JP6897368B2 - 導電性組成物および導体膜の製造方法 - Google Patents

導電性組成物および導体膜の製造方法 Download PDF

Info

Publication number
JP6897368B2
JP6897368B2 JP2017128476A JP2017128476A JP6897368B2 JP 6897368 B2 JP6897368 B2 JP 6897368B2 JP 2017128476 A JP2017128476 A JP 2017128476A JP 2017128476 A JP2017128476 A JP 2017128476A JP 6897368 B2 JP6897368 B2 JP 6897368B2
Authority
JP
Japan
Prior art keywords
conductive composition
acid
binder resin
examples
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017128476A
Other languages
English (en)
Other versions
JP2019012630A (ja
Inventor
順幸 諸石
順幸 諸石
貴史 石原
貴史 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2017128476A priority Critical patent/JP6897368B2/ja
Publication of JP2019012630A publication Critical patent/JP2019012630A/ja
Application granted granted Critical
Publication of JP6897368B2 publication Critical patent/JP6897368B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、優れた導電性を発現する導電性組成物に関する。
近年製品の軽量化、環境への配慮、及び製造コスト抑制の観点から、導電性樹脂組成物を使用した導電性塗料、及び導電性接着剤等が増加している(特許文献1)。こういった用途では、高い導電性が要求され、導電性フィラーとして、銀、銅などの金属が使われることが多い。しかし、長期信頼性が必要とされる用途では、各種の耐性、特に耐腐食性が要求され、そのような用途では、銀、銅などの金属は使用できないため、導電性炭素系フィラーがしばしば用いられることとなる。
導電性炭素系フィラーを用いた導電性組成物は、グラファイトやカーボンナノチューブなどを用いて、低抵抗な導電性組成物の検討が行われている(特許文献2、3)。しかし、金属フィラーと比較して、高い導電性を発現することが困難であり、また、炭素系フィラーは、金属と比較して比重が軽く、高い導電性を発現するために組成物内の炭素系フィラーの充填量が多くなると、スクリーン印刷等による印刷塗工が困難になるという問題がある。
特願2014−551472 特願2001−60413 特願2002−20515
本発明の目的は、耐腐食性が良好であり、かつ優れた導電性を発現し、さらに印刷塗工にも適する組成物を提供することにある。
本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、以下に示す導電性組成物により高い導電性を発現しつつ印刷できることを見出し、本発明を完成するに至った。
すなわち、本発明は、バインダー樹脂(A)と、導電性付与剤(B)と、有機溶剤(C)とを含む導電性組成物であって、導電性付与剤(B)が膨張化黒鉛(B1)を含み、膨張化黒鉛の平均粒径が10μm以上、200μm以下であって、導電性付与剤(B)の含有量が、組成物の固形分100重量%中、40重量%以上90重量%以下であることを特徴とする導電性組成物に関する。
また、本発明は、膨張化黒鉛(B1)の平均粒径が25μm以上、150μm以下であることを特徴とする前記の導電性組成物に関する。
また、本発明は、基材に塗工した後、乾燥させて得られた導電膜の体積抵抗値が10−3Ωcm以上、10−1Ωcm未満であることを特徴とする前記の導電性組成物に関する。
また、本発明は、バインダー樹脂(A)が、ポリウレタン樹脂を含むことを特徴とする前記の導電性組成物に関する。
また、本発明は、バインダー樹脂(A)が、ポリアミド樹脂を含むことを特徴とする前記の導電性組成物に関する。
また、本発明は、バインダー樹脂(A)が、イソシアネート基と反応可能な官能基を有する、ポリエーテル、ポリエステル、ポリカーボネート、およびポリブタジエンから選ばれる少なくとも1種の構造を側鎖に有するビニル系重合体(A1)を含むことを特徴とする前記の導電性組成物に関する。
また、本発明は、更に、導電性付与剤(B)が、カーボンブラック(B2)を含むことを特徴とする前記の導電性組成物に関する。
また、本発明は、有機溶剤(C)が、25℃の時の粘度が30mPa・s以上、7500
0mPa・s以下である有機溶剤(C1)を含み、有機溶剤(C1)の含有量が、有機溶
剤(C)の含有量100重量%中、10重量%以上であることを特徴とする前記の導電性組成物に関する。
また、本発明は、前記の導電性組成物を基材に塗工した後、乾燥させて得られた導体膜を熱プレスすることを特徴とする導体膜の製造方法に関する。
また、本発明は、導体膜の体積抵抗値が10−4Ωcm以上、10−2Ωcm未満であることを特徴とする前記の導体膜の製造方法に関する。
また、本発明は、基材に、前記の導電性組成物を印刷することを特徴とする、パターニングされた導体膜の製造方法に関する。
本発明により、耐腐食性が良好であり、かつ高い導電性を発現し、さらに印刷塗工にも適する組成物を提供することができる。
以下、本発明の実施形態について説明する。
本発明の導電性組成物(以下、「組成物」と称す場合がある)は、バインダー樹脂(A)と導電性付与剤(B)と有機溶剤(C)とを含むことを特徴とする。
<バインダー樹脂(A)>
バインダー樹脂は、ポリウレタン系、ポリアミド系、アクリロニトリル系、アクリル系、ブタジエン系、ポリビニルブチラール系、ポリオレフィン系、ポリエステル系、ポリスチレン系、EVA系、ポリフッ化ビニリデン系及びシリコン系樹脂等からなる群から選ばれる1 種以上を含むことができる。ただし、これらの樹脂に限定されるわけではない。
バインダー樹脂は1種単独で用いても良いし、2 種以上併用しても良い。
バインダー樹脂は、バインダー樹脂が基材に適用された後に、硬化(架橋)反応を受ける、硬化性樹脂とすることもできる。
バインダー樹脂は、自己硬化性のものを選択したり後述する硬化剤と組み合わせたりして、導電性組成物を基材上に印刷したり塗工したりした後、硬化(架橋)させることもできる。
バインダー樹脂としては、体積抵抗値と基材への密着性および耐久性の観点からポリウレタン樹脂が好ましい。体積抵抗値は、熱プレス中の樹脂分が流動しやすいため良好な結果となる。
導電性組成物を基材上に印刷したり塗工したりした後、熱プレスする際、樹脂分が軟化し、印刷・塗工時の導電膜の平面的なパターン形状をほぼ維持しつつ、厚み方向に流動すると、空隙を減らし導電性付与剤(B)同士の接触を増やせるので、得られる導電膜の体積抵抗値の低下が期待できる。従って、バインダー樹脂としては、熱プレスの際、適度に軟化・流動するものが好ましい。
<ポリウレタン樹脂>
ポリウレンタン樹脂の合成方法としては特に限定はされないが例えば、ポリオール化合物(a)とジイソシアネート(b)とを反応させたり、ポリオール化合物(a)とジイソシアネート(b)とカルボキシル基を有するジオール化合物(c)とを反応させてイソシアネート基を有するウレタンプレポリマー(d)を得たり、前記ウレタンプレポリマー(d)にポリアミノ化合物(e)をさらに反応させたり、あるいは前記3つの場合において、必要に応じて反応停止剤を反応させて得られるものなどが挙げられる。
ポリオール化合物(a) としては、一般にポリウレタン樹脂を構成するポリオール成
分として知られている、各種のポリエーテルポリオール類、ポリエステルポリオール類、ポリカーボネートポリオール類、ポリブタジエングリコール類、またはこれらの混合物等が使用できる。
ポリエーテルポリオール類としては、酸化エチレン、酸化プロピレン、テトラヒドロフランなどの重合体または共重合体などが挙げられる。
ポリエステルポリオール類としては、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ネオペンチルグリコール、ペンタンジオール、3−メチル−1,5−ペンタンジオール、ヘキサンジオール、オクタンジオール、1,4−ブチレンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ダイマージオール等の飽和および不飽和の低分子ジオール類、ならびにn−ブチルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル類のアルキルグリシジルエーテル類、バーサティック酸グリシジルエステル等のモノカルボン酸グリシジルエステル類と、アジピン酸、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、フマル酸、コハク酸、シュウ酸、マロン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等のジカルボン酸類、またはこれらの無水物類を、脱水縮合して得られるポリエステルポリオール類や、環状エステル化合物を開環重合して得られるポリエステルポリオール類が挙げられる。
ポリカーボネートポリオール類としては、1)ジオールまたはビスフェノールと炭酸エステルとの反応物、および、2)ジオールまたはビスフェノールにアルカリの存在下でホスゲンとの反応物が使用できる。炭酸エステルとしては、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、エチレンカーボネート、プロピレンカーボネート等が挙げられる。また、ジオールとしては、エチレングリコール、プロピレングリコール、ジプロピレングリコール、ジエチレングリコール、トリエチレングリコール、ブチレングリコール、3−メチル−1,5−ペンタンジオール、2−メチル−1,8−オクタンジオール、3,3’−ジメチロールヘプタン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、ネオペンチルグリコール、オクタンジオール、ブチルエチルペンタンジオール、2−エチル−1,3−ヘキサンジオール、シクロヘキサンジオール、3,9−ビス(1,1−ジメチル−2−ヒドロキシエチル、2,2,8,10−テトラオキソスピロ〔5.5〕
ウンデカン等が挙げられる。また、ビスフェノールとしては、ビスフェノールAやビスフェノールF、ビスフェノール類にエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを付加させたビスフェノール類等が挙げられる。
上記ポリオール化合物の数平均分子量(Mn)は、導電性組成物を製造する際のポリウレタン樹脂の溶解性、形成される導電膜の耐久性や基材に対する接着強度等を考慮して適宜決定されるが、通常は580〜8000の範囲が好ましく、さらに好ましくは1000〜5000である。
上記ポリオール化合物は、単独で用いても、2種類以上併用してもよい。更に、ポリウレタン樹脂の性能が失われない範囲内で、上記ポリオール化合物の一部を低分子ジオール類、例えば前記ポリオール化合物の製造に用いられる各種低分子ジオールに替えることもできる。
ジイソシアネート化合物(b)としては、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族イソシアネート、またはこれらの混合物を使用できるが、特にイソホロンジイソシアネートが好ましい。芳香族ジイソシアネートとしては、1,5−ナフチレンジイソシアネート、4,4′−ジフェニルメタンジイソシアネート、4,4′−ジフェニルジメチルメタンジイソシアネート、4,4′−ベンジルイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート等が挙げられる。
脂肪族ジイソシアネートとしては、ブタン−1,4−ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等が挙げられる。
脂環族ジイソシアネートとしては、シクロヘキサン−1,4−ジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアナートメチル、ビス(4−イソシアネートシクロヘキシル)メタン、1,3−ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート等が挙げられる。
カルボキシル基を有するジオール化合物(c)としては、ジメチロール酢酸、ジメチロールプロピオン酸、ジメチロールブタン酸、ジメチロールペンタン酸等のジメチロールアルカン酸、ジヒドロキシコハク酸、ジヒドロキシ安息香酸が挙げられる。特に反応性、溶解性の点からジメチロールプロピオン酸、ジメチロールブタン酸が好ましい。
ポリオール化合物(a)とジイソシアネート(b)とカルボキシル基を有するジオール化合物(c)とを反応させ、イソシアネート基を有するウレタンプレポリマー(d)を得る際の条件は、イソシアネート基を過剰にする他にとくに限定はないが、イソシアネート基/水酸基の当量比が1.05/1〜3/1の範囲内であることが好ましい。更に好ましくは1.2/1〜2/1である。また、反応は通常常温〜150℃の間で行なわれ、更に製造時間、副反応の制御の面から好ましくは60〜120℃の間で行なわれる。
ポリアミノ化合物(e)は、鎖延長剤として働くものであり、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、イソホロンジアミン、ジシクロヘキシルメタン−4,4′−ジアミン、ノルボルナンジアミンの他、2−(2−アミノエチルアミノ)エタノール、2−ヒドロキシエチルエチレンジアミン、2−ヒドロキシエチルプロピレンジアミン、ジ−2−ヒドロキシエチルエチレンジアミン、ジ−2−ヒドロキシプロピルエチレンジアミン等の水酸基を有するアミン類も使用することができる。なかでも、イソホロンジアミンが好適に使用される。
イソシアネート基を有するウレタンプレポリマー(d)とポリアミノ化合物(e)を反応させてポリウレタン樹脂を合成するときに、得られるポリウレタン樹脂の分子量を調整する為に反応停止剤を併用することができる。反応停止剤としては、ジ−n−ブチルアミン等のジアルキルアミン類、ジエタノールアミン等のジアルカノールアミン類や、エタノール、イソプロピルアルコール等のアルコール類が使用できる。
イソシアネート基を有するウレタンプレポリマー(d)と、ポリアミノ化合物(e)、および必要に応じて反応停止剤を反応させる際の条件はとくに限定はないが、ウレタンプレポリマーの両末端に有する遊離のイソシアネート基を1当量とした場合、ポリアミノ化合物(e)および反応停止剤中のアミノ基の合計当量が0.5〜1.3の範囲内であることが好ましい。更に好ましくは0.8〜0.995の範囲内である。
ポリウレタン樹脂の重量平均分子量は、5000〜200000の範囲が好ましい。分子量が5000以上の場合には、これをバインダーとして含有する導電性組成物において良好な樹脂粘度となり、塗工性が良化する。200000以下の場合には、樹脂溶液自体の粘度が低く、取扱い性が良化する。
ポリウレタン樹脂の合成時には、エステル系溶剤、ケトン系溶剤、グリコールエーテル系溶剤、脂肪族系溶剤、芳香族系溶剤、アルコール系溶剤、カーボネート系溶剤、水等から選ばれる一種を単独で、または二種以上を組み合わせて使用することができる。
エステル系溶剤としては、酢酸エチル、酢酸イソプロピル、酢酸n−ブチル、酢酸イソブチル、酢酸アミル、乳酸エチル等が挙げられる。
ケトン系溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトンベンゼン、ジイソブチルケトン、ジアセトンアルコール、イソホロン、シクロヘキサンノン等が挙げられる。
グリコールエーテル系溶剤としては、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、およびこれらモノエーテル類の酢酸エステル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、およびこれらモノエーテル類の酢酸エステル等が挙げられる。
脂肪族系溶剤としては、n−ヘプタン、n−ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等が挙げられる。
芳香族系溶剤としては、トルエン、キシレン等が挙げられる。
アルコール系溶剤としては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、シクロヘキサノール等が挙げられる。
カーボネート系溶剤としては、ジメチルカーボネート、エチルメチルカーボネート、ジ
−n−ブチルカーボネート等が挙げられる。
<ポリアミド樹脂>
バインダー樹脂としては、体積抵抗値と基材への密着性の観点からポリアミド樹脂が好ましい。体積抵抗値は、熱プレス中の樹脂分が流動しやすいため良好な結果となる。
本発明に用いられるポリアミド樹脂とは、基本的に二塩基酸とジアミンの重縮合、アミノカルボン酸の重縮合、或いはラクタムの開環重合などの各種反応で得られるアミド結合を有する高分子の総称であり、各種の変性ポリアミドをはじめ、一部水素添加された反応物で製造されたもの、他のモノマーが一部共重合された製造物、或いは各種添加剤などの他の物質が混合されたものなどを含む広い概念である。
本発明に用いられるポリアミド樹脂は上記のような条件が満たされれば特に限定されないが、ダイマー酸を主成分とする二塩基酸とポリアミン類とを縮合重合させて得られるダイマー酸変性ポリアミド樹脂が好ましい。ダイマー酸変性ポリアミド樹脂を製造する際のダイマー酸としては、トール油脂肪酸、大豆油脂肪酸などに含まれる天然の一塩基性不飽和脂肪酸を重合したダイマー酸が工業的に広く用いられるが、原理的には、飽和脂肪族、不飽和脂肪族、脂環式、或いは芳香族などの各種ジカルボン酸などであってもよい。
当該ダイマー酸の市販品としては、ハリダイマー200、300(ハリマ化成社製)、バ
ーサダイム228、216、エンポール1018、1019、1061、1062(コグニス社製)などが挙げられる。さらに、水素添加されたダイマー酸も使用でき、水添ダイマー酸の市販品としてはプリポール1009(クローダジャパン株式会社製)、エンポール1008(コグニス社製)などが挙げられる。
上記ダイマー酸以外に、適当な柔軟性を有するポリアミド樹脂にするため、二塩基酸として各種のジカルボン酸を用いることができる。ジカルボン酸としては、具体的には、シュウ酸、マロン酸、(無水)コハク酸、(無水)マレイン酸、グルタル酸、アジピン酸、ビメリン酸、スベリン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、1,3−又は1,4−シクロヘキサンジカルボン酸、1,18−オクタデカンジカルボン酸、1,16−ヘキサデカンジカルボン酸などが用いられる。
さらに、二塩基酸としてフェノール性水酸基を有するものも使用できる。フェノール性水酸基を有する二塩基酸を使用することによって、ポリアミド樹脂の側鎖にフェノール性水酸基を導入することができ、硬化剤との反応に利用することができる。
フェノール性水酸基を有する二塩基酸としては、
2−ヒドロキシイソフタル酸、4−ヒドロキシイソフタル酸、5−ヒドロキシイソフタル酸等のヒドロキシイソフタル酸、
2,5−ジヒドロキシイソフタル酸、2,4−ジヒドロキシイソフタル酸、4,6−ジヒドロキシイソフタル酸等のジヒドロキシイソフタル酸、
2−ヒドロキシテレフタル酸、2,3−ジヒドロキシテレフタル酸、2,6−ジヒドロキシテレフタル酸等のジヒドロキシテレフタル酸、
4−ヒドロキシフタル酸、3−ヒドロキシフタル酸等のヒドロキシフタル酸、
3,4−ジヒドロキシフタル酸、3,5−ジヒドロキシフタル酸、4,5−ジヒドロキシフタル酸、3,6−ジヒドロキシフタル酸等のジヒドロキシフタル酸などが挙げられる。
更にこれらの酸無水物や例えば多塩基酸メチルエステルのようなエステル誘導体なども挙げられる。
なかでも、共重合性、入手の容易さなどの点から、5−ヒドロキシイソフタル酸が好ましい。
さらに、加熱時に適当な流動性を有するポリアミド樹脂にするため、必要に応じて各種のモノカルボン酸を用いる。モノカルボン酸としては、具体的には、プロピオン酸、酢酸、カプリル酸(オクタン酸)、ステアリン酸、オレイン酸などが用いられる。
上記ダイマー酸変性ポリアミド樹脂を製造する際の反応物としてのポリアミン類は、例えば、脂肪族、脂環式、芳香族などの各種ジアミン、トリアミン、ポリアミンなどである。上記ジアミンの具体例としては、エチレンジアミン、プロパンジアミン、ブタンジアミン、トリエチレンジアミン、テトラエチレンジアミン、ヘキサメチレンジアミン、p−又はm−キシレンジアミン、4,4’−メチレンビス(シクロヘキシルアミン)、2,2−ビス−(4−シクロヘキシルアミン)、ポリグリコールジアミン、イソホロンジアミン、1,2−、1,3−又は1,4−シクロヘキサンジアミン、1,4−ビス−(2’−アミノエチル)ベンゼン、N−エチルアミノピペラジン、ピペラジンなどが挙げられる。
また、トリアミンにはジエチレントリアミンなどが挙げられ、ポリアミンにはトリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミンなどが挙げられる。さらに、二量体化された脂肪族のニトリル基を変換して水素還元して得られたダイマージアミンも使用することができる。
また、ポリアミン化合物としては、炭素数20〜48の環状または非環状の炭化水素基を有する多塩基酸化合物のカルボシキル基をアミノ基に転化した化合物が挙げられ、市販品の例としては例えば、クローダジャパン株式会社製の「プリアミン1071」「プリアミ
ン1073」「プリアミン1074」「プリアミン1075」や、コグニスジャパン株式会社製の「バーサミン551」などが挙げられる。
ジアミンにはアルカノールアミンを併用してもよい。アルカノールアミンにはエタノールアミン、プロパノールアミン、ジエタノールアミン、ブタノールアミン、2−アミノ−2−メチル−1−プロパノール、2−(2−アミノエトキシ)エタノール等が挙げられる。また、酸素を骨格に有するポリエーテルジアミンを用いることができる。このポリエーテルは一般式H2N−R1−(RO)n−R2−NH2 (式中、nは2〜100であり、R1、R2は炭素原子
数が1〜14個であるアルキル基または脂環式炭化水素基であり、Rは炭素原子数が1〜
10個であるアルキル基または脂環式炭化水素基である。アルキル基は直鎖状であっても分岐鎖状であってもよい。)で表すことができる。このエーテルジアミンとしてはポリオキシプロピレンジアミン等が挙げられ、市販品としてはジェファーミン類(サンテクノケミカル社製)がある。また、ビス−(3−アミノプロピル)−ポリテトラヒドロフランも挙げることができる。
上記ポリアミン類とダイマー酸或いは各種ジカルボン酸とは常法により加熱縮合され、脱水を伴ったアミド化工程によりダイマー酸変性ポリアミド樹脂をはじめとする各種ポリアミド樹脂が製造される。一般に、反応温度は100〜300℃程度、反応時間は1〜8時間程度である。
バインダー樹脂としては、体積抵抗値と基材への密着性および耐久性の観点から、イソシアネート基と反応可能な官能基を有する、ポリエーテル、ポリエステル、ポリカーボネート、およびポリブタジエンから選ばれる少なくとも1種の構造を側鎖に有するビニル系重合体(A1)を含むことも好ましい。体積抵抗値は、熱プレス中の樹脂分が流動しやすいため良好な結果となる。
(重合体(A1))
重合体(A1)とは、エチレン性不飽和二重結合を有する単量体を重合させて得られるビニル系共重合体の主鎖に、イソシアネート基と反応可能な官能基を有する、ポリエーテル、ポリエステル、ポリカーボネート、またはポリブタジエンから選ばれる少なくとも1種の構造を側鎖として導入した、ポリエーテル、ポリエステル、ポリカーボネート、またはポリブタジエングラフトビニル系重合体をいう。
イソシアネート基と反応可能な官能基としては、水酸基、アミノ基、カルボキシル基、エポキシ基、N−メチロール基、N−アルコキシメチル基等が挙げられるが、反応性の点で水酸基が好適である。
側鎖の導入方法は、特に限定されることはないが、例えば、不飽和二塩基酸とエチレン性不飽和二重結合を有する他の単量体との共重合体(f)を合成し、共重合体(f)のカルボン酸または無水カルボン酸部分と、カルボキシル基と反応可能な官能基と、イソシアネート基と反応可能な官能基とを有する、ポリエーテル、ポリエステル、ポリカーボネート、またはポリブタジエンから選ばれる少なくとも1種(g)のカルボキシル基と反応可能な官能基とを縮合反応させることにより導入することができる。
また、より高い強靱性、耐久性を必要とする用途に用いる場合には、より高い架橋密度を得る為に、ビニル系重合体主鎖に直接、イソシアネートと反応可能な官能基を導入することが望ましい。その場合、重合体(A1)は、不飽和二塩基酸(f1)、イソシアネートと反応可能な官能基とエチレン性不飽和二重結合を有する(f1)以外の単量体(f2)、及びエチレン性不飽和二重結合を有する(f1)および(f2)以外の単量体(f3)の共重合体(f)と、カルボキシル基と反応可能な官能基と、イソシアネート基と反応可能な官能基とを有する、ポリエーテル、ポリエステル、ポリカーボネート、またはポリブタジエンから選ばれる少なくとも1種(g)との縮合反応により得ることができる。
共重合体(f)の合成に使用可能な不飽和二塩基酸(f1)の例としては、マレイン酸、無水マレイン酸、フマル酸、メサコン酸、シトラコン酸、イタコン酸、クロトン酸、ジフ
ェニルメタン−ジ−γ−ケトクロトン酸等が挙げられる。
不飽和二塩基酸(f1)は、要求性能に応じて、1種、または2種以上を混合して用いることができる。また、共重合体(f)の原料となる単量体中の不飽和二塩基酸(f1)の割合は、好ましくは0.01〜30重量%、更に好ましくは0.05〜10重量%である。
イソシアネートと反応可能な官能基とエチレン性不飽和二重結合を有する(f1)以外の単量体(f2)としては、イソシアネート基と反応可能な官能基を有する(メタ)アクリル系単量体、ビニル単量体等を用いることができる。中でも、反応性の点で(メタ)アクリル系単量体が好適である。
イソシアネート基と反応可能な官能基としては、水酸基、アミノ基、カルボキシル基、エポキシ基、N−メチロール基、N−アルコキシメチル基等が挙げられるが、反応性の点で水酸基が好適である。
水酸基を有する(メタ)アクリル系単量体としては、2−ヒドロキシエチル(メタ)アクリレート、1−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリテトラメチレングリコールモノ(メタ)アクリレート等が挙げられる。
アミノ基を有する(メタ)アクリル系単量体としては、メチルアミノエチル(メタ)アクリレート、エチルアミノエチル(メタ)アクリレート、ブチルアミノエチル(メタ)アクリレート、t−ブチルアミノエチル(メタ)アクリレート等のモノアルキルアミノアルキル(メタ)アクリレート、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノ(メタ)アクリレート、N,N−ジブチルアミノエチル(メタ)アクリレート等のN,N−ジアルキルアミノアルキル(メタ)アクリレート等が挙げられる。
カルボキシル基を有する(メタ)アクリル系単量体としては、アクリル酸、メタクリル酸等が挙げられる。
エポキシ基を有する(メタ)アクリル系単量体としては、グリシジル(メタ)アクリレート等が挙げられる。
N−メチロール基を有する(メタ)アクリル系単量体としては、N−メチロール(メタ)アクリルアミド等が挙げられる。
N−アルコキシメチル基を有する(メタ)アクリル系単量体としては、N−メトキシメチル(メタ)アクリルアミド、N−エトキシメチル(メタ)アクリルアミド、N−プロポキシメチル(メタ)アクリルアミド、N−ブトキシメチル(メタ)アクリルアミド等のN−モノアルコキシメチル基を有する(メタ)アクリルアミド、N,N−ジメチロール(メタ)アクリルアミド、N,N−ジ(メトキシメチル)(メタ)アクリルアミド、N,N−ジ(エトキシメチル)(メタ)アクリルアミド、N,N−ジ(プロポキシメチル)(メタ)アクリルアミド、N,N−ジ(ブトキシメチル)(メタ)アクリルアミド等のN,N−ジアルコキシメチル基を有する(メタ)アクリルアミド等が挙げられる。
ビニル単量体としては、ヒドロキシスチレン、ビニルアルコール等が挙げられる。
イソシアネートと反応可能な官能基とエチレン性不飽和二重結合を有する(f1)以外の単量体(f2)は、要求性能に応じて、1種、または2種以上を混合して用いることができる。また、共重合体(f)の原料となる単量体中の単量体(f2)の割合は、好ましくは0.01〜50重量%、更に好ましくは0.1〜20重量%、特に好ましくは0.1〜10重量%である。
エチレン性不飽和二重結合を有する(f1)および(f2)以外の単量体(f3)としては、(メタ)アクリル系単量体、芳香族ビニル単量体、オレフィン系炭化水素単量体、ビニルエーテル単量体等を用いることができる。
(メタ)アクリル系単量体としては、メチル(メタ)アクリレート、エチル(メタ)アク
リレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。
芳香族ビニル単量体としては、スチレン、メチルスチレン、エチルスチレン等が挙げられる。
オレフィン系炭化水素単量体としては、エチレン、プロピレン、ブタジエン、イソブチレン、イソプレン、1,4−ペンタジエン等が挙げられる。
ビニルエーテル単量体の例としては、ビニルメチルエーテルが挙げられる。
エチレン性不飽和二重結合を有する(f1)および(f2)以外の単量体は、要求性能に応じて、1種、または2種以上を混合して用いることができる。
共重合体(f)は、公知の方法、例えば、溶液重合で得ることができる。溶剤としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコールメチルエーテル、ジエチレングリコールメチルエーテルなどのアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルなどのエーテル類、ヘキサン、ヘプタン、オクタンなどの炭化水素類、ベンゼン、トルエン、キシレン、クメンなどの芳香族類、酢酸エチル、酢酸ブチルなどのエステル類などの使用が可能である。溶剤は2種以上を混合して使用してもよい。
合成時の単量体の仕込み濃度は、0〜80重量%が好ましい。
重合開始剤としては、過酸化物またはアゾ化合物、例えば、過酸化ベンゾイル、アゾイソブチルバレロニトリル、アゾビスイソブチロニトリル、ジt−ブチルペルオキシド、t−ブチルペルベンゾエート、t−ブチルペルオクトエート、クメンヒドロキシペルオキシド等を使用することができ、重合温度は、50〜200℃、特に70〜140℃が好ましい。
共重合体(f)のポリスチレン換算の重量平均分子量は、好ましくは5,000〜500,000、更に好ましくは10,000〜100,000である。
化合物(g)としては、例えば、直鎖の末端または分岐した末端に、カルボキシル基と反応可能な官能基と、イソシアネート基と反応可能な官能基とをそれぞれ1個以上ずつ有するポリエーテル、ポリエステル、ポリカーボネート、またはポリブタジエンを用いることができる。中でも、熱プレス後に十分な塗膜強度を得るためにはポリエステルが好適である。
化合物(g)のカルボキシル基と反応可能な官能基としては、水酸基、エポキシ基、アミノ基、イソシアネート基等が挙げられるが、反応性の点で水酸基が好適である。また、化合物(g)のイソシアネート基と反応可能な官能基としては、水酸基、アミノ基、カルボキシル基、エポキシ基、N−メチロール基、N−アルコキシメチル基等が挙げられるが、反応性の点で水酸基が好適である。化合物(g)のカルボキシル基と反応可能な官能基と、イソシアネート基と反応可能な官能基とは、同一の官能基でも構わないし、異なる官能基でも構わない。
ポリエステルの例としては、ジカルボン酸の少なくとも1種と、多価アルコール、多価フェノール、またはこれらのアルコキシ変性物等のポリオールの少なくとも1種とをエステル化して得られる末端水酸基含有エステル化合物、及び末端の水酸基をアミノ基、カルボキシル基、エポキシ基、N−メチロール基、またはN−アルコキシメチル基に変性したエステル化合物などが挙げられる。
ジカルボン酸の例としては、テレフタル酸、イソフタル酸、オルトフタル酸、1,5−ナフタル酸、p−オキシ安息香酸、p−(ヒドロキシ)安息香酸、1,4−シクロヘキサンジカルボン酸、コハク酸、アジピン酸、アゼライ酸、セバシン酸、ドデカンジカルボン酸
等のジカルボン酸等が挙げられる。
多価アルコールの例としては、1,3−プロパンジオール、2−メチル−1,3−プロパンジオール、1,4−ブタンジオール、2−メチル−1,4−ブタンジオール、1,2−ジメチル−1,4−ブタンジオール、2−エチル−1,4−ブタンジオール、1,5−ペンタンジオール、2−メチル−1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、3−エチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、2−メチル−1,6−ヘキサンジオール、3−メチル−1,6−ヘキサンジオール、1,7−ヘプタンジオール、2−メチル−1,7−ヘプタンジオール、3−メチル−1,7−ヘプタンジオール、4−メチル−1,7−ヘプタンジオール、1,8−オクタンジオール、2−メチル−1,8−オクタンジオール、2−エチル−1,8−オクタンジオール、3−メチル−1,8−オクタンジオール、4−メチル−1,8−オクタンジオール、1,9−ノナンジオール、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、シクロヘキサンジメタノール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、トリメチロールプロパン、1,1,1−トリメチロールプロパンエチレングリコール、グリセリン、エリスリトール、キシリトール、ソルビトール、マンニトール等が挙げられる。
多価フェノールの例としては、カテコール、レゾルシン、ヒドロキノン、ヘキシルレゾルシン、トリヒドロキシベンゼン、ジメチロールフェノール等が挙げられる。
市販品の水酸基を2個以上有するポリエステル(ポリエステルポリオール)としては、例えば、株式会社クラレ製のクラレポリオールP−510、P−1010、P−1510、P−2010、P−3010、P−4010、P−5010、P−6010、P−2011、P−2013、P−520、P−1020、P−2020、P−1012、P−2012、P−530、P−1030、P−2030、PMHC−2050、PMHC−2050R、PMHC−2070、PMHC−2090、PMSA−1000、PMSA−2000、PMSA−3000、PMSA−4000、F−2010、F−3010、N−2010、PNOA−1010、PNOA−2014、O−2010、住友バイエルウレタン株式会社製のデスモフェン650MPA、651MPA/X、670、670BA、680X、680MPA、800、800MPA、850、1100、1140、1145、1150、1155、1200、1300X、1652、1700、1800、RD181、RD181X、C200、東洋紡績株式会社製のバイロン200、560、600、GK130、GK860、GK870、290、GK590、GK780、GK790等が挙げられる。
また、ポリエーテルの例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコール、及び末端の水酸基をアミノ基、カルボキシル基、エポキシ基、N−メチロール基またはN−アルコキシメチル基に変性したエーテル化合物が挙げられる。市販の水酸基を2個以上有するポリエーテル(ポリエーテルポリオール)としては、例えば、住友バイエルウレタン株式会社製のデスモフェン250U、550U、1600U、1900U、1915U、1920D等が挙げられる。
また、ポリカーボネートの例としては、下記一般式で表されるポリカーボネートジオール、及び末端の水酸基をアミノ基、カルボキシル基、エポキシ基、N−メチロール基またはN−アルコキシメチル基に変性したカーボネート化合物が挙げられる。
H−(O−R−OCO−)nR−OH
(R:アルキレン鎖、ジエチレングリコール等)
市販の水酸基を2個以上有するポリカーボネートとしては、例えば、株式会社クラレ製のクラレポリオールPNOC−1000、PNOC−2000、PMHC−2050、PMHC−2050R、PMHC−2070、PMHC−2070R、PMHC−2090R、C−2090等が挙げられる。
また、ポリブタジエンの例としては、α,ω−ポリブタジエングリコール、α、β−ポリブタジエングリコール、及び末端の水酸基をアミノ基、カルボキシル基、エポキシ基、N−メチロール基またはN−アルコキシメチル基に変性したブタジエン化合物が挙げられる。
市販の水酸基を2個以上有するポリブタジエンとしては、例えば、日本曹達株式会社製
のNISSO−PBG−1000、G−2000、G−3000、GI−1000、G
I−2000、GI−3000、GQ−1000、GQ−2000等が挙げられる。
市販のエポキシ基を2個以上有するポリブタジエンとしては、例えば、日本曹達株式会社製のNISSO−PBBF−1000、EPB−13、EPB−1054等が挙げられる。
化合物(g)のポリスチレン換算の重量平均分子量は、好ましくは500〜25,000、更に好ましくは1,000〜10,000である。化合物(g)の重量平均分子量が25,000を越える場合には、溶剤への溶解性、共重合体(f)との相溶性、共重合体(f)との反応性が低下し、また熱プレス後に十分な塗膜強度が得られなくなる。また、500未満の場合には、シートに充分な柔軟性を付与することができず、基材との密着性が低下する。
重合体(A1)は、共重合体(f)のカルボン酸または無水カルボン酸部分と、化合物(g)のカルボキシル基と反応可能な官能基とを、公知の方法、例えば、化合物(g)のカルボキシル基と反応可能な官能基が水酸基、エポキシ基の場合はエステル化、アミノ基の場合はアミド化、イソシアネート基の場合はイミド化して得ることができる。溶剤としては、共重合体(f)合成時の溶媒をそのまま用いることができ、更に、合成時の条件、塗工時の条件などに応じて、他の溶媒を加えたり、脱溶媒したりしても構わない。
反応触媒としては、例えば、トリエチルアミン、トリエタノールアミン、エチレンジアミンなどの3級アミンなどが用いられ、反応温度は、50〜300℃が好ましい。
共重合体(f)と化合物(g)との反応比率は、共重合体(f)のカルボン酸または無水カルボン酸1モルに対して、化合物(g)のカルボキシル基と反応可能な官能基が、0.01〜10モルとなるのが好ましく、0.1〜5モルとなるのが更に好ましく、0.5〜2モルとなるのが更に好ましい。化合物(g)の反応比率が10モルを越える場合には、樹脂組成物の塗工性が損なわれ、0.01モル未満の場合には、得られるシートの柔軟性が低下するため、基材との密着性が低下する。
また、共重合体(f)、化合物(g)は、それぞれ1種類ずつを用いる必要はなく、目的、必要物性に応じて、それぞれ複数種を用いても構わない。
また、重合体(A1)のポリスチレン換算の重量平均分子量は、好ましくは5,000〜500,000、更に好ましくは10,000〜100,000である。重合体(A1)の重量平均分子量が500,000を越える場合には、溶剤への溶解性が低下し、5,000未満の場合には、熱プレス後に十分な塗膜強度が得られなくなる。
(ポリイソシアネート化合物(D))
バインダー樹脂が、イソシアネート基と反応可能な官能基を有する、ポリエーテル、ポリエステル、ポリカーボネート、またはポリブタジエンから選ばれる少なくとも1種の構造を側鎖に有するビニル系重合体(A1)である場合には、さらに2個以上のイソシアネート基を有するポリイソシアネート化合物(D)を含有することが好ましい。
2個以上のイソシアネート基を有するポリイソシアネート化合物は、重合体(A1)と重合体(A1)を架橋させ、熱プレス後に十分な塗膜強度を得るために用いられる。
ポリイソシアネート化合物としては、屋外で使用する場合には、塗膜が経時で劣化することを防ぐために、脂環族または脂肪族の化合物のみを用いることが好ましい。
脂環族ポリイソシアネート化合物としては、例えば、イソホロンジイソシアネート、水添トリレンジイソシアネート、水添4,4’−ジフェニルメタンジイソシアネートなどが挙
げられる。
脂肪族ポリイソシアネート化合物としては、例えば、トリメチルヘキサメチレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネートなどが挙げられる。
芳香族ポリイソシアネート化合物としては、例えば、ジフェニルメタンジイソシアネート、トルイレンジイソシアネート、ナフチレン−1,5−ジイソシアネート、o−キシレンジイソシアネート、m−キシレンジイソシアネート、p−キシレンジイソシアネート、トリフェニルメタントリイソシアネート、ポリメチレンポリフェニルイソシアネートなどが挙げられる。
ポリイソシアネート化合物としては、上記化合物とグリコール類またはジアミン類との両末端イソシアネートアダクト体、ビウレット変性体、イソシアヌレート変性体を用いても構わない。
特に、ポリイソシアネート化合物がイソシアヌレート変性体、特にイソシアヌレート環含有トリイソシアネートを含む場合には、熱プレス後に十分な塗膜強度が得ることができるため、好ましい。イソシアヌレート環含有トリイソシアネートとして具体的には、イソシアヌレート変性イソホロンジイソシアネート(例えば、住友バイエルウレタン株式会社製のデスモジュールZ4470)、イソシアヌレート変性ヘキサメチレンジイソシアネート(例えば、住友バイエルウレタン株式会社製のスミジュールN3300)、イソシアヌレート変性トルイレンジイソシアネート(例えば、住友バイエルウレタン株式会社製のスミジュールFL−2、FL−3、FL−4、HLBA)が挙げられる。
また、上記ポリイソシアネート化合物のイソシアネート基を、例えば、メタノール、エタノール、n−ペンタノール、エチレンクロルヒドリン、イソプロピルアルコール、フェノール、p−ニトロフェノール、m−クレゾール、アセチルアセトン、アセト酢酸エチル、ε−カプロラクタムなどのブロック剤と反応させてブロック化した、ブロック変性体を用いても構わない。
更に、ポリイソシアネート化合物として、イソシアネート基と反応可能な官能基を2個以上有するポリエーテル、ポリエステル、ポリカーボネート、またはポリブタジエンから選ばれる少なくとも1種(h)と両末端にイソシアネート基を有するジイソシアネート化合物(i)とを反応させてなる、両末端イソシアネートプレポリマーを用いても構わない。
ポリイソシアネート化合物が上記両末端イソシアネートプレポリマーを含む場合には、少量で柔軟性が得られ、基材との密着性が良好になる。
化合物(h)としては、化合物(g)と同様の化合物を用いることができる。化合物(i
)としては、例えば、トルイレンジイソシアネート、ナフチレン−1,5−ジイソシアネート、o−トルイレンジイソシアネート、ジフェニルメタンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、m−キシレンジイソシアネート、p−キシレンジイソシアネート、リジンジイソシアネート、水添4,4’−ジフェニルメタンジイソシアネート、水添トリレンジイソシアネート等が挙げられる。
両末端イソシアネートプレポリマーは、化合物(h)のイソシアネート基と反応可能な官能基1モルに対して、化合物(i)のイソシアネート基が1モルより大きくなるような比
率で化合物(h)と化合物(i)を混合し、加熱撹拌して反応させることにより得られる。プレポリマーのポリスチレン換算の重量平均分子量は、好ましくは500〜50,000、更に好ましくは1,000〜50,000、特に好ましくは1,000〜10,000である。
ポリイソシアネート化合物(D)は、要求性能に応じて、重合体(A1)の官能基の総数に対して、イソシアネート基の総数が、好ましくは0.1倍〜5.0倍、更に好ましくは0.5倍〜3.0倍、特に好ましくは0.8〜2.0倍となるような比率で、1種、または2種以上を混合して用いることができる。
<導電性付与剤(B)>
本発明の導電性付与剤は、膨張化黒鉛(B1)を含むことを特徴とする。
(膨張化黒鉛(B1))
本発明で用いられる膨張化黒鉛とは、鱗片状黒鉛を化学処理した膨張黒鉛(膨張性黒鉛ともいう;ExpandableGraphite)を、熱処理して膨張化させた後、微細化したものである。なお、微細化前に圧延しグラファイトシート化したものを粉砕して得られた膨張化黒鉛粉末も含む。
膨張化黒鉛としては、従来公知の膨張化黒鉛から適宜選択され得る。市販の膨張化黒鉛を用いてもよい。市販の膨張化黒鉛としては、例えば、伊藤黒鉛工業社製のEC1500、EC1000、EC500、EC300、EC100、EC50が挙げられる(いずれも商品名)。
膨張化黒鉛の形状に関しては、特に限定されるものではない。例えばさらに薄片状に処理された薄片状の膨張化黒鉛などが挙げられる。
膨張化黒鉛は、他の黒鉛と比べて少量の含有量で高い導電性を発現することが可能となっている。例えば、一般的な鱗状黒鉛よりも少量で高い導電性を発現する傾向にある。
膨張化黒鉛の平均粒径は、10μm〜200μmであり、25〜150μmがより好ましい。10μm未満では、十分な導電性が得られず、200μm以上では、導電性組成物の基材への密着性および塗工性が不十分となるために好ましくない。
また、D10(μm)とD90(μm)の粒径の差分が、60μm以上であることが好ましい。
なお本発明における「平均粒径」とはレーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。D10(μm)とD90(μm)は、積算値10%、90%の粒径を意味する。
測定は、以下の条件で行うものとする。
測定機器:マイクロトラックMT3300EXII(マイクロトラック・ベル株式会社)
測定サンプル調整方法:黒鉛0.63g、トルエン11.87gをマヨネーズ瓶(M-70
)に添加した後、遊星攪拌(株式会社シンキー製:あわとり錬太郎、攪拌時間:3分)を行い分散液を作製し、測定を実施する。
導電性組成物の固形分量を100重量%とした時の導電性付与剤(B1)の含有量は、40重量%〜90重量%であり、より好ましくは、50重量%〜85重量%である。40重量%未満であると導電性が十分でなく、90重量%を越えると、基材への密着性および塗工性が不十分となる。
(カーボンブラック(B2))
本発明の導電性付与剤としては、さらにカーボンブラックを併用することができる。膨張化黒鉛とカーボンブラックを併用することで、カーボンブラックが膨張化黒鉛の導電パスをつなぐ役割を果たし、熱プレス工程を経なくても高い導電性を発現する傾向にある。
カーボンブラックは、アセチレンブラック、ケッチェンブラック、ファーネストブラック等従来公知の導電性カーボンの使用が可能である。
膨張化黒鉛(B1)とカーボンブラック(B2)の重量組成比は、膨張化黒鉛、カーボンブラックの総重量を100重量%とした時、膨張化黒鉛は、60〜90重量%、カーボンブラックは10〜40重量%が好ましい。
(その他の導電性付与剤)
その他の導電性付与剤としては、膨張化黒鉛以外の黒鉛、カーボンナノチューブ、グラフェン、酸化グラフェン、コークスが挙げられる。ただし、物性を損なわない範囲であればこの限りではない。また、1種または2種以上を併用することもできる。
<有機溶剤(C)>
有機溶剤は、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール
メチルエーテル、ジエチレングリコールメチルエーテル等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、ヘキサン、ヘプタン、オクタン等の炭化水素類、ベンゼン、トルエン、キシレン、クメン等の芳香族類、酢酸エチル、酢酸ブチル等のエステル類などの内から導電性組成物の組成に応じ適当なものが使用できる。また、溶剤は2種以上用いてもよい。
尚、スクリーン印刷などのインキ組成物に一定以上の粘性が要求される印刷塗工方式を採用する場合、有機溶剤(C1)の25℃の時の粘度は、30mPa・s〜75000mPa・sが好ましい。30mPa・s以上であることが、塗工性の観点から好ましく。750
00mPa・s以下であることが、分散性の観点から好ましい。例えば、ターピネオール
、ジヒドロターピネオール、2,4-ジエチル-1,5-ペンタンジオール、1、3−ブチレ
ングリコール、イソボルニルシクロヘキサノールが挙げられる。ここで示すところの高粘度溶剤は、二種以上用いて良いし、メチルエチルケトン、トルエン、イソプロピルアルコールのような25℃の時の粘度が30mPa・s未満の低粘度溶剤と併用して使用するこ
とも可能である。
ここで示す粘度とは、以下の測定方法で得られた数値のことを示す。
アントンパール・ジャパン社製のレオメーター(MCR302)を用いて測定した。測定方法としては、測定サンプルを設置後以下の条件で測定し、せん断開始から60秒後の数値を読み取ることとする。
測定治具:コーンプレートCP25−2(この治具で測定できない場合は、コーンプレートCP50−1を使用する)
回転数:1000(1/sec)
プレート温度:25℃
<その他の成分>
本発明の導電性組成物には、必要に応じて、本発明による効果を妨げない範囲で、紫外線吸収剤、紫外線安定剤、ラジカル補足剤、充填剤、チクソトロピー付与剤、老化防止剤、酸化防止剤、帯電防止剤、難燃剤、熱伝導性改良剤、可塑剤、ダレ防止剤、防汚剤、防腐剤、殺菌剤、消泡剤、レベリング剤、ブロッキング防止剤、硬化剤、増粘剤、顔料分散剤、シランカップリング剤等の各種の添加剤を添加してもよい。
<硬化剤>
硬化剤としては、バインダー樹脂の有する官能基と反応するものであれば、特に限定されないが、多官能エポキシ化合物、多官能アジリジン化合物、多官能イソシネート化合物等が挙げられる。
<導電性組成物>
本発明の導電性組成物は、上記、バインダー樹脂、膨張化黒鉛、有機溶剤を必須成分とし、更に、必要に応じて、その他の成分を配合後、均一に分散することで製造することができる。
分散方法は、バインダー樹脂を溶剤に溶解し、導電性フィラーを添加した後、遊星攪拌や三本ロール、二本ロール、スキャンデックス、ビーズミルによって行う。使用する溶剤はバインダー樹脂を溶かすものであれば特に制限されない。物性を低下させない範囲であれば上記以外の分散方法を用いても良い。ただし、硬化剤を使用する場合は、硬化剤の添加は、導電性組成物の分散後に行うものとする。硬化剤添加後は、遊星攪拌、ミックスローター、ディスパー等によって適宜混合する。混合方法は特に限定されない。
<基材>
基材は、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)
、ポリイミド、ポリ塩化ビニル、ポリアミド、ナイロン、OPP(延伸ポリプロピレン)、CPP(未延伸ポリプロピレン)などが挙げられるが特に限定されることはない。
<導体膜>
本発明の導体膜は導電性組成物を塗工することで形成される。導電性組成物の基材への塗工方法を以下に示す。塗工方法は、公知の方法を用いればよく、インクジェット法、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、反転印刷法等を挙げることができるが、特に限定されない。乾燥条件は、特に制限はなく、熱風乾燥、赤外線や減圧法を利用したものが挙げられる。熱風乾燥の場合、膜厚や選択した有機溶剤にもよるが、通常60〜200℃程度で乾燥させる。また、基材としてPETやPEN等のプラスチックフィルムを用いる場合は、基材が熱で変形する場合があるため、60〜150℃がより好ましい。
組成物を導体配線として使用する場合、導電性と取扱い性の観点から、塗工後の膜厚は、50〜1000μmが好ましい。
塗工後の導電性組成物をさらに低抵抗化するためには、熱プレス処理をすることが好ましい。熱プレス処理後の体積抵抗値は、10−4Ωcm以上、10−2Ωcm未満が好ましい。
<熱プレス方法>
熱プレス方法は、導電性組成物と基材にダメージを与えない範囲であればどのような方法でも良い。例えば、ロール加圧法、プレス加圧法等が挙げられる。圧力、温度、プレス時間、ロール速度は本発明の物性を損なわない範囲であれば、特に限定されない。温度に関しては、フィルム基材を使用する場合、熱で変形する可能性があるため、50℃〜200℃が好ましい。
組成物を導体配線と使用する場合、熱プレス後の膜厚は、30〜200μmが好ましい。
以下に、実施例により、本発明をさらに具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例における、「部」および「%」は、「重量部」および「重量%」をそれぞれ表し、Mwは重量平均分子量、Tgはガラス転移温度
を意味する。
<重量平均分子量(Mw)の測定方法>
Mwの測定は東ソー株式会社製GPC(ゲルパーミエーションクロマトグラフィー)「HPC−8020」を用いた。GPCは溶媒(THF;テトラヒドロフラン)に溶解した物質をその分子サイズの差によって分離定量する液体クロマトグラフィーである。本発明における測定は、カラムに「LF−604」(昭和電工株式会社製:迅速分析用GPCカラム:6mmID×150mmサイズ)を直列に2本接続して用い、流量0.6ml/min、カラム温度40℃の条件で行い、重量平均分子量(Mw)の決定はポリスチレン換算で行った。
<酸価の測定>
共栓三角フラスコ中に試料約1gを精密に量り採り、トルエン/エタノール(容量比:トルエン/エタノール=2/1)混合液100mlを加えて溶解する。これに、フェノールフタレイン試液を指示薬として加え、30秒間保持する。その後、溶液が淡紅色を呈するまで0.1Nアルコール性水酸化カリウム溶液で滴定する。酸価は次式により求めた(単位:mgKOH/g)。酸価(mgKOH/g)=(5.611×a×F)/S
ただし、
S:試料の採取量(g)
a:0.1Nアルコール性水酸化カリウム溶液の消費量(ml)
F:0.1Nアルコール性水酸化カリウム溶液の力価
<水酸基価の測定方法>
水酸基価は、水酸基含有樹脂1g中に含まれる水酸基の量を、水酸基をアセチル化させたときに水酸基と結合した酢酸を中和するために必要な水酸化カリウムの量(mg)で表したものである。水酸基価は、JISK0070に準じて測定した。本発明において、水酸基価を算出する場合には、下記式に示す通り、酸価を考慮して計算する。
<水酸基価の測定>
共栓三角フラスコ中に試料約1gを精密に量り採り、トルエン/エタノール(容量比:トルエン/エタノール=2/1)混合液100mlを加えて溶解する。更にアセチル化剤(無水酢酸25gをピリジンで溶解し、容量100mlとした溶液)を正確に5ml加え、約1時間攪拌した。これに、フェノールフタレイン試液を指示薬として加え、30秒間持続する。その後、溶液が淡紅色を呈するまで0.1Nアルコール性水酸化カリウム溶液で滴定する。
水酸基価は次式により求めた(単位:mgKOH/g)。
水酸基価(mgKOH/g)=[{(b−a)×F×28.05}/S]+D
ただし、
S:試料の採取量(g)
a:0.1Nアルコール性水酸化カリウム溶液の消費量(ml)
b:空実験の0.1Nアルコール性水酸化カリウム溶液の消費量(ml)
F:0.1Nアルコール性水酸化カリウム溶液の力価
D:酸価(mgKOH/g)
<ガラス転移温度の測定方法>
溶剤を乾燥除去したバインダー樹脂で、メトラー・トレド(株)製「DSC−1」を使用し、−80〜150℃まで2℃/分で昇温して測定した。
<バインダー樹脂A−1の合成>
攪拌機、温度計、還流冷却器、滴下装置、窒素導入管を備えた反応容器に、テレフタル酸とアジピン酸と3−メチル−1,5−ペンタンジオールとから得られるポリエステルポリオール((株)クラレ製「クラレポリオールP−2011」、Mn=2011)455.5部、ジメチロールブタン酸16.5部、イソホロンジイソシアネート105.2部、トルエン140部を仕込み、窒素雰囲気下90℃3時間反応させ、これにトルエン360部を加えてイソシアネート基を有するウレタンプレポリマー溶液を得た。次に、イソホロンジアミン19.9部、ジ−n−ブチルアミン0.63部、2−プロパノール294.5部、トルエン335.5部を混合したものに、得られたイソシアネート基を有するウレタンプレポリマー溶液969.5部を添加し、50℃で3時間続いて70℃2時間反応させ、トルエン126部、2−プロパノール54部で希釈し、Mw=61,000、酸価=10mgKOH/g、ウレタンプレポリマーの両末端に有する遊離のイソシアネート基に対してポリアミノ化合物および反応停止剤中のアミノ基の合計当量は0.98である、ポリウレタン樹脂A−1の溶液を得た。
<バインダー樹脂A−2の合成>
攪拌機、温度計、還流冷却器、滴下装置、窒素導入管を備えた反応容器に、ポリカーボネートジオール((株)クラレ製「クラレポリオールC−1090」、Mn=981)390.2部、ジメチロールブタン酸16.1部、イソホロンジイソシアネート157.7部、トルエン40部を仕込み、窒素雰囲気下90℃3時間反応させ、これにトルエン300部を加えてイソシアネート基を有するウレタンプレポリマー溶液を得た。次に、イソホロ
ンジアミン29.0部、ジ−n−ブチルアミン3.3部、2−プロパノール342部、トルエン396部を混合したものに、得られたイソシアネート基を含むウレタンプレポリマー溶液813.7部を添加し、70℃3時間反応させ、トルエン144部、2−プロパノール72部で希釈し、Mw=48,000、酸価=10mgKOH/g、ウレタンプレポリマーの両末端に有する遊離のイソシアネート基に対してポリアミノ化合物および反応停止剤中のアミノ基の合計当量は1.004である、ポリウレタン樹脂A−2の溶液を得た。
<バインダー樹脂A−3の合成>
攪拌機、温度計、還流冷却器、滴下装置、窒素導入管を備えた反応容器に、ポリエーテルポリオール((株)保土谷化学工業(株)製「PTG−2000SN」、Mn=2000)455.5部、ジメチロールブタン酸16.5部、イソホロンジイソシアネート105.2部、トルエン140部を仕込み、窒素雰囲気下90℃3時間反応させ、これにトルエン360部を加えてイソシアネート基を有するウレタンプレポリマー溶液を得た。次に、イソホロンジアミン19.9部、ジ−n−ブチルアミン0.63部、2−プロパノール294.5部、トルエン335.5部を混合したものに、得られたイソシアネート基を有するウレタンプレポリマー溶液969.5部を添加し、50℃で3時間続いて70℃2時間反応させ、トルエン126部、2−プロパノール54部で希釈し、Mw=61,000、酸価=10mgKOH/g、ウレタンプレポリマーの両末端に有する遊離のイソシアネート基に対してポリアミノ化合物および反応停止剤中のアミノ基の合計当量は0.98である、ポリウレタン樹脂A−3の溶液を得た。
<バインダー樹脂A−4の合成>
攪拌機、温度計、還流冷却器、滴下装置、窒素導入管を備えた反応容器に、テレフタル酸とアジピン酸と3−メチル−1,5−ペンタンジオールとから得られるポリエステルポリオール((株)クラレ製「クラレポリオールP−2011」、Mn=2011)455.5部、ジメチロールブタン酸16.5部、イソホロンジイソシアネート105.2部、トルエン140部を仕込み、窒素雰囲気下90℃3時間反応させ、これにトルエン360部を加えてポリウレタン樹脂A−4の溶液を得た。
<バインダー樹脂A−5の合成>
撹拌機、還流冷却管、窒素導入管、導入管、温度計を備えた4口フラスコに、多塩基酸化合物としてプリポール1009を156.2g、5−ヒドロキシイソフタル酸を5.5g、ポリアミン化合物としてプリアミン1074を146.4g、イオン交換水を100g仕込み、発熱の温度が一定になるまで撹拌した。温度が安定したら110℃まで昇温し、水の流出を確認してから、30分後に温度を120℃に昇温し、その後、30分ごとに10℃ずつ昇温しながら脱水反応を続けた。温度が230℃になったら、そのままの温度で3時間反応を続け、約2kPaの真空下で、1時間保持し、温度を低下させた。最後に、酸化防止剤を添加し、重量平均分子量24000、酸価13.2KOHmg/g、水酸基価5
.5KOHmg/g、ガラス転移温度―32℃のポリアミド樹脂A−5を得た。
<共重合体fの合成>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つ口フラスコに、無水マレイン酸(2部)、スチレン(2部)、メチルメタクリレート(36部)、n−ブチルメタクリレート(60部)、トルエン(50部)、酢酸ブチル(50部)を仕込み、窒素雰囲気下で撹拌しながら80℃まで昇温し、アゾビスイソブチロニトリルを0.7部加えて2時間重合反応を行い、次に、アゾビスイソブチロニトリルを0.15部加えてさらに2時間重合反応を行い、更にアゾビスイソブチロニトリルを0.15部を加えてさらに2時間重合反応を行い共重合体(f)の溶液を得た。得られた共重合体(f)の重量平均分子量(Mw)は5.1万、ガラス転移温度(Tg)は50℃であった。
<バインダー樹脂A-6(重合体A1)の合成>
共重合体(f)を重合した後、共重合体(f)を重合したフラスコに、化合物(g)(株式会社クラレ製「クラレポリオールP−3010」、Mw=3000)を以下に示す固形分比(共重合体(f)/化合物(g)=100/35)となるよう添加し、窒素雰囲気下で撹
拌しながら80℃まで昇温し、トリエチルアミン(TEA)を以下に示す固形分比(共重合体(f)/化合物(g)/TEA=100/35/0.5)で加え、6時間加熱撹拌を行い、バインダー樹脂(A-6)溶液を得た。得られたバインダー樹脂(A−6)の重量平均分
子量(Mw)は5.3万、水酸基価(OHV)は12(mgKOH/g)であった。
<バインダー樹脂の調整>
実施例で使用するバインダー樹脂を以下に示す溶剤を使用して固形分率20%の溶液に調整した。混合溶媒の組成比は重量比で記載。

・バインダー樹脂A−1−1の溶液:バインダー樹脂A−1の溶液をトルエン/MEK(
メチルエチルケトン)/IPA(イソプロピルアルコール)(1/1/1)で希釈してバインダー樹脂A−1−1の溶液を得た。
・バインダー樹脂A−1−2の溶液:バインダー樹脂A−1の溶液をターピネオールで希釈してバインダー樹脂A−1−2の溶液を得た。
・バインダー樹脂A−1−3の溶液:バインダー樹脂A−1の溶液をターピネオール/イ
ソボルニルシクロヘキサノール(7/3)で希釈してバインダー樹脂A−1−3の溶液を
得た。
・バインダー樹脂A−1−4の溶液:バインダー樹脂A−1の溶液をEDGAC(ジエチレングリコールモノエチルエーテルアセテート)で希釈してバインダー樹脂A−1−4の溶液を得た。
・バインダー樹脂A−2−1の溶液:バインダー樹脂A−2の溶液をトルエン/MEK/IPA(1/1/1)で希釈してバインダー樹脂A−2−1の溶液を得た。
・バインダー樹脂A−3−1の溶液:バインダー樹脂A−3の溶液をトルエン/MEK/IPA(1/1/1)で希釈してバインダー樹脂A−3−1の溶液を得た。
・バインダー樹脂A−4−1の溶液:バインダー樹脂A−4の溶液をトルエン/MEK/IPA(1/1/1)で希釈してバインダー樹脂A−4−1の溶液を得た。
・バインダー樹脂A−5−1の溶液:バインダー樹脂A−5をトルエン/IPA(2/1)で希釈してバインダー樹脂A−5−1を得た。
・バインダー樹脂A−6−1の溶液:共重合体(f)の溶液をトルエン/酢酸ブチル(1/1)で希釈してバインダー樹脂A−6−1の溶液を得た。
・バインダー樹脂A−6−2の溶液:バインダー樹脂A-6(重合体A1)の溶液をトル
エン/酢酸ブチル(1/1)で希釈してバインダー樹脂A−6−2の溶液を得た。
・バインダー樹脂A−7−1の溶液:バインダー樹脂A−7(バイロン200(東洋紡株式会社製、ポリエステル樹脂))をトルエン/MEK(1/1)で希釈してバインダー樹
脂A−3−1の溶液を得た。
・バインダー樹脂A−8−1の溶液:バインダー樹脂A-8(PA6801(ヘンケル製
、ポリアミド樹脂))をターピネオールで希釈してバインダー樹脂A−8−1の溶液を得た。
・バインダー樹脂A−8−2の溶液:バインダー樹脂A-8(PA6801(ヘンケル製
、ポリアミド樹脂))をメンタノールで希釈してバインダー樹脂A−8−2の溶液を得た。
・バインダー樹脂A−8−3の溶液:バインダー樹脂A-8(PA6801(ヘンケル製
、ポリアミド樹脂))をターピネオール/イソボルニルシクロヘキサノール(6/4)で希釈してバインダー樹脂A−8−3の溶液を得た。
・バインダー樹脂A−8−4の溶液:バインダー樹脂A-8(PA6801(ヘンケル製
、ポリアミド樹脂))をターピネオール/イソボルニルシクロヘキサノール(5/5)で希釈してバインダー樹脂A−8−4の溶液を得た。
・バインダー樹脂A−9−1の溶液:バインダー樹脂A−9(BL−1(積水化学株式会社製、ポリビニルブチラール樹脂))をトルエン/MEK(1/1)で希釈してバインダー樹脂A−9−1の溶液を得た。
<実施例1>
バインダー樹脂A−1−1の溶液に導電性付与剤と有機溶剤を表1に示す種類と配合量
で添加し、最後に、その溶液と同重量のガラスビーズ(3mm)を加えて、スキャンデックスによる分散を行い、ビーズを除いた後、導電性組成物を得た。その組成物をPETフィルムにアプリケーター12milで塗工後、80℃で5分間乾燥させることで塗膜を得て、後述する方法に従い体積抵抗値を求めた。
別途、前記の塗膜を油圧ラミネータで熱プレス(120℃)して、後述する方法に従い各種評価を実施した。熱プレスする場合、必要に応じて剥離フィルム、剥離紙を塗工物の上に設置してもよい。その場合、物性評価前に剥離フィルムを剥がす。
1.熱プレス方法
以下に示す条件で塗膜の熱プレスを実施した。
使用油圧ラミネーター機:大成ラミネーター(株)製油圧ラミネーターNP500S型
ポンプ圧:2MPa
ロール速度:0.2m/min
上下ロール温度:120℃
2.体積抵抗値の測定
得られた組成物とPETフィルムの積層物を1.5cm×3cmに裁断し、低抵抗率計(株式会社三菱化学アナリテック製:ロレスターGXMCP−T700)を用いて組成物の体積抵抗値の測定を行った。「△」、「○」、「◎」評価の場合、実用上問題ない。
・プレス前塗膜の導電性判定基準
◎:体積抵抗値が10−3Ωcm以上、10−2Ωcm未満
○:体積抵抗値が10−2Ωcm以上、10−1Ωcm未満
×:体積抵抗値が10−1Ωcm以上
・熱プレス後塗膜の導電性判定基準
○:体積抵抗値が10−4Ωcm以上10−2Ωcm未満
△:体積抵抗値が10−2Ωcm以上、10−1Ωcm未満
×:体積抵抗値が10−1Ωcm以上
3.印刷塗工性評価
印刷塗工性の優劣を塗膜の空隙の有無で評価した。評価方法としては、熱プレス後の塗膜を蛍光灯の光で透かして見たときの空隙の多さの度合いで以下に示す三段階で評価を行った。
○:空隙なし
△:わずかに空隙があるが導電性の評価を行う分には問題ない程度
×:空隙が多数あり導電性の評価ができない
4.塗膜の密着性の評価
熱プレス後の基材からの剥離度合を以下の三段階で評価した。実用上、「△」以上なら問題ない。
○:剥がれなし
△:一部剥離
×:完全剥離
5.耐久性試験
耐久性の優劣を以下に示す方法で評価した。作製した熱プレス処理済みの塗膜を濃度3%の塩水に浸し、80℃下で5000時間放置した後、乾燥させてから、体積固有抵抗値の評価を行った。実用上「△」以上なら問題ない。(体積固有抵抗値の測定方法は前述と同様)
○:体積抵抗値上昇せず
△:体積抵抗値が上昇するが、10−2Ωcm未満の値を維持
×:体積抵抗値が10−2Ωcm以上まで上昇
<実施例2>
バインダー樹脂A−1−1に導電性付与剤と有機溶剤を表1に示す種類と配合量で添加し、その溶液と同重量のガラスビーズ(3mm)を加えて、スキャンデックスによる分散を行い、ビーズを除いた。次に、エポキシ樹脂(1031S)を表1に示す配合量で添加後、十分に攪拌して、導電性組成物を得た。以下、実施例1と同様に評価した。
<実施例3〜6>
表1に記載されている配合物の種類と配合量以外は、実施例1と同様に実施した。
<実施例7>
表1に示す組成にてバインダー樹脂A−6−1等を用いた以外は実施例1同様にして、導電性組成物を得、乾燥条件を110℃で5分間とした以外は、実施例1と同様にして評価した。
<実施例8>
バインダー樹脂A−6−2に導電性付与剤と有機溶剤を表1に示す種類と配合量で添加し、その溶液と同重量のガラスビーズ(3mm)を加えて、スキャンデックスによる分散を行い、ビーズを除いた。次に、イソシアネート化合物(Z4470)を表1に示す配合量で添加後、十分に攪拌して導電性組成物を得た。その組成物をPETフィルムにアプリケーター12milで塗工後、110℃で5分間乾燥させることで塗膜を得た。
さらに、得られた塗膜を油圧ラミネータで熱プレスし(120℃)、150℃10分間の加熱後、40℃で4日間エージングして硬化した後、各種評価を実施した。
<実施例9〜10>
表1に記載されている配合物の種類と配合量以外は、実施例1と同様に実施した。
<実施例11>
バインダー樹脂A−1−2に導電性付与剤と有機溶剤を表1に示す種類と配合量で添加し、三本ロールによる分散を行った。その導電性組成物をPETフィルムに対してシルクスクリーン(40メッシュ)で印刷後、100℃で10分間、150℃で60分間乾燥させることで、塗膜を得て、表1に該当する各種物性評価を実施した。さらに得られた塗膜を油圧ラミネーターで熱プレスして(120℃)、表1に該当する各種物性評価を実施した。なお、プレス前膜厚は250μm、プレス後膜厚は80μmとした。
<実施例12〜17>
表1に記載されている配合物の種類と配合量以外は、実施例11と同様に実施した。
<実施例18〜26>、<比較例1〜3>
表1に記載されている配合物の種類と配合量以外は、実施例1と同様に実施した。
<比較例4>
市販されている膜厚20μm程度の銅箔で耐久性試験を実施した。

Figure 0006897368


Figure 0006897368

Figure 0006897368
<導電性付与剤(B)>
(膨張化黒鉛(B1))
・LEP(日本黒鉛工業):平均粒径137μm
・CMX−40(日本黒鉛工業):平均粒径60μm
・GR−25(日本黒鉛工業):平均粒径31μm
・EC10(伊藤黒鉛工業):平均粒径190μm
・EC100(伊藤黒鉛工業):平均粒径190μm
・EC300(伊藤黒鉛工業):平均粒径50μm
・EC1500(伊藤黒鉛工業):平均粒径8μm
(鱗状黒鉛)
・CPB(日本黒鉛工業):平均粒径38μm
(薄片状黒鉛)
・UP−50N(日本黒鉛工業):平均粒径95μm
(カーボンブラック(B2))
・ECP600JD(ライオンスペシャリティケミカル)
・EC300JD(ライオンスペシャリティケミカル)
<有機溶剤(C)>
・トルエン:粘度0.66mPa・s
・MEK:0.49mPa・s
・IPA:2.00mPa・s
・酢酸ブチル:0.83mPa・s
・ターピネオール:53mPa・s
・ジヒドロターピネオール:50mPa・s
・イソボルニルシクロヘキサノール:70000mPa・s
・EDGAC:2.6mPa・s
<イソシアネート化合物>
・Z4470:イソシアヌレート変性イソホロンジイソシアネート(住化バイエルウレタン(株)製デスモジュール)(固形分70%)
<エポキシ樹脂>
・1031S:テトラキス(グリシジルオキシフェニル)エタン(ジャパンエポキシレジン(株))製「エピコート1031S」、エポキシ当量180〜220g/eq(固形分100%)
比較例1は、膨張化黒鉛の平均粒径が小さいため、低い導電性となっていた。比較例2、3は、膨張化黒鉛を使用していないために、低い導電性となっていた。比較例4は、耐久性試験の結果、銅箔表面に不導体が形成され、耐久性評価は、「×」となっていた。実施例1〜26は、平均粒径が大きい膨張化黒鉛と基材への良好な密着性と熱プレス後の十分な塗膜強度を兼ね備えたバインダー樹脂を使用しており、高い導電性と基材への良好な密着性を示した。

Claims (11)

  1. バインダー樹脂(A)と、導電性付与剤(B)と、有機溶剤(C)とを含む導電性組成物であって、導電性付与剤(B)が膨張化黒鉛(B1)を含み、膨張化黒鉛の平均粒径が10μm以上、200μm以下であって、導電性付与剤(B)の含有量が、組成物の固形分100重量%中、40重量%以上90重量%以下であって、
    該導電性組成物を基材に塗工した後、乾燥させて得られた導電膜の体積抵抗値が10 −3 Ωcm以上、10 −2 Ωcm未満であることを特徴とする導電性組成物。
  2. 膨張化黒鉛(B1)の平均粒径が25μm以上、150μm以下であることを特徴とする請求項1に記載の導電性組成物。
  3. バインダー樹脂(A)が、ポリウレタン樹脂を含むことを特徴とする請求項1または2に記載の導電性組成物。
  4. バインダー樹脂(A)が、ポリアミド樹脂を含むことを特徴とする請求項1または2に記載の導電性組成物。
  5. バインダー樹脂(A)が、イソシアネート基と反応可能な官能基を有する、ポリエーテル、ポリエステル、ポリカーボネート、およびポリブタジエンから選ばれる少なくとも1種の構造を側鎖に有するビニル系重合体(A1)を含むことを特徴とする請求項1または2に記載の導電性組成物。
  6. 更に、導電性付与剤(B)が、カーボンブラック(B2)を含み、膨張化黒鉛(B1)とカーボンブラック(B2)との合計100質量%に対して、カーボンブラック(B2)の含有率が、10%〜40%であることを特徴とする請求項1〜いずれかに記載の導電性組成物。
  7. 有機溶剤(C)が、25℃における粘度が30mPa・s以上、75000mPa・s以下である有機溶剤(C1)を含み、有機溶剤(C1)の含有量が、有機溶剤(C)100重量%中、10重量%以上であることを特徴とする請求項1〜いずれかに記載の導電性組成物。
  8. 請求項1〜いずれかに記載の導電性組成物を基材に塗工した後、乾燥させて得られた導体膜を熱プレスすることを特徴とする導体膜の製造方法。
  9. 導体膜の体積抵抗値が10−4Ωcm以上、10−2Ωcm未満であることを特徴とする請求項に記載の導体膜の製造方法。
  10. 基材に、請求項1〜いずれかに記載の導電性組成物を印刷することを特徴とする、パターニングされた導体膜の製造方法。
  11. バインダー樹脂(A)と、導電性付与剤(B)と、有機溶剤(C)とを含む導電性組成物であって、導電性付与剤(B)が膨張化黒鉛(B1)を含み、膨張化黒鉛の平均粒径が10μm以上、200μm以下であって、導電性付与剤(B)の含有量が、組成物の固形分100重量%中、40重量%以上90重量%以下であって、
    該導電性組成物を基材に塗工した後、乾燥させて得られた導電膜を、さらに熱プレスして得られる導電膜の体積抵抗値が10 −4 Ωcm以上、10 −2 Ωcm未満であることを特徴とする導電性組成物。
JP2017128476A 2017-06-30 2017-06-30 導電性組成物および導体膜の製造方法 Active JP6897368B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017128476A JP6897368B2 (ja) 2017-06-30 2017-06-30 導電性組成物および導体膜の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017128476A JP6897368B2 (ja) 2017-06-30 2017-06-30 導電性組成物および導体膜の製造方法

Publications (2)

Publication Number Publication Date
JP2019012630A JP2019012630A (ja) 2019-01-24
JP6897368B2 true JP6897368B2 (ja) 2021-06-30

Family

ID=65227014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017128476A Active JP6897368B2 (ja) 2017-06-30 2017-06-30 導電性組成物および導体膜の製造方法

Country Status (1)

Country Link
JP (1) JP6897368B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101373A (ja) * 1987-10-13 1989-04-19 Daiso Co Ltd 導電性組成物
JPH04198271A (ja) * 1990-11-27 1992-07-17 Mitsui Mining Co Ltd 導電性ペースト組成物
JPH07331201A (ja) * 1994-06-13 1995-12-19 Nisshinbo Ind Inc 導電性接着剤及び該導電性接着剤による接着構造
JP2000095947A (ja) * 1998-09-21 2000-04-04 Unitika Ltd 導電性樹脂組成物
JP2008227481A (ja) * 2007-02-15 2008-09-25 Unitika Ltd 導電性スラリー、電極スラリー、それらを用いた電気二重層キャパシタ用電極

Also Published As

Publication number Publication date
JP2019012630A (ja) 2019-01-24

Similar Documents

Publication Publication Date Title
JP5976112B2 (ja) 硬化性導電性接着剤組成物、電磁波シールドフィルム、導電性接着フィルム、接着方法及び回路基板
JP5886957B2 (ja) 導電性接着剤組成物、導電性接着フィルム、接着方法及び回路基板
TWI486413B (zh) 導電性糊、導電性膜、觸控面板及導電性薄膜之製造方法
JP7137740B2 (ja) 導電性組成物、および導電膜
JP5767498B2 (ja) 導電性ペースト
JP6001265B2 (ja) 導電性ペースト
JP4547623B2 (ja) 導電性ペースト
JP6881080B2 (ja) 導電性配線シート
JP6303367B2 (ja) 導電性ペースト、導電性膜及びタッチパネル
JP6897368B2 (ja) 導電性組成物および導体膜の製造方法
JP2021008589A (ja) 導電性組成物、および導電膜
JP7002122B2 (ja) 積層体
JP6879084B2 (ja) 導電性組成物および導体膜の製造方法
JP7013693B2 (ja) 導電性配線シートおよび配線シートの製造方法
JP2003206431A (ja) 印刷インキ用バインダーおよび印刷インキ
JP2021008588A (ja) 非接触型メディア
JP7439401B2 (ja) 非接触型メディア
JP7280429B2 (ja) カルボキシル基含有ポリエステル樹脂、カルボキシル基含有エステルウレタン樹脂、樹脂組成物、及び接着剤
JP7270570B2 (ja) カルボキシル基含有ポリエステル樹脂、カルボキシル基含有エステルウレタン樹脂、樹脂組成物、及び接着剤
JP2022073002A (ja) 導電性組成物、および導電膜

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R151 Written notification of patent or utility model registration

Ref document number: 6897368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350