, and semiconductor devices mounted on electronic devices are also required to be smaller, thinner, and higher in density. For this reason, the chip may be mounted in a package close to its size. Such a package is sometimes referred to as a chip scale package (CSP). One of the processes for manufacturing CSP is a wafer level package (WLP). In the WLP, an external electrode or the like is formed on the chip circuit forming surface before the package is diced by dicing, and finally the package wafer containing the chip is diced to be sliced. Examples of the WLP include a fan-in type and a fan-out type. In a fan-out type WLP (hereinafter, may be abbreviated as FO-WLP), the chip is covered with a sealing member so as to have a region larger than the chip size to form a chip encapsulant, and the chip encapsulant is formed again. The wiring layer and the external electrode are formed not only on the circuit surface of the chip but also on the surface region of the sealing member. In this case, before each of the individualized chips is surrounded by the sealing member, the wafer mount tape is replaced with an expanding wafer mount tape, and the wafer mount tape is spread to increase the distance between the plurality of chips.

チップ(片状体)の相互間隔を広げる離間方法としては、ウエハ(板状部材)が貼付された保護テープやウエハマウントテープ等の接着シートを複数の保持手段で保持し、当該保持手段を互いに離間する方向に移動させることが知られている(例えば、特許文献1参照)。このようなチップの相互間隔を広げる方法では、例えば+X軸方向、−X軸方向、+Y軸方向、−Y軸方向の4方向の張力を接着シートに付与する。これにより、接着シートに上記4方向に加え、例えば、それらの合成方向すなわち、+X軸方向と+Y軸方向との合成方向、+X軸方向と−Y軸方向との合成方向、−X軸方向と+Y軸方向との合成方向、−X軸方向と−Y軸方向との合成方向にも張力が付与されることを防止し、各片状体の位置が理論上の位置からずれてしまうことを極力防止することができる。 As a separation method for widening the mutual spacing between the chips (pieces), an adhesive sheet such as a protective tape or a wafer mount tape to which a wafer (plate-shaped member) is attached is held by a plurality of holding means, and the holding means are held by each other. It is known to move in the direction of separation (see, for example, Patent Document 1). In such a method of widening the mutual distance between the chips, for example, tensions in four directions of + X-axis direction, −X-axis direction, + Y-axis direction, and −Y-axis direction are applied to the adhesive sheet. As a result, in addition to the above four directions on the adhesive sheet, for example, the combined direction thereof, that is, the combined direction of the + X-axis direction and the + Y-axis direction, the combined direction of the + X-axis direction and the -Y-axis direction, and the -X-axis direction. It prevents tension from being applied to the combined direction with the + Y-axis direction and the combined direction with the -X-axis direction and the -Y-axis direction, and prevents the position of each piece from shifting from the theoretical position. It can be prevented as much as possible.

特開2016−111188号公報Japanese Unexamined Patent Publication No. 2016-11188

各片状体を理論上の位置に配置するために必要な接着シートの伸長量は、片状体のサイズや接着シートの種類によって異なるため、片状体のサイズや接着シートを変更する度に、実際に接着シートを伸長させながら各片状体の位置を確認して伸長量を設定する必要がある。この設定には時間が掛かり、設定に伴って単位時間あたりの処理能力が低下してしまうため、簡易な方法で接着シートの伸長量を設定でき、単位時間あたりの処理能力が低下することを防止することが望まれている。 The amount of elongation of the adhesive sheet required to place each piece in the theoretical position depends on the size of the piece and the type of adhesive sheet, so each time the size of the piece or the adhesive sheet is changed. , It is necessary to confirm the position of each piece while actually stretching the adhesive sheet and set the stretch amount. Since this setting takes time and the processing capacity per unit time decreases with the setting, the elongation amount of the adhesive sheet can be set by a simple method and the processing capacity per unit time does not decrease. It is desired to do.

本発明の目的は、簡易な方法で接着シートの伸長量を設定でき、単位時間あたりの処理能力が低下することを防止できる離間装置および離間方法を提供することにある。 An object of the present invention is to provide a separating device and a separating method capable of setting an elongation amount of an adhesive sheet by a simple method and preventing a decrease in processing capacity per unit time.

本発明の離間装置は、接着シート上の板状部材に4方向の張力を付与して当該板状部材から形成される複数の片状体の相互間隔を広げる離間装置であって、前記接着シートをそれぞれ複数の保持部材で保持する複数の保持手段と、前記保持部材を前記4方向のうち前記保持手段ごとに異なる1方向に移動させるとともに、当該保持部材を前記1方向に交差する交差方向に移動させて前記接着シートを伸長させる伸長手段と、前記伸長手段による前記保持部材の移動を制御する制御手段とを備え、前記制御手段は、前記片状体のサイズと前記片状体の間隔の目標値とに応じて前記接着シートの伸長量の目標値を算出し、前記伸長手段に前記接着シートの伸長量が当該伸長量の目標値となるように前記保持部材を移動させることを特徴とする。 The separating device of the present invention is a separating device that applies tension to a plate-shaped member on an adhesive sheet in four directions to widen the mutual distance between a plurality of pieces formed from the plate-shaped member, and the adhesive sheet. The holding means is moved in one of the four directions, which is different for each holding means, and the holding member is moved in the intersecting direction intersecting the one direction. An extending means for moving and extending the adhesive sheet and a control means for controlling the movement of the holding member by the extending means are provided, and the control means determines the size of the piece and the distance between the pieces. The feature is that the target value of the elongation amount of the adhesive sheet is calculated according to the target value, and the holding member is moved to the extension means so that the extension amount of the adhesive sheet becomes the target value of the extension amount. do.

本発明の離間装置において、前記制御手段は、前記片状体のサイズと前記片状体の間隔の目標値とを下記式(1)に適用して前記接着シートの伸長量の目標値を算出することが好ましい。
[式1]
CD=(K1×CS+K2)×EA ・・・(1)
CD:片状体の間隔(μm)
CS:片状体のサイズ(mm)
EA:接着シートの伸長量(mm)
K1、K2:定数
In the separation device of the present invention, the control means applies the size of the piece and the target value of the distance between the pieces to the following formula (1) to calculate the target value of the elongation amount of the adhesive sheet. It is preferable to do so.
[Equation 1]
CD = (K1 x CS + K2) x EA ... (1)
CD: Fragment spacing (μm)
CS: Flake size (mm)
EA: Elongation amount of adhesive sheet (mm)
K1, K2: constant

本発明の離間装置は、前記片状体の相互間隔を測定する測定手段を有し、前記制御手段は、前記測定手段の測定結果を基に、前記伸長手段に前記保持部材を移動させることが好ましい。 The separating device of the present invention has a measuring means for measuring the mutual spacing between the pieces, and the controlling means can move the holding member to the extending means based on the measurement result of the measuring means. preferable.

本発明の離間方法は、接着シート上の板状部材に4方向の張力を付与して当該板状部材から形成される複数の片状体の相互間隔を広げる離間方法であって、それぞれ複数の保持部材を備える複数の保持手段で前記接着シートを保持する保持工程と、前記保持部材を前記4方向のうち前記保持手段ごとに異なる1方向に移動させるとともに、当該保持部材を前記1方向に交差する交差方向に移動させて前記接着シートを伸長させる伸長工程とを備え、前記伸長工程では、前記片状体のサイズと前記片状体の間隔の目標値とに応じて前記接着シートの伸長量の目標値を算出し、前記接着シートの伸長量が当該伸長量の目標値となるように前記保持部材を移動させることを特徴とする。 The separation method of the present invention is a separation method in which tension is applied to a plate-shaped member on an adhesive sheet in four directions to widen the mutual distance between a plurality of pieces formed from the plate-shaped member, and a plurality of separation methods are provided. A holding step of holding the adhesive sheet by a plurality of holding means including a holding member, moving the holding member in one of the four directions different for each holding means, and intersecting the holding member in the one direction. The adhesive sheet is stretched by moving in the crossing direction to stretch the adhesive sheet. The holding member is moved so that the stretched amount of the adhesive sheet becomes the target value of the stretched amount.

以上のような本発明によれば、片状体のサイズと片状体の間隔の目標値とに応じて接着シートの伸長量の目標値を算出し、接着シートの伸長量が当該伸長量の目標値となるように保持部材を移動させるため、簡易な方法で接着シートの伸長量を設定でき、単位時間あたりの処理能力が低下することを防止することができる。 According to the present invention as described above, the target value of the elongation amount of the adhesive sheet is calculated according to the size of the piece and the target value of the interval between the pieces, and the elongation amount of the adhesive sheet is the extension amount. Since the holding member is moved so as to reach the target value, the elongation amount of the adhesive sheet can be set by a simple method, and it is possible to prevent the processing capacity per unit time from being lowered.

また、片状体のサイズと片状体の間隔の目標値とを式(1)に適用して接着シートの伸長量の目標値を算出するようにすれば、さらに簡易な方法で接着シートの伸長量を設定でき、単位時間あたりの処理能力が低下することをより効果的に防止することができる。
また、片状体の相互間隔の測定結果を基に、保持部材を目標伸長量に合わせて移動させれば、接着シートに板状部材が仮着された一体物毎に各片状体の位置が理論上の位置からずれてしまうことを極力防止することができる。
Further, if the target value of the elongation amount of the adhesive sheet is calculated by applying the size of the flake body and the target value of the interval of the flake body to the equation (1), the adhesive sheet can be obtained by a simpler method. The amount of elongation can be set, and it is possible to more effectively prevent the processing capacity per unit time from decreasing.
Further, if the holding member is moved according to the target elongation amount based on the measurement result of the mutual spacing of the pieces, the position of each piece is positioned for each integral body in which the plate-shaped member is temporarily attached to the adhesive sheet. Can be prevented as much as possible from deviating from the theoretical position.

本発明の第1実施形態に係る離間装置の側面図。The side view of the separation device which concerns on 1st Embodiment of this invention. 図1の離間装置の平面図。The plan view of the separation device of FIG. 図1の離間装置の動作説明図。The operation explanatory view of the separation device of FIG. 接着シートの伸長量とチップ間距離との関係を示すグラフ。The graph which shows the relationship between the elongation amount of an adhesive sheet and the distance between chips. チップサイズとチップ間距離との関係を示すグラフ。A graph showing the relationship between the chip size and the distance between chips. 複数のチップサイズとチップ間距離との関係との関係を示すグラフ。A graph showing the relationship between a plurality of chip sizes and the distance between chips. 図5を接着シートの伸長量とチップ間距離との関係で示したグラフ。FIG. 5 is a graph showing the relationship between the elongation amount of the adhesive sheet and the distance between chips. チップサイズと図7の線形回帰勾配との関係を示すグラフ。The graph which shows the relationship between the chip size and the linear regression gradient of FIG. 本発明の第2実施形態に係る離間装置の平面図。The plan view of the separation device which concerns on 2nd Embodiment of this invention. 図9の離間装置の動作説明図。FIG. 9 is an operation explanatory view of the separation device of FIG. 図9の離間装置の動作説明図。FIG. 9 is an operation explanatory view of the separation device of FIG. 本発明の第3実施形態に係る離間装置の動作説明図。The operation explanatory drawing of the separation device which concerns on 3rd Embodiment of this invention.

以下、本発明の各実施形態を図面に基づいて説明する。
なお、各実施形態において、X軸、Y軸、Z軸は、それぞれが直交する関係にあり、X軸およびY軸は、所定平面内の軸とし、Z軸は、前記所定平面に直交する軸とする。さらに、本実施形態では、Y軸と平行な図1中手前方向から観た場合を基準とし、方向を示した場合、「上」がZ軸の矢印方向で「下」がその逆方向、「左」がX軸の矢印方向で「右」がその逆方向、「前」がY軸の矢印方向であって図1中紙面に直交する手前方向で「後」がその逆方向とする。
また、第2実施形態以降において、第1実施形態で説明する構成部材と同じ構成部材および同様な機能を有する構成部材には、第1実施形態の構成部材と同じ符号を付し、それらの説明を省略または簡略化する。
Hereinafter, each embodiment of the present invention will be described with reference to the drawings.
In each embodiment, the X-axis, the Y-axis, and the Z-axis are orthogonal to each other, the X-axis and the Y-axis are axes in a predetermined plane, and the Z-axis is an axis orthogonal to the predetermined plane. And. Further, in the present embodiment, when viewed from the front direction in FIG. 1 parallel to the Y axis as a reference, when the direction is indicated, "up" is the direction of the arrow on the Z axis, "down" is the opposite direction, and ""Left" is the direction of the arrow on the X-axis, "right" is the opposite direction, "front" is the direction of the arrow on the Y-axis, and "rear" is the opposite direction.
Further, in the second and subsequent embodiments, the same constituent members as the constituent members described in the first embodiment and the constituent members having the same functions are designated by the same reference numerals as those of the first embodiment, and the description thereof will be described. Is omitted or simplified.

[第1実施形態]
図1、図2において、離間装置10は、接着シートAS上の板状部材としての四角形のウエハWFに+X軸方向、+Y軸方向、−X軸方向、−Y軸方向の4方向に張力を付与して当該ウエハWFから形成される複数の片状体としてのチップCPの相互間隔を広げる装置であって、接着シートASをそれぞれ5体の保持部材21で保持する4体の保持手段20と、保持部材21を前記4方向のうち保持手段20ごとに異なる1方向に移動させるとともに、当該保持部材21を前記1方向に交差する交差方向に移動させて接着シートASを伸長させる駆動機器である伸長手段としてのリニアモータ30A、30Bと、リニアモータ30A、30Bによる保持部材21の移動を制御する制御手段40と、チップCPの相互間隔を測定する光学センサやカメラ等の測定手段50とを備えている。なお、ウエハWFは、平面視で正方形状とされ、切断刃、加圧水、ドライエッチング等のウエハ切断手段によりチップCPに個片化されているか、レーザ光や薬液等のウエハ脆弱化手段によりチップCPに個片化可能とされ、接着シートASに仮着されて一体物WKとされている。また、接着シートASは、平面視で正方形状に形成されている。
[First Embodiment]
In FIGS. 1 and 2, the separating device 10 applies tension to the square wafer WF as a plate-shaped member on the adhesive sheet AS in four directions of + X-axis direction, + Y-axis direction, −X-axis direction, and −Y-axis direction. A device for widening the mutual spacing between the chip CPs as a plurality of pieces formed from the wafer WF by applying the adhesive sheet AS, and the four holding means 20 for holding the adhesive sheet AS by the five holding members 21 respectively. The holding member 21 is moved in one of the four directions different for each holding means 20, and the holding member 21 is moved in the intersecting direction intersecting the one direction to extend the adhesive sheet AS. The linear motors 30A and 30B as extension means, the control means 40 for controlling the movement of the holding member 21 by the linear motors 30A and 30B, and the measuring means 50 such as an optical sensor and a camera for measuring the mutual distance between the chip CPs are provided. ing. The wafer WF has a square shape in a plan view and is either separated into chip CP by wafer cutting means such as cutting blade, pressurized water, and dry etching, or chip CP by wafer weakening means such as laser beam or chemical solution. It can be separated into individual pieces, and is temporarily attached to the adhesive sheet AS to form an integral WK. Further, the adhesive sheet AS is formed in a square shape in a plan view.

保持手段20は、リニアモータ30Bの複数のスライダ31Bの各々に支持された保持部材21を備えている。
保持部材21は、スライダ31Bに支持された下支持部材22と、下支持部材22に支持された駆動機器としての回動モータ23と、回動モータ23の出力軸23A(貫通軸)に支持された上支持部材24とを備えている。
The holding means 20 includes a holding member 21 supported by each of the plurality of sliders 31B of the linear motor 30B.
The holding member 21 is supported by a lower support member 22 supported by the slider 31B, a rotary motor 23 as a drive device supported by the lower support member 22, and an output shaft 23A (through shaft) of the rotary motor 23. It also includes an upper support member 24.

保持手段20およびリニアモータ30Aは、中心点CTを中心としてそれぞれ前後左右に4体設けられている。
リニアモータ30Bは、リニアモータ30Aのスライダ31Aに支持されている。
以上のような構成により、リニアモータ30Aが保持手段20ごとに異なる方向に保持手段20を移動させるとともに、リニアモータ30Bが保持手段20の移動方向に交差する交差方向に保持部材21を移動させることで、接着シートASに張力を付与可能に設けられている。
Four holding means 20 and four linear motors 30A are provided in front, back, left and right with the center point CT as the center.
The linear motor 30B is supported by the slider 31A of the linear motor 30A.
With the above configuration, the linear motor 30A moves the holding means 20 in different directions for each holding means 20, and the linear motor 30B moves the holding member 21 in the intersecting direction intersecting the moving direction of the holding means 20. Therefore, tension can be applied to the adhesive sheet AS.

制御手段40は、パーソナルコンピュータやシーケンサ等で構成され、リニアモータ30A、30Bによる保持部材21の移動を制御するのみならず、離間装置10全体の動作を制御可能に構成されている。 The control means 40 is composed of a personal computer, a sequencer, or the like, and is configured not only to control the movement of the holding member 21 by the linear motors 30A and 30B, but also to control the operation of the entire separation device 10.

以上の離間装置10において、ウエハWFから形成される複数のチップCPの相互間隔を広げる手順を説明する。
先ず、各部材が初期位置で待機する図1中実線で示す離間装置10に対し、当該離間装置10の使用者(以下、単に「使用者」という)が操作パネルやパーソナルコンピュータ等の図示しない操作手段を介して、片状体のサイズとしてのチップサイズ、片状体の間隔としてのチップ間距離の目標値、および接着シートASによって決まる後述する定数K1、K2の値を入力するとともに、自動運転開始の信号を入力する。なお、チップサイズは、チップCPの一辺の長さである。また、チップ間距離は、個片化されて広がったウエハWF(相互間隔が広げられたチップCP群)における対向する2辺の所定の位置(以下、対向する2辺の所定の位置を「基準位置」という場合がある)の間隔である。
In the above separation device 10, the procedure for widening the mutual distance between the plurality of chip CPs formed from the wafer WF will be described.
First, with respect to the separation device 10 shown by the solid line in FIG. 1 in which each member stands by at the initial position, the user of the separation device 10 (hereinafter, simply referred to as “user”) operates an operation panel, a personal computer, or the like (not shown). Through the means, the chip size as the size of the flake, the target value of the distance between the chips as the distance between the flake, and the values of the constants K1 and K2 described later determined by the adhesive sheet AS are input, and the automatic operation is performed. Enter the start signal. The chip size is the length of one side of the chip CP. Further, the inter-chip distance is defined by "referenced" the predetermined positions of the two opposing sides (hereinafter, the predetermined positions of the two opposing sides) in the wafer WF (chip CP group in which the mutual spacing is widened) that has been separated and expanded. It is the interval of (sometimes called "position").

そして、使用者または、搬送ロボット、多関節ロボット、ベルトコンベア等の図示しない搬送手段が一体物WKを搬送し、当該一体物WKが各下支持部材22上に配置されるように載置する。このとき、測定手段50と、一体物WKを移動可能な図示しない位置決め手段とが共動し、ウエハWFと各保持部材21との位置決めを行う。その後、各保持手段20が回動モータ23を駆動し、図2に示すように、接着シートASを下支持部材22と上支持部材24とで挟み込む。 Then, a user or a transfer means (not shown) such as a transfer robot, an articulated robot, or a belt conveyor conveys the integrated WK, and the integrated WK is placed on each lower support member 22. At this time, the measuring means 50 and the positioning means (not shown) that can move the integral WK cooperate with each other to position the wafer WF and each holding member 21. After that, each holding means 20 drives the rotary motor 23, and as shown in FIG. 2, the adhesive sheet AS is sandwiched between the lower support member 22 and the upper support member 24.

次に、制御手段40がリニアモータ30A、30Bを駆動し、図3に示すように、保持手段20を+X軸方向、+Y軸方向、−X軸方向、−Y軸方向の4方向に移動させながら、保持手段20を移動させる方向に交差する交差方向に保持部材21を等間隔で移動させる。この際、制御手段40は、チップサイズCSとチップ間距離CDの目標値とを下記の式(1)に適用して接着シートASの伸長量EAの目標値を算出する。そして、制御手段40は、接着シートASの伸長量EAが式(1)で得られる目標値となり、かつ各保持手段20の保持部材21の間隔が等間隔となるように、リニアモータ30A、30Bを駆動する。これにより、接着シートASに+X軸方向、+Y軸方向、−X軸方向、−Y軸方向の4方向に張力が付与され、チップCPの相互間隔がチップ間距離CDの目標値に広がる。 Next, the control means 40 drives the linear motors 30A and 30B, and as shown in FIG. 3, the holding means 20 is moved in four directions of the + X-axis direction, the + Y-axis direction, the −X-axis direction, and the −Y-axis direction. However, the holding members 21 are moved at equal intervals in the intersecting directions that intersect in the direction in which the holding means 20 is moved. At this time, the control means 40 applies the chip size CS and the target value of the inter-chip distance CD to the following formula (1) to calculate the target value of the elongation amount EA of the adhesive sheet AS. Then, the control means 40 has linear motors 30A and 30B so that the extension amount EA of the adhesive sheet AS becomes the target value obtained by the equation (1) and the intervals between the holding members 21 of the holding means 20 are equal. To drive. As a result, tension is applied to the adhesive sheet AS in the four directions of the + X-axis direction, the + Y-axis direction, the −X-axis direction, and the −Y-axis direction, and the mutual distance between the chips CP is expanded to the target value of the inter-chip distance CD.

[式1]
CD=(K1×CS+K2)×EA ・・・(1)
CD:チップ間距離(μm)
CS:チップサイズ(mm)
EA:接着シートASの伸長量(mm)
K1、K2:定数
[Equation 1]
CD = (K1 x CS + K2) x EA ... (1)
CD: Distance between chips (μm)
CS: Chip size (mm)
EA: Elongation amount of adhesive sheet AS (mm)
K1, K2: constant

チップ間距離CDには、操作手段を介して入力された目標値が使用され、チップサイズCSには、操作手段を介して入力されたサイズ値が使用される。定数K1、K2は、接着シートASによって定まる値であり、操作手段を介して入力される。なお、式(1)の根拠については、後述する。 The target value input via the operating means is used for the inter-chip distance CD, and the size value input via the operating means is used for the chip size CS. The constants K1 and K2 are values determined by the adhesive sheet AS and are input via the operating means. The basis of equation (1) will be described later.

その後、搬送装置やピックアップ装置等の図示しない搬送手段が各チップCPを保持して搬送し、トレイ、リードフレームや基板等の被搭載物上に搭載する。そして、全てのチップCPの搬送が終了すると、制御手段40が各駆動機器を駆動し、各構成部材を初期位置に復帰させた後、チップCPが取り外された一体物WKを搬送手段が回収し、以降上記同様の動作が繰り返される。 After that, a transport means (not shown) such as a transport device or a pickup device holds and transports each chip CP, and mounts the chip CP on an object to be mounted such as a tray, a lead frame, or a substrate. Then, when the transfer of all the chip CPs is completed, the control means 40 drives each drive device, returns each component to the initial position, and then the transfer means collects the integrated WK from which the chip CP has been removed. After that, the same operation as above is repeated.

以上のように、離間装置10は、接着シートASの伸長量EAを式(1)から得られる値にすることで、チップ間距離CDをその目標値にすることができる。ここで、式(1)は、以下の根拠に基づいて定められている。
先ず、チップCPが正方形の場合の接着シートASの伸長量EAとチップ間距離CDとの関係について調べるために、各保持手段20それぞれを+X軸方向、+Y軸方向、−X軸方向、−Y軸方向の4方向に移動させながら、各保持手段20の保持部材21を等間隔に移動させたところ、図4に示す結果が得られた。なお、接着シートASには、表1に示すものを使用した。また、チップ間距離CDは、ウエハWFをX軸方向およびY軸方向に沿って5列ずつ分割して得られる25個のチップCPのうち、X軸方向およびY軸方向の各々の中央列に位置する9個のチップCPについて、互いに対向する辺の間隔を測定し、その平均値を使用した。
As described above, the separation device 10 can set the inter-chip distance CD to the target value by setting the elongation amount EA of the adhesive sheet AS to the value obtained from the equation (1). Here, the equation (1) is determined based on the following grounds.
First, in order to investigate the relationship between the elongation amount EA of the adhesive sheet AS and the inter-chip distance CD when the chip CP is square, each of the holding means 20 is set in the + X-axis direction, the + Y-axis direction, the -X-axis direction, and -Y. When the holding members 21 of each holding means 20 were moved at equal intervals while moving in four directions in the axial direction, the results shown in FIG. 4 were obtained. As the adhesive sheet AS, the one shown in Table 1 was used. Further, the inter-chip distance CD is provided in the central row of each of the X-axis direction and the Y-axis direction among the 25 chip CPs obtained by dividing the wafer WF into 5 rows each along the X-axis direction and the Y-axis direction. For the nine chip CPs located, the distance between the sides facing each other was measured, and the average value was used.

Figure 0006912938
Figure 0006912938

図4に示すように、接着シートASによって伸長量EAに対するチップ間距離CDの値が異なるものの、全ての接着シートASに対して、伸長量EAとチップ間距離CDとの間に線形の関係が成り立った。なお、チップCPは、3×3mmの正方形のサイズとした。
さらに、チップサイズCSを変えて調べたところ、図5に示すように、接着シートASの伸長量EAが何れの条件下でも、チップサイズCSとチップ間距離CDとの間に線形の関係が成り立った。なお、接着シートASには、表1のAのものを使用した。
As shown in FIG. 4, although the value of the inter-chip distance CD with respect to the elongation amount EA differs depending on the adhesive sheet AS, there is a linear relationship between the elongation amount EA and the inter-chip distance CD for all the adhesive sheet AS. It was established. The chip CP had a square size of 3 × 3 mm.
Further, when the chip size CS was changed and examined, as shown in FIG. 5, a linear relationship was established between the chip size CS and the inter-chip distance CD under any condition of the elongation amount EA of the adhesive sheet AS. rice field. As the adhesive sheet AS, the one of A in Table 1 was used.

次に、チップCPが長方形の場合のチップサイズCSとチップ間距離CDとの関係について調べるために、X軸方向およびY軸方向のサイズが6×2mm、6×4mm、6×6mmの各々のチップCPについて、接着シートASをX軸方向およびY軸方向に同じ量伸長させたところ、図6に示す結果が得られた。なお、接着シートASには、表1のAのものを使用した。また、接着シートASの伸長量EAは、X軸方向およびY軸方向とも60mmとした。 Next, in order to investigate the relationship between the chip size CS and the inter-chip distance CD when the chip CP is rectangular, the sizes in the X-axis direction and the Y-axis direction are 6 × 2 mm, 6 × 4 mm, and 6 × 6 mm, respectively. When the adhesive sheet AS was stretched by the same amount in the X-axis direction and the Y-axis direction for the chip CP, the results shown in FIG. 6 were obtained. As the adhesive sheet AS, the one of A in Table 1 was used. The elongation amount EA of the adhesive sheet AS was set to 60 mm in both the X-axis direction and the Y-axis direction.

図6に示すように、6×6mmの正方形のチップCPでは、チップ間距離CDがX軸方向およびY軸方向で概ね同じ値になった。一方、6×2mmおよび6×4mmの長方形のチップCPでは、X軸方向のチップ間距離CDがチップサイズCSに対して線形的に減少し、Y軸方向のチップ間距離CDがチップサイズCSに対して線形的に増加した。このため、接着シートASをX軸方向とY軸方向とでチップサイズCSに応じて独立して伸長させるべく、図5のグラフをチップサイズCSごとに、接着シートASの伸長量EAとチップ間距離CDとの関係で示したものが図7である。 As shown in FIG. 6, in the 6 × 6 mm square chip CP, the inter-chip distance CD was substantially the same in the X-axis direction and the Y-axis direction. On the other hand, in the 6 × 2 mm and 6 × 4 mm rectangular chip CPs, the inter-chip distance CD in the X-axis direction decreases linearly with respect to the chip size CS, and the inter-chip distance CD in the Y-axis direction becomes the chip size CS. On the other hand, it increased linearly. Therefore, in order to extend the adhesive sheet AS independently according to the chip size CS in the X-axis direction and the Y-axis direction, the graph of FIG. 5 shows the extension amount EA of the adhesive sheet AS and the space between the chips for each chip size CS. FIG. 7 shows the relationship with the distance CD.

図7に示すように、チップサイズCSが異なる場合でも、接着シートASの伸長量EAに対してチップ間距離CDが線形的に増加する。このため、接着シートASの伸長量EAとチップ間距離CDとの間には、下記の式(2)の関係が成り立つ。 As shown in FIG. 7, even when the chip size CS is different, the inter-chip distance CD linearly increases with respect to the elongation amount EA of the adhesive sheet AS. Therefore, the relationship of the following formula (2) is established between the elongation amount EA of the adhesive sheet AS and the inter-chip distance CD.

[式2]
CD=K×EA ・・・(2)
K:線形回帰勾配
[Equation 2]
CD = K x EA ... (2)
K: Linear regression gradient

そこで、図7の各グラフの勾配を線形回帰により求めたところ、各チップサイズCSに対する式(2)の関係式は、下記の表2のようになった。表2に示すように、各チップサイズCSとも相関係数が0.99であり、良好な線形性を示している。 Therefore, when the gradient of each graph in FIG. 7 was obtained by linear regression, the relational expression of the equation (2) for each chip size CS was as shown in Table 2 below. As shown in Table 2, each chip size CS has a correlation coefficient of 0.99, showing good linearity.

Figure 0006912938
Figure 0006912938

図8は、表2のチップサイズCSと線形回帰勾配Kとの関係をグラフ化したものである。図8に示すように、線形回帰勾配Kは、チップサイズCSに対して線形的に増加する。この場合、チップサイズCSと線形回帰勾配Kとの間には、下記の式(3)の関係が成り立つ。 FIG. 8 is a graph showing the relationship between the chip size CS and the linear regression gradient K in Table 2. As shown in FIG. 8, the linear regression gradient K increases linearly with respect to the chip size CS. In this case, the relationship of the following equation (3) holds between the chip size CS and the linear regression gradient K.

[式3]
K=1.23×CS+3.81・・・(3)
[Equation 3]
K = 1.23 x CS + 3.81 ... (3)

そして、式(3)を式(2)に代入すると、下記の式(4)が得られる。 Then, by substituting the equation (3) into the equation (2), the following equation (4) is obtained.

[式4]
CD=(1.23×CS+3.81)×EA・・・(4)
[Equation 4]
CD = (1.23 x CS + 3.81) x EA ... (4)

式(4)は、表1のAの接着シートASに対するチップサイズCS、チップ間距離CD、および接着シートASの伸長量EAの関係式である。したがって、表1のAの接着シートASを使用する場合、チップサイズCSとチップ間距離CDの目標値とを式(4)に適用すれば、接着シートASの伸長量EAが求まる。チップCPが正方形の場合、チップサイズCSの値が1つであるため、式(4)を用いた算出式が1つになる。チップCPが長方形の場合、チップサイズCSがX軸方向とY軸方向とで異なり、チップサイズCSごとに式(4)の算出式を適用するので、式(4)を用いた算出式が2つになる。 Equation (4) is a relational expression of the chip size CS, the inter-chip distance CD, and the elongation amount EA of the adhesive sheet AS with respect to the adhesive sheet AS of Table 1. Therefore, when the adhesive sheet AS of A in Table 1 is used, the elongation amount EA of the adhesive sheet AS can be obtained by applying the chip size CS and the target value of the inter-chip distance CD to the equation (4). When the chip CP is square, the value of the chip size CS is one, so the calculation formula using the formula (4) is one. When the chip CP is rectangular, the chip size CS differs between the X-axis direction and the Y-axis direction, and the calculation formula (4) is applied to each chip size CS. Therefore, the calculation formula using the formula (4) is 2. Become one.

また、これまでの説明から、接着シートASやチップサイズCSが変わっても、チップサイズCS、チップ間距離CD、および接着シートASの伸長量EAの間に線形の関係が成り立つことになる。そこで、式(4)の定数部分を一般化したものが、上記式(1)である。したがって、接着シートASごとに式(1)の定数K1、K2の値が定まっていれば、接着シートASが変わっても、接着シートASに合わせて定数K1、K2の値を変えることで、接着シートASの伸長量EAを容易に求めることができる。
Further, from the above description, even if the adhesive sheet AS and the chip size CS are changed, a linear relationship is established between the chip size CS, the inter-chip distance CD, and the elongation amount EA of the adhesive sheet AS. Therefore, the above equation (1) is a generalization of the constant part of the equation (4). Therefore, if the values of the constants K1 and K2 in the formula (1) are determined for each adhesive sheet AS, even if the adhesive sheet AS changes, the values of the constants K1 and K2 can be changed according to the adhesive sheet AS to adhere. The elongation amount EA of the sheet AS can be easily obtained.

以上のような実施形態によれば、チップサイズCSとチップ間距離CDの目標値とに応じて接着シートASの伸長量EAの目標値を算出し、接着シートASの伸長量EAが当該伸長量EAの目標値となるように保持部材21を移動させるため、簡易な方法で接着シートASの伸長量EAを設定でき、単位時間あたりの処理能力が低下することを防止することができる。 According to the above embodiment, the target value of the elongation amount EA of the adhesive sheet AS is calculated according to the target value of the chip size CS and the inter-chip distance CD, and the elongation amount EA of the adhesive sheet AS is the elongation amount. Since the holding member 21 is moved so as to be the target value of the EA, the elongation amount EA of the adhesive sheet AS can be set by a simple method, and it is possible to prevent the processing capacity per unit time from being lowered.

[第2実施形態]
図9において、離間装置10は、制御手段40が測定手段50の測定結果を基に保持部材21の移動を制御するように構成されている。なお、接着シートASおよびウエハWFは、それぞれ平面視で円形状に形成されている。
[Second Embodiment]
In FIG. 9, the separation device 10 is configured such that the control means 40 controls the movement of the holding member 21 based on the measurement result of the measuring means 50. The adhesive sheet AS and the wafer WF are each formed in a circular shape in a plan view.

制御手段40は、上記と同様に、接着シートASの伸長量EAが式(1)で得られる値となり、かつ各保持手段20の保持部材21の間隔が等間隔となるように、リニアモータ30A、30Bを駆動する。これにより、チップ間距離CDを目標値に近付けることができるが、図10に示すように、それでもなおチップCPの相互間隔に微妙に違いが生じ、各チップCPを理論上の位置に配置することができないことがある。 In the control means 40, similarly to the above, the linear motor 30A is such that the extension amount EA of the adhesive sheet AS is a value obtained by the equation (1) and the intervals between the holding members 21 of the holding means 20 are equal. , 30B is driven. As a result, the inter-chip distance CD can be brought closer to the target value, but as shown in FIG. 10, there is still a slight difference in the mutual spacing between the chip CPs, and each chip CP is arranged at a theoretical position. May not be possible.

そこで、制御手段40が測定手段50の測定結果を基にリニアモータ30Bを駆動し、図11に示すように、保持部材21を前後方向または左右方向にさらに移動させて各保持部材21同士の間隔を調整することにより、チップCPの相互間隔を調整することができる。これにより、各チップCPを理論上の位置に配置させる(各チップCPの相互間隔を極力等間隔にする)。
なお、リニアモータ30Bの駆動によりチップCPの相互間隔を調整する際、各保持部材21の少なくとも1つが移動してもよいし、これらの移動距離や移動方向は同じでもよいし、異なっていてもよい。
Therefore, the control means 40 drives the linear motor 30B based on the measurement result of the measuring means 50, and as shown in FIG. 11, the holding member 21 is further moved in the front-rear direction or the left-right direction, and the distance between the holding members 21 is increased. By adjusting the above, the mutual spacing between the chip CPs can be adjusted. As a result, each chip CP is arranged at a theoretical position (the mutual spacing between the chip CPs is made as equal as possible).
When adjusting the mutual spacing of the chip CPs by driving the linear motor 30B, at least one of the holding members 21 may move, and the moving distances and moving directions thereof may be the same or different. good.

[第3実施形態]
図12において、離間装置10は、駆動機器である伸長手段としてのリニアモータ30A、30B、30Cを備え、リニアモータ30Cのスライダで保持部材21を支持する。
リニアモータ30Cは、リニアモータ30Aと平行に延設され、リニアモータ30Bのスライダ31Bに支持されている。
[Third Embodiment]
In FIG. 12, the separation device 10 includes linear motors 30A, 30B, and 30C as extension means which are drive devices, and supports the holding member 21 by a slider of the linear motor 30C.
The linear motor 30C extends parallel to the linear motor 30A and is supported by the slider 31B of the linear motor 30B.

以上の離間装置10において、制御手段40は、上記と同様に、リニアモータ30A、30Bを駆動し、チップ間距離CDを目標値に近付ける。それでもなおチップCPの相互間隔に微妙に違いが生じ、各チップCPを理論上の位置に配置することができない場合、制御手段40は、リニアモータ30Cを駆動し、図12に示すように、保持手段20を移動させる方向と平行な方向に保持部材21を移動させて各チップCPを理論上の位置に配置させる。 In the above separation device 10, the control means 40 drives the linear motors 30A and 30B in the same manner as described above, and brings the inter-chip distance CD closer to the target value. If there is still a slight difference in the mutual spacing of the chip CPs and each chip CP cannot be placed in a theoretical position, the control means 40 drives the linear motor 30C and holds it, as shown in FIG. The holding member 21 is moved in a direction parallel to the direction in which the means 20 is moved, and each chip CP is arranged at a theoretical position.

以上のように、本発明を実施するための最良の構成、方法等は、前記記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。また、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部もしくは全部の限定を外した部材の名称での記載は、本発明に含まれる。 As described above, the best configuration, method, etc. for carrying out the present invention are disclosed in the above description, but the present invention is not limited thereto. That is, the present invention is particularly illustrated and described primarily with respect to a particular embodiment, but without departing from the scope of the technical idea and purpose of the present invention, with respect to the embodiments described above. Various modifications can be made by those skilled in the art in terms of material, quantity, and other detailed configurations. Further, the description limiting the shape, material, etc. disclosed above is exemplarily described for facilitating the understanding of the present invention, and does not limit the present invention. Therefore, those shapes, materials, etc. The description by the name of the member which removes a part or all of the limitation such as is included in the present invention.

保持手段20は、メカチャックやチャックシリンダ等のチャック手段や、減圧ポンプや真空エジェクタ等の図示しない減圧手段や、接着剤、磁力等で一体物WKを支持する構成でもよい。
保持手段20が有する保持部材21は、2体から4体であってもよいし、6体以上であってもよいし、各保持手段20での個数が同じでもよいし、異なっていてもよい。
各保持部材21が移動する交差方向は、リニアモータ30Aによって保持手段20が移動する方向に直交する方向でもよいし、斜めに交差する方向であってもよい。この場合、リニアモータ30Cを設けてもよい。
The holding means 20 may be configured to support the integrated WK with a chuck means such as a mechanical chuck or a chuck cylinder, a decompression means (not shown) such as a decompression pump or a vacuum ejector, an adhesive, a magnetic force, or the like.
The number of the holding members 21 included in the holding means 20 may be 2 to 4, 6 or more, and the number of the holding members 20 in each holding means 20 may be the same or different. ..
The crossing direction in which the holding members 21 move may be a direction orthogonal to the direction in which the holding means 20 moves by the linear motor 30A, or may be a direction in which the holding members 21 cross diagonally. In this case, the linear motor 30C may be provided.

伸長手段は、各保持手段20の少なくとも1体を固定しておき他の保持手段20を移動させてもよく、この場合、固定しておく保持手段20を移動させるリニアモータ30Aを設けなくてもよい。
リニアモータ30Aに代えてまたは併用して、リニアモータ30Cを設けてもよい。この場合、リニアモータ30Cを保持部材21毎に設けてもよいし、保持部材21毎に設けなくてもよい。
リニアモータ30Bは、各保持部材21の少なくとも1体を固定しておき他の保持部材21をリニアモータ30Aによって保持手段20が移動する方向に対する直交方向に移動させてもよい。
As the extending means, at least one of the holding means 20 may be fixed and the other holding means 20 may be moved. In this case, the linear motor 30A for moving the fixed holding means 20 may not be provided. good.
The linear motor 30C may be provided in place of or in combination with the linear motor 30A. In this case, the linear motor 30C may or may not be provided for each holding member 21.
The linear motor 30B may fix at least one of each holding member 21 and move the other holding member 21 in a direction orthogonal to the direction in which the holding means 20 is moved by the linear motor 30A.

制御手段40は、接着シートASとその定数K1、K2の値とを関連付けて記憶しておき、操作手段を介して接着シートASを選択することで、式(1)に定数K1、K2を自動的に適用してもよい。
制御手段40は、チップサイズCS、チップ間距離CD、および接着シートASの伸長量EAの間に、式(1)以外の一定の関係が成り立つ場合、当該一定の関係にチップサイズCSとチップ間距離CDの目標値とを適用して、接着シートASの伸長量EAの目標値を算出してもよい。
The control means 40 automatically converts the constants K1 and K2 into the equation (1) by storing the adhesive sheet AS in association with the values of the constants K1 and K2 and selecting the adhesive sheet AS via the operating means. May be applied as a target.
When a certain relationship other than the formula (1) is established between the chip size CS, the inter-chip distance CD, and the extension amount EA of the adhesive sheet AS, the control means 40 has the constant relationship between the chip size CS and the chip. The target value of the elongation amount EA of the adhesive sheet AS may be calculated by applying the target value of the distance CD.

測定手段50は、制御手段40が測定手段50の測定結果を基に保持部材21の移動を制御しない場合なくてもよい。この場合、チップCPの相互間隔が同じでないことを認識した使用者が保持手段20、リニアモータ30Bを操作して、チップCPの相互間隔を調整してもよい。 The measuring means 50 may not be required when the control means 40 does not control the movement of the holding member 21 based on the measurement result of the measuring means 50. In this case, the user who recognizes that the mutual spacing between the chip CPs is not the same may operate the holding means 20 and the linear motor 30B to adjust the mutual spacing between the chip CPs.

接着シートASの形状は、円形であってもよいし五角形以上の多角形であってもよいし、その他の形状であってもよい。
ウエハWFは、長方形とされてもよい。
チップCPは、円形、正方形、長方形、三角形や五角形以上の多角形等、その他の形状であってもよい。
一体物WKは、円形状のウエハWFが正方形状の接着シートASに仮着されたものでもよいし、正方形状または長方形状のウエハWFが円形状の接着シートASに仮着されたものでもよい。
The shape of the adhesive sheet AS may be circular, polygonal or more pentagonal, or any other shape.
The wafer WF may be rectangular.
The chip CP may have other shapes such as a circle, a square, a rectangle, a triangle, a polygon of a pentagon or more, and the like.
The one-piece WK may be a circular wafer WF temporarily attached to a square adhesive sheet AS, or a square or rectangular wafer WF temporarily attached to a circular adhesive sheet AS. ..

また、本発明における接着シートASの材質、種別、形状等は、特に限定されることはない。例えば、接着シートASは、円形、楕円形、三角形や五角形以上の多角形、その他の形状であってもよい。また、接着シートASは、例えば、接着剤層だけの単層のもの、基材と接着剤層との間に中間層を有するもの、基材の上面にカバー層を有する等3層以上のもの、さらには、基材を接着剤層から剥離することのできる所謂両面接着シートのようなものであってもよく、両面接着シートは、単層または複層の中間層を有するものや、中間層のない単層または複層のものであってよい。また、基材や接着剤層の材質、種別、厚さ等は、特に限定されず、例えば、ウレタン材質の基材であってもよい。 Further, the material, type, shape, etc. of the adhesive sheet AS in the present invention are not particularly limited. For example, the adhesive sheet AS may have a circular shape, an elliptical shape, a polygonal shape of a triangle, a pentagon or more, or any other shape. Further, the adhesive sheet AS is, for example, a single layer having only an adhesive layer, a material having an intermediate layer between the base material and the adhesive layer, a material having a cover layer on the upper surface of the base material, and the like having three or more layers. Further, it may be a so-called double-sided adhesive sheet capable of peeling the base material from the adhesive layer, and the double-sided adhesive sheet may have a single-layer or multi-layer intermediate layer or an intermediate layer. It may be single-layer or multi-layer without. Further, the material, type, thickness and the like of the base material and the adhesive layer are not particularly limited, and for example, a base material made of urethane may be used.

板状部材や片状体の形状は、例えば円形、楕円形、三角形や五角形以上の多角形等、その他の形状であってもよい。さらに、板状部材としては、例えば、シリコン半導体ウエハや化合物半導体ウエハ等の半導体ウエハ、回路基板、光ディスク等の情報記録基板、ガラス板、鋼板、陶器、木板または樹脂板等、任意の形態の部材や物品等も対象とすることができ、片状体は、それらが個片化されたものであればよい。なお、接着シートASは、機能的、用途的な読み方に換え、例えば、保護シート、ダイシングテープ、ダイアタッチフィルム、ダイボンディングテープ等の任意のシート、フィルム、テープ等でもよい。 The shape of the plate-shaped member or the flake-shaped body may be other shapes such as a circle, an ellipse, a triangle, a polygon of a pentagon or more, and the like. Further, as the plate-shaped member, for example, a semiconductor wafer such as a silicon semiconductor wafer or a compound semiconductor wafer, a circuit board, an information recording board such as an optical disk, a glass plate, a steel plate, a pottery, a wooden board or a resin plate, or any other form of a member. , Articles, etc. can also be targeted, and the flake body may be any individualized body. The adhesive sheet AS may be any sheet, film, tape or the like such as a protective sheet, a dicing tape, a die attach film or a die bonding tape, instead of a functional and versatile reading.

本発明における手段および工程は、それら手段および工程について説明した動作、機能または工程を果たすことができる限りなんら限定されることはなく、まして、前記実施形態で示した単なる一実施形態の構成物や工程に全く限定されることはない。例えば、保持手段は、接着シートを複数の保持部材で保持可能なものであれば、出願当初の技術常識に照らし合わせ、その技術範囲内のものであればなんら限定されることはない(他の手段および工程についての説明は省略する)。
また、前記実施形態における駆動機器は、回動モータ、直動モータ、リニアモータ、単軸ロボット、多関節ロボット等の電動機器、エアシリンダ、油圧シリンダ、ロッドレスシリンダおよびロータリシリンダ等のアクチュエータ等を採用することができる上、それらを直接的又は間接的に組み合せたものを採用することもできる(実施形態で例示したものと重複するものもある)。
The means and processes in the present invention are not limited as long as they can perform the operations, functions or processes described for the means and processes, much less the components of the mere embodiment shown in the above-described embodiment. It is not limited to the process at all. For example, the holding means is not limited as long as the adhesive sheet can be held by a plurality of holding members, as long as it is within the technical range in light of the common general technical knowledge at the time of filing (others). The description of the means and the process will be omitted).
Further, the drive equipment in the above embodiment includes electric equipment such as a rotary motor, a linear motor, a linear motor, a single-axis robot, and an articulated robot, and actuators such as an air cylinder, a hydraulic cylinder, a rodless cylinder, and a rotary cylinder. In addition to being able to be adopted, it is also possible to adopt a combination thereof directly or indirectly (some of which overlap with those illustrated in the embodiment).

10…離間装置
20…保持手段
21…保持部材
30A、30B、30C…リニアモータ(伸長手段)
40…制御手段
50…測定手段
AS…接着シート
CD:チップ間距離(片状体の間隔)
CP…チップ(片状体)
CS:チップサイズ(片状体のサイズ)
EA:接着シートの伸長量
WF…ウエハ(板状部材)
10 ... Separation device 20 ... Holding means 21 ... Holding members 30A, 30B, 30C ... Linear motor (extending means)
40 ... Control means 50 ... Measuring means AS ... Adhesive sheet CD: Distance between chips (distance between pieces)
CP ... Chip (fragment)
CS: Chip size (size of flake)
EA: Elongation amount of adhesive sheet WF ... Wafer (plate-shaped member)

Claims (3)

接着シート上の板状部材に4方向の張力を付与して当該板状部材から形成される複数の片状体の相互間隔を広げる離間装置であって、
前記接着シートをそれぞれ複数の保持部材で保持する複数の保持手段と、
前記保持部材を前記4方向のうち前記保持手段ごとに異なる1方向に移動させるとともに、当該保持部材を前記1方向に交差する交差方向に移動させて前記接着シートを伸長させる伸長手段と、
前記伸長手段による前記保持部材の移動を制御する制御手段とを備え、
前記制御手段は、前記片状体のサイズと前記片状体の間隔の目標値とを下記式(1)に適用して前記接着シートの伸長量の目標値を算出し、前記伸長手段に前記接着シートの伸長量が当該伸長量の目標値となるように前記保持部材を移動させることを特徴とする離間装置。
[式1]
CD=(K1×CS+K2)×EA ・・・(1)
CD:片状体の間隔(μm)
CS:片状体のサイズ(mm)
EA:接着シートの伸長量(mm)
K1、K2:定数
A separation device that applies tension to a plate-shaped member on an adhesive sheet in four directions to widen the mutual spacing between a plurality of pieces formed from the plate-shaped member.
A plurality of holding means for holding the adhesive sheet by a plurality of holding members, and
An extension means for extending the adhesive sheet by moving the holding member in one of the four directions different for each holding means and moving the holding member in an intersecting direction intersecting the one direction.
A control means for controlling the movement of the holding member by the extension means is provided.
The control means applies the size of the flake and the target value of the interval between the flake to the following formula (1) to calculate the target value of the elongation amount of the adhesive sheet, and the stretching means is used. A separating device characterized in that the holding member is moved so that the elongation amount of the adhesive sheet becomes a target value of the elongation amount.
[Equation 1]
CD = (K1 x CS + K2) x EA ... (1)
CD: Fragment spacing (μm)
CS: Flake size (mm)
EA: Elongation amount of adhesive sheet (mm)
K1, K2: constant
前記片状体の相互間隔を測定する測定手段を有し、
前記制御手段は、前記測定手段の測定結果を基に、前記伸長手段に前記保持部材を移動させることを特徴とする請求項1に記載の離間装置。
It has a measuring means for measuring the mutual distance between the pieces.
The separation device according to claim 1, wherein the control means moves the holding member to the extension means based on the measurement result of the measurement means.
接着シート上の板状部材に4方向の張力を付与して当該板状部材から形成される複数の片状体の相互間隔を広げる離間方法であって、
それぞれ複数の保持部材を備える複数の保持手段で前記接着シートを保持する保持工程と、
前記保持部材を前記4方向のうち前記保持手段ごとに異なる1方向に移動させるとともに、当該保持部材を前記1方向に交差する交差方向に移動させて前記接着シートを伸長させる伸長工程とを備え、
前記伸長工程では、前記片状体のサイズと前記片状体の間隔の目標値とを下記式(1)に適用して前記接着シートの伸長量の目標値を算出し、前記接着シートの伸長量が当該伸長量の目標値となるように前記保持部材を移動させることを特徴とする離間方法。
[式1]
CD=(K1×CS+K2)×EA ・・・(1)
CD:片状体の間隔(μm)
CS:片状体のサイズ(mm)
EA:接着シートの伸長量(mm)
K1、K2:定数
It is a separation method in which tension is applied to a plate-shaped member on an adhesive sheet in four directions to widen the mutual distance between a plurality of pieces formed from the plate-shaped member.
A holding step of holding the adhesive sheet by a plurality of holding means each including a plurality of holding members,
The holding member is moved in one of the four directions different for each holding means, and the holding member is moved in an intersecting direction intersecting the one direction to extend the adhesive sheet.
In the stretching step, the size of the piece and the target value of the interval between the pieces are applied to the following formula (1) to calculate the target value of the stretch amount of the adhesive sheet, and the stretch of the adhesive sheet is performed. A separation method comprising moving the holding member so that the amount becomes a target value of the extension amount.
[Equation 1]
CD = (K1 x CS + K2) x EA ... (1)
CD: Fragment spacing (μm)
CS: Flake size (mm)
EA: Elongation amount of adhesive sheet (mm)
K1, K2: constant
JP2017105561A 2017-05-29 2017-05-29 Separation device and separation method Active JP6912938B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017105561A JP6912938B2 (en) 2017-05-29 2017-05-29 Separation device and separation method
KR1020180054193A KR102434544B1 (en) 2017-05-29 2018-05-11 Spacing device and spacing method
TW107116556A TWI763846B (en) 2017-05-29 2018-05-16 Separation device and separation method
CN201810533974.4A CN108933085B (en) 2017-05-29 2018-05-29 Separation device and separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017105561A JP6912938B2 (en) 2017-05-29 2017-05-29 Separation device and separation method

Publications (2)

Publication Number Publication Date
JP2018200973A JP2018200973A (en) 2018-12-20
JP6912938B2 true JP6912938B2 (en) 2021-08-04

Family

ID=64449613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017105561A Active JP6912938B2 (en) 2017-05-29 2017-05-29 Separation device and separation method

Country Status (4)

Country Link
JP (1) JP6912938B2 (en)
KR (1) KR102434544B1 (en)
CN (1) CN108933085B (en)
TW (1) TWI763846B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7224214B2 (en) * 2019-03-13 2023-02-17 株式会社ディスコ expansion unit
JP7494067B2 (en) 2020-09-14 2024-06-03 キオクシア株式会社 Semiconductor device manufacturing method and semiconductor manufacturing device
KR102427897B1 (en) * 2020-12-03 2022-08-02 에스케이하이닉스 주식회사 method of treating semiconductor die

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729855A (en) * 1993-07-12 1995-01-31 Sumitomo Electric Ind Ltd Expanding method of semiconductor wafer
JP2001223186A (en) * 2000-02-09 2001-08-17 Lintec Corp Transfer tape mount device and method
JP4693805B2 (en) * 2007-03-16 2011-06-01 株式会社東芝 Semiconductor device manufacturing apparatus and manufacturing method
JP6170681B2 (en) * 2013-01-24 2017-07-26 株式会社ディスコ Expansion device and expansion method
US20140339673A1 (en) * 2013-05-14 2014-11-20 Texas Instruments Incorporated Wafer processing
JP6408366B2 (en) * 2014-12-05 2018-10-17 リンテック株式会社 Separation device and separation method
JP6573072B2 (en) * 2015-08-27 2019-09-11 株式会社村田製作所 Film expansion apparatus and method of manufacturing electronic component using the same

Also Published As

Publication number Publication date
KR102434544B1 (en) 2022-08-19
CN108933085B (en) 2023-08-29
TWI763846B (en) 2022-05-11
JP2018200973A (en) 2018-12-20
KR20180130440A (en) 2018-12-07
TW201901773A (en) 2019-01-01
CN108933085A (en) 2018-12-04

Similar Documents

Publication Publication Date Title
KR102468904B1 (en) Spacing apparatus and spacing method
JP6912938B2 (en) Separation device and separation method
JP6338555B2 (en) Adsorption mechanism, adsorption method, production apparatus and production method
JP6363947B2 (en) Separation device and separation method
US10079166B2 (en) Processing apparatus
JP6415349B2 (en) Wafer alignment method
JP6371641B2 (en) Alignment apparatus and alignment method
JP6386866B2 (en) Separation device and separation method
JP6468789B2 (en) Spacing device
US9685378B2 (en) Method of dividing plate-shaped workpieces
JP2019038044A (en) Grinding method
JP5520729B2 (en) Loading device
JP4436641B2 (en) Alignment method in cutting equipment
JP6474275B2 (en) Processing equipment
KR102580580B1 (en) Apparatus and method for bonding dies onto wafer
JP6393575B2 (en) Separation device and separation method
JP6420623B2 (en) Separation device and separation method
JP2017175055A (en) Handling method for package wafer
JP6408365B2 (en) Interval adjusting device and adjusting method
RU2743451C1 (en) Method of separating multiplex substrate sealed with epoxy compound into separate microcircuits
JP2016081973A (en) Separation device and separation method
KR20240140173A (en) Substrate correction device, substrate lamination device, substrate processing system, substrate correction method, substrate processing method, and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210709

R150 Certificate of patent or registration of utility model

Ref document number: 6912938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250