JP6899024B1 - 抵抗変化型シナプスアレイ装置 - Google Patents
抵抗変化型シナプスアレイ装置 Download PDFInfo
- Publication number
- JP6899024B1 JP6899024B1 JP2020101399A JP2020101399A JP6899024B1 JP 6899024 B1 JP6899024 B1 JP 6899024B1 JP 2020101399 A JP2020101399 A JP 2020101399A JP 2020101399 A JP2020101399 A JP 2020101399A JP 6899024 B1 JP6899024 B1 JP 6899024B1
- Authority
- JP
- Japan
- Prior art keywords
- signal
- positive
- voltage
- resistance change
- memory element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008859 change Effects 0.000 title claims abstract description 59
- 210000000225 synapse Anatomy 0.000 title claims abstract description 21
- 210000004027 cell Anatomy 0.000 claims abstract description 46
- 230000001242 postsynaptic effect Effects 0.000 claims abstract description 24
- 230000003518 presynaptic effect Effects 0.000 claims abstract description 23
- 230000000946 synaptic effect Effects 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 13
- 210000001874 anterior cell Anatomy 0.000 claims 1
- 238000010586 diagram Methods 0.000 abstract description 4
- 210000002569 neuron Anatomy 0.000 description 13
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 238000013528 artificial neural network Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 210000001787 dendrite Anatomy 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 229910000449 hafnium oxide Inorganic materials 0.000 description 3
- 229910052771 Terbium Inorganic materials 0.000 description 2
- 210000003050 axon Anatomy 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000020796 long term synaptic depression Effects 0.000 description 1
- 230000027928 long-term synaptic potentiation Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 210000000063 presynaptic terminal Anatomy 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000005062 synaptic transmission Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
- G06F2218/14—Classification; Matching by matching peak patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
- G06N3/065—Analogue means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/54—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using elements simulating biological cells, e.g. neuron
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0023—Address circuits or decoders
- G11C13/0026—Bit-line or column circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0023—Address circuits or decoders
- G11C13/0028—Word-line or row circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0061—Timing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0069—Writing or programming circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0069—Writing or programming circuits or methods
- G11C2013/0092—Write characterized by the shape, e.g. form, length, amplitude of the write pulse
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/72—Array wherein the access device being a diode
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/77—Array wherein the memory element being directly connected to the bit lines and word lines without any access device being used
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/79—Array wherein the access device being a transistor
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Neurology (AREA)
- Computer Hardware Design (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Semiconductor Memories (AREA)
- Memory System (AREA)
- Road Signs Or Road Markings (AREA)
- Read Only Memory (AREA)
Abstract
Description
Vpost−Vpre=(Ta−Tb)−(Pa−Pb)
=(Ta+Pb)−(Pa+Tb)・・・(1)
式(1)において、(Ta+Pb)を抵抗変化型メモリ素子のセット書込みに対応させた場合、これと極性の異なる(Pa+Tb)をリセット書込みに対応させることができる。あるいは、(Ta+Pb)をリセット書込みに対応させた場合には、(Pa+Tb)をセット書込みに対応させることができる。以下の例では、(Pa+Tb)をセット書込み電圧とし、(Ta+Pa)をリセット書込み電圧とする。
110:クロスバーアレイ
120:行選択/駆動回路
122:行_正部分ドライバ
124:行_負部分ドライバ
126:加算器
130:列選択/駆動回路
132:列_正部分ドライバ
134:列_負部分ドライバ
136:加算器
140:制御部
150:入出力部
Claims (10)
- バイポーラタイプの抵抗変化型メモリ素子を用いたクロスバーアレイへのSTDPの書込み方法であって、
正電位を利用した第1のドライバによりシナプス前細胞で生成されるスパイク信号の正の部分に対応する第1の電圧信号を生成し、正電位を利用した第2のドライバによりシナプス後細胞で生成されるスパイク信号の負の部分に対応する第2の電圧信号を生成し、正電位を利用した第3のドライバによりシナプス後細胞で生成されるスパイク信号の正の部分に対応する第3の電圧信号を生成し、正電位を利用した第4のドライバによりシナプス前細胞で生成されるスパイク信号の負の部分に対応する第4の電圧信号を生成し、
第1の電圧信号と第2の電圧信号とを加算した第1の駆動信号を選択された抵抗変化型メモリ素子の一方の端子に印加し、第3の電圧信号と第4の電圧信号とを加算した第2の駆動信号を当該選択された抵抗変化型メモリ素子の他方の端子に印加する、書込み方法。 - 第1の駆動信号は、セットまたはリセットの書込み電圧であり、第2の駆動信号は、リセットまたはセットの書込み電圧である、請求項1に記載の書込み方法。
- STDPは、シナプス前細胞で生成されるスパイク信号とシナプス後細胞で生成されるスパイク信号の差分である、請求項1に記載の書込み方法。
- 第1の駆動信号および第2の駆動信号は、正のパルス信号である、請求項1または2に記載の書込み方法。
- 第1の電圧信号は、正の矩形波のパルス信号であり、第2の電圧信号は、正の三角波のパルス信号であり、第3の電圧信号は、正の矩形波のパルス信号であり、第4の電圧信号は、正の三角波のパルス信号である、請求項4に記載の書込み方法。
- バイポーラタイプの抵抗変化型メモリ素子を用いたクロスバーアレイと、
前記クロスバーアレイの抵抗変化型メモリ素子を選択する選択手段と、
抵抗変化型メモリ素子への書込みを行う書込み手段とを有し、
前記書込み手段は、抵抗変化型メモリ素子の一方の端子に接続された第1および第2の正電位のドライバと、他方の端子に接続された正電位の第3および第4のドライバとを含み、
第1のドライバは、シナプス前細胞で生成されるスパイク信号の正の部分に対応する第1の電圧信号を生成し、第2のドライバは、シナプス後細胞で生成されるスパイク信号の負の部分に対応する第2の電圧信号を生成し、第3のドライバは、シナプス後細胞で生成されるスパイク信号の正の部分に対応する第3の電圧信号を生成し、第4のドライバは、シナプス前細胞で生成されるスパイク信号の負の部分に対応する第4の電圧信号を生成し、
前記書込み手段は、第1の電圧信号と第2の電圧信号とを加算した第1の駆動信号を選択された抵抗変化型メモリ素子の一方の端子に印加し、第3の電圧信号と第4の電圧信号とを加算した第2の駆動信号を当該選択された抵抗変化型メモリ素子の他方の端子に印加する、シナプスアレイ装置。 - 第1の駆動信号は、セットまたはリセットの書込み電圧であり、第2の駆動信号は、リセットまたはセットの書込み電圧である、請求項6に記載のシナプスアレイ装置。
- STDPは、シナプス前細胞で生成されるスパイク信号とシナプス後細胞で生成されるスパイク信号の差分である、請求項6に記載のシナプスアレイ装置。
- 前記抵抗変化型メモリ素子がセレクタデバイスを含む、請求項6に記載のシナプスアレイ装置。
- 前記セレクタデバイスは、ダイオードまたはトランジスタである、請求項9に記載のシナプスアレイ装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020101399A JP6899024B1 (ja) | 2020-06-11 | 2020-06-11 | 抵抗変化型シナプスアレイ装置 |
TW110117040A TWI787813B (zh) | 2020-06-11 | 2021-05-12 | 尖峰時序相依可塑性的寫入方法及突觸陣列裝置 |
US17/324,062 US20210390373A1 (en) | 2020-06-11 | 2021-05-18 | Spike timing dependent plasticity write method and synapse array apparatus |
KR1020210068583A KR102575847B1 (ko) | 2020-06-11 | 2021-05-27 | 스파이크 타이밍 의존 가역성의 기재 방법 및 시냅스 어레이 장치 |
CN202110615324.6A CN113807161B (zh) | 2020-06-11 | 2021-06-02 | 尖峰时序相依可塑性的写入方法及突触数组装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020101399A JP6899024B1 (ja) | 2020-06-11 | 2020-06-11 | 抵抗変化型シナプスアレイ装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6899024B1 true JP6899024B1 (ja) | 2021-07-07 |
JP2021197191A JP2021197191A (ja) | 2021-12-27 |
Family
ID=76650050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020101399A Active JP6899024B1 (ja) | 2020-06-11 | 2020-06-11 | 抵抗変化型シナプスアレイ装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210390373A1 (ja) |
JP (1) | JP6899024B1 (ja) |
KR (1) | KR102575847B1 (ja) |
CN (1) | CN113807161B (ja) |
TW (1) | TWI787813B (ja) |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8250010B2 (en) * | 2009-05-21 | 2012-08-21 | International Business Machines Corporation | Electronic learning synapse with spike-timing dependent plasticity using unipolar memory-switching elements |
US8433665B2 (en) * | 2010-07-07 | 2013-04-30 | Qualcomm Incorporated | Methods and systems for three-memristor synapse with STDP and dopamine signaling |
US8510239B2 (en) * | 2010-10-29 | 2013-08-13 | International Business Machines Corporation | Compact cognitive synaptic computing circuits with crossbar arrays spatially in a staggered pattern |
CN102918600B (zh) * | 2011-05-31 | 2014-11-19 | 松下电器产业株式会社 | 电阻变化型非易失性存储装置 |
CN102496385B (zh) * | 2011-12-26 | 2014-04-16 | 电子科技大学 | 一种脉冲时序活动性转换电路 |
CN103430186A (zh) * | 2012-01-20 | 2013-12-04 | 松下电器产业株式会社 | 神经网络电路的学习方法 |
JP5289647B1 (ja) * | 2012-01-23 | 2013-09-11 | パナソニック株式会社 | ニューラルネットワーク回路の学習方法 |
US9418333B2 (en) * | 2013-06-10 | 2016-08-16 | Samsung Electronics Co., Ltd. | Synapse array, pulse shaper circuit and neuromorphic system |
US10650308B2 (en) * | 2015-09-23 | 2020-05-12 | Politecnico Di Milano | Electronic neuromorphic system, synaptic circuit with resistive switching memory and method of performing spike-timing dependent plasticity |
US10268949B2 (en) * | 2016-03-21 | 2019-04-23 | International Business Machines Corporation | Artificial neuron apparatus |
WO2017174527A1 (de) * | 2016-04-07 | 2017-10-12 | Helmholtz-Zentrum Dresden - Rossendorf E. V. | Verfahren und mittel zum betrieb eines komplementären analogen rekonfigurierbaren memristiven widerstandsschalters sowie dessen verwendung als künstliche synapse |
JP6481667B2 (ja) * | 2016-07-20 | 2019-03-13 | 株式会社デンソー | ニューラルネットワーク回路 |
US11263521B2 (en) * | 2016-08-30 | 2022-03-01 | International Business Machines Corporation | Voltage control of learning rate for RPU devices for deep neural network training |
CN106845634B (zh) * | 2016-12-28 | 2018-12-14 | 华中科技大学 | 一种基于忆阻器件的神经元电路 |
JP6430576B2 (ja) * | 2017-04-19 | 2018-11-28 | ウィンボンド エレクトロニクス コーポレーション | 抵抗変化型ランダムアクセスメモリ |
US10290327B2 (en) * | 2017-10-13 | 2019-05-14 | Nantero, Inc. | Devices and methods for accessing resistive change elements in resistive change element arrays |
US11620500B2 (en) * | 2018-01-11 | 2023-04-04 | Winbond Electronics Corp. | Synapse system and synapse method to realize STDP operation |
CN109034379B (zh) * | 2018-10-12 | 2024-02-27 | 南京邮电大学 | 一种由类脑器件忆阻器搭建的神经元及神经元电路 |
CN110163365A (zh) * | 2019-05-29 | 2019-08-23 | 北京科易达知识产权服务有限公司 | 一种应用于忆阻器突触阵列的脉冲神经元电路 |
-
2020
- 2020-06-11 JP JP2020101399A patent/JP6899024B1/ja active Active
-
2021
- 2021-05-12 TW TW110117040A patent/TWI787813B/zh active
- 2021-05-18 US US17/324,062 patent/US20210390373A1/en active Pending
- 2021-05-27 KR KR1020210068583A patent/KR102575847B1/ko active IP Right Grant
- 2021-06-02 CN CN202110615324.6A patent/CN113807161B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
TW202147183A (zh) | 2021-12-16 |
US20210390373A1 (en) | 2021-12-16 |
CN113807161A (zh) | 2021-12-17 |
JP2021197191A (ja) | 2021-12-27 |
KR102575847B1 (ko) | 2023-09-07 |
KR20210154730A (ko) | 2021-12-21 |
TWI787813B (zh) | 2022-12-21 |
CN113807161B (zh) | 2024-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110825345B (zh) | 使用非易失性存储器单元的乘法 | |
CN110914906B (zh) | 用于执行具有多位输入矢量的矩阵计算的多级单元(mlc)非易失性(nv)存储器(nvm)矩阵电路 | |
CN110892480B (zh) | 采用nvm矩阵电路以执行矩阵计算的非易失性(nv)存储器(nvm)矩阵电路 | |
CN111433792B (zh) | 可编程可重置人工神经网络的基于计数器的电阻处理单元 | |
US11157803B2 (en) | Neuromorphic device including a synapse having a variable resistor and a transistor connected in parallel with each other | |
CN110782028A (zh) | 具有差分二进制非易失性存储器单元结构的可配置精密神经网络 | |
US11531871B2 (en) | Stacked neuromorphic devices and neuromorphic computing systems | |
KR102313075B1 (ko) | 인공 뉴런 및 멤리스터를 갖는 장치 | |
CN115410621A (zh) | 包括突触的神经形态器件的突触阵列及其操作方法 | |
US11321608B2 (en) | Synapse memory cell driver | |
KR20170080431A (ko) | 뉴로모픽 소자 및 뉴로모픽 소자의 저항 변화율을 조절하는 방법 | |
CN112836810A (zh) | 使用交叉阵列的电子装置以及数据处理方法 | |
KR20210090722A (ko) | 신경망들을 위한 가중된 입력들을 생성하도록 구성된 메모리 셀들 | |
JP6899024B1 (ja) | 抵抗変化型シナプスアレイ装置 | |
CN117151176A (zh) | 用于神经网络学习的突触阵列、运算电路及操作方法 | |
US20220147796A1 (en) | Circuit and method for spike time dependent plasticity | |
Aziza et al. | An augmented OxRAM synapse for spiking neural network (SNN) circuits | |
JP6968941B1 (ja) | 抵抗変化型クロスバーアレイ装置 | |
JP7150787B2 (ja) | 抵抗変化型クロスバーアレイ装置 | |
US20230306245A1 (en) | Programming circuit, integrated circuit, and method | |
US20170193364A1 (en) | Learning method for synapses of a neuromorphic device | |
US20240021242A1 (en) | Memory-based neuromorphic device and operating method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200611 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210609 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210611 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6899024 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |