JP6896718B2 - 硬化性組成物、硬化膜、カラーフィルタ、遮光膜、固体撮像素子、画像表示装置、及び硬化膜の製造方法 - Google Patents

硬化性組成物、硬化膜、カラーフィルタ、遮光膜、固体撮像素子、画像表示装置、及び硬化膜の製造方法 Download PDF

Info

Publication number
JP6896718B2
JP6896718B2 JP2018519177A JP2018519177A JP6896718B2 JP 6896718 B2 JP6896718 B2 JP 6896718B2 JP 2018519177 A JP2018519177 A JP 2018519177A JP 2018519177 A JP2018519177 A JP 2018519177A JP 6896718 B2 JP6896718 B2 JP 6896718B2
Authority
JP
Japan
Prior art keywords
group
curable composition
compound
mass
cured film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018519177A
Other languages
English (en)
Other versions
JPWO2017203979A1 (ja
Inventor
裕行 森下
裕行 森下
浜田 大輔
大輔 浜田
明夫 水野
明夫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2017203979A1 publication Critical patent/JPWO2017203979A1/ja
Application granted granted Critical
Publication of JP6896718B2 publication Critical patent/JP6896718B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/04Polythioethers from mercapto compounds or metallic derivatives thereof
    • C08G75/045Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/32Compounds containing nitrogen bound to oxygen
    • C08K5/33Oximes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Materials For Photolithography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Optical Filters (AREA)

Description

本発明は、硬化性組成物、硬化膜、カラーフィルタ、遮光膜、固体撮像素子、画像表示装置、及び硬化膜の製造方法に関する。
液晶表示装置に用いられるカラーフィルタには、着色画素間の光を遮蔽し、コントラストを向上させる等の目的で、ブラックマトリクスと呼ばれる遮光膜が備えられている。
また、固体撮像素子においても、ノイズ発生防止、画質の向上等を目的として遮光膜が設けられている。現在、携帯電話及びPDA(Personal Digital Assistant)等の電子機器の携帯端末には、小型で薄型な撮像ユニットが搭載されている。このような撮像ユニットは、一般に、CCD(Charge Coupled Device)イメージセンサ及びCMOS(Complementary Metal−Oxide Semiconductor)イメージセンサ等の固体撮像素子と、固体撮像素子上に被写体像を形成するためのレンズと、を備えている。
特許文献1には、「固体撮像素子の有効画素領域(撮像部)の周縁に配置される塗膜を形成し得る、平均粒子径が40nm以下である黒色着色剤及び樹脂成分を含むことを特徴とする遮光膜形成用組成物」であって、「黒色着色剤がカーボンブラック、チタンブラックのうちの少なくとも1種を含む」遮光膜形成用組成物が記載されている。
特開2006−156801号公報
本発明者らは、特許文献1に記載された遮光膜形成用組成物を硬化して得られた遮光膜について検討したところ、優れた遮光性を有するものの、得られるパターン形状にさらなる改善の余地があること明らかにした。具体的には、特許文献1に記載された遮光膜形成用組成物を硬化して得られた遮光膜は、その中心部の膜厚と比較して、端部の膜厚が小さくなる場合があることを明らかにした。
そこで、本発明は、優れた遮光性を維持しつつ、優れたパターン形状を有する硬化膜を得ることができる硬化性組成物を提供することを課題とする。
また、本発明は、上記硬化性組成物を用いて得られる硬化膜、上記硬化膜を含む、カラーフィルタ、遮光膜、固体撮像素子、及び、画像表示装置、並びに、硬化膜の製造方法を提供することも課題とする。
本発明者らは、上記課題を達成すべく鋭意検討した。その結果、着色剤と、光重合開始剤と、重合性化合物と、多官能チオール化合物と、を含有する硬化性組成物であって、硬化性組成物を硬化して得られる硬化膜の、可視光領域における膜厚1.5μmあたりの光学濃度が4.0以上である、硬化性組成物が上記課題を解決することができることを見出し、本発明を完成させた。
すなわち、以下の構成により上記課題を達成することができることを見出した。
[1] 着色剤と、光重合開始剤と、重合性化合物と、多官能チオール化合物と、を含有する硬化性組成物であって、硬化性組成物を硬化して得られる硬化膜の、可視光領域における膜厚1.5μmあたりの光学濃度が、4.0以上である、硬化性組成物。
[2] 着色剤の含有量が、硬化性組成物の全固形分に対して55質量%以上である、[1]に記載の硬化性組成物。
[3] 多官能チオール化合物の含有量が、着色剤の含有量に対して1〜5.5質量%である、[1]又は[2]に記載の硬化性組成物。
[4] 更に、重合禁止剤を含有する、[1]〜[3]のいずれかに記載の硬化性組成物。
[5] 重合禁止剤の含有量が、多官能チオール化合物の含有量に対して0.1〜1.5質量%である、[4]に記載の硬化性組成物。
[6] 重合禁止剤が、フェノール系化合物を含有する、[4]又は[5]に記載の硬化性組成物。
[7] 重合禁止剤が、2種以上のフェノール系化合物を含有する、[4]〜[6]のいずれかに記載の硬化性組成物。
[8] 重合禁止剤が、ヒンダードアミン系化合物を含有する、[4]〜[7]のいずれかに記載の硬化性組成物。
[9] 着色剤が無機顔料である、[1]〜[8]のいずれかに記載の硬化性組成物。
[10] 無機顔料が、窒化チタン、酸窒化チタン、窒化ニオブ、窒化バナジウム、銀、又は錫を含有する金属顔料、並びに、銀及び錫を含有する金属顔料からなる群から選択される少なくとも1種を含有する[9]に記載の硬化性組成物。
[11] 多官能チオール化合物が式(1)で表される基を2個以上有する化合物である、[1]〜[10]のいずれかに記載の硬化性組成物。
[12] 多官能チオール化合物が3官能以上である、[1]〜[11]のいずれかに記載の硬化性組成物。
[13] 多官能チオール化合物が、ペンタエリトリトールテトラ(3−メルカプトプロピオネート)、及び、トリメチロールプロパントリス(3−メルカプトプロピオネート)からなる群から選択される少なくとも1種である、[1]〜[12]のいずれかに記載の硬化性組成物。
[14] 光重合開始剤の含有量が、硬化性組成物の全固形分に対して、1質量%超10質量%未満である、[1]〜[13]のいずれかに記載の硬化性組成物。
[15] 重合性化合物の含有量が、硬化性組成物の全固形分に対して、3.5質量%超20質量%未満である、[1]〜[14]のいずれかに記載の硬化性組成物。
[16] 分散剤をさらに含有し、分散剤の含有量が、硬化性組成物の全固形分に対して、17質量%以上である、[1]〜[15]のいずれかに記載の硬化性組成物。
[17] 光重合開始剤がオキシム化合物である、[1]〜[16]のいずれかに記載の硬化性組成物。
[18] [1]〜[17]のいずれかに記載の硬化性組成物を硬化して得られる、硬化膜。
[19] [18]に記載の硬化膜を含有する、カラーフィルタ。
[20] [18]に記載の硬化膜を含有する、遮光膜。
[21] [18]に記載の硬化膜を含有する、固体撮像素子。
[22] [18]に記載の硬化膜を含有する、画像表示装置。
[23] [1]〜[17]のいずれかに記載の硬化性組成物を用いて支持体上に硬化性組成物層を形成する、硬化性組成物層形成工程と、硬化性組成物層を露光する、露光工程と、を含有する硬化膜の製造方法。
[24] 露光工程における、硬化性組成物層の露光量が200mJ/cm以上である、[23]に記載の硬化膜の製造方法。
[25] 硬化性組成物層形成工程が、支持体上に硬化性組成物を直接塗布して、支持体上に硬化性組成物層を形成する塗布工程を含む、[23]又は[24]に記載の硬化膜の製造方法。
[26] 更に、露光された硬化性組成物層を現像する、現像工程と、現像した硬化性組成物層を洗浄する、洗浄工程と、を含有する、[23]〜[25]のいずれかに記載の硬化膜の製造方法。
本発明によれば、優れた遮光性を維持しつつ、優れたパターン形状を有する硬化膜を得ることができる硬化性組成物を提供することができる。
本発明によれば、上記硬化性組成物を用いて得られる硬化膜、上記硬化膜を含む、カラーフィルタ、遮光膜、固体撮像素子、及び、画像表示装置、並びに、硬化膜の製造方法を提供することもできる。
多官能チオール化合物を含まない硬化性組成物を用いた硬化膜の製造工程を工程ごとに模式的に示した断面図である。 多官能チオール化合物を含まない硬化性組成物を用いた硬化膜の製造工程を工程ごとに模式的に示した断面図である。 多官能チオール化合物を含まない硬化性組成物を用いた硬化膜の製造工程を工程ごとに模式的に示した断面図である。 本発明の実施態様に係る硬化性組成物を用いた硬化膜の製造工程を工程ごとに模式的に示した断面図である。 本発明の実施態様に係る硬化性組成物を用いた硬化膜の製造工程を工程ごとに模式的に示した断面図である。 本発明の実施態様に係る硬化性組成物を用いた硬化膜の製造工程を工程ごとに模式的に示した断面図である。
以下、本発明について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
また、本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を含有しないものと共に置換基を含有するものをも包含するものである。例えば、「アルキル基」とは、置換基を含有しないアルキル基(無置換アルキル基)のみならず、置換基を含有するアルキル基(置換アルキル基)をも包含する。
また、本明細書中における「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、及びエキシマレーザーに代表される遠紫外線、極紫外線(EUV:Extreme ultraviolet lithography光)、X線、並びに電子線等を意味する。また本明細書において「光」とは、活性光線及び放射線を意味する。本明細書中における「露光」とは、特に断らない限り、水銀灯の輝線スペクトル、及びエキシマレーザーに代表される遠紫外線、X線、並びにEUV光等による露光のみならず、電子線及びイオンビーム等の粒子線による描画も包含する。
また、本明細書において、「(メタ)アクリレート」はアクリレート及びメタアクリレートを表す。また、本明細書において、「(メタ)アクリル」はアクリル及びメタアクリルを表す。また、本明細書において、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルを表す。また、本明細書において、「(メタ)アクリルアミド」は、アクリルアミド及びメタアクリルアミドを表す。また、本明細書中において、「単量体」と「モノマー」とは同義である。単量体は、オリゴマー及びポリマーと区別され、重量平均分子量が2,000以下の化合物をいう。本明細書中において、重合性化合物とは、重合性基を含有する化合物のことをいい、単量体であっても、ポリマーであってもよい。重合性基とは、重合反応に関与する基をいう。
[硬化性組成物]
硬化性組成物は、着色剤と、光重合開始剤と、重合性化合物と、多官能チオール化合物と、を含有し、硬化性組成物を硬化して得られる硬化膜の、可視光領域における膜厚1.5μmあたりの光学濃度が4.0以上である。
このような構成を有する上記硬化性組成物によれば、優れた遮光性を維持しつつ、優れたパターン形状を有する硬化膜を得ることができる(以下、「本発明の効果」ともいう)。
上記硬化性組成物により、本発明の効果が得られる機序は必ずしも明らかではないが、本発明者らは以下のとおり推測している。なお、以下の推測により、上記硬化性組成物が本発明の効果を奏する機序が限定されるものではない。
カーボンブラックなどの着色剤を含み、多官能チオール化合物を含まない従来公知の硬化性組成物は、広い波長領域に亘って高い遮光濃度を得ることが可能であるために広く利用されている。しかし、硬化性組成物層の光学濃度(OD:optical densityともいう)
は長波長側から短波長側に次第に高くなり、長波長側に比べて短波長領域の光学濃度が極めて高い。そのために、例えばg線,h線,及びi線等の紫外領域の光で硬化性組成物層をパターン露光する際、光が硬化性組成物層内部まで届かず、露光が不充分になり、パターン形状が悪化することがあった。
上記によりパターン形状が悪化する機序を、硬化膜の製造工程を工程ごとに模式的に表した図1〜6を用いて説明する。まず、図1〜3は、多官能チオールを含まない硬化性組成物を用いた硬化膜の製造工程を工程ごとに模式的に示した断面図である。
まず、図1に示すとおり、支持体101上に、硬化性組成物を用いて硬化性組成物層102が形成される。次に、フォトマスク103の開口部をとおして硬化性組成物層102が露光される(図1中、矢印は光の照射方向を示しており、A−B線はフォトマスクの開口部の端の延長線である。以下同じ。)。次に、上記露光後の硬化性組成物層102が現像され、パターン状の硬化膜201が形成される。
上記手順中の露光の際に、硬化性組成物層102の光学濃度が高いため、露光時に光が硬化性組成物層102内部まで届きにくく、硬化性組成物層102の下部では露光が不十分となる。すると、現像を行うと、硬化性組成物層102中の露光が不十分な部分において、硬化性組成物が溶出してしまう(図2)。そのような状態で、硬化膜201を加熱するポストベーク処理を行うと、現像時に溶出した部分において、「熱ダレ」と呼ばれる不具合が生ずる。すなわち、得られるポストベーク後の硬化膜301の端部において、中央部と比較して膜厚が減少してしまうものと推測される(図3)。
図4〜6は本発明の硬化性組成物を用いた硬化膜の製造工程を工程ごとに模式的に示した断面図である。
まず、図4に示すとおり、支持体101に、本発明の硬化性組成物を用いて硬化性組成物層401が形成される。次に、フォトマスク103の開口部をとおして硬化性組成物層401が露光される。
このとき、硬化性組成物層401は多官能チオール化合物を含有するため、以下の理由により、硬化性組成物層401内部まで十分に硬化されるものと推測される。
露光された硬化性組成物層401の内部では、光重合開始剤によりラジカル重合反応が開始される。このとき、光重合開始剤により生じたラジカルと硬化性組成物層401内の酸素が反応し、ペルオキシラジカルが発生することがある。ペルオキシラジカルは、重合反応を進行する作用を有さないため、そこで重合反応が停止してしまう。
一方で、硬化性組成物層401中に多官能チオール化合物が存在する場合、多官能チオール化合物中のチオール基がペルオキシラジカルに水素を供与することにより、酸素による重合失活を受けにくいチイルラジカルを生成し、重合反応が進行する。そのため、多官能チオール化合物を含有する上記硬化性組成物は、硬化性組成物層401内部まで十分に硬化されやすいものと推測される。
また、上記硬化性組成物を硬化して得られる硬化膜の、可視光領域における膜厚1.5μmあたりの光学濃度は4.0以上であり、硬化性組成物層401は遮光性が高い。
通常、フォトマスク103の開口部をとおして硬化性組成物層401に照射される光は、フォトマスク103の開口部で回折され、A−B線より外のマスク遮光部分402にも照射される(これを「漏れ光」という。)。硬化性組成物層の遮光性が低いと、漏れ光により、マスク遮光部の硬化性組成物層までが露光されてしまい、パターン形状の悪化につながる。
しかし、硬化性組成物層401は遮光性が高いため、漏れ光はマスク遮光部分402を露光することなく吸収される(図4)。
従って、上記露光後の硬化膜を現像すると、内部まで十分に硬化され、かつ、フォトマスクの開口部で回折した光は吸収されるため、優れたパターン形状を有する硬化膜501が得られる(図5)。この硬化膜501はポストベーク処理を行った後も「熱ダレ」を起こしにくいため、ポストベーク後の硬化膜601の中央部と、端部とでは膜厚の差が小さくなり、優れたパターン形状を有するものと推測される(図6)。
〔光学濃度(OD値)〕
上記硬化性組成物を硬化して得られる硬化膜の、可視光領域における膜厚1.5μmあたりの光学濃度は、4.0以上である。なかでも、より優れた本発明の効果を有する硬化性組成物が得られる点で、光学濃度は、4.1以上がより好ましく、4.3以上が更に好ましい。なお、上限値は特に制限されないが、一般に8.0以下が好ましい。
なお、本明細書において、光学濃度とは、実施例に記載された方法により測定した光学濃度を意図し、可視光領域とは、波長400〜800nmの光を意図する。従って、可視光領域における膜厚1.5μmあたりの光学濃度が4.0以上とは、波長400〜800nmの全域において膜厚1.5μmあたりの光学濃度が4.0以上のことを意図する。
以下、上記硬化性組成物に含まれる各成分にその態様を詳述する。
〔着色剤〕
上記硬化性組成物は着色剤を含有する。着色剤は、顔料、及び染料からなる群から選択される少なくとも1種である。
上記着色剤の含有量は、硬化性組成物の全固形分に対して55質量%以上であることが好ましく、56質量%以上であることがより好ましく、58質量%以上であることが更に好ましい。
着色剤の含有量が55質量%以上であると、硬化性組成物を硬化して得られる硬化膜のパターン形状がより優れる。
なお、着色剤の含有量の上限値は特に制限されないが、一般に、硬化性組成物の全固形分に対して、70質量%以下が好ましい。着色剤の含有量が上限値以下だと、硬化性組成物はより優れた塗布性を有する。
<顔料>
顔料としては、特に制限されず、公知の無機顔料及び/又は有機顔料を用いることができる。なかでも、より優れた本発明の効果を有する硬化性組成物が得られる点で、顔料は無機顔料が好ましい。
(無機顔料)
上記無機顔料としては、特に制限されず、公知の無機顔料を用いることができる。
無機顔料としては、例えば、亜鉛華、鉛白、リトポン、酸化チタン、酸化クロム、酸化鉄、沈降性硫酸バリウム及びバライト粉、鉛丹、酸化鉄赤、黄鉛、亜鉛黄(亜鉛黄1種、亜鉛黄2種)、ウルトラマリン青、プロシア青(フェロシアン化鉄カリ)ジルコングレー、プラセオジムイエロー、クロムチタンイエロー、クロムグリーン、ピーコック、ビクトリアグリーン、紺青(プルシアンブルーとは無関係)、バナジウムジルコニウム青、クロム錫ピンク、陶試紅、サーモンピンク等が挙げられる。また、黒色の無機顔料としては、Co、Cr、Cu、Mn,Ru、Fe、Ni、Sn、Ti、及びAgからなる群より選ばれた1種又は2種以上の金属元素を含む金属酸化物、金属窒素物が挙げられる。
無機顔料としては、含有量が少なくとも、高い光学濃度を有する硬化膜を形成することができる硬化性組成物が得られる点で、カーボンブラック、チタンブラック、及び金属顔料等(以下、「黒色顔料」ともいう。)が好ましい。金属顔料としては、例えば、Nb、V、Co、Cr、Cu、Mn、Ru、Fe、Ni、Sn、Ti、及びAgからなる群より選ばれる1種又は2種以上の金属元素を含む金属酸化物又は金属窒素物が挙げられる。
無機顔料としては、窒化チタン、酸窒化チタン、窒化ニオブ、窒化バナジウム、銀、又は錫を含有する金属顔料、並びに銀、及び錫を含有する金属顔料からなる群から選択される少なくとも1種を含有することが好ましく、窒化チタン、酸窒化チタン、窒化ニオブ、及び窒化バナジウムからなる群から選択される少なくとも1種を含有することがより好ましい。
なお、無機顔料としては、カーボンブラックを用いることもできる。カーボンブラックの具体例としては、市販品である、C.I.ピグメントブラック 1等の有機顔料C.I.ピグメントブラック 7等の無機顔料が挙げられるがこれらに限定されない。
上記硬化性組成物には、黒色顔料として記載した顔料以外で赤外線吸収性を有する顔料を用いることもできる。
赤外線吸収性を有する顔料としては、タングステン化合物、及び金属ホウ化物等が好ましく、なかでも、赤外領域の波長における遮光性に優れる点から、タングステン化合物が好ましい。特に露光による硬化効率に関わる光重合開始剤の光吸収波長領域と、可視光領域の透光性に優れる観点からタングステン化合物が好ましい。
これらの顔料は、2種以上併用してもよく、また、後述する染料と併用してもよい。色味を調整するため、及び、所望の波長領域の遮光性を高めるため、例えば、黒色、又は赤外線遮光性を有する顔料に、赤色、緑色、黄色、オレンジ色、紫色、及びブルーなどの有彩色顔料若しくは後述する染料を混ぜる態様が挙げられる。黒色、又は赤外線遮光性を有する顔料に、赤色顔料若しくは染料、又は、紫色顔料若しくは染料を混合することが好ましく、黒色、又は赤外線遮光性を有する顔料に赤色顔料を混合することがより好ましい。
更に、後述する近赤外線吸収剤、赤外線吸収剤を加えても良い。
黒色顔料は、チタンブラック及び/又は酸窒化ニオブを含有することが好ましい。チタンブラックとは、チタン原子を含有する黒色粒子である。好ましくは低次酸化チタン、酸窒化チタン又は窒化チタン等である。チタンブラック粒子は、分散性向上、凝集性抑制などの目的で必要に応じ、表面を修飾することが可能である。酸化珪素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化マグネシウム、又は、酸化ジルコニウムで被覆することが可能であり、また、特開2007−302836号公報に表されるような撥水性物質での処理も可能である。
チタンブラックは、典型的には、チタンブラック粒子であり、個々の粒子の一次粒子径及び平均一次粒子径のいずれもが小さいものであることが好ましい。酸窒化ニオブも同様である。
具体的には、平均一次粒子径で10nm〜45nmの範囲のものが好ましい。
なお、顔料の平均一次粒子径は、透過型電子顕微鏡(Transmission Electron Microscope、TEM)を用いて測定できる。透過型電子顕微鏡としては、例えば、日立ハイテクノロジーズ社製の透過型顕微鏡HT7700を用いることができる。
透過型電子顕微鏡を用いて得た粒子像の最大長(Dmax:粒子画像の輪郭上の2点における最大長さ)、及び最大長垂直長(DV−max:最大長に平行な2本の直線で画像を挟んだ時、2直線間を垂直に結ぶ最短の長さ)を測長し、その相乗平均値(Dmax×DV−max)1/2を粒子径とした。この方法で100個の粒子の粒子径を測定し、その算術平均値を平均粒子径として、顔料の平均一次粒子径とした。
チタンブラック及び酸窒化ニオブの比表面積は特に制限されないが、チタンブラック及び酸窒化ニオブを撥水化剤で表面処理した後の撥水性が所定の性能となるために、BET(Brunauer, Emmett, Teller)法にて測定した値が5m2/g以上150m2/g以下であることが好ましく、20m2/g以上120m2/g以下であることがより好ましい。
チタンブラックの市販品の例としては、チタンブラック10S、12S、13R、13M、13M−C、13R、13R−N、13M−T(商品名、三菱マテリアル(株)製)、ティラック(Tilack)D(商品名、赤穂化成(株)製)、窒化チタン50nm(商品名、和光純薬(株)製)などが挙げられる。
着色剤として、酸窒化チタン、窒化チタン又は酸窒化ニオブを使用することが好ましく、得られる硬化膜の耐湿性がより優れるという理由から、窒化チタン又は酸窒化ニオブがより好ましく、酸窒化ニオブが更に好ましい。これは、これらの着色剤が疎水性であるためと考えられる。
更に、チタンブラックを、チタンブラック及びSi原子を含む被分散体として含有することも好ましい。
この形態において、チタンブラックは、硬化性組成物中において被分散体として含有されるものであり、被分散体中のSi原子とTi原子との含有比(Si/Ti)が質量換算で0.05以上が好ましく、0.05〜0.5がより好ましく、0.07〜0.4が更に好ましい。
ここで、上記被分散体は、チタンブラックが一次粒子の状態であるもの、凝集体(二次粒子)の状態であるものの双方を包含する。
被分散体のSi/Tiを変更する(例えば、0.05以上とする)ためには、以下のような手段を用いることができる。
先ず、酸化チタンとシリカ粒子とを分散機を用いて分散することにより分散物を得て、この分散物を高温(例えば、850〜1,000℃)にて還元処理することにより、チタンブラック粒子を主成分とし、SiとTiとを含有する被分散体を得ることができる。上記還元処理は、アンモニアなどの還元性ガスの雰囲気下で行うこともできる。
酸化チタンとしては、TTO−51N(商品名、石原産業製)などが挙げられる。
シリカ粒子の市販品としては、AEROSIL(登録商標)90、130、150、200、255、300、380(商品名、エボニック製)などが挙げられる。
酸化チタンとシリカ粒子との分散は、分散剤を用いてもよい。分散剤としては、後述する分散剤の欄で説明するものが挙げられる。
上記の分散は溶剤中で行ってもよい。溶剤としては、水、有機溶剤が挙げられる。後述する有機溶剤の欄で説明するものが挙げられる。
Si/Tiが、例えば、0.05以上等に調整されたチタンブラックは、例えば、特開2008−266045公報の段落番号〔0005〕及び段落番号〔0016〕〜〔0021〕に記載の方法により作製することができる。
チタンブラック及びSi原子を含む被分散体中のSi原子とTi原子との含有比(Si/Ti)を好適な範囲(例えば0.05以上)に調整することで、この被分散体を含む硬化性組成物を用いて硬化膜を形成した際に、硬化膜の形成領域外における硬化性組成物由来の残渣物が低減される。なお、残渣物は、チタンブラック粒子、樹脂成分等の硬化性組成物に由来する成分を含むものである。
残渣物が低減される理由は未だ明確ではないが、上記のような被分散体は粒子径が小さくなる傾向があり(例えば、粒子径30nm以下)、更に、この被分散体のSi原子が含まれる成分が増すことにより、膜全体の下地との吸着性が低減される。これが、硬化膜の形成における未硬化の硬化性組成物(特に、チタンブラック)の現像除去性の向上に寄与すると推測される。
チタンブラックは、紫外光から赤外光までの広範囲に亘る波長領域の光に対する遮光性に優れることから、上記したチタンブラック及びSi原子を含む被分散体(好ましくはSi/Tiが質量換算で0.05以上であるもの)を用いて形成された硬化膜は優れた遮光性を発揮する。
なお、被分散体中のSi原子とTi原子との含有比(Si/Ti)は、例えば、特開2013−249417号公報の段落0033に記載の方法(1−1)又は方法(1−2)を用いて測定できる。
硬化性組成物を硬化して得られた硬化膜に含有される被分散体について、その被分散体中のSi原子とTi原子との含有比(Si/Ti)が0.05以上か否かを判断するには、特開2013−249417号公報の段落0035に記載の方法(2)を用いることができる。
チタンブラック及びSi原子を含む被分散体において、チタンブラックは、上記したものを使用できる。
この被分散体においては、チタンブラックと共に、分散性、着色性等を調整する目的で、Cu、Fe、Mn、V、Ni等の複合酸化物、酸化コバルト、酸化鉄、カーボンブラック、アニリンブラック等からなる黒色顔料を、1種又は2種以上組み合わせて用いてもよい。この場合、全被分散体中の50質量%以上をチタンブラックからなる被分散体が占めることが好ましい。
この被分散体においては、遮光性の調整等を目的として、本発明の効果を損なわない限りにおいて、チタンブラックと共に、他の着色剤(有機顔料及び/又は染料など)を所望により併用してもよい。
以下、被分散体にSi原子を導入する際に用いられる材料について述べる。被分散体にSi原子を導入する際には、シリカなどのSi含有物質を用いればよい。
用いうるシリカとしては、沈降シリカ、フュームドシリカ、コロイダルシリカ、合成シリカなどを挙げることができ、これらを適宜選択して使用すればよい。
更に、シリカ粒子の粒子径が硬化膜を形成した際の膜厚よりも小さい粒子径であると遮光性がより優れるため、微粒子タイプのシリカを用いることが好ましい。なお、微粒子タイプのシリカの例としては、例えば、特開2013−249417号公報の段落0039に記載のシリカが挙げられ、これらの内容は本明細書に組み込まれる。
硬化性組成物は、顔料としてタングステン化合物、及び/又は金属ホウ化物を使用できる。
タングステン化合物、及び金属ホウ化物は、赤外線(波長が約800〜1200nmの光)に対しては吸収が高く(すなわち、赤外線に対する遮光性(遮蔽性)が高く)、可視光に対しては吸収が低い赤外線遮蔽材である。このため、本発明の硬化性組成物は、タングステン化合物、及び/又は金属ホウ化物を含有することで、赤外領域における遮光性が高く、可視光領域における透光性が高いパターンを形成できる。
タングステン化合物、及び金属ホウ化物は、画像形成に用いられる、高圧水銀灯、KrF、ArFなどの露光に用いられる可視域より短波の光に対しても吸収が小さい。このため、後述する重合性化合物、アルカリ可溶性樹脂、及び光重合開始剤と組み合わされることにより、優れたパターンが得られるとともに、パターン形成において、現像残渣をより抑制できる。
タングステン化合物としては、酸化タングステン系化合物、ホウ化タングステン系化合物、硫化タングステン系化合物などを挙げることができ、下記一般式(組成式)(I)で表される酸化タングステン系化合物が好ましい。
・・・(I)
Mは金属、Wはタングステン、Oは酸素を表す。
0.001≦x/y≦1.1
2.2≦z/y≦3.0
Mの金属としては、例えば、アルカリ金属、アルカリ土類金属、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Sn、Pb、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Rb、Csなどが挙げられるが、アルカリ金属であることが好ましい。Mの金属は1種でも2種以上でもよい。
Mはアルカリ金属であることが好ましく、Rb又はCsであることがより好ましく、Csであることが更に好ましい。
x/yが0.001以上であることにより、赤外線を十分に遮蔽することができ、1.1以下であることにより、タングステン化合物中に不純物相が生成されることをより確実に回避することできる。
z/yが2.2以上であることにより、材料としての化学的安定性をより向上させることができ、3.0以下であることにより赤外線を十分に遮蔽することができる。
上記一般式(I)で表される酸化タングステン系化合物の具体例としては、Cs0.33WO、Rb0.33WO、K0.33WO、Ba0.33WOなどを挙げることができ、Cs0.33WO又はRb0.33WOであることが好ましく、Cs0.33WOであることがより好ましい。
タングステン化合物は微粒子であることが好ましい。タングステン微粒子の平均一次粒子径は、800nm以下であることが好ましく、400nm以下であることがより好ましく、200nm以下であることが更に好ましい。平均一次粒子径がこのような範囲であることによって、タングステン微粒子が光散乱によって可視光を遮断しにくくなることから、可視光領域における透光性をより確実にすることができる。光散乱を回避する観点からは、平均一次粒子径は小さいほど好ましいが、製造時における取り扱い容易性などの理由から、タングステン微粒子の平均一次粒子径は、通常、1nm以上である。
タングステン化合物は2種以上を使用することが可能である。
タングステン化合物は市販品として入手可能である。タングステン化合物が、例えば酸化タングステン系化合物である場合、酸化タングステン系化合物は、タングステン化合物を不活性ガス雰囲気又は還元性ガス雰囲気中で熱処理する方法により得ることができる(特許第4096205号公報を参照)。
酸化タングステン系化合物は、例えば、住友金属鉱山株式会社製のYMF−02などのタングステン微粒子の分散物としても入手可能である。
金属ホウ化物としては、ホウ化ランタン(LaB)、ホウ化プラセオジウム(PrB)、ホウ化ネオジウム(NdB)、ホウ化セリウム(CeB)、ホウ化イットリウム(YB)、ホウ化チタン(TiB)、ホウ化ジルコニウム(ZrB)、ホウ化ハフニウム(HfB)、ホウ化バナジウム(VB)、ホウ化タンタル(TaB)、ホウ化クロム(CrB、CrB)、ホウ化モリブデン(MoB、Mo、MoB)、ホウ化タングステン(W)などの1種又は2種以上を挙げることができ、ホウ化ランタン(LaB)であることが好ましい。
金属ホウ化物は微粒子であることが好ましい。金属ホウ化物微粒子の平均一次粒子径は、800nm以下であることが好ましく、300nm以下であることがより好ましく、100nm以下であることが更に好ましい。平均一次粒子径がこのような範囲であることによって、金属ホウ化物微粒子が光散乱によって可視光を遮断しにくくなることから、可視光領域における透光性をより確実にすることができる。光散乱を回避する観点からは、平均一次粒子径は小さいほど好ましいが、製造時における取り扱い容易性などの理由から、金属ホウ化物微粒子の平均一次粒子径は、通常、1nm以上である。
金属ホウ化物は2種以上を使用することが可能である。
金属ホウ化物は市販品として入手可能であり、例えば、住友金属鉱山株式会社製のKHF−7等の金属ホウ化物微粒子の分散物としても、入手可能である。
(チタン窒化物含有粒子)
無機顔料としては、Fe原子を含むチタン窒化物含有粒子を用いることもできる。チタン窒化物含有粒子の製造には、通常、気相反応法が用いられ、具体的には電気炉法及び熱プラズマ法等が挙げられる。これらの製法の中でも、不純物の混入が少ない点、粒子径が揃いやすい点、及び、生産性が高い点などの理由から、熱プラズマ法が好ましい。
熱プラズマの発生方法としては、直流アーク放電、多相アーク放電、高周波(RF)プラズマ、及び、ハイブリッドプラズマ等が挙げられ、電極からの不純物の混入が少ない高周波プラズマが好ましい。熱プラズマ法によるチタン窒化物含有微粒子の具体的な製造方法としては、例えば、チタン粉末を高周波熱プラズマにより蒸発させ、窒素をキャリアガスとして装置内に導入し、冷却過程にてチタン粉末を窒化させ、チタン窒化物含有粒子を合成する方法等が挙げられる。なお、熱プラズマ法は、上記に限定されない。
チタン窒化物含有粒子の製造方法としては、特に限定されないが、国際公開第2010/147098号の段落<0037>〜<0089>に記載の製造方法を参照することができる。例えば、国際公開第2010/147098号のAg粉末に代えて、後述するFeを含む成分及び/又はSiを含む成分を用いて、これとチタン粉末材料(チタン粒子)とを混合したものを原料として、本発明の硬化性組成物に含まれるチタン窒化物含有粒子を製造することができる。
チタン窒化物含有粒子の製造に使用するチタン粉末材料(チタン粒子)は、高純度のものであることが好ましい。チタン粉末材料は、特に限定されないが、チタン元素の純度が99.99%以上であるものが好ましく、99.999%以上のものがより好ましく用いられる。
チタン窒化物含有粒子の製造に使用するチタン粉末材料(チタン粒子)は、チタン原子以外の原子を含有する場合がある。チタン粉末材料に含まれ得る他の原子としては、例えばFe原子及びSi原子などが挙げられる。
チタン粉末材料がFe原子を含有する場合には、Fe原子の含有量は、チタン粉末材料の全質量に対して、0.001質量%超であることが好ましい。
チタン粉末材料がSi原子を含有する場合には、Si原子の含有量が、チタン粉末材料全質量に対して、0.002質量%超0.3質量%未満であることが好ましく、0.01〜0.15質量%であることがより好ましく、0.02〜0.1質量%であることが更に好ましい。Si原子の含有量が0.002質量%超であることで、硬化膜のパターニング性がより向上する。Si原子の含有量が0.3質量%未満であることで、得られるチタン窒化物含有粒子の最表層の極性がより安定化する。これにより、チタン窒化物含有粒子を分散させる際にチタン窒化物含有粒子への分散剤の吸着性が良化して、チタン窒化物含有粒子の未分散物が低減し、パーティクル発生を抑制できると考えられる。
チタン窒化物含有粒子の製造に使用するチタン粉末材料(チタン粒子)中の水分は、チタン粉末材料の全質量に対して、1質量%未満であることが好ましく、0.1質量%未満であることがより好ましく、実質的に含まないことが更に好ましい。
チタン窒化物含有粒子は、熱プラズマ法を用いて得ることにより、CuKα線をX線源とした場合の(200)面に由来するピークの回折角2θ(詳細は後述する)を、42.6°超43.5°以下の範囲に調整することが容易になる。
チタン窒化物含有粒子にFe原子を含有させる方法としては、特に限定されず、例えば、上述したチタン窒化物含有粒子の原料として用いられるチタン粒子(チタン粉末)を得る段階において、Fe原子を導入する方法などが挙げられる。より詳細には、クロール法などによりチタンを製造する際に、反応容器としてステンレス鋼(SUS)などのFe原子を含有する材料から構成されるものを用いたり、チタンを破砕する際のプレス機及び粉砕機の材料としてFe原子を含有するものを用いたりすることによって、チタン粒子の表面にFe原子を付着させることができる。
チタン窒化物含有粒子の製造に熱プラズマ法を用いる場合には、原料であるチタン粒子の他に、Fe粒子、Fe酸化物などの成分を添加して、これらを熱プラズマ法によって窒化することによって、チタン窒化物含有粒子にFe原子を含有させることができる。
なお、チタン窒化物含有粒子中に含まれているFe原子は、イオン、金属化合物(錯化合物も含む)、金属間化合物、合金、酸化物、複合酸化物、窒化物、酸窒化物、硫化物及び酸硫化物など、いずれの形態で含まれていてもよい。チタン窒化物含有粒子中に含まれるFe原子は、結晶格子間位置の不純物として存在していてもよいし、結晶粒界にアモルファス状態で不純物として存在していてもよい。
本発明者らは、鋭意検討の結果、チタン窒化物含有粒子中のFe原子の含有量が、パターニング性及び電極の防食性に関連することを知見した。チタン窒化物含有粒子中に含まれるFe原子は、電極及び基板に対する密着性に優れており、チタン窒化物含有粒子中のチタン窒化物は、Fe原子を介して電極及び基板に付着すると考えられる。現像処理などの硬化膜のパターニング後、Fe原子は電極及び基板上に残留し、チタン窒化物は除去されやすいと考えられる。そのため、チタン窒化物含有粒子中のFe原子の含有量を所定量以上にすることで、硬化膜のパターニング性が向上すると推測される。一方で、チタン窒化物含有粒子中に含まれるFe原子の含有量が多すぎると、電極及び基板上に残留するFe原子の量が増加し、電極の腐食の原因になると考えられる。そのため、チタン窒化物含有粒子中のFe原子の含有量を所定量以下にすることで、電極の防食性が向上すると推測される。
チタン窒化物含有粒子中におけるFe原子の含有量は、チタン窒化物含有粒子全質量に対して、0.001質量%超0.4質量%未満であることが好ましい。なかでも、0.01〜0.2質量%であることがより好ましく、0.02〜0.1質量%であることが更に好ましい。Fe原子の含有量が0.001質量%超であることで、硬化膜のパターニング性がより向上する。Fe原子の含有量が0.4質量%未満であることで、硬化膜による電極の防食性がより向上する(硬化膜が電極を腐食することを抑制できる)。すなわち、チタン窒化物含有粒子中におけるFe原子の含有量が上記範囲内にあることで、優れた硬化膜のパターニング性及び電極の防食性を得ることができる。
チタン窒化物含有粒子中におけるFe原子の含有量は、ICP(Inductively Coupled Plasma;高周波誘導結合プラズマ)発光分光分析法により測定することができる。
チタン窒化物含有粒子は、更にSi原子(ケイ素原子)を含有することが好ましい。これにより、硬化膜のパターニング性がより向上する。Si原子を含有することによりパターニング性が向上する理由としては、上述したFe原子と同様と考えられる。
チタン窒化物含有粒子中におけるSi原子の含有量は、チタン窒化物含有粒子全質量に対して、0.002質量%超0.3質量%未満であることが好ましく、0.01〜0.15質量%であることがより好ましく、0.02〜0.1質量%であることが更に好ましい。Si原子の含有量が0.002質量%超であることで、硬化膜のパターニング性がより向上する。Si原子の含有量が0.3質量%未満であることで、チタン窒化物含有粒子の最表層の極性がより安定化する。これにより、チタン窒化物含有粒子を分散させる際にチタン窒化物含有粒子への分散剤の吸着性が良化して、チタン窒化物含有粒子の未分散物が低減し、パーティクル発生を抑制できると考えられる。
チタン窒化物含有粒子中におけるSi原子の含有量は、上述したFe原子と同様の方法によって測定することができる。
チタン窒化物含有粒子にSi原子を含有させる方法としては、特に限定されず、例えば、上述したチタン窒化物含有粒子の原料として用いられるチタン粒子(チタン粉末)を得る段階において、Si原子を導入する方法などが挙げられる。より詳細には、クロール法などによりチタンを製造する際に、反応容器としてSi原子を含有する材料から構成されるものを用いたり、チタンを破砕する際のプレス機及び粉砕機の材料としてSi原子を含有するものを用いたりすることによって、チタン粒子の表面にSi原子を付着させることができる。
チタン窒化物含有粒子の製造に熱プラズマ法を用いる場合には、原料であるチタン粒子の他に、Si粒子、Si酸化物などの成分を添加して、これらを熱プラズマ法によって窒化することによって、チタン窒化物含有粒子にSi原子を含有させることができる。
チタン窒化物含有粒子中に含まれるSi原子は、イオン、金属化合物(錯化合物も含む)、金属間化合物、合金、酸化物、複合酸化物、窒化物、酸窒化物、硫化物及び酸硫化物など、いずれの形態で含まれていてもよい。チタン窒化物含有粒子中に含まれるSi原子は、結晶格子間位置の不純物として存在していてもよいし、結晶粒界にアモルファス状態で不純物として存在していてもよい。
チタン窒化物含有粒子中のチタン原子(Ti原子)の含有量は、チタン窒化物含有粒子の全質量に対して、10〜85質量%であることが好ましく、15〜75質量%であることがより好ましく、20〜70質量%であることが更に好ましい。チタン窒化物含有粒子中のTi原子の含有量は、ICP発光分光分析法により測定できる。
チタン窒化物含有粒子中の窒素原子(N原子)の含有量は、チタン窒化物含有粒子の全質量に対して、3〜60質量%であることが好ましく、5〜50質量%であることがより好ましく、10〜40質量%であることが更に好ましい。窒素原子の含有量は不活性ガス融解−熱伝導度法により分析することができる。
チタン窒化物含有粒子は、主成分としてチタン窒化物(TiN)を含み、通常、その合成時に酸素が混入する場合、及び、粒子径が小さい場合などに顕著になるが、粒子表面の酸化などにより、一部酸素原子を含有してもよい。
チタン窒化物含有粒子中の酸素原子の含有量は、チタン窒化物含有粒子の全質量に対して、1〜40質量%であることが好ましく、1〜35質量%であることがより好ましく、5〜30質量%であることが更に好ましい。酸素原子の含有量は、不活性ガス融解−赤外線吸収法により分析することができる。
分散安定性及び遮光性の観点から、チタン窒化物含有粒子の比表面積は5m/g以上100m/g以下が好ましく、10m/g以上60m/g以下がより好ましい。比表面積はBET(Brunauer,Emmett,Teller)法により求めることができる。
チタン窒化物含有粒子は、チタン窒化物粒子と金属微粒子からなる複合微粒子であってもよい。
複合微粒子とは、チタン窒化物粒子と金属微粒子が複合化しているか、高度に分散した状態にある粒子のことをいう。ここで、「複合化している」とは、チタン窒化物と金属の両成分によって粒子が構成されていることを意味し、「高度に分散した状態」とは、チタン窒化物粒子と金属粒子がそれぞれ個別で存在し、かつ少量成分の粒子が凝集せず均一、一様に分散していることを意味する。
金属微粒子としては特に限定されず、例えば、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンタル、カルシウム、チタン、ビスマス、アンチモン及び鉛、並びにこれらの合金、から選ばれる少なくとも1種が挙げられる。中でも、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム及びイリジウム、並びにこれらの合金から選ばれる少なくとも1種であることが好ましく、銅、銀、金、白金及び錫、並びにこれらの合金から選ばれる少なくとも1種であることがより好ましい。耐湿性により優れる観点から、銀であることが好ましい。
チタン窒化物含有粒子における金属微粒子の含有量としては、チタン窒化物含有粒子の全質量に対して5質量%以上50質量%以下であることが好ましく、10質量%以上30質量%以下であることがより好ましい。
・チタン窒化物含有粒子のピーク回折角2θ
チタン窒化物含有粒子は、CuKα線をX線源とした場合の(200)面に由来するピークの回折角2θが42.6°超43.5°以下であることが好ましい。このような特徴をもつチタン窒化物含有粒子を含有する硬化性組成物を用いて得られる硬化膜(例えば、ブラックマトリクスなど)は、高いOD値を達成することが可能となる。
CuKα線をX線源としてチタン化合物のX線回折スペクトルを測定した場合において、最も強度の強いピークとしてTiNは(200)面に由来するピークが2θ=42.5°近傍に、TiOは(200)面に由来するピークが2θ=43.4°近傍にみられる。一方、最も強度の強いピークではないがアナターゼ型TiOは(200)面に由来するピークは2θ=48.1°近傍に、ルチル型TiOは(200)面に由来するピークは2θ=39.2°近傍に観測される。よって、酸素原子を多く含有する結晶状態であるほどピーク位置は42.5°に対して高角度側にシフトする。
チタン窒化物含有粒子の(200)面に由来するピークの回折角2θは、粒子の経時安定性の観点から、42.6°超43.5°未満であることが好ましく、更に、製造時のプロセスマージンが優れる観点から、42.7°以上43.5°未満がより好ましく、更に、粒子性能の再現性が優れる観点から、42.7°以上43.4°未満が更に好ましい。副成分として酸化チタンTiOを含有する場合、最も強度の強いピークとしてアナターゼ型TiO(101)に由来するピークが2θ=25.3°近傍に、ルチル型TiO(110)に由来するピークが2θ=27.4°近傍に見られる。しかし、TiOは白色でありブラックマトリクスの遮光性を低下させる要因となるため、ピークとして観察されない程度に低減されていることが好ましい。
X線回折ピークの半値幅よりチタン窒化物含有粒子を構成する結晶子サイズを求めることができ、シェラーの式を用いて算出される。
結晶子サイズは、20nm以上であることが好ましく、20〜50nmであることがより好ましい。結晶子サイズが20nm以上のチタン窒化物含有粒子を用いてブラックマトリクスを形成することにより、硬化膜の透過光はそのピーク波長が475nm以下であるような青色から青紫色を呈し、高い遮光性と紫外線感度を併せ持つブラックマトリクスを得ることができる。結晶子サイズが20nm以上であることで、活性の有する粒子表面が粒子体積に対して占める割合が小さくなり良好なバランスとなり、チタン窒化物含有粒子の耐熱性及び/又は耐久性がより優れたものとなる。
(原子Aを含有する金属窒化物含有粒子)
無機顔料としては、金属窒化物含有粒子であって、上記金属窒化物含有粒子に所定の原子Aを含有する金属窒化物含有粒子を用いることもできる。
金属窒化物含有粒子中の金属としては、例えばNb、V、Cr、Y、Zr、Nb、Hf、Ta、W、及びRe等が挙げられ、上記硬化性組成物がより優れた本発明の効果を有する点で、Nb、又はVがより好ましい。
上記原子Aとしては、例えば、B、Al、Si、Mn、Fe、Ni、及びAg等が挙げられる。
金属窒化物含有粒子が、上記原子Aを含有する場合、その含有量としては特に制限されないが、金属窒化物含有粒子中における原子Aの含有量が、0.00005〜10質量%が好ましい。
上記原子Aを含有する金属窒化物含有粒子の製造方法としては、特に制限されず、公知の方法を用いることができる。
金属窒化物含有粒子の製造には、通常、気相反応法が用いられ、具体的には電気炉法及び熱プラズマ法等が挙げられる。これらの製法の中でも、不純物の混入が少ない点、粒子径が揃いやすい点、及び、生産性が高い点等の理由から、熱プラズマ法が好ましい。
熱プラズマ法による金属窒化物含有粒子の具体的な製造方法としては、例えば、金属微粒子製造装置(後述する「黒色複合微粒子製造装置」と同様の装置)を用いるものが挙げられる。金属微粒子製造装置は、例えば、熱プラズマを発生させるプラズマトーチ、金属原料粉末をプラズマトーチ内へ供給する材料供給装置、冷却機能を含有するチャンバ、生成された金属微粒子を分級するサイクロン、及び金属微粒子を回収する回収部によって構成される。
なお、本明細書において、金属微粒子とは、金属元素を含有する一次粒子径が20nm〜40μmの粒子を意図する。
金属微粒子製造装置を用いた金属窒化物含有粒子の製造方法としては、特に限定されず、公知の方法を用いることができる。中でも、下記の所定の平均一次粒子径の金属窒化物含有粒子の収率が高まる点で、金属微粒子製造装置を用いて金属窒化物含有粒子を製造する方法は以下に示す工程を含有することが好ましい。
工程A:プラズマトーチ内に窒素ガスを含有しない不活性ガスをプラズマガスとして供給し、熱プラズマ炎を発生する工程。
工程B:プラズマトーチ内の熱プラズマ炎に、遷移金属を含有する金属原料粉末を供給し、上記金属原料粉末を蒸発させ、気相の原料金属を得る工程。
工程C:上記気相の原料金属を冷却し、遷移金属を含有する金属微粒子を得る工程。
工程D:プラズマトーチ内に窒素ガスを含有する不活性ガスをプラズマガスとして供給し、熱プラズマ炎を発生する工程。
工程E:プラズマトーチ内の熱プラズマ炎に、遷移金属を含有する金属微粒子を供給し、上記金属微粒子を蒸発させ、気相の原料金属を得る工程。
工程F:上記気相の原料金属を冷却し、金属窒化物含有粒子を得る工程。
また、金属窒化物含有粒子の製造方法は、上記の工程C及び/又は工程Fの後に、所望により下記の工程Gを含有してもよい。
工程G:得られた粒子を分級する工程。
更に、工程Aの前、工程Aと工程Bとの間、工程Cと工程Dとの間、又は工程Dと工程Eとの間に、以下の工程A2を含有してもよい。
工程A2:遷移金属を含有する金属原料粉末に、原子Aを混合する工程。
更に、上記工程A2の前に、以下の工程A3−1〜A3−3を含有してもよい。
工程A3−1:プラズマトーチ内に窒素ガスを含有しない不活性ガスをプラズマガスとして供給し、熱プラズマ炎を発生する工程。
工程A3−2:プラズマトーチ内の熱プラズマ炎に、原子Aを含有する原料粉末を供給し、上記原料粉末を蒸発させ、気相の原子Aを得る工程。
工程A3−3:上記気相の原子Aを冷却し、微粒子化された原子Aを得る工程。
なお、工程A3−3の後に更に、工程Gを含有してもよい。
なお、本明細書において、微粒子化された原子Aとは、原子Aを含有する一次粒子径が20nm〜40μmの粒子を意図する。
更に、上記金属窒化物含有粒子の製造方法は、工程Fの後(工程Gを含有する場合は、工程Fの後の工程Gの後)に更に下記の工程Hを含有することが好ましい。
工程H:工程F(又は工程G)において得られた金属窒化物含有粒子を、水蒸気及び窒素ガスの混合雰囲気に曝露し、窒化処理する工程。
なお、所望により、上記金属窒化物含有粒子の製造方法は、工程Hの後に更に工程Gを含有してもよい。以下では、各工程の好適態様について詳述する。
・工程A
工程Aはプラズマトーチ内に窒素ガスを含有しない不活性ガスをプラズマガスとして供給し、熱プラズマ炎を発生する工程である。熱プラズマ炎の発生方法としては、特に限定されないが、直流アーク放電法、多相アーク放電法、高周波プラズマ法、及びハイブリッドプラズマ法等が挙げられ、電極からの不純物の混入が少ない高周波プラズマ法が好ましい。
高周波プラズマ法による熱プラズマ炎の発生方法としては、特に制限されず、例えば、高周波発振用コイルと石英管を含有するプラズマトーチ内にプラズマガスを供給し、上記高周波発振用コイルに高周波電流を印加することにより熱プラズマ炎を得る方法が挙げられる。
工程Aにおけるプラズマガスとしては、窒素ガスを含有しない不活性ガスが挙げられる。窒素ガスを含有しない不活性ガスとしては、アルゴンガス、及び水素ガス等が挙げられる。窒素ガスを含有しない不活性ガスは、1種を単独で用いても、2種以上を併用してもよい。
・工程A2
工程A2は遷移金属を含有する金属原料粉末に、原子Aを混合する工程である。原料金属粉末及び原子Aの混合方法としては特に制限されず、公知の方法を用いることができる。例えば、金属原料粉末をプラズマトーチ内へ供給する上記材料供給装置が、混合及び分散機能を含有してもよい。具体的には、国際公開第2010/147098号公報の段落0047〜0058に記載された材料供給装置を用いることができ、この内容は本明細書に組み込まれる。金属窒化物含有粒子の製造方法は、工程A2の前に、以下の工程A3−1〜A3−3を更に含有してもよい。
・工程B
工程Bは、プラズマトーチ内の熱プラズマ炎に、遷移金属を含有する金属原料粉末を供給し、上記金属原料粉末を蒸発させ、気相の原料金属を得る工程である。プラズマトーチ内の熱プラズマ炎に金属原料粉末を供給する方法としては特に制限されないが、得られる気相の原料金属が、より均一な状態となる点で、キャリアガスを用いて噴霧されることが好ましい。キャリアガスとしては、窒素ガスを含有しない不活性ガスを用いることが好ましい。窒素ガスを含有しない不活性ガスの態様は上記のとおりである。
金属窒化物含有粒子を製造する方法が、上記工程A2を含有する場合、金属原料粉末のプラズマトーチ内への供給に至るまでの間、金属原料粉末は、均一な分散状態が維持されていることが好ましい。
・工程C
工程Cは、気相の原料金属を冷却し、遷移金属を含有する金属微粒子を得る工程である。冷却方法としては特に制限されないが、冷却機能を含有するチャンバを用いることが好ましい。工程Bにおいて得られた気相の原料金属を、上記冷却機能を含有するチャンバに導入し、チャンバ内で急冷することにより、下記の所望の粒子径の金属微粒子を生成することができる。生成した金属微粒子は、例えば、回収部により回収される。チャンバ内の雰囲気としては、窒素ガスを含有しない不活性ガスが好ましい。窒素ガスを含有しない不活性ガスの態様は上記のとおりである。
なお、上記工程A〜Cを経ることにより、遷移金属を含有する金属微粒子が得られる。遷移金属を含有する金属微粒子は、工程Eにおいて蒸発しやすい。金属原料粉末が不純物を含有する場合にも、上記工程A〜Cを経ることにより、上記不純物を除去することができる。
・工程D
工程Dは、プラズマトーチ内に窒素ガスを含有する不活性ガスをプラズマガスとして供給し、熱プラズマ炎を発生する工程である。窒素を含有する不活性ガスとしては、窒素ガス、及び不活性ガスを含有する窒素ガスが挙げられる。不活性ガスとしては、アルゴンガス、及び水素ガス等が挙げられる。不活性ガスを含有する窒素ガスは、特に制限されないが、窒素ガスの含有量は、通常、10〜90モル%程度であり、30〜60モル%程度が好ましい。その他の態様は工程Aと同様である。
・工程E
工程Eは、プラズマトーチ内の熱プラズマ炎に、遷移金属を含有する金属微粒子を供給し、上記金属微粒子を蒸発させ、気相の原料金属を得る工程である。プラズマトーチ内の熱プラズマ炎に金属微粒子を供給する方法としては上記のとおりであるが、キャリアガスとしては、窒素を含有する不活性ガスが好ましい。窒素を含有する不活性ガスの態様は上記のとおりである。
工程Eでは、工程A〜工程Cによって金属微粒子となった原料金属を熱プラズマ炎に供給するため、気相の原料金属が得られやすく、気相の原料金属の状態もより均一になりやすい。
・工程F
工程Fは、気相の原料金属を冷却し、遷移金属の窒化物を含有する金属窒化物含有粒子を得る工程である。冷却方法の好適態様は上記のとおりであるが、チャンバ内の雰囲気としては、窒素ガスを含有する不活性ガスが好ましい。窒素ガスを含有する不活性ガスの好適態様は上記のとおりである。
・工程G
工程Gは、得られた金属微粒子及び/又は金属窒化物含有粒子を分級する工程である。分級の方法としては特に制限されないが、例えば、サイクロンを用いることができる。サイクロンは、円錐上の容器を有し、容器内に旋回流を発生して、遠心力を利用して粒子を分級する機能を有する。分級は、不活性ガスの雰囲気下で行うことが好ましい。不活性ガスの態様は上記のとおりである。
・工程H
工程Hは金属窒化物含有粒子を、水蒸気及び窒素ガスの混合雰囲気に曝露し、窒化処理する工程である。この工程を経ることにより、金属窒化物含有粒子における金属窒化物の含有量をより多くすることができる。金属窒化物含有粒子を、水蒸気及び窒素ガスの混合雰囲気に曝露する方法については特に制限されないが、例えば、金属窒化物含有粒子を水蒸気及び窒素ガスを混合したガスで満たされた恒温槽に導入し、所定時間静置又は攪拌する方法が挙げられ、金属窒化物含有粒子の表面及び結晶境界がより安定化する点で静置することがより好ましい。
水蒸気及び窒素ガスの混合比率は、大気中であれば相対湿度が25〜95%となる条件が好ましい。静置又は攪拌する時間は0.5〜72時間が好ましく、その際の温度は10〜40℃が好ましい。
・工程A3−1〜A3−3
工程A3−1〜A3−3は、プラズマトーチ内に窒素ガスを含有しない不活性ガスをプラズマガスとして供給し、熱プラズマ炎を発生する工程(A3−1)、プラズマトーチ内の熱プラズマ炎に、原子Aを含有する原料粉末を供給し、上記原料粉末を蒸発させ、気相の原子Aを得る工程(A3−2)、及び上記気相の原子Aを冷却し、原子Aからなる微粒子を得る工程(A3−3)である。それぞれの工程における態様は、上記工程A、工程B(遷移金属を含有する金属原料粉末に代えて、原子Aを含有する原料粉末を用いる)、及び工程C(遷移金属を含有する金属微粒子に代えて、微粒子化された原子Aを得る。)で説明したとおりである。
上記工程を経ることにより、原子Aが微粒子化され、工程Eにおいて原子Aが蒸発し易くなる。また、上記工程を経ることにより、原子Aを含有する原料粉末が含有する不純物(原子A以外の金属成分等)を除去することができる。
・原子Aを含有する金属窒化物含有粒子の製造方法の好適態様
原子Aを含有する金属窒化物含有粒子の製造方法の好適態様としては、以下の工程を順に有する方法が挙げられる。
・工程A:プラズマトーチ内に窒素ガスを含有しない不活性ガスをプラズマガスとして供給し、熱プラズマ炎を発生する工程。
・工程B:プラズマトーチ内の熱プラズマ炎に、遷移金属を含有する金属原料粉末を供給し、上記金属原料粉末を蒸発させ、気相の原料金属を得る工程。
・工程C:上記気相の原料金属を冷却し、遷移金属を含有する金属微粒子を得る工程。
・工程G:得られた粒子を分級する工程。
・工程A3−1:プラズマトーチ内に窒素ガスを含有しない不活性ガスをプラズマガスとして供給し、熱プラズマ炎を発生する工程
・工程A3−2:プラズマトーチ内の熱プラズマ炎に、原子Aを含有する原料粉末を供給し、上記原料粉末を蒸発させ、気相の原子Aを得る工程
・工程A3−3:上記気相の原子Aを冷却し、微粒子化された原子Aを得る工程
・工程G:得られた粒子を分級する工程。
・工程A2:遷移金属を含有する金属原料粉末(この場合、金属微粒子)に、原子A(この場合、微粒子化された原子A)を混合する工程。
・工程D:プラズマトーチ内に窒素ガスを含有する不活性ガスをプラズマガスとして供給し、熱プラズマ炎を発生する工程。
・工程E:プラズマトーチ内の熱プラズマ炎に、遷移金属を含有する金属微粒子を供給し、上記金属微粒子を蒸発させ、気相の原料金属を得る工程。
・工程F:上記気相の原料金属を冷却し、金属窒化物含有粒子を得る工程。
・工程G:得られた粒子を分級する工程。
・工程H:工程Gにおいて得られた金属窒化物含有粒子を、水蒸気及び窒素ガスの混合雰囲気に曝露し、窒化処理する工程。
上記一連の工程において、工程A〜C、及び工程A3−1〜A3−3の順序を入れ替えてもよい。すなわち、工程A3−1〜A3−3の後、工程A〜Cを実施してもよい。
上記の原子Aを含有する金属窒化物含有粒子の製造方法の好適態様によれば、金属原料粉末、及び原料粒子が含有する不純物を除去でき、かつ、所望の平均一次粒子径を有する金属窒化物含有粒子を製造することができる。その理由としては、遷移金属及び/又は原子Aはプラズマ処理によりイオン化され、上記イオンが冷却される際には、遷移金属、原子A及び不純物は、それぞれの融点を反映して微粒子化されるものと推測される。このとき、融点が低い原子は粒子化が速く、融点が高い原子は粒子化が遅くなる。そのため、上記のとおり、一度プラズマ処理された微粒子(工程B及びC、並びに工程A3−2及びA3−3)は単一成分(単一結晶)になりやすいものと推測される。上記により得られた単一成分の粒子を分級すれば、遷移金属の粒子及び/又は原子Aの粒子と、不純物の粒子の密度及び/又は粒径の違いにより、不純物の粒子を除去することができる。上記分級は、例えばサイクロン等を用い、分級条件を適宜設定することで行うことができる。
・金属原料粉末及び原料粉末の精製
上記工程Bにおいて用いることのできる遷移金属を含有する金属原料粉末(以下、単に「金属原料粉末」という。)及び原子Aを含有する原料粉末(以下、単に「原料粉末」という。)としては、特に制限されないが、高純度のものであることが好ましい。金属原料粉末における遷移金属の含有量は、特に限定されないが、99.99%以上が好ましく、99.999%以上がより好ましい。原料粉末における原子Aの含有量も同様である。
金属原料粉末及び/又は原料粉末は、所望の遷移金属及び/又は原子A以外の原子を不純物として含有する場合がある。金属原料粉末に含有される不純物としては、ホウ素、アルミニウム、ケイ素、マンガン、鉄、ニッケル及び銀等が挙げられる。また、原料粉末に含有される不純物としては、金属元素等が挙げられる。
金属窒化物含有粒子の製造方法は、工程Bの前(工程A2を含有する場合は、工程A2の前)に、以下の工程A0を更に含有してもよい。
工程A0:金属原料粉末及び/又は原料粉末から不純物を除去する工程。
・工程A0
工程A0において、金属原料粉末及び/又は原料粉末から不純物を除去する方法(分離精製方法)としては特に限定されないが、例えば、ニオブについて特開2012−211048号公報の段落0013〜0030に記載された方法を用いることができ、その他の金属原料粉末及び/又は原料粉末についてもこれに準じた方法を用いることができる。
・金属窒化物含有粒子の被覆
金属窒化物含有粒子は、無機化合物で被覆された金属窒化物含有粒子であってもよい。つまり、金属窒化物含有粒子と、金属窒化物含有粒子を被覆する、無機化合物を用いて形成される被覆層とを有する、被覆金属窒化物含有粒子であってもよい。無機化合物で被覆された金属窒化物含有粒子を含有する硬化性組成物は、より優れた分散安定性を有する。
無機化合物としては特に限定されず、SiO、ZrO、TiO、GeO、Al、Y、及びP等の酸化物、並びに水酸化アルミニウム、及び水酸化ジルコニウム等の水酸化物が挙げられる。なかでも、より薄い被膜を形成しやすく、かつ、より被覆率の高い被膜を形成しやすい点で、水酸化アルミニウムが好ましい。
金属窒化物含有粒子の屈折率を制御することを意図した場合には、低屈折率被膜としては酸化ケイ素が好ましく、高屈折率被膜としては水酸化ジルコニウムが好ましい。
金属窒化物含有粒子を無機化合物で被覆する方法については特に制限されないが、金属窒化物含有粒子の製造方法が、下記の無機化合物被覆工程を含有することが好ましい。
・無機化合物被覆工程
無機化合物被覆工程は上記の金属窒化物含有粒子を酸化物及び/又は水酸化物により被覆する工程である。被覆する方法としては、特に制限されないが、例えば以下の湿式コーティング法等が挙げられる。
第一の湿式コーティング法としては、まず、上記の金属窒化物含有粒子を水と混合してスラリーを作製する。次に上記スラリーに、Si,Zr,Ti,Ge,Al,Y,及び、Pからなる群から選択される少なくとも1種を含有する水溶性化合物(例えば珪ケイ酸ナトリウム)を反応させ、余分なアルカリイオンをデカンテーション及び/又はイオン交換樹脂等で除去する。その後、上記スラリーを乾燥させ、酸化物で被覆された金属窒化物含有粒子を得る。
第二の湿式コーティング法としては、まず、上記の金属窒化物含有粒子をアルコール等の有機溶剤と混合してスラリーを作製する。次に、上記スラリー中でSi,Zr,Ti,Ge,Al,Y,及び、Pからなる群から選択される少なくとも1種を含有するアルコキシド等の有機金属化合物を生成し、上記スラリーを高温で焼成する。上記スラリーを高温で焼成するとゾルゲル反応が進行し、酸化物で被覆された金属窒化物含有粒子が得られる。
第三の湿式コーティング法としては、金属窒化物含有粒子の存在下で、尿素と塩化アルミニウムを用いて、イオン液体を含有するスラリーを作製する。このスラリーから金属窒化物含有粒子を取り出し、乾燥させ、その後、上記金属窒化物含有粒子を焼成することにより、水酸化アルミニウムを含有する水酸化物により被覆された金属窒化物含有粒子が得られる。
(有機顔料)
有機顔料としては、例えば、カラーインデックス(C.I.)ピグメントイエロー1,2,3,4,5,6,10,11,12,13,14,15,16,17,18,20,24,31,32,34,35,35:1,36,36:1,37,37:1,40,42,43,53,55,60,61,62,63,65,73,74,77,81,83,86,93,94,95,97,98,100,101,104,106,108,109,110,113,114,115,116,117,118,119,120,123,125,126,127,128,129,137,138,139,147,148,150,151,152,153,154,155,156,161,162,164,166,167,168,169,170,171,172,173,174,175,176,177,179,180,181,182,185,187,188,193,194,199,213,214等;
C.I.ピグメントオレンジ 2,5,13,16,17:1,31,34,36,38,43,46,48,49,51,52,55,59,60,61,62,64,71,73等;
C.I.ピグメントレッド 1,2,3,4,5,6,7,9,10,14,17,22,23,31,38,41,48:1,48:2,48:3,48:4,49,49:1,49:2,52:1,52:2,53:1,57:1,60:1,63:1,66,67,81:1,81:2,81:3,83,88,90,105,112,119,122,123,144,146,149,150,155,166,168,169,170,171,172,175,176,177,178,179,184,185,187,188,190,200,202,206,207,208,209,210,216,220,224,226,242,246,254,255,264,270,272,279等;
C.I.ピグメントグリーン 7,10,36,37,58,59等;
C.I.ピグメントバイオレット 1,19,23,27,32,37,42等;及び
C.I.ピグメントブルー 1,2,15,15:1,15:2,15:3,15:4,15:6,16,22,60,64,66,79,80等;
が挙げられる。なお、顔料は1種を単独で用いても、2種以上を併用してもよい。
<染料>
染料としては、例えば特開昭64−90403号公報、特開昭64−91102号公報、特開平1−94301号公報、特開平6−11614号公報、特登2592207号、米国特許4808501号明細書、米国特許5667920号明細書、米国特許505950号明細書、特開平5−333207号公報、特開平6−35183号公報、特開平6−51115号公報、特開平6−194828号公報等に開示されている色素を使用できる。化学構造で区分すると、ピラゾールアゾ化合物、ピロメテン化合物、アニリノアゾ化合物、トリフェニルメタン化合物、アントラキノン化合物、ベンジリデン化合物、オキソノール化合物、ピラゾロトリアゾールアゾ化合物、ピリドンアゾ化合物、シアニン化合物、フェノチアジン化合物、ピロロピラゾールアゾメチン化合物等を使用できる。染料としては色素多量体を用いてもよい。色素多量体としては、特開2011−213925号公報、特開2013−041097号公報に記載されている化合物が挙げられる。分子内に重合性を有する重合性染料を用いてもよく、市販品としては、例えば、和光純薬株式会社製RDWシリーズが挙げられる。
<赤外線吸収剤>
着色剤は、更に赤外線吸収剤を含有してもよい。
赤外線吸収剤は、赤外領域(好ましくは、波長650〜1,300nm)の波長領域に吸収を有する化合物を意味する。好ましくは、赤外線吸収剤は、波長675〜900nmの波長領域に極大吸収波長を有する化合物が好ましい。
このような分光特性を有する着色剤としては、例えば、ピロロピロール化合物、銅化合物、シアニン化合物、フタロシアニン化合物、イミニウム化合物、チオール錯体系化合物、遷移金属酸化物系化合物、スクアリリウム化合物、ナフタロシアニン化合物、クオテリレン化合物、ジチオール金属錯体系化合物、クロコニウム化合物等が挙げられる。
フタロシアニン化合物、ナフタロシアニン化合物、イミニウム化合物、シアニン化合物、スクアリリウム化合物及びクロコニウム化合物は、特開2010−111750号公報の段落0010〜0081に開示の化合物を使用してもよく、この内容は本明細書に組み込まれる。シアニン化合物は、例えば、「機能性色素、大河原信/松岡賢/北尾悌次郎/平嶋恒亮・著、講談社サイエンティフィック」を参酌することができ、この内容は本明細書に組み込まれる。
上記分光特性を有する着色剤として、特開平07−164729号公報の段落0004〜0016に開示の化合物及び/又は特開2002−146254号公報の段落0027〜0062に開示の化合物、特開2011−164583号公報の段落0034〜0067に開示のCu及び/又はPを含む酸化物の結晶子からなり数平均凝集粒子径が5〜200nmである近赤外線吸収粒子を使用することもできる。
波長675〜900nmの波長領域に極大吸収波長を有する化合物としては、シアニン化合物、ピロロピロール化合物、スクアリリウム化合物、フタロシアニン化合物、及びナフタロシアニン化合物からなる群から選択される少なくとも1種が好ましい。
赤外線吸収剤は、25℃の水に1質量%以上溶解する化合物であることが好ましく、25℃の水に10質量%以上溶解する化合物がより好ましい。このような化合物を用いることで、耐溶剤性が良化する。
ピロロピロール化合物は、特開2010−222557号公報の段落番号0049〜0062を参酌でき、この内容は本明細書に組み込まれることとする。シアニン化合物およびスクアリリウム化合物は、国際公開2014/088063号公報の段落番号0022〜0063、国際公開2014/030628号公報の段落番号0053〜0118、特開2014−59550号公報の段落番号0028〜0074、国際公開2012/169447号公報の段落番号0013〜0091、特開2015−176046号公報の段落番号0019〜0033、特開2014−63144号公報の段落番号0053〜0099、特開2014−52431号公報の段落番号0085〜0150、特開2014−44301号公報の段落番号0076〜0124、特開2012−8532号公報の段落番号0045〜0078、特開2015−172102号公報の段落番号0027〜0067、特開2015−172004号公報の段落番号0029〜0067、特開2015−40895号公報の段落番号0029〜0085、特開2014−126642号公報の段落番号0022〜0036、特開2014−148567号公報の段落番号0011〜0017、特開2015−157893号公報の段落番号0010〜0025、特開2014−095007号公報の段落番号0013〜0026、特開2014−80487号公報の段落番号0013〜0047、及び特開2013−227403号公報の段落番号0007〜0028等を参酌でき、この内容は本明細書に組み込まれる。
赤外線吸収剤は、下記一般式1〜3で表される化合物からなる群から選択される少なくとも1種が好ましい。
一般式1
Figure 0006896718

一般式1中、A1およびA2はそれぞれ独立にアリール基、ヘテロアリール基又は下記一般式1−Aで表される基を表す。
一般式1−A
Figure 0006896718

一般式1−A中、Z1Aは含窒素複素環を形成する非金属原子団を表し、R2Aはアルキル基、アルケニル基、又はアラルキル基を表し、dは0又は1を表し、波線は連結手を表す。
一般式2
Figure 0006896718

一般式2中、R1aおよびR1bはそれぞれ独立にアルキル基、アリール基、又はヘテロアリール基を表し、
2〜R5はそれぞれ独立に水素原子、又は置換基を表し、R2とR3、R4とR5は、それぞれ結合して環を形成していてもよく、
6及びR7はそれぞれ独立に水素原子、アルキル基、アリール基、ヘテロアリール基、−BRAB、又は金属原子を表し、RA及びRBはそれぞれ独立に水素原子、又は置換基を表し、
6は、R1a又はR3と、共有結合又は配位結合していてもよく、
7は、R1b又はR5と、共有結合又は配位結合していてもよい。
一般式3
Figure 0006896718

一般式3中、Z1及びZ2はそれぞれ独立に縮環してもよい5員、又は6員の含窒素複素環を形成する非金属原子団であり、
101及びR102はそれぞれ独立にアルキル基、アルケニル基、アルキニル基、アラルキル基、又はアリール基を表し、
1は奇数個のメチンからなるメチン鎖を表し、
a及びbはそれぞれ独立に0又は1であり、
aが0の場合は、炭素原子と窒素原子とが二重結合で結合し、bが0の場合は、炭素原子と窒素原子とが単結合で結合し、
式中のCyで表される部位がカチオン部である場合、X1はアニオンを表し、cは電荷のバランスを取るために必要な数を表し、式中のCyで表される部位がアニオン部である場合、X1はカチオンを表し、cは電荷のバランスを取るために必要な数を表し、式中のCyで表される部位の電荷が分子内で中和されている場合、cは0である。
<顔料誘導体>
硬化性組成物は、顔料誘導体を含有してもよい。顔料誘導体は、有機顔料の一部分を、酸性基、塩基性基又はフタルイミドメチル基で置換した構造を有する化合物が好ましい。顔料誘導体としては、着色剤Aの分散性及び分散安定性の観点から、酸性基又は塩基性基を有する顔料誘導体が好ましい。顔料誘導体は、塩基性基を有することが特に好ましい。上述した樹脂(分散剤)と、顔料誘導体の組み合わせは、分散剤が酸性分散剤で、顔料誘導体が塩基性基を有する組み合わせが好ましい。
顔料誘導体を構成するための有機顔料としては、ジケトピロロピロール系顔料、アゾ系顔料、フタロシアニン系顔料、アントラキノン系顔料、キナクリドン系顔料、ジオキサジン系顔料、ペリノン系顔料、ペリレン系顔料、チオインジゴ系顔料、イソインドリン系顔料、イソインドリノン系顔料、キノフタロン系顔料、スレン系顔料、金属錯体系顔料等が挙げられる。
顔料誘導体が有する酸性基としては、スルホン酸基、カルボン酸基及びその塩が好ましく、カルボン酸基及びスルホン酸基がより好ましく、スルホン酸基が更に好ましい。顔料誘導体が有する塩基性基としては、アミノ基が好ましく、三級アミノ基がより好ましい。
硬化性組成物が顔料誘導体を含有する場合、顔料誘導体の含有量は、顔料の質量に対し、1〜30質量%が好ましく、3〜20質量%がより好ましい。顔料誘導体は、1種のみを用いてもよいし、2種以上を併用してもよい。
〔光重合開始剤〕
光重合開始剤としては、重合性化合物の重合を開始することができれば特に制限されず、公知の光重合開始剤を用いることができる。光重合開始剤としては、例えば、紫外線領域から可視光線領域に対して感光性を有するものが好ましい。また、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、重合性化合物の種類に応じてカチオン重合を開始させるような開始剤であってもよい。
光重合開始剤は、約300nm〜800nm(330nm〜500nmがより好ましい。)の波長領域に少なくとも約50のモル吸光係数を有する化合物を、少なくとも1種含有していることが好ましい。
光重合開始剤の含有量としては、硬化性組成物の全固形分に対して、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が更に好ましく、1質量%超が特に好ましく、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下が更に好ましく、10質量%未満が特に好ましい。
光重合開始剤の含有量が、硬化性組成物の全固形分に対して1質量%超10質量%未満だと、硬化性組成物を硬化して得られる硬化膜のパターン形状がより優れる。
光重合開始剤は、1種を単独で用いても、2種以上を併用してもよい。光重合開始剤を2種以上併用する場合には、その合計量が上記範囲内であることが好ましい。
光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を含有するもの、オキサジアゾール骨格を含有するもの、等)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノン化合物、及び、ヒドロキシアセトフェノン等が挙げられる。
上記トリアジン骨格を含有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物、英国特許1388492号明細書記載の化合物、特開昭53−133428号公報記載の化合物、独国特許3337024号明細書記載の化合物、F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62−58241号公報記載の化合物、特開平5−281728号公報記載の化合物、特開平5−34920号公報記載化合物、米国特許第4212976号明細書に記載されている化合物、等が挙げられる。
露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α−ヒドロキシケトン化合物、α−アミノケトン化合物、アシルホスフィン化合物、フォスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリルイミダゾールダイマー、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物及びその誘導体、シクロペンタジエン−ベンゼン−鉄錯体及びその塩、ハロメチルオキサジアゾール化合物、並びに3−アリール置換クマリン化合物からなる群より選択される化合物が好ましい。
なかでも、トリハロメチルトリアジン化合物、α−アミノケトン化合物、アシルホスフィン化合物、フォスフィンオキサイド化合物、オキシム化合物、トリアリルイミダゾールダイマー、オニウム化合物、ベンゾフェノン化合物、又はアセトフェノン化合物がより好ましく、トリハロメチルトリアジン化合物、α−アミノケトン化合物、オキシム化合物、トリアリルイミダゾールダイマー、及びベンゾフェノン化合物からなる群より選ばれる少なくとも1種の化合物が更に好ましい。
特に、硬化性組成物を遮光膜の作製に使用する場合には、微細なパターンをシャープな形状で形成する必要があるため、硬化性と共に未露光部に残渣がなく現像されることが重要である。このような観点からは、光重合開始剤としてはオキシム化合物を使用することが特に好ましい。特に、微細なパターンを形成する場合、硬化用露光にステッパー露光を用いるが、この露光機はハロゲンにより損傷される場合があり、光重合開始剤の添加量も低く抑える必要がある。これらの点を考慮すれば、微細パターンを形成するには、光重合開始剤としては、オキシム化合物を用いるのが特に好ましい。
光重合開始剤の具体例としては、例えば、特開2013−29760号公報の段落0265〜0268を参酌することができ、この内容は本明細書に組み込まれる。
光重合開始剤としては、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、及び、アシルホスフィン化合物も好適に用いることができる。より具体的には、例えば、特開平10−291969号公報に記載のアミノアセトフェノン系開始剤、及び特許第4225898号公報に記載のアシルホスフィン系開始剤も用いることができる。
ヒドロキシアセトフェノン化合物としては、IRGACURE−184、DAROCUR−1173、IRGACURE−500、IRGACURE−2959、及びIRGACURE−127(商品名、いずれもBASF社製)を用いることができる。
アミノアセトフェノン化合物としては、市販品であるIRGACURE−907、IRGACURE−369、又はIRGACURE−379EG(商品名、いずれもBASF社製)を用いることができる。アミノアセトフェノン化合物としては、365nm又は405nm等の長波光源に吸収波長がマッチングされた特開2009−191179公報に記載の化合物も用いることができる。
アシルホスフィン化合物としては、市販品であるIRGACURE−819、又はDAROCUR−TPO(商品名、いずれもBASF社製)を用いることができる。
<オキシム化合物>
光重合開始剤として、より好ましくはオキシム化合物(オキシム系開始剤)が挙げられる。特にオキシム化合物は高感度で重合効率が高く、着色剤濃度によらず硬化性組成物層を硬化でき、着色剤の濃度を高く設計しやすいため好ましい。
オキシム化合物の具体例としては、特開2001−233842号公報記載の化合物、特開2000−80068号公報記載の化合物、又は特開2006−342166号公報記載の化合物を用いることができる。
オキシム化合物としては、例えば、3−ベンゾイロキシイミノブタン−2−オン、3−アセトキシイミノブタン−2−オン、3−プロピオニルオキシイミノブタン−2−オン、2−アセトキシイミノペンタン−3−オン、2−アセトキシイミノ−1−フェニルプロパン−1−オン、2−ベンゾイロキシイミノ−1−フェニルプロパン−1−オン、3−(4−トルエンスルホニルオキシ)イミノブタン−2−オン、及び2−エトキシカルボニルオキシイミノ−1−フェニルプロパン−1−オン等が挙げられる。
また、J.C.S.Perkin II(1979年)pp.1653−1660)、J.C.S.Perkin II(1979年)pp.156−162、Journal of Photopolymer Science and Technology(1995年)pp.202−232、特開2000−66385号公報記載の化合物、特開2000−80068号公報、特表2004−534797号公報、及び特開2006−342166号公報の各公報に記載の化合物等も挙げられる。
市販品ではIRGACURE−OXE01(BASF社製)、IRGACURE−OXE02(BASF社製)、IRGACURE−OXE03(BASF社製)、又はIRGACURE−OXE04(BASF社製)も好適に用いられる。また、TR−PBG−304(常州強力電子新材料有限公司製)、アデカアークルズNCI−831及びアデカアークルズNCI−930(ADEKA社製)、又はN−1919(カルバゾール・オキシムエステル骨格含有光開始剤(ADEKA社製))も用いることができる。
上記記載以外のオキシム化合物として、カルバゾールN位にオキシムが連結した特表2009−519904号公報に記載の化合物;ベンゾフェノン部位にヘテロ置換基が導入された米国特許第7626957号公報に記載の化合物;色素部位にニトロ基が導入された特開2010−15025号公報及び米国特許公開2009−292039号に記載の化合物;国際公開特許2009−131189号公報に記載のケトオキシム化合物;トリアジン骨格とオキシム骨格を同一分子内に含有する米国特許7556910号公報に記載の化合物;405nmに吸収極大を有しg線光源に対して良好な感度を有する特開2009−221114号公報に記載の化合物;等を用いてもよい。
好ましくは、例えば、特開2013−29760号公報の段落0274〜0275を参酌することができ、この内容は本明細書に組み込まれる。
具体的には、オキシム化合物としては、下記式(OX−1)で表される化合物が好ましい。なお、オキシム化合物のN−O結合が(E)体のオキシム化合物であっても、(Z)体のオキシム化合物であっても、(E)体と(Z)体との混合物であってもよい。
Figure 0006896718
式(OX−1)中、R及びBは各々独立に一価の置換基を表し、Aは二価の有機基を表し、Arはアリール基を表す。
式(OX−1)中、Rで表される一価の置換基としては、一価の非金属原子団であることが好ましい。
一価の非金属原子団としては、アルキル基、アリール基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、複素環基、アルキルチオカルボニル基、及び、アリールチオカルボニル基等が挙げられる。これらの基は、1以上の置換基を有していてもよい。また、前述した置換基は、更に他の置換基で置換されていてもよい。
置換基としてはハロゲン原子、アリールオキシ基、アルコキシカルボニル基又はアリールオキシカルボニル基、アシルオキシ基、アシル基、アルキル基、及び、アリール基等が挙げられる。
式(OX−1)中、Bで表される一価の置換基としては、アリール基、複素環基、アリールカルボニル基、又は、複素環カルボニル基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が挙げられる。
式(OX−1)中、Aで表される二価の有機基としては、炭素数1〜12のアルキレン基、シクロアルキレン基、又は、アルキニレン基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が挙げられる。
光重合開始剤として、フッ素原子を含有するオキシム化合物を用いることもできる。フッ素原子を含有するオキシム化合物の具体例としては、特開2010−262028号公報記載の化合物;特表2014−500852号公報記載の化合物24、36〜40;特開2013−164471号公報記載の化合物(C−3);等が挙げられる。この内容は本明細書に組み込まれる。
光重合開始剤として、下記一般式(1)〜(4)で表される化合物を用いることもできる。
Figure 0006896718
Figure 0006896718
式(1)において、R及びRは、それぞれ独立に、炭素数1〜20のアルキル基、炭素数4〜20の脂環式炭化水素基、炭素数6〜30のアリール基、又は、炭素数7〜30のアリールアルキル基を表し、R及びRがフェニル基の場合、フェニル基同士が結合してフルオレン基を形成してもよく、R及びRは、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基又は炭素数4〜20の複素環基を表し、Xは、直接結合又はカルボニル基を示す。
式(2)において、R、R、R及びRは、式(1)におけるR、R、R及びRと同義であり、Rは、−R、−OR、−SR、−COR、−CONR、−NRCOR、−OCOR、−COOR、−SCOR、−OCSR、−COSR、−CSOR、−CN、ハロゲン原子又は水酸基を表し、Rは、炭素数1〜20のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基又は炭素数4〜20の複素環基を表し、Xは、直接結合又はカルボニル基を表し、aは0〜4の整数を表す。
式(3)において、Rは、炭素数1〜20のアルキル基、炭素数4〜20の脂環式炭化水素基、炭素数6〜30のアリール基、又は、炭素数7〜30のアリールアルキル基を表し、R及びRは、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基又は炭素数4〜20の複素環基を表し、Xは、直接結合又はカルボニル基を示す。
式(4)において、R、R及びRは、式(3)におけるR、R及びRと同義であり、Rは、−R、−OR、−SR、−COR、−CONR、−NRCOR、−OCOR、−COOR、−SCOR、−OCSR、−COSR、−CSOR、−CN、ハロゲン原子又は水酸基を表し、Rは、炭素数1〜20のアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアリールアルキル基又は炭素数4〜20の複素環基を表し、Xは、直接結合又はカルボニル基を表し、aは0〜4の整数を表す。
上記式(1)及び式(2)において、R及びRは、それぞれ独立に、メチル基、エチル基、n−プロピル基、i−プロピル基、シクロヘキシル基又はフェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基又はキシリル基が好ましい。Rは炭素数1〜6のアルキル基又はフェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基又はナフチル基が好ましい。Xは直接結合が好ましい。
上記式(3)及び(4)において、Rは、それぞれ独立に、メチル基、エチル基、n−プロピル基、i−プロピル基、シクロヘキシル基又はフェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基又はキシリル基が好ましい。Rは炭素数1〜6のアルキル基又はフェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基又はナフチル基が好ましい。Xは直接結合が好ましい。
式(1)及び式(2)で表される化合物の具体例としては、例えば、特開2014−137466号公報の段落番号0076〜0079に記載された化合物が挙げられる。この内容は本明細書に組み込まれることとする。
硬化性組成物に好ましく使用されるオキシム化合物の具体例を以下に示す。
Figure 0006896718
オキシム化合物は、350nm〜500nmの波長領域に極大吸収波長を有するものが好ましく、360nm〜480nmの波長領域に極大吸収波長を有するものがより好ましく、365nm及び405nmの吸光度が高いものが更に好ましい。
オキシム化合物の365nm又は405nmにおけるモル吸光係数は、感度の観点から、1,000〜300,000であることが好ましく、2,000〜300,000であることがより好ましく、5,000〜200,000であることが更に好ましい。
化合物のモル吸光係数は、公知の方法を用いることができるが、例えば、紫外可視分光光度計(Varian社製Cary−5 spctrophotometer)にて、酢酸エチル溶媒を用い、0.01g/Lの濃度で測定することが好ましい。
光重合開始剤は、必要に応じて2種以上を組み合わせて使用してもよい。
〔重合性化合物〕
硬化性組成物は、重合性化合物を含有する。
重合性化合物の含有量は、硬化性組成物の全固形分に対して、0.1〜40質量%が好ましい。下限は、例えば1.0質量%以上がより好ましく、3.5質量%以上が更に好ましく、3.5質量%超が特に好ましい。上限は、例えば、30質量%以下がより好ましく、20質量%以下が更に好ましく、20質量%未満が特に好ましい。
重合性化合物の含有量が、硬化性組成物の全固形分に対して3.5質量%超20質量%未満だと、硬化性組成物を硬化して得られる硬化膜のパターン形状がより優れる。
重合性化合物は、1種を単独で用いても、2種以上を併用してもよい。2種以上の重合性化合物を併用する場合は、その合計量が上記範囲内であることが好ましい。
重合性化合物は、エチレン性不飽和結合を含有する基を1個以上含有する化合物が好ましく、2個以上含有する化合物がより好ましく、3個以上含有することが更に好ましく、5個以上含有することが特に好ましい。上限は、たとえば、15個以下である。エチレン性不飽和結合を含有する基としては、例えば、ビニル基、(メタ)アリル基、及び、(メタ)アクリロイル基等が挙げられる。
重合性化合物は、例えば、モノマー、プレポリマー、オリゴマー、及び、これらの混合物、並びに、これらの多量体等の化学的形態のいずれであってもよく、モノマーが好ましい。
重合性化合物の分子量は、100〜3,000が好ましく、250〜1,500がより好ましい。
重合性化合物は、3〜15官能の(メタ)アクリレート化合物であることが好ましく、3〜6官能の(メタ)アクリレート化合物であることがより好ましい。
モノマー、プレポリマーの例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等)またはそのエステル類、アミド類、並びにこれらの多量体が挙げられ、好ましくは、不飽和カルボン酸と脂肪族多価アルコール化合物とのエステル、及び不飽和カルボン酸と脂肪族多価アミン化合物とのアミド類、並びにこれらの多量体である。また、ヒドロキシ基、アミノ基、メルカプト基等の求核性置換基を含有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能イソシアネート類又はエポキシ類との付加反応物、及び、上記不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基、エポキシ基等の親電子性置換基を含有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能のアルコール類、アミン類、又は、チオール類との反応物、ハロゲン基又はトシルオキシ基等の脱離性置換基を含有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能のアルコール類、アミン類、又は、チオール類との反応物も好適である。また、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン等のビニルベンゼン誘導体、ビニルエーテル、アリルエーテル等に置き換えた化合物群を使用することも可能である。
これらの具体的な化合物としては、特開2009−288705号公報の段落0095〜0108に記載されている化合物を本発明においても好適に用いることができる。
重合性化合物は、エチレン性不飽和結合を含有する基を1個以上含有する、常圧下で100℃以上の沸点を持つ化合物も好ましい。例えば、特開2013−29760号公報の段落0227、特開2008−292970号公報の段落0254〜0257に記載の化合物を参酌でき、この内容は本明細書に組み込まれる。
重合性化合物は、ジペンタエリスリトールトリアクリレート(市販品としてはKAYARAD D−330;日本化薬社製)、ジペンタエリスリトールテトラアクリレート(市販品としてはKAYARAD D−320;日本化薬社製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としてはKAYARAD D−310;日本化薬社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としてはKAYARAD DPHA;日本化薬社製、A−DPH−12E;新中村化学社製)、及びこれらの(メタ)アクリロイル基がエチレングリコール残基又はプロピレングリコール残基を介している構造(例えば、サートマー社から市販されている、SR454、SR499)が好ましい。これらのオリゴマータイプも使用できる。また、NKエステルA−TMMT(ペンタエリスリトールテトラアクリレート、新中村化学社製)、及び、KAYARAD RP−1040(日本化薬社製)等を使用することもできる。
以下に好ましい重合性化合物の態様を示す。
重合性化合物は、カルボン酸基、スルホン酸基、又はリン酸基等の酸基を有していてもよい。酸基を含有する重合性化合物としては、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが好ましく、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシ基に非芳香族カルボン酸無水物を反応させて酸基を持たせた重合性化合物がより好ましく、このエステルにおいて、脂肪族ポリヒドロキシ化合物がペンタエリスリトール及び/又はジペンタエリスリトールであるものが更に好ましい。市販品としては、例えば、東亞合成社製の、アロニックスTO−2349、M−305、M−510、及び、M−520等が挙げられる。
酸基を含有する重合性化合物の好ましい酸価としては、0.1〜40mgKOH/gであり、より好ましくは5〜30mgKOH/gである。重合性化合物の酸価が、0.1mgKOH/g以上であれば現像溶解特性が良好であり、40mgKOH/g以下であれば製造及び/又は取扱い上有利である。更には、上記範囲であることにより光重合性能が良好で、硬化性に優れる。
重合性化合物は、カプロラクトン構造を含有する化合物も好ましい態様である。
カプロラクトン構造を含有する化合物としては、分子内にカプロラクトン構造を含有する限り特に限定されるものではないが、例えば、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、ジグリセロール、トリメチロールメラミン等の多価アルコールと、(メタ)アクリル酸及びε−カプロラクトンとをエステル化することにより得られる、ε−カプロラクトン変性多官能(メタ)アクリレートを挙げることができる。なかでも下記式(Z−1)で表されるカプロラクトン構造を含有する化合物が好ましい。
Figure 0006896718
式(Z−1)中、6個のRは全てが下記式(Z−2)で表される基であるか、又は6個のRのうち1〜5個が下記式(Z−2)で表される基であり、残余が下記式(Z−3)で表される基である。
Figure 0006896718
式(Z−2)中、R1は水素原子又はメチル基を示し、mは1又は2の数を示し、*は結合手を示す。
Figure 0006896718
式(Z−3)中、R1は水素原子又はメチル基を示し、*は結合手を示す。
カプロラクトン構造を含有する重合性化合物は、例えば、日本化薬からKAYARAD DPCAシリーズとして市販されており、DPCA−20(式(Z−1)〜(Z−3)においてmが1、式(Z−2)で表される基の数が2、R1が全て水素原子である化合物)、DPCA−30(同式において、mが1、式(Z−2)で表される基の数が3、R1が全て水素原子である化合物)、DPCA−60(同式において、mが1、式(Z−2)で表される基の数が6、R1が全て水素原子である化合物)、DPCA−120(同式においてmが2、式(Z−2)で表される基の数が6、R1が全て水素原子である化合物)等が挙げられる。
重合性化合物は、下記式(Z−4)又は(Z−5)で表される化合物を用いることもできる。
Figure 0006896718
式(Z−4)及び(Z−5)中、Eは、各々独立に、−((CH2yCH2O)−、又は((CH2yCH(CH3)O)−を表し、yは、各々独立に0〜10の整数を表し、Xは、各々独立に、(メタ)アクリロイル基、水素原子、又はカルボン酸基を表す。
式(Z−4)中、(メタ)アクリロイル基の合計は3個又は4個であり、mは各々独立に0〜10の整数を表し、各mの合計は0〜40の整数である。
式(Z−5)中、(メタ)アクリロイル基の合計は5個又は6個であり、nは各々独立に0〜10の整数を表し、各nの合計は0〜60の整数である。
式(Z−4)中、mは、0〜6の整数が好ましく、0〜4の整数がより好ましい。
各mの合計は、2〜40の整数が好ましく、2〜16の整数がより好ましく、4〜8の整数が更に好ましい。
式(Z−5)中、nは、0〜6の整数が好ましく、0〜4の整数がより好ましい。
各nの合計は、3〜60の整数が好ましく、3〜24の整数がより好ましく、6〜12の整数が更に好ましい。
式(Z−4)又は式(Z−5)中の−((CH2yCH2O)−又は((CH2yCH(CH3)O)−は、酸素原子側の末端がXに結合する形態が好ましい。
式(Z−4)又は式(Z−5)で表される化合物は1種単独で用いてもよいし、2種以上併用してもよい。特に、式(Z−5)において、6個のX全てがアクリロイル基である形態、式(Z−5)において、6個のX全てがアクリロイル基である化合物と、6個のXのうち、少なくとも1個が水素原子ある化合物との混合物である態様が好ましい。このような構成とすることにより、現像性をより向上できる。
式(Z−4)又は式(Z−5)で表される化合物の重合性化合物中における全含有量は、20質量%以上が好ましく、50質量%以上がより好ましい。
式(Z−4)又は式(Z−5)で表される化合物は、従来公知の工程である、ペンタエリスリト−ル又はジペンタエリスリト−ルにエチレンオキシド又はプロピレンオキシドを開環付加反応により開環骨格を結合する工程と、開環骨格の末端ヒドロキシ基に、例えば(メタ)アクリロイルクロライドを反応させて(メタ)アクリロイル基を導入する工程と、から合成することができる。各工程はよく知られた工程であり、当業者は容易に一般式(Z−4)又は(Z−5)で表される化合物を合成することができる。
式(Z−4)又は式(Z−5)で表される化合物の中でも、ペンタエリスリトール誘導体及び/又はジペンタエリスリトール誘導体がより好ましい。
具体的には、下記式(a)〜(f)で表される化合物(以下、「例示化合物(a)〜(f)」とも称する。)が挙げられ、中でも、例示化合物(a)、(b)、(e)、(f)が好ましい。
Figure 0006896718
Figure 0006896718
式(Z−4)及び(Z−5)で表される重合性化合物の市販品としては、例えばサートマー社製のエチレンオキシ鎖を4個含有する4官能アクリレートであるSR−494、日本化薬社製のペンチレンオキシ鎖を6個含有する6官能アクリレートであるDPCA−60、イソブチレンオキシ鎖を3個含有する3官能アクリレートであるTPA−330等が挙げられる。
重合性化合物としては、特公昭48−41708号公報、特開昭51−37193号公報、特公平2−32293号公報、特公平2−16765号公報に記載されたウレタンアクリレート類;特公昭58−49860号公報、特公昭56−17654号公報、特公昭62−39417号公報、及び特公昭62−39418号公報に記載されたエチレンオキサイド系骨格を含有するウレタン化合物類;も好適である。また、特開昭63−277653号公報、特開昭63−260909号公報、及び特開平1−105238号公報に記載された、分子内にアミノ構造及び/又はスルフィド構造を含有する付加重合性化合物類を用いることによって、非常に感光スピードに優れた硬化性組成物を得ることができる。
市販品としては、ウレタンオリゴマーUAS−10、UAB−140(山陽国策パルプ社製)、UA−7200(新中村化学社製)、DPHA−40H(日本化薬社製)、UA−306H、UA−306T、UA−306I、AH−600、T−600、及び、AI−600(共栄社製)等が挙げられる。
重合性化合物は、SP(Solubility Parameter:溶解パラメータ)値が、9.50以上であることが好ましく、10.40以上であることがより好ましく、10.60以上が更に好ましい。
本明細書においてSP値は、特に断らない限り、Hoy法によって求める(H.L.Hoy Journal of Painting,1970,Vol.42,76−118)。SP値については単位を省略して示しているが、その単位はcal1/2cm−3/2である。
硬化性組成物は、現像残渣改善の観点から、カルド骨格を含有する重合性化合物を含有することも好ましい。
カルド骨格を含有する重合性化合物としては、9,9−ビスアリールフルオレン骨格を含有する重合性化合物が好ましく、下記式(Q3)で表される化合物がより好ましい。
式(Q3)
Figure 0006896718
上記式(Q3)中、Ar11〜Ar14はそれぞれ独立に破線で囲まれたベンゼン環を含有するアリール基を表す。X〜Xはそれぞれ独立に重合性基を含有する置換基を表し、上記置換基中の炭素原子はヘテロ原子によって置換されていてもよい。a及びbはそれぞれ独立に1〜5の整数を表し、c及びdはそれぞれ独立に0〜5の整数を表す。R〜Rはそれぞれ独立に置換基を表し、e、f、g及びhはそれぞれ独立に0以上の整数を表し、e、f、g及びhの上限値はそれぞれAr11〜Ar14が含有することができる置換基の数からa、b、c又はdを減じた値である。但し、Ar11〜Ar14がそれぞれ独立に破線で囲まれたベンゼン環を縮合環のひとつとして含有する多環芳香族炭化水素基である場合は、X〜X及びR〜Rはそれぞれ独立に破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の環に置換していてもよい。
式(Q3)中、Ar11〜Ar14が表す破線で囲まれたベンゼン環を含有するアリール基は、炭素数6〜14のアリール基であることが好ましく、炭素数6〜10のアリール基(例えば、フェニル基、ナフチル基)であることがより好ましく、フェニル基(破線で囲まれたベンゼン環のみ)であることが更に好ましい。
式(Q3)中、X〜Xはそれぞれ独立に重合性基を含有する置換基を表し、上記置換基中の炭素原子はヘテロ原子によって置換されていてもよい。X〜Xが表す重合性基を含有する置換基としては特に制限はないが、重合性基を含有する脂肪族基であることが好ましい。
〜Xが表す重合性基を含有する脂肪族基としては、特に制限はないが、重合性基以外における炭素数が1〜12のアルキレン基であることが好ましく、炭素数2〜10のアルキレン基であることがより好ましく、炭素数2〜5のアルキレン基であることが更に好ましい。
〜Xが表す重合性基を含有する脂肪族基において、上記脂肪族基がヘテロ原子によって置換される場合は、−NR−(Rは置換基)、酸素原子、硫黄原子によって置換されていることが好ましく、上記脂肪族基中の隣り合わない−CH−が酸素原子又は硫黄原子で置換されていることがより好ましく、上記脂肪族基中の隣り合わない−CH−が酸素原子で置換されていることが更に好ましい。X〜Xが表す重合性基を含有する脂肪族基は、ヘテロ原子によって1〜2箇所置換されていることが好ましく、ヘテロ原子によって1箇所置換されていることがより好ましく、Ar11〜Ar14が表す破線で囲まれたベンゼン環を含有するアリール基に隣接する1箇所がヘテロ原子によって置換されていることが更に好ましい。
〜Xが表す重合性基を含有する脂肪族基に含まれる重合性基としては、ラジカル重合又はカチオン重合可能な重合性基(以下、それぞれラジカル重合性基及びカチオン重合性基とも言う)が好ましい。
ラジカル重合性基としては、一般に知られているラジカル重合性基を用いることができ、好適なものとしてラジカル重合可能なエチレン性不飽和結合を含有する重合性基を挙げることができ、具体的にはビニル基、(メタ)アクリロイルオキシ基等を挙げることができる。中でも、(メタ)アクリロイルオキシ基が好ましく、アクリロイルオキシ基がより好ましい。
カチオン重合性基としては、一般に知られているカチオン重合性を用いることができ、具体的には、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、ビニルオキシ基等を挙げることができる。中でも、脂環式エーテル基、ビニルオキシ基が好適であり、エポキシ基、オキセタニル基、ビニルオキシ基が特に好ましい。
Ar11〜Ar14が含有する置換基が含有する上記重合性基は、ラジカル重合性基であることが好ましい。
Ar11〜Ar14のうち2つ以上は重合性基を含有する置換基を含み、Ar11〜Ar14のうち2〜4個が重合性基を含有する置換基を含有することが好ましく、Ar11〜Ar14のうち2又は3個が重合性基を含有する置換基を含有することがより好ましく、Ar11〜Ar14のうち2個が重合性基を含有する置換基を含有することが更に好ましい。
Ar11〜Ar14がそれぞれ独立に破線で囲まれたベンゼン環を縮合環のひとつとして含有する多環芳香族炭化水素基である場合は、X〜Xはそれぞれ独立に破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の環に置換していてもよい。
式(Q3)中、a及びbはそれぞれ独立に1〜5の整数を表し、1又は2であることが好ましく、a及びbがいずれも1であることがより好ましい。
式(Q3)中、c及びdはそれぞれ独立に0〜5の整数を表し、0又は1であることが好ましく、c及びdがいずれも0であることがより好ましい。
式(Q3)中、R〜Rはそれぞれ独立に置換基を表す。R〜Rが表す置換基としては特に制限はないが、例えば、ハロゲン原子、ハロゲン化アルキル基、アルキル基、アルケニル基、アシル基、ヒドロキシ基、ヒドロキシアルキル基、アルコキシ基、アリール基、ヘテロアリール基、及び、脂環基等を挙げることができる。R〜Rが表す置換基はアルキル基、アルコキシ基又はアリール基であることが好ましく、炭素数1〜5のアルキル基、炭素数1〜5のアルコキシ基又はフェニル基であることがより好ましく、メチル基、メトキシ基又はフェニル基であることが更に好ましい。
式(Q3)中、Ar11〜Ar14がそれぞれ独立に破線で囲まれたベンゼン環を縮合環のひとつとして含有する多環芳香族炭化水素基である場合は、R〜Rはそれぞれ独立に破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の環に置換していてもよい。
式(Q3)中、e、f、g及びhはそれぞれ独立に0以上の整数を表し、e、f、g及びhの上限値はそれぞれAr11〜Ar14が含有することができる置換基の数からa、b、c又はdを減じた値である。
e、f、g及びhはそれぞれ独立に0〜8であることが好ましく、0〜2であることがより好ましく、0であることが更に好ましい。
Ar11〜Ar14がそれぞれ独立に破線で囲まれたベンゼン環を縮合環のひとつとして含有する多環芳香族炭化水素基である場合、e、f、g及びhは0又は1であることが好ましく、0であることがより好ましい。
式(Q3)で表される化合物としては、例えば、9,9−ビス[4−(2−アクリロイルオキシエトキシ)フェニル]フルオレン等が挙げられる。9,9−ビスアリールフルオレン骨格を含有する重合性化合物としては、特開2010-254732号公報記載の化合物類も好適に用いることができる。
このようなカルド骨格を含有する重合性化合物としては、限定されないが、例えば、オンコートEXシリーズ(長瀬産業社製)及びオグソール(大阪ガスケミカル社製)等が挙げられる。
〔多官能チオール化合物〕
硬化性組成物は、多官能チオール化合物を含有する。本明細書において多官能チオール化合物とは、同一分子内に2個以上のチオール基(すなわち−SHで表される基)を含有するものを意図する。
多官能チオール化合物の含有量は特に制限されないが、通常、上記着色剤の含有量に対して、1〜10質量%の場合が多い。なかでも、硬化性組成物がより優れた本発明の効果を有する点で、1〜5.5質量%が好ましく、1.5〜3.5質量%がより好ましい。
多官能チオール化合物の含有量は、硬化性組成物の全固形分に対して、0.55〜3.5質量%が好ましく、0.8〜2.0質量%がより好ましい。
多官能チオール化合物は1種を単独で用いても、2種以上を併用してもよい。2種以上を併用する場合には、その合計が上記範囲内であることが好ましい。
多官能チオール化合物は、分子量100以上の低分子化合物が好ましく、具体的には、分子量100〜1,500であることが好ましく、150〜1,000がより好ましい。
多官能チオール化合物は、チオール基を分子内に2個以上含有し、3個以上含有することが好ましく、10個以下含有することが好ましく、6個以下含有することがより好ましく、4個以下含有することが更に好ましい。なかでも、多官能チオール化合物は3官能以上であることが好ましく、3官能又は4官能であることがより好ましい。
多官能チオール化合物が3官能以上であると、硬化性組成物は、より優れた本発明の効果を有する。
多官能チオール化合物は、下記式(1)で表される基を2個以上有する化合物が好ましい。
Figure 0006896718
式(1)中、Lは単結合又は−CO−を表し、Lは単結合又は2価の連結基を表す。
多官能チオール化合物としては、式(1)で表される基を一分子あたり2〜6個含有する化合物が好ましく、2〜4個含有する化合物がより好ましく、3又は4個含有する化合物が更に好ましい。
式(1)中のLにおける2価の連結基としては、2価の脂肪族基(例えば、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基、置換アルキニレン基)、2価の芳香族基(例えば、アリーレン基、置換アリーレン基)、2価の複素環基、酸素原子(−O−)、イミノ基(−NH−)、置換イミノ基(−NR31−、ここでR31は脂肪族基、芳香族基又は複素環基)、カルボニル基(−CO−)、及び、これらの組合せ等が挙げられる。
2価の連結基がアルキレン基である場合、アルキレン基の炭素数としては1〜5が好ましく、1〜2がより好ましい。
多官能チオール化合物としては、式(1)で表される基を2個以上有する下記式(2)で表される化合物がより好ましい。
Figure 0006896718
式(1)中、Lは単結合又は−CO−を表し、Lは単結合又は2価の連結基を表す。Xはn価の連結基を表し、nは2〜6の整数を表す。なお、複数のL及びLはそれぞれ同一でも異なっていてもよい。
式(2)中のL及びLの態様は、式(1)と同様である。
式(2)中のnは2〜4が好ましく、3又は4がより好ましい。
式(2)中のn価の連結基であるXとしては、例えば−(CH−(mは2〜6の整数を表す。)等の2価の連結基;トリメチロールプロパン残基、及び−(CH−(pは2〜6の整数を表す。)を3個有するイソシアヌール環等の3価の連結基;ペンタエリトリトール残基などの4価の連結基;又は5価の連結基;ジペンタエリスリトール残基等の6価の連結基;が挙げられる。
多官能チオール化合物の具体例としては、例えば、1,4−ブタンジオールビス(チオグリコラート)、ペンタエリトリトールテトラ(3−メルカプトプロピオネート)、トリメチロールプロパントリス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、テトラエチレングリコールビス(3−メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(チオグリコレート)、ペンタエリスリトールテトラキス(3−メルカプトブチレート)、ブタンジオールビス(3−メルカプトブチレート)、1,4−ビス(3−メルカプトブチリルオキシ)ブタン、及び1,4−ビス(3−メルカプトブチルオキシ)ブタン、1,3,5−トリス(3−メルカプトブチルオキシエチル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン等が挙げられる。
なかでも、硬化性組成物がより優れた本発明の効果を有する点で、多官能チオール化合物は、ペンタエリトリトールテトラ(3−メルカプトプロピオネート)、及び、トリメチロールプロパントリス(3−メルカプトプロピオネート)からなる群から選択される少なくとも1種がより好ましい。
〔任意成分〕
<重合禁止剤>
硬化性組成物は、重合禁止剤を含有することが好ましい。重合禁止剤を含有することにより硬化性組成物はより優れた経時安定性を有する。なお、本明細書において経時安定性とは、硬化性組成物を調製後、所定期間保管した場合であっても、優れたパターン形状を有する硬化膜を得ることができることを意図する。
重合禁止剤は、保管中の硬化性組成物中において、多官能チオール化合物と重合性化合物との反応が進行するのを抑制する作用を有し、上記効果が得られるものと推測される。
重合禁止剤の含有量は、多官能チオール化合物の含有量に対して、0.1〜1.5質量%が好ましく、0.3〜1.0質量%がより好ましい。
重合禁止剤の含有量が上記範囲内だと硬化性組成物はより優れた経時安定性を有する。
また、重合禁止剤の含有量は、硬化性組成物の全固形分に対して、0.00055〜0.055質量%が好ましく、0.0015〜0.01質量%がより好ましい。
重合禁止剤としては、特に制限されず、重合禁止剤として用いられる公知の化合物を用いることができる。重合禁止剤として用いられる化合物としては、例えば、フェノール系化合物、キノン系化合物、ヒンダードアミン系化合物、フェノチアジン系化合物、及びニトロベンゼン系化合物等が挙げられる。上記化合物は1種を単独で用いても、2種以上を併用してもよい。
フェノール系化合物としては、例えば、フェノール、4−メトキシフェノール、ヒドロキノン、2−tert−ブチルヒドロキノン、カテコール、4−tert−ブチル−カテコール、2,6−ジ−tert−ブチルフェノール、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、4−ヒドロキシメチル−2,6−ジ−tert−ブチルフェノール、ペンタエリスリトールテトラキス(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナメート)、4−メトキシ−1−ナフトール、及び1,4−ジヒドロキシナフタレン等が挙げられる。
フェノール系化合物としては、式(IH−1)で示されるフェノール系化合物が好ましい。
Figure 0006896718
式(IH−1)中、R〜Rは、それぞれ独立して、水素原子、アルキル基、アルケニル基、ヒドロキシ基、アミノ基、アリール基、アルコキシ基、カルボキシル基、アルコキシカルボニル基、又はアシル基を表す。R〜Rはそれぞれ連結して環を形成してもよい。
式(IH−1)中のR〜Rとしては、水素原子、炭素数1〜5のアルキル基(例えば、メチル基及びエチル基等)、炭素数1〜5のアルコキシ基(例えば、メトキシ基及びエトキシ基等)、炭素数2〜4のアルケニル基(例えば、ビニル基等)、又はフェニル基が好ましい。
なかでも、R及びRはそれぞれ独立して、水素原子又はtert−ブチル基がより好ましく、R及びRは水素原子がより好ましく、Rは水素原子、炭素数1〜5のアルキル基又は炭素数1〜5のアルコキシ基がより好ましい。
キノン系化合物としては、例えば、1,4−ベンゾキノン、1,2−ベンゾキノン、及び1,4−ナフトキノン等が挙げられる。
ヒンダードアミン系化合物としては、例えば、下記式(IH−2)で表わされる重合禁止剤が挙げられる。
Figure 0006896718
式(IH−2)中のRは、水素原子、ヒドロキシ基、アミノ基、アルコキシ基、アルコキシカルボニル基、又はアシル基を表す。なかでも、水素原子又はヒドロキシ基が好ましく、ヒドロキシ基がより好ましい。
式(IH−2)中のR〜R10は、それぞれ独立して、水素原子又はアルキル基を表す。R〜R10が表すアルキル基としては、炭素数1〜5のアルキル基が好ましく、メチル基又はエチル基がより好ましい。
重合禁止剤としては、上記の各化合物を1種単独で用いても、2種を併用してもよく、3種以上を併用してもよい。
重合禁止剤は、フェノール系化合物を含有することが好ましい。なかでも、重合禁止剤は2種以上のフェノール系化合物を含有することがより好ましい。異なるフェノール系化合物を含有する硬化性組成物はより優れた本発明の効果を有する。
重合禁止剤は、フェノール系化合物と、ヒンダードアミン系化合物とを含有することが好ましい。フェノール系化合物とヒンダードアミン系化合物とを含有する硬化性組成物はより優れた本発明の効果を有する。
<溶剤>
硬化性組成物は、溶剤を含有することが好ましい。溶剤としては、水、及び有機溶剤が挙げられる。硬化性組成物は有機溶剤を含有することが好ましい。
硬化性組成物が溶剤を含有する場合、硬化性組成物の固形分は10〜40質量%が好ましい。硬化性組成物の固形分が下限値以上だと、粘度が低く塗布性が良化する。さらに、反応性の高い化合物の濃度が低くなることから経時安定性が良化する。硬化性組成物の固形分が上限値以下だと、粘度が程度に保たれ塗布性が良化する。さらに、比重の重い着色剤が沈降しにくくなり、経時安定性が良化する。
(有機溶剤)
硬化性組成物が有機溶剤を含有する場合、有機溶剤の含有量としては、硬化性組成物の全質量に対し、60〜90質量%が好ましい。
なお、有機溶剤は1種を単独で用いても、2種以上を併用してもよい。2種以上の有機溶剤を併用する場合には、その合計量が上記範囲となることが好ましい。
有機溶剤としては、特に制限されないが、例えば、アセトン、メチルエチルケトン、シクロヘキサン、エチレンジクロライド、テトラヒドロフラン、トルエン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、アセチルアセトン、シクロヘキサノン、シクロペンタノン、ジアセトンアルコール、エチレングリコールモノメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテルアセテート、3−メトキシプロパノール、メトキシメトキシエタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、3−メトキシプロピルアセテート、N,N−ジメチルホルムアミド、ジメチルスルホキシド、γ−ブチロラクトン、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、エチルセロソルブアセテート、3−メトキシプロピオン酸メチル、2−ヘプタノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、酢酸エチル、酢酸ブチル、乳酸メチル、及び乳酸エチル等が挙げられる。
2種以上の有機溶剤を含有する場合には、上記の3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3−メトキシプロピオン酸メチル、2−ヘプタノン、シクロヘキサノン、シクロペンタノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテル、及びプロピレングリコールモノメチルエーテルアセテートからなる群から選択される2種以上で構成されることが好ましい。
(水)
硬化性組成物は、水を含有してもよい。水は、意図的に添加されるものであってもよいし、硬化性組成物に含まれる各成分を添加することで不可避的に硬化性組成物中に含有されるものであってもよい。
水の含有量は、硬化性組成物の全質量に対して、0.01〜1質量%が好ましい。水の含有量が上記範囲内にあると、硬化膜を作製した際にピンホールの発生が抑制され、更に、硬化膜の耐湿性が向上する。
<分散剤>
硬化性組成物は、分散剤を含有することが好ましい。分散剤は、着色剤の分散性向上に寄与する。本明細書において、分散剤と、後述するバインダー樹脂とは、異なる成分である。
硬化性組成物が、分散剤を含有する場合、分散剤の含有量は、硬化性組成物の全固形分に対して、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、5質量%以上が更に好ましく、11質量%以上が特に好ましく、17質量%以上が最も好ましい。分散剤の含有量の上限は、硬化性組成物の全固形分に対して、50質量%以下が好ましく、30質量%以下がより好ましく、22質量%以下が更に好ましい。
分散剤の含有量が、17質量%以上であると、硬化性組成物を硬化して得られる硬化膜のパターン形状がより優れる。
分散剤は、1種を単独で用いても、2種以上を併用してもよい。分散剤を2種以上併用する場合は、合計量が上記範囲内であることが好ましい。
分散剤としては、例えば、公知の顔料分散剤を適宜選択して用いることができる。なかでも、高分子化合物が好ましい。
分散剤としては、高分子分散剤〔例えば、ポリアミドアミンとその塩、ポリカルボン酸とその塩、高分子量不飽和酸エステル、変性ポリウレタン、変性ポリエステル、変性ポリ(メタ)アクリレート、(メタ)アクリル系共重合体、ナフタレンスルホン酸ホルマリン縮合物〕、ポリオキシエチレンアルキルリン酸エステル、ポリオキシエチレンアルキルアミン、及び、顔料誘導体等を挙げることができる。
高分子化合物は、その構造から更に直鎖状高分子、末端変性型高分子、グラフト型高分子、及びブロック型高分子に分類することができる。
(高分子化合物)
高分子化合物は、着色剤(例えば、無機顔料)の被分散体の表面に吸着し、被分散体の再凝集を防止するように作用する。そのため、顔料表面へのアンカー部位を含有する、末端変性型高分子、グラフト型高分子、及び、ブロック型高分子が好ましい。
高分子化合物は、グラフト鎖を含有する構造単位を含有することが好ましい。本明細書において、「構造単位」とは「繰り返し単位」と同義である。
このようなグラフト鎖を含有する構造単位を含有する高分子化合物は、グラフト鎖によって溶剤との親和性を有するため、黒色顔料等の着色剤の分散性、及び、経時後の分散安定性(経時安定性)に優れる。グラフト鎖を含有する構造単位を含有する高分子化合物は、グラフト鎖の存在により、重合性化合物又はその他の併用可能な樹脂等との親和性を有する。結果として、アルカリ現像で残渣を生じにくくなる。
グラフト鎖が長くなると立体反発効果が高くなり黒色顔料等の分散性は向上する。一方、グラフト鎖が長すぎると黒色顔料等の着色顔料への吸着力が低下して、黒色顔料等の分散性は低下する傾向となる。このため、グラフト鎖は、水素原子を除いた原子数が40〜10,000であるものが好ましく、水素原子を除いた原子数が50〜2,000であるものがより好ましく、水素原子を除いた原子数が60〜500であるものが更に好ましい。
ここで、グラフト鎖とは、共重合体の主鎖の根元(主鎖から枝分かれしている基において主鎖に結合する原子)から、主鎖から枝分かれしている基の末端までを示す。
グラフト鎖は、ポリマー構造を含有することが好ましく、このようなポリマー構造としては、例えば、ポリ(メタ)アクリレート構造(例えば、ポリ(メタ)アクリル構造)、ポリエステル構造、ポリウレタン構造、ポリウレア構造、ポリアミド構造、及び、ポリエーテル構造等を挙げることができる。
グラフト鎖と溶剤との相互作用性を向上させ、それにより黒色顔料等の分散性を高めるために、グラフト鎖は、ポリエステル構造、ポリエーテル構造及びポリ(メタ)アクリレート構造からなる群から選ばれた少なくとも1種を含有するグラフト鎖であることが好ましく、ポリエステル構造又はポリエーテル構造の少なくともいずれかを含有するグラフト鎖であることがより好ましい。
このようなグラフト鎖を含有するマクロモノマーとしては、特に限定されないが、反応性二重結合性基を含有するマクロモノマーを好適に使用することができる。
高分子化合物が含有するグラフト鎖を含有する構造単位に対応し、高分子化合物の合成に好適に用いられる市販のマクロモノマーとしては、AA−6(商品名、東亜合成社製)、AA−10(商品名、東亜合成社製)、AB−6(商品名、東亜合成社製)、AS−6(商品名、東亜合成社製)、AN−6(商品名、東亜合成社製)、AW−6(商品名、東亜合成社製)、AA−714(商品名、東亜合成社製)、AY−707(商品名、東亜合成社製)、AY−714(商品名、東亜合成社製)、AK−5(商品名、東亜合成社製)、AK−30(商品名、東亜合成社製)、AK−32(商品名、東亜合成社製)、ブレンマーPP−100(商品名、日油社製)、ブレンマーPP−500(商品名、日油社製)、ブレンマーPP−800(商品名、日油社製)、ブレンマーPP−1000(商品名、日油社製)、ブレンマー55−PET−800(商品名、日油社製)、ブレンマーPME−4000(商品名、日油社製)、ブレンマーPSE−400(商品名、日油社製)、ブレンマーPSE−1300(商品名、日油社製)、ブレンマー43PAPE−600B(商品名、日油社製)等が挙げられる。このなかでも、AA−6(商品名、東亜合成社製)、AA−10(商品名、東亜合成社製)、AB−6(商品名、東亜合成社製)、AS−6(商品名、東亜合成社製)、AN−6(商品名、東亜合成社製)、及び、ブレンマーPME−4000(商品名、日油社製)等が好ましい。
分散剤は、ポリアクリル酸メチル、ポリメタクリル酸メチル、及び環状又は鎖状のポリエステルからなる群より選択される少なくとも1種の構造を含有することが好ましい。分散剤は、ポリアクリル酸メチル、ポリメタクリル酸メチル、及び鎖状のポリエステルからなる群より選択される少なくとも1種の構造を含有することがより好ましい。上記分散剤は、ポリアクリル酸メチル構造、ポリメタクリル酸メチル構造、ポリカプロラクトン構造、及びポリバレロラクトン構造からなる群より選択される少なくとも1種の構造を含有することが更に好ましい。分散剤は、1つの分散剤中に上記構造を単独で含有するものであってもよいし、1つの分散剤中にこれらの構造を複数含有するものであってもよい。
ここで、ポリカプロラクトン構造とは、ε−カプロラクトンを開環した構造を繰り返し単位として含有するものをいう。ポリバレロラクトン構造とは、δ−バレロラクトンを開環した構造を繰り返し単位として含有するものをいう。
ポリカプロラクトン構造を含有する分散剤の具体例としては、下記式(1)及び下記式(2)におけるj及びkが5であるものが挙げられる。また、ポリバレロラクトン構造を含有する分散剤の具体例としては、下記式(1)及び下記式(2)におけるj及びkが4であるものが挙げられる。
ポリアクリル酸メチル構造を含有する分散剤の具体例としては、下記式(4)におけるXが水素原子であり、Rがメチル基であるものが挙げられる。また、ポリメタクリル酸メチル構造を含有する分散剤の具体例としては、下記式(4)におけるXがメチル基であり、Rがメチル基であるものが挙げられる。
・グラフト鎖を含有する構造単位
高分子化合物は、グラフト鎖を含有する構造単位として、下記式(1)〜式(4)のいずれかで表される構造単位を含有することが好ましく、下記式(1A)、下記式(2A)、下記式(3A)、下記式(3B)、及び下記(4)のいずれかで表される構造単位を含有することがより好ましい。
Figure 0006896718
式(1)〜式(4)において、W、W、W、及びWはそれぞれ独立に酸素原子又はNHを表す。W、W、W、及びWは酸素原子であることが好ましい。
式(1)〜式(4)において、X、X、X、X、及びXは、それぞれ独立に、水素原子又は1価の有機基を表す。X、X、X、X、及びXは、合成上の制約の観点からは、それぞれ独立に、水素原子又は炭素数(炭素原子数)1〜12のアルキル基が好ましく、それぞれ独立に、水素原子又はメチル基がより好ましく、メチル基が更に好ましい。
式(1)〜式(4)において、Y、Y、Y、及びYは、それぞれ独立に、2価の連結基を表し、連結基は特に構造上制約されない。Y、Y、Y、及びYで表される2価の連結基として、具体的には、下記の(Y−1)〜(Y−21)の連結基等が例として挙げられる。下記に示した構造において、A、Bはそれぞれ結合部位を意味する。下記に示した構造のうち、合成の簡便性から、(Y−2)又は(Y−13)であることがより好ましい。
Figure 0006896718
式(1)〜式(4)において、Z、Z、Z、及びZは、それぞれ独立に1価の有機基を表す。有機基の構造は、特に限定されないが、具体的には、アルキル基、水酸基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオエーテル基、アリールチオエーテル基、ヘテロアリールチオエーテル基、及びアミノ基等が挙げられる。これらの中でも、Z、Z、Z、及びZで表される有機基としては、特に分散性向上の観点から、立体反発効果を含有するものが好ましく、各々独立に炭素数5から24のアルキル基又はアルコキシ基がより好ましく、その中でも、各々独立に炭素数5から24の分岐アルキル基、炭素数5から24の環状アルキル基、又は、炭素数5から24のアルコキシ基が更に好ましい。アルコキシ基中に含まれるアルキル基は、直鎖状、分岐鎖状、及び、環状のいずれでもよい。
式(1)〜式(4)において、n、m、p、及びqは、それぞれ独立に、1から500の整数である。
式(1)及び式(2)において、j及びkは、それぞれ独立に、2〜8の整数を表す。式(1)及び式(2)におけるj及びkは、硬化性組成物の経時安定性及び現像性の観点から、4〜6の整数が好ましく、5が最も好ましい。
式(3)中、Rは分岐又は直鎖のアルキレン基を表し、炭素数1〜10のアルキレン基が好ましく、炭素数2又は3のアルキレン基がより好ましい。pが2〜500のとき、複数存在するRは互いに同じであっても異なっていてもよい。
式(4)中、Rは水素原子又は1価の有機基を表し、この1価の有機基としては特に構造上限定はされない。Rは、水素原子、アルキル基、アリール基、又は、ヘテロアリール基が好ましく、水素原子、又はアルキル基がより好ましい。Rがアルキル基である場合、炭素数1〜20の直鎖状アルキル基、炭素数3〜20の分岐状アルキル基、又は炭素数5〜20の環状アルキル基が好ましく、炭素数1〜20の直鎖状アルキル基がより好ましく、炭素数1〜6の直鎖状アルキル基が更に好ましい。式(4)において、qが2〜500のとき、グラフト共重合体中に複数存在するX及びRは互いに同じであっても異なっていてもよい。
高分子化合物は、2種以上の構造が異なる、グラフト鎖を含有する構造単位を含有することができる。即ち、高分子化合物の分子中に、互いに構造の異なる式(1)〜式(4)で示される構造単位を含んでいてもよく、式(1)〜式(4)においてn、m、p、及びqがそれぞれ2以上の整数を表す場合、式(1)及び式(2)においては、側鎖中にj及びkが互いに異なる構造を含んでいてもよく、式(3)及び式(4)においては、分子内に複数存在するR、R及びXは互いに同じであっても異なっていてもよい。
式(1)で表される構造単位としては、硬化性組成物の経時安定性及び現像性の観点から、下記式(1A)で表される構造単位であることがより好ましい。
式(2)で表される構造単位としては、硬化性組成物の経時安定性及び現像性の観点から、下記式(2A)で表される構造単位であることがより好ましい。
Figure 0006896718
式(1A)中、X、Y、Z及びnは、式(1)におけるX、Y、Z及びnと同義であり、好ましい範囲も同様である。式(2A)中、X、Y、Z及びmは、式(2)におけるX、Y、Z及びmと同義であり、好ましい範囲も同様である。
式(3)で表される構造単位としては、硬化性組成物の経時安定性及び現像性の観点から、下記式(3A)又は式(3B)で表される構造単位であることがより好ましい。
Figure 0006896718
式(3A)又は(3B)中、X、Y、Z及びpは、式(3)におけるX、Y、Z及びpと同義であり、好ましい範囲も同様である。
高分子化合物は、グラフト鎖を含有する構造単位として、式(1A)で表される構造単位を含有することがより好ましい。
高分子化合物において、グラフト鎖を含有する構造単位(例えば、上記式(1)〜式(4)で表される構造単位)は、質量換算で、高分子化合物の総質量に対し2〜90%の範囲で含まれることが好ましく、5〜30%の範囲で含まれることがより好ましい。グラフト鎖を含有する構造単位がこの範囲内で含まれると、黒色顔料の分散性が高く、硬化膜を形成する際の現像性が良好である。
・疎水性構造単位
高分子化合物は、グラフト鎖を含有する構造単位とは異なる(すなわち、グラフト鎖を含有する構造単位には相当しない)疎水性構造単位を含有することが好ましい。ただし、本明細書において、疎水性構造単位は、酸基(例えば、カルボン酸基、スルホン酸基、リン酸基、フェノール性水酸基等)を有さない構造単位である。
疎水性構造単位は、好ましくは、ClogP値が1.2以上の化合物(モノマー)に由来する(対応する)構造単位であり、より好ましくは、ClogP値が1.2〜8の化合物に由来する構造単位である。これにより、本発明の効果をより確実に発現することができる。
ClogP値は、Daylight Chemical Information System, Inc.から入手できるプログラム“CLOGP”で計算される値である。このプログラムは、Hansch, Leoのフラグメントアプローチ(下記文献参照)により算出される“計算logP”の値を提供する。フラグメントアプローチは化合物の化学構造に基づいており、化学構造を部分構造(フラグメント)に分割し、そのフラグメントに対して割り当てられたlogP寄与分を合計することにより化合物のlogP値を推算している。その詳細は以下の文献に記載されている。本明細書では、ClogP値は、プログラムCLOGP v4.82により計算した値を意図する。
A. J. Leo, Comprehensive Medicinal Chemistry, Vol.4, C. Hansch, P. G. Sammnens, J. B. Taylor and C. A. Ramsden, Eds., p.295, Pergamon Press, 1990 C. Hansch & A. J. Leo. SUbstituent Constants For Correlation Analysis in Chemistry and Biology. John Wiley & Sons. A.J. Leo. Calculating logPoct from structure. Chem. Rev., 93, 1281−1306, 1993.
logPは、分配係数P(Partition Coefficient)の常用対数を意味し、ある有機化合物が油(一般的には1−オクタノール)と水の2相系の平衡でどのように分配されるかを定量的な数値として表す物性値であり、以下の式で示される。
logP=log(Coil/Cwater)
式中、Coilは油相中の化合物のモル濃度を、Cwaterは水相中の化合物のモル濃度を表す。
logPの値が0をはさんでプラスに大きくなると油溶性が増し、マイナスで絶対値が大きくなると水溶性が増すことを意味し、有機化合物の水溶性と負の相関があり、有機化合物の親疎水性を見積るパラメータとして広く利用されている。
高分子化合物は、疎水性構造単位として、下記式(i)〜(iii)で表される単量体に由来の構造単位から選択された1種以上の構造単位を含有することが好ましい。
Figure 0006896718
式(i)〜(iii)中、R、R、及びRは、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、又は炭素数が1〜6のアルキル基(例えば、メチル基、エチル基、プロピル基等)を表す。
、R、及びRは、好ましくは水素原子、又は炭素数が1〜3のアルキル基であり、より好ましくは水素原子又はメチル基である。R及びRは、水素原子であることが更に好ましい。
Xは、酸素原子(−O−)又はイミノ基(−NH−)を表し、酸素原子であることが好ましい。
Lは、単結合又は2価の連結基である。2価の連結基としては、2価の脂肪族基(例えば、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基、置換アルキニレン基)、2価の芳香族基(例えば、アリーレン基、置換アリーレン基)、2価の複素環基、酸素原子(−O−)、硫黄原子(−S−)、イミノ基(−NH−)、置換イミノ基(−NR31−、ここでR31は脂肪族基、芳香族基又は複素環基)、カルボニル基(−CO−)、及び、これらの組合せ等が挙げられる。
2価の脂肪族基は、環状構造又は分岐構造を有していてもよい。脂肪族基の炭素数は、1〜20が好ましく、1〜15がより好ましく、1〜10が更に好ましい。脂肪族基は不飽和脂肪族基であっても飽和脂肪族基であってもよいが、飽和脂肪族基であることが好ましい。脂肪族基は、置換基を有していてもよい。置換基の例は、ハロゲン原子、芳香族基及び複素環基等が挙げられる。
2価の芳香族基の炭素数は、6〜20が好ましく、6〜15がより好ましく、6〜10が更に好ましい。芳香族基は置換基を有していてもよい。置換基の例は、ハロゲン原子、脂肪族基、芳香族基及び複素環基等が挙げられる。
2価の複素環基は、複素環として5員環又は6員環を含有することが好ましい。複素環に他の複素環、脂肪族環又は芳香族環が縮合していてもよい。複素環基は置換基を有していてもよい。置換基の例としては、ハロゲン原子、ヒドロキシ基、オキソ基(=O)、チオキソ基(=S)、イミノ基(=NH)、置換イミノ基(=N−R32、ここでR32は脂肪族基、芳香族基又は複素環基)、脂肪族基、芳香族基、又は、複素環基が挙げられる。
Lは、単結合、アルキレン基又はオキシアルキレン構造を含有する2価の連結基であることが好ましい。オキシアルキレン構造は、オキシエチレン構造又はオキシプロピレン構造であることがより好ましい。Lは、オキシアルキレン構造を2以上繰り返して含有するポリオキシアルキレン構造を含んでいてもよい。ポリオキシアルキレン構造としては、ポリオキシエチレン構造又はポリオキシプロピレン構造が好ましい。ポリオキシエチレン構造は、−(OCHCH)n−で表され、nは、2以上の整数が好ましく、2〜10の整数であることがより好ましい。
Zは、脂肪族基(例えば、アルキル基、置換アルキル基、不飽和アルキル基、置換不飽和アルキル基、)、芳香族基(例えば、アリール基、置換アリール基、アリーレン基、置換アリーレン基)、複素環基、又は、これらの組み合わせが挙げられる。これらの基には、酸素原子(−O−)、硫黄原子(−S−)、イミノ基(−NH−)、置換イミノ基(−NR31−、ここでR31は脂肪族基、芳香族基又は複素環基)、又は、カルボニル基(−CO−)が含まれていてもよい。
脂肪族基は、環状構造又は分岐構造を有していてもよい。脂肪族基の炭素数は、1〜20が好ましく、1〜15がより好ましく、1〜10が更に好ましい。脂肪族基には、更に環集合炭化水素基、架橋環式炭化水素基が含まれ、環集合炭化水素基の例としては、ビシクロヘキシル基、パーヒドロナフタレニル基、ビフェニル基、及び、4−シクロヘキシルフェニル基等が含まれる。架橋環式炭化水素環として、例えば、ピナン、ボルナン、ノルピナン、ノルボルナン、ビシクロオクタン環(ビシクロ[2.2.2]オクタン環、及び、ビシクロ[3.2.1]オクタン環等)等の2環式炭化水素環、ホモブレダン、アダマンタン、トリシクロ[5.2.1.02,6]デカン、及び、トリシクロ[4.3.1.12,5]ウンデカン環等の3環式炭化水素環、並びに、テトラシクロ[4.4.0.12,5.17,10]ドデカン、及び、パーヒドロ−1,4−メタノ−5,8−メタノナフタレン環等の4環式炭化水素環等が挙げられる。架橋環式炭化水素環には、縮合環式炭化水素環、例えば、パーヒドロナフタレン(デカリン)、パーヒドロアントラセン、パーヒドロフェナントレン、パーヒドロアセナフテン、パーヒドロフルオレン、パーヒドロインデン、及び、パーヒドロフェナレン環等の5〜8員シクロアルカン環が複数個縮合した縮合環も含まれる。
脂肪族基は不飽和脂肪族基よりも飽和脂肪族基の方が好ましい。脂肪族基は、置換基を有していてもよい。置換基の例は、ハロゲン原子、芳香族基及び複素環基が挙げられる。ただし、脂肪族基は、置換基として酸基を有さない。
芳香族基の炭素数は、6〜20が好ましく、6〜15がより好ましく、6〜10が更に好ましい。芳香族基は置換基を有していてもよい。置換基の例は、ハロゲン原子、脂肪族基、芳香族基及び複素環基が挙げられる。ただし、芳香族基は、置換基として酸基を有さない。
複素環基は、複素環として5員環又は6員環を含有することが好ましい。複素環に他の複素環、脂肪族環又は芳香族環が縮合していてもよい。複素環基は置換基を有していてもよい。置換基の例としては、ハロゲン原子、ヒドロキシ基、オキソ基(=O)、チオキソ基(=S)、イミノ基(=NH)、置換イミノ基(=N−R32、ここでR32は脂肪族基、芳香族基又は複素環基)、脂肪族基、芳香族基及び複素環基が挙げられる。ただし、複素環基は、置換基として酸基を有さない。
式(iii)中、R、R、及びRは、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、炭素数が1〜6のアルキル基(例えば、メチル基、エチル基、プロピル基等)、Z、又はL−Zを表す。ここでL及びZは、上記におけるものと同義である。R、R、及びRとしては、水素原子、又は炭素数が1〜3のアルキル基が好ましく、水素原子がより好ましい。
式(i)で表される単量体として、R、R、及びRが水素原子又はメチル基であって、Lが単結合又はアルキレン基もしくはオキシアルキレン構造を含有する2価の連結基であって、Xが酸素原子又はイミノ基であって、Zが脂肪族基、複素環基又は芳香族基である化合物が好ましい。
式(ii)で表される単量体として、Rが水素原子又はメチル基であって、Lがアルキレン基であって、Zが脂肪族基、複素環基又は芳香族基である化合物が好ましい。
式(iii)で表される単量体として、R、R、及びRが水素原子又はメチル基であって、Zが脂肪族基、複素環基又は芳香族基である化合物が好ましい。
式(i)〜(iii)で表される代表的な化合物の例としては、アクリル酸エステル類、メタクリル酸エステル類、及び、スチレン類等から選ばれるラジカル重合性化合物が挙げられる。
式(i)〜(iii)で表される代表的な化合物の例としては、特開2013−249417号公報の段落0089〜0093に記載の化合物を参照でき、これらの内容は本明細書に組み込まれる。
高分子化合物において、疎水性構造単位は、質量換算で、高分子化合物の総質量に対し10〜90%の範囲で含まれることが好ましく、20〜80%の範囲で含まれることがより好ましい。含有量が上記範囲であることにより良好十分なパターン形成が得られる。
・黒色顔料等の着色剤と相互作用を形成しうる官能基
高分子化合物は、黒色顔料等の着色剤と相互作用を形成しうる官能基を導入することができる。ここで、高分子化合物は、黒色顔料等の着色剤と相互作用を形成しうる官能基を含有する構造単位を更に含有することが好ましい。
この黒色顔料等の着色剤と相互作用を形成しうる官能基としては、例えば、酸基、塩基性基、配位性基、及び、反応性を有する官能基等が挙げられる。
高分子化合物が、酸基、塩基性基、配位性基、又は、反応性を有する官能基を含有する場合、それぞれ、酸基を含有する構造単位、塩基性基を含有する構造単位、配位性基を含有する構造単位、又は、反応性を有する構造単位を含有することが好ましい。
特に、高分子化合物が、更に、酸基として、カルボン酸基等のアルカリ可溶性基を含有することで、高分子化合物に、アルカリ現像によるパターン形成のための現像性を付与することができる。
すなわち、高分子化合物にアルカリ可溶性基を導入することで、硬化性組成物は、黒色顔料等の着色剤の分散に寄与する分散剤としての高分子化合物がアルカリ可溶性を含有することになる。このような高分子化合物を含有する硬化性組成物は、露光部の遮光性に優れたものとなり、且つ、未露光部のアルカリ現像性が向上される。
高分子化合物が酸基を含有する構造単位を含有することにより、高分子化合物が溶剤となじみやすくなり、塗布性も向上する傾向となる。
これは、酸基を含有する構造単位における酸基が黒色顔料等の着色剤と相互作用しやすく、高分子化合物が黒色顔料等の着色剤を安定的に分散すると共に、黒色顔料等の着色剤を分散する高分子化合物の粘度が低くなり、高分子化合物自体も安定的に分散されやすいためであると推測される。
酸基としてのアルカリ可溶性基を含有する構造単位は、上記のグラフト鎖を含有する構造単位と同一の構造単位であっても、異なる構造単位であってもよいが、上記の疎水性構造単位とは異なる構造単位である(すなわち、上記の疎水性構造単位には相当しない)。
黒色顔料等の着色剤と相互作用を形成しうる官能基である酸基としては、例えば、カルボン酸基、スルホン酸基、リン酸基、又は、フェノール性水酸基等があり、カルボン酸基、スルホン酸基、及び、リン酸基のうち少なくとも1種が好ましく、黒色顔料等の着色剤への吸着力が良好で、且つ、着色剤の分散性が高い点で、カルボン酸基がより好ましい。
すなわち、高分子化合物は、カルボン酸基、スルホン酸基、及び、リン酸基のうち少なくとも1種を含有する構造単位を更に含有することが好ましい。
高分子化合物は、酸基を含有する構造単位を1種又は2種以上有してもよい。
高分子化合物は、酸基を含有する構造単位を含有してもしなくてもよいが、含有する場合、酸基を含有する構造単位の含有量は、質量換算で、高分子化合物の総質量に対して、好ましくは5〜80%であり、より好ましくは、アルカリ現像による画像強度のダメージ抑制という観点から、10〜60%である。
黒色顔料等の着色剤と相互作用を形成しうる官能基である塩基性基としては、例えば、第1級アミノ基、第2級アミノ基、第3級アミノ基、N原子を含有するヘテロ環、及び、アミド基等があり、好ましいものは、黒色顔料等の着色剤への吸着力が良好で、且つ、着色剤の分散性が高い点で、第3級アミノ基である。高分子化合物は、これらの塩基性基を1種又は2種以上、含有することができる。
高分子化合物は、塩基性基を含有する構造単位を含有してもしなくてもよいが、含有する場合、塩基性基を含有する構造単位の含有量は、質量換算で、高分子化合物の総質量に対して、0.01%以上50%以下が好ましく、現像性阻害抑制という観点から、0.01%以上30%以下がより好ましい。
黒色顔料等の着色剤と相互作用を形成しうる官能基である配位性基、及び反応性を有する官能基としては、例えば、アセチルアセトキシ基、トリアルコキシシリル基、イソシアネート基、酸無水物、及び、酸塩化物等が挙げられる。好ましいものは、黒色顔料等の着色剤への吸着力が良好で、着色剤の分散性が高い点で、アセチルアセトキシ基である。高分子化合物は、これらの基を1種又は2種以上有してもよい。
高分子化合物は、配位性基を含有する構造単位、又は、反応性を有する官能基を含有する構造単位を含有してもしなくてもよいが、含有する場合、これらの構造単位の含有量は、質量換算で、高分子化合物の総質量に対して、10%以上80%以下が好ましく、現像性阻害抑制という観点から、20%以上60%以下がより好ましい。
高分子化合物が、グラフト鎖以外に、黒色顔料等の着色剤と相互作用を形成しうる官能基を含有する場合、上記の各種の黒色顔料等の着色剤と相互作用を形成しうる官能基を含有していればよく、これらの官能基がどのように導入されているかは特に限定はされないが、高分子化合物は、下記一般式(iv)〜(vi)で表される単量体に由来の構造単位から選択された1種以上の構造単位を含有することが好ましい。
Figure 0006896718
式(iv)〜式(vi)中、R11、R12、及びR13は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、又は炭素数が1〜6のアルキル基(例えば、メチル基、エチル基、プロピル基等)を表す。
式(iv)〜式(vi)中、R11、R12、及びR13は、好ましくは、それぞれ独立に水素原子、又は炭素数が1〜3のアルキル基であり、より好ましくは、それぞれ独立に水素原子又はメチル基である。一般式(iv)中、R12及びR13は、それぞれ水素原子であることが特に好ましい。
式(iv)中のXは、酸素原子(−O−)又はイミノ基(−NH−)を表し、酸素原子であることが好ましい。
式(v)中のYは、メチン基又は窒素原子を表す。
式(iv)〜式(v)中のLは、単結合又は2価の連結基を表す。2価の連結基の例としては、2価の脂肪族基(例えば、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基、及び置換アルキニレン基)、2価の芳香族基(例えば、アリーレン基、及び置換アリーレン基)、2価の複素環基、酸素原子(−O−)、硫黄原子(−S−)、イミノ基(−NH−)、置換イミノ結合(−NR31’−、ここでR31’は脂肪族基、芳香族基又は複素環基)、カルボニル結合(−CO−)、及び、これらの組合せ等が挙げられる。
2価の脂肪族基は、環状構造又は分岐構造を有していてもよい。脂肪族基の炭素数は、1〜20が好ましく、1〜15がより好ましく、1〜10が更に好ましい。脂肪族基は不飽和脂肪族基よりも飽和脂肪族基の方が好ましい。脂肪族基は、置換基を有していてもよい。置換基の例としては、ハロゲン原子、ヒドロキシ基、芳香族基及び複素環基が挙げられる。
2価の芳香族基の炭素数は、6〜20が好ましく、6〜15がより好ましく、6〜10が更に好ましい。芳香族基は置換基を有していてもよい。置換基の例は、ハロゲン原子、ヒドロキシ基、脂肪族基、芳香族基及び複素環基が挙げられる。
2価の複素環基は、複素環として5員環又は6員環を含有することが好ましい。複素環に他の複素環、脂肪族環又は芳香族環のうち1つ以上が縮合していてもよい。複素環基は置換基を有していてもよい。置換基の例としては、ハロゲン原子、ヒドロキシ基、オキソ基(=O)、チオキソ基(=S)、イミノ基(=NH)、置換イミノ基(=N−R32、ここでR32は脂肪族基、芳香族基又は複素環基)、脂肪族基、芳香族基及び複素環基が挙げられる。
は、単結合、アルキレン基又はオキシアルキレン構造を含有する2価の連結基であることが好ましい。オキシアルキレン構造は、オキシエチレン構造又はオキシプロピレン構造であることがより好ましい。Lは、オキシアルキレン構造を2以上繰り返して含有するポリオキシアルキレン構造を含んでいてもよい。ポリオキシアルキレン構造としては、ポリオキシエチレン構造又はポリオキシプロピレン構造が好ましい。ポリオキシエチレン構造は、−(OCHCH)n−で表され、nは、2以上の整数が好ましく、2〜10の整数であることがより好ましい。
式(iv)〜式(vi)中、Zは、グラフト鎖以外に黒色顔料等の着色剤と相互作用を形成しうる官能基を表し、カルボン酸基、及び、第三級アミノ基であることが好ましく、カルボン酸基であることがより好ましい。
式(vi)中、R14、R15、及びR16は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、炭素数が1〜6のアルキル基(例えば、メチル基、エチル基、プロピル基等)、−Z、又はL−Zを表す。ここでL及びZは、上記におけるL及びZと同義であり、好ましい例も同様である。R14、R15、及びR16としては、それぞれ独立に水素原子、又は炭素数が1〜3のアルキル基が好ましく、水素原子がより好ましい。
式(iv)で表される単量体として、R11、R12、及びR13がそれぞれ独立に水素原子又はメチル基であって、Lがアルキレン基又はオキシアルキレン構造を含有する2価の連結基であって、Xが酸素原子又はイミノ基であって、Zがカルボン酸基である化合物が好ましい。
式(v)で表される単量体として、R11が水素原子又はメチル基であって、Lがアルキレン基であって、Zがカルボン酸基であって、Yがメチン基である化合物が好ましい。
更に、式(vi)で表される単量体として、R14、R15、及びR16がそれぞれ独立に水素原子又はメチル基であって、Lが単結合又はアルキレン基であって、Zがカルボン酸基である化合物が好ましい。
以下に、式(iv)〜式(vi)で表される単量体(化合物)の代表的な例を示す。
単量体の例としては、メタクリル酸、クロトン酸、イソクロトン酸、分子内に付加重合性二重結合及び水酸基を含有する化合物(例えば、メタクリル酸2−ヒドロキシエチル)とコハク酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含有する化合物とフタル酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含有する化合物とテトラヒドロキシフタル酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含有する化合物と無水トリメリット酸との反応物、分子内に付加重合性二重結合及び水酸基を含有する化合物とピロメリット酸無水物との反応物、アクリル酸、アクリル酸ダイマー、アクリル酸オリゴマー、マレイン酸、イタコン酸、フマル酸、4−ビニル安息香酸、ビニルフェノール、及び、4−ヒドロキシフェニルメタクリルアミド等が挙げられる。
黒色顔料等の着色剤と相互作用を形成しうる官能基を含有する構造単位の含有量は、黒色顔料等の着色剤との相互作用、経時安定性、及び現像液への浸透性の観点から、高分子化合物の全質量に対して、0.05質量%〜90質量%が好ましく、1.0質量%〜80質量%がより好ましく、10質量%〜70質量%が更に好ましい。
・その他の構造単位
更に、高分子化合物は、画像強度等の諸性能を向上する目的で、本発明の効果を損なわない限りにおいて、グラフト鎖を含有する構造単位、疎水性構造単位、及び、黒色顔料等の着色剤と相互作用を形成しうる官能基を含有する構造単位とは異なる、種々の機能を有する他の構造単位(例えば、分散物に用いられる分散媒との親和性を有する官能基等を含有する構造単位)を更に有していてもよい。
このような、他の構造単位としては、例えば、アクリロニトリル類、及び、メタクリロニトリル類等から選ばれるラジカル重合性化合物に由来の構造単位が挙げられる。
高分子化合物は、これらの他の構造単位を1種又は2種以上用いることができ、その含有量は、質量換算で、高分子化合物の総質量に対して、0%以上80%以下が好ましく、10%以上60%以下がより好ましい。含有量が上記範囲において、十分なパターン形成性が維持される。
・高分子化合物の物性
高分子化合物の酸価は、0mgKOH/g以上250mgKOH/g以下の範囲が好ましく、10mgKOH/g以上200mgKOH/g以下の範囲がより好ましく、20mgKOH/g以上120mgKOH/g以下の範囲が更に好ましい。
高分子化合物の酸価が160mgKOH/g以下であれば、硬化膜を形成する際の現像時におけるパターン剥離がより効果的に抑えられる。高分子化合物の酸価が10mgKOH/g以上であればアルカリ現像性がより良好となる。また、高分子化合物の酸価が20mgKOH/g以上であれば、黒色顔料等の着色剤の沈降をより抑制でき、粗大粒子数をより少なくすることができ、硬化性組成物の経時安定性をより向上できる。
高分子化合物の酸価は、例えば、高分子化合物中における酸基の平均含有量から算出することができる。また、高分子化合物の構成成分である酸基を含有する構造単位の含有量を変化させることで所望の酸価を有する樹脂を得ることができる。
高分子化合物の重量平均分子量は、硬化膜を形成する際において、現像時のパターン剥離抑制と現像性の観点から、GPC(Gel Permeation Chromatography:ゲル浸透クロマトグラフィー)法によるポリスチレン換算値として、4,000以上300,000以下であることが好ましく、5,000以上200,000以下であることがより好ましく、6,000以上100,000以下であることが更に好ましく、10,000以上50,000以下であることが特に好ましい。
GPC法は、HLC−8020GPC(東ソー製)を用い、カラムとしてTSKgel SuperHZM−H、TSKgel SuperHZ4000、TSKgel SuperHZ2000(東ソー製、4.6mmID×15cm)を、溶離液としてTHF(テトラヒドロフラン)を用いる方法に基づく。
高分子化合物は、公知の方法に基づいて合成でき、高分子化合物を合成する際に用いられる溶剤としては、例えば、エチレンジクロリド、シクロヘキサノン、メチルエチルケトン、アセトン、メタノール、エタノール、プロパノール、ブタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、2−メトキシエチルアセテート、1−メトキシ−2−プロパノール、1−メトキシ−2−プロピルアセテート、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、トルエン、酢酸エチル、乳酸メチル、及び、乳酸エチル等が挙げられる。これらの溶剤は単独で用いても2種以上混合して用いてもよい。
高分子化合物の具体例としては、楠木化成社製「DA−7301」、BYKChemie社製「Disperbyk−101(ポリアミドアミン燐酸塩)、107(カルボン酸エステル)、110(酸基を含有する共重合物)、111(リン酸系分散剤)、130(ポリアミド)、161、162、163、164、165、166、170、190(高分子共重合物)」、「BYK−P104、P105(高分子量不飽和ポリカルボン酸)」、EFKA社製「EFKA4047、4050〜4010〜4165(ポリウレタン系)、EFKA4330〜4340(ブロック共重合体)、4400〜4402(変性ポリアクリレート)、5010(ポリエステルアミド)、5765(高分子量ポリカルボン酸塩)、6220(脂肪酸ポリエステル)、6745(フタロシアニン誘導体)、6750(アゾ顔料誘導体)」、味の素ファインテクノ社製「アジスパーPB821、PB822、PB880、PB881」、共栄社化学社製「フローレンTG−710(ウレタンオリゴマー)」、「ポリフローNo.50E、No.300(アクリル系共重合体)」、楠本化成社製「ディスパロンKS−860、873SN、874、#2150(脂肪族多価カルボン酸)、#7004(ポリエーテルエステル)、DA−703−50、DA−705、DA−725」、花王社製「デモールRN、N(ナフタレンスルホン酸ホルマリン重縮合物)、MS、C、SN−B(芳香族スルホン酸ホルマリン重縮合物)」、「ホモゲノールL−18(高分子ポリカルボン酸)」、「エマルゲン920、930、935、985(ポリオキシエチレンノニルフェニルエーテル)」、「アセタミン86(ステアリルアミンアセテート)」、日本ルーブリゾール製「ソルスパース5000(フタロシアニン誘導体)、22000(アゾ顔料誘導体)、13240(ポリエステルアミン)、3000、12000、17000、20000、27000(末端部に機能部を含有する高分子)、24000、28000、32000、38500(グラフト共重合体)」、日光ケミカルズ社製「ニッコールT106(ポリオキシエチレンソルビタンモノオレアート)、MYS−IEX(ポリオキシエチレンモノステアレート)」、川研ファインケミカル製 ヒノアクトT−8000E等、信越化学工業製、オルガノシロキサンポリマーKP341、裕商「W001:カチオン系界面活性剤」、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル等のノニオン系界面活性剤、「W004、W005、W017」等のアニオン系界面活性剤、森下産業製「EFKA−46、EFKA−47、EFKA−47EA、EFKAポリマー100、EFKAポリマー400、EFKAポリマー401、EFKAポリマー450」、サンノプコ製「ディスパースエイド6、ディスパースエイド8、ディスパースエイド15、ディスパースエイド9100」等の高分子分散剤、ADEKA製「アデカプルロニックL31、F38、L42、L44、L61、L64、F68、L72、P95、F77、P84、F87、P94、L101、P103、F108、L121、P−123」、及び三洋化成製「イオネット(商品名)S−20」等が挙げられる。また、アクリベースFFS−6752、アクリベースFFS−187、アクリキュア−RD−F8、及び、サイクロマーPを用いることもできる。
両性樹脂の市販品としては、例えば、ビックケミー社製のDISPERBYK−130、DISPERBYK−140、DISPERBYK−142、DISPERBYK−145、DISPERBYK−180、DISPERBYK−187、DISPERBYK−191、DISPERBYK−2001、DISPERBYK−2010、DISPERBYK−2012、DISPERBYK−2025、BYK−9076、味の素ファインテクノ社製のアジスパーPB821、アジスパーPB822、及び、アジスパーPB881等が挙げられる。
これらの高分子化合物は、1種を単独で用いても、2種以上を併用してもよい。
高分子化合物の具体例としては、特開2013−249417号公報の段落0127〜0129に記載の高分子化合物を参照でき、これらの内容は本明細書に組み込まれる。
分散剤としては、上記の高分子化合物以外に、特開2010−106268号公報の段落0037〜0115(対応するUS2011/0124824の段落0075〜0133欄)のグラフト共重合体が使用でき、これらの内容は援用でき、本明細書に組み込まれる。
上記以外にも、特開2011−153283号公報の段落0028〜0084(対応するUS2011/0279759の段落0075〜0133欄)の酸性基が連結基を介して結合してなる側鎖構造を含有する構成成分を含有する高分子化合物が使用でき、これらの内容は援用でき、本明細書に組み込まれる。
<バインダー樹脂>
硬化性組成物は、バインダー樹脂を含有することが好ましい。
バインダー樹脂の含有量は、硬化性組成物の全固形分に対して、0.1質量%以上が好ましく、0.3質量%以上がより好ましく、0.9質量%以上が更に好ましく、1.9質量%以上が特に好ましく、30質量%以下が好ましく、25質量%以下がより好ましく、18質量%以下が更に好ましく、10質量%以下が特に好ましい。
バインダー樹脂の含有量が、1.9質量%以上10質量%以下だと、硬化性組成物を硬化して得られる硬化膜のパターン形状がより優れる。
バインダー樹脂は、1種を単独で用いても、2種以上を併用してもよい。バインダー樹脂を2種以上併用する場合は、その合計量が上記範囲内であることが好ましい。
バインダー樹脂としては、線状有機ポリマーを用いることが好ましい。このような線状有機ポリマーとしては、公知のものを任意に使用することができる。好ましくは、水現像又は弱アルカリ水現像を可能とするために、水又は弱アルカリ水に可溶性又は膨潤性である線状有機ポリマーが選択される。なかでも、バインダー樹脂としては、アルカリ可溶性樹脂(アルカリ可溶性を促進する基を含有する樹脂)が特に好ましい。
バインダー樹脂としては、線状有機ポリマーであって、分子(好ましくは、(メタ)アクリル系共重合体、又は、スチレン系共重合体を主鎖とする分子)中に少なくとも1つのアルカリ可溶性を促進する基を含有するアルカリ可溶性樹脂の中から適宜選択することができる。耐熱性の観点からは、ポリヒドロキシスチレン系樹脂、ポリシロキサン系樹脂、(メタ)アクリル系樹脂、(メタ)アクリルアミド系樹脂、(メタ)アクリル/(メタ)アクリルアミド共重合体樹脂、エポキシ系樹脂及びポリイミド系樹脂が好ましく、現像性制御の観点からは、(メタ)アクリル系樹脂、(メタ)アクリルアミド系樹脂、(メタ)アクリル/(メタ)アクリルアミド共重合体樹脂又はポリイミド系樹脂がより好ましい。
アルカリ可溶性を促進する基(以下、酸基ともいう)としては、例えば、カルボン酸基、リン酸基、スルホン酸基、及び、フェノール性水酸基等が挙げられる。なかでも、有機溶剤に可溶で弱アルカリ水溶液により現像可能なものが好ましく、(メタ)アクリル酸由来の構造単位を含有するアルカリ可溶性樹脂がより好ましいものとして挙げられる。これら酸基は、1種のみであってもよいし、2種以上であってもよい。
バインダー樹脂としては、例えば、側鎖にカルボン酸基を含有するラジカル重合体が挙げられる。側鎖にカルボン酸基を含有するラジカル重合体としては、例えば、特開昭59−44615号、特公昭54−34327号、特公昭58−12577号、特公昭54−25957号、特開昭54−92723号、特開昭59−53836号、及び、特開昭59−71048号に記載されているものが挙げられる。側鎖にカルボン酸基を含有するラジカル重合体としては、カルボン酸基を含有するモノマーを単独又は共重合させた樹脂、酸無水物を含有するモノマーを単独又は共重合させて得た酸無水物ユニットを、加水分解、ハーフエステル化又はハーフアミド化させた樹脂、及び、エポキシ樹脂を不飽和モノカルボン酸及び酸無水物で変性させたエポキシアクリレート等が挙げられる。
カルボン酸基を含有するモノマーとしては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、及び、4−カルボキシルスチレン等が挙げられる。側鎖にカルボン酸基を含有する酸性セルロース誘導体も例として挙げられる。
酸無水物を含有するモノマーとしては、無水マレイン酸等が挙げられる。この他に水酸基を含有する重合体に環状酸無水物を付加させたもの等が有用である。
酸基を含有するアセタール変性ポリビニルアルコール系バインダー樹脂が、欧州特許第993966号、欧州特許第1204000号、及び、特開2001−318463号等の各公報に記載されている。酸基を含有するアセタール変性ポリビニルアルコール系バインダー樹脂は、膜強度、及び、現像性のバランスに優れており、好適である。
更に、水溶性線状有機ポリマーとして、ポリビニルピロリドン、又はポリエチレンオキサイド等が有用である。また、硬化皮膜の強度を上げるために、アルコール可溶性ナイロン、及び、2,2−ビス−(4−ヒドロキシフェニル)−プロパンとエピクロロヒドリンとの反応物であるポリエーテル等も有用である。
国際公開第2008/123097号に記載のポリイミド樹脂も有用である。
これらの中でも、〔ベンジル(メタ)アクリレート/(メタ)アクリル酸/必要に応じてその他の付加重合性ビニルモノマー〕共重合体、及び〔アリル(メタ)アクリレート/(メタ)アクリル酸/必要に応じてその他の付加重合性ビニルモノマー〕共重合体は、膜強度、感度、及び、現像性のバランスに優れており、好適である。
市販品としては、例えばアクリベースFF−187、FF−426(藤倉化成社製)、アクリキュア−RD−F8(日本触媒)、及び、ダイセルオルネクス製サイクロマーP(ACA)230AA等が挙げられる。
バインダー樹脂の製造には、例えば、公知のラジカル重合法による方法を適用することができる。ラジカル重合法でバインダー樹脂を製造する際の温度、圧力、ラジカル開始剤の種類及びその量、並びに、溶剤の種類等々の重合条件は、当業者において容易に設定可能である。
バインダー樹脂として、グラフト鎖を含有する構造単位と、酸基(アルカリ可溶性基)を含有する構造単位と、を含有するポリマーを使用することも好ましい。
グラフト鎖を含有する構造単位の定義は、上記の分散剤が含有するグラフト鎖を含有する構造単位と同義であり、また好適範囲も同様である。
酸基としては、例えば、カルボン酸基、スルホン酸基、リン酸基、又は、フェノール性水酸基等が挙げられ、カルボン酸基、スルホン酸基、及び、リン酸基のうち少なくとも1種が好ましく、カルボン酸基がより好ましい。
(酸基を含有する構造単位)
酸基を含有する構造単位としては、下記式(vii)〜式(ix)で表される単量体に由来の構造単位から選択された1種以上の構造単位を含有することが好ましい。
Figure 0006896718
式(vii)〜式(ix)中、R21、R22、及びR23は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、又は炭素数が1〜6のアルキル基(例えば、メチル基、エチル基、プロピル基等)を表す。
式(vii)〜式(ix)中、R21、R22、及びR23は、それぞれ独立に水素原子、又は炭素数が1〜3のアルキル基であることが好ましく、それぞれ独立に水素原子又はメチル基であることがより好ましい。式(vii)中、R21及びR23は、それぞれ水素原子であることが特に好ましい。
式(vii)中のXは、酸素原子(−O−)又はイミノ基(−NH−)を表し、酸素原子であることが好ましい。
式(viii)中のYは、メチン基又は窒素原子を表す。
式(vii)〜式(ix)中のLは、単結合又は2価の連結基を表す。2価の連結基の例としては、2価の脂肪族基(例えば、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基、及び置換アルキニレン基)、2価の芳香族基(例えば、アリーレン基、及び置換アリーレン基)、2価の複素環基、酸素原子(−O−)、硫黄原子(−S−)、イミノ基(−NH−)、置換イミノ結合(−NR41’−、ここでR41’は脂肪族基、芳香族基又は複素環基)、カルボニル結合(−CO−)、及び、これらの組合せ等が挙げられる。
2価の脂肪族基は、環状構造又は分岐構造を有していてもよい。脂肪族基の炭素数は、1〜20が好ましく、1〜15がより好ましく、1〜10が更に好ましい。脂肪族基は不飽和脂肪族基よりも飽和脂肪族基の方が好ましい。脂肪族基は、置換基を有していてもよい。置換基の例としては、ハロゲン原子、ヒドロキシ基、芳香族基及び複素環基が挙げられる。
2価の芳香族基の炭素数は、6〜20が好ましく、6〜15がより好ましく、6〜10が更に好ましい。芳香族基は置換基を有していてもよい。置換基の例は、ハロゲン原子、ヒドロキシ基、脂肪族基、芳香族基及び複素環基が挙げられる。
2価の複素環基は、複素環として5員環又は6員環を含有することが好ましい。複素環に他の複素環、脂肪族環又は芳香族環のうち1つ以上が縮合していてもよい。複素環基は置換基を有していてもよい。置換基の例としては、ハロゲン原子、ヒドロキシ基、オキソ基(=O)、チオキソ基(=S)、イミノ基(=NH)、置換イミノ基(=N−R42、ここでR42は脂肪族基、芳香族基又は複素環基)、脂肪族基、芳香族基及び複素環基が挙げられる。
は、単結合、アルキレン基又はオキシアルキレン構造を含有する2価の連結基であることが好ましい。オキシアルキレン構造は、オキシエチレン構造又はオキシプロピレン構造であることがより好ましい。Lは、オキシアルキレン構造を2以上繰り返して含有するポリオキシアルキレン構造を含んでいてもよい。ポリオキシアルキレン構造としては、ポリオキシエチレン構造又はポリオキシプロピレン構造が好ましい。ポリオキシエチレン構造は、−(OCHCH)n−で表され、nは、2以上の整数が好ましく、2〜10の整数であることがより好ましい。
式(vii)〜式(ix)中、Zは、酸基であり、カルボン酸基であることが好ましい。
式(ix)中、R24、R25、及びR26は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素、塩素、臭素等)、炭素数が1〜6のアルキル基(例えば、メチル基、エチル基、プロピル基等)、−Z、又はL−Zを表す。ここでL及びZは、上記におけるL及びZと同義であり、好ましい例も同様である。R24、R25、及びR26としては、それぞれ独立に水素原子、又は炭素数が1〜3のアルキル基が好ましく、水素原子がより好ましい。
式(vii)で表される単量体として、R21、R22、及びR23がそれぞれ独立に水素原子又はメチル基であって、Lがアルキレン基又はオキシアルキレン構造を含有する2価の連結基であって、Xが酸素原子又はイミノ基であって、Zがカルボン酸基である化合物が好ましい。
式(vii)で表される単量体として、R21が水素原子又はメチル基であって、Lがアルキレン基であって、Zがカルボン酸基であって、Yがメチン基である化合物が好ましい。
更に、式(ix)で表される単量体として、R24、R25、及びR26がそれぞれ独立に水素原子又はメチル基であって、Zがカルボン酸基である化合物が好ましい。
バインダー樹脂は、上記のグラフト鎖を含有する構造単位を含有する分散剤と同様の方法により合成することができ、その好ましい酸価、重量平均分子量も同様である。
バインダー樹脂は、酸基を含有する構造単位を1種又は2種以上有してもよい。
酸基を含有する構造単位の含有量は、質量換算で、バインダー樹脂の総質量に対して、5〜95%であることが好ましく、アルカリ現像による画像強度のダメージ抑制という観点から、10〜90%であることがより好ましい。
<界面活性剤>
硬化性組成物は、界面活性剤を含有することが好ましい。界面活性剤は、硬化性組成物の塗布性向上に寄与する。
硬化性組成物が、界面活性剤を含有する場合、界面活性剤の含有量としては、硬化性組成物の全質量に対して、0.001〜2.0質量%が好ましく、0.005〜1.0質量%がより好ましい。
界面活性剤は、1種を単独で用いても、2種以上を併用してもよい。界面活性剤を2種以上併用する場合は、合計量が上記範囲内であることが好ましい。
界面活性剤としては、例えば、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、及びシリコーン系界面活性剤等が挙げられる。
例えば、硬化性組成物がフッ素系界面活性剤を含有することで、硬化性組成物の液特性(特に、流動性)がより向上する。即ち、フッ素系界面活性剤を含有する硬化性組成物を用いて膜形成する場合においては、被塗布面と塗布液との界面張力を低下させることにより、被塗布面への濡れ性が改善され、被塗布面への塗布性が向上する。このため、少量の液量で数μm程度の薄膜を形成した場合であっても、厚さムラの小さい均一厚の膜形成をより好適に行える点で有効である。
フッ素系界面活性剤中のフッ素含有率は、3〜40質量%が好適であり、5〜30質量%がより好ましく、7〜25質量%が更に好ましい。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性及び/又は省液性の点で効果的であり、硬化性組成物中における溶解性も良好である。
フッ素系界面活性剤としては、例えば、メガファックF171、同F172、同F173、同F176、同F177、同F141、同F142、同F143、同F144、同R30、同F437、同F475、同F479、同F482、同F554、同F780(以上、DIC(株)製)、フロラードFC430、同FC431、同FC171(以上、住友スリーエム(株)製)、サーフロンS−382、同SC−101、同SC−103、同SC−104、同SC−105、同SC−1068、同SC−381、同SC−383、同S−393、同KH−40(以上、旭硝子(株)製)、PF636、PF656、PF6320、PF6520、PF7002(OMNOVA社製)等が挙げられる。
フッ素系界面活性剤としてブロックポリマーを用いることもでき、具体例としては、例えば特開2011−89090号公報に記載の化合物が挙げられる。下記式で表される化合物(F−1)もフッ素系界面活性剤として挙げられる。化合物(F−1)において、式中(A)及び(B)で表される構造単位はそれぞれ62モル%、38モル%である。式(B)で表される構造単位中、a、b、cは、それぞれ、a+c=14、b=17の関係を満たす。なお、下記化合物の重量平均分子量は、例えば15,311である。
Figure 0006896718
ノニオン系界面活性剤として具体的には、グリセロール、トリメチロールプロパン、トリメチロールエタン並びにそれらのエトキシレート及びプロポキシレート(例えば、グリセロールプロポキシレート、グリセリンエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル(BASF社製のプルロニックL10、L31、L61、L62、10R5、17R2、25R2、テトロニック304、701、704、901、904、150R1)、ソルスパース20000(日本ルーブリゾール(株))等が挙げられる。また、竹本油脂(株)製のパイオニンD−6112−W、和光純薬工業社製の、NCW−101、NCW−1001、NCW−1002を使用することもできる。
カチオン系界面活性剤として具体的には、フタロシアニン誘導体(商品名、EFKA−745、森下産業(株)製)、オルガノシロキサンポリマーKP341(信越化学工業(株)製)、(メタ)アクリル酸系(共)重合体ポリフローNo.75、No.90、No.95(共栄社化学(株)製)、W001(裕商(株))等が挙げられる。
アニオン系界面活性剤として具体的には、W004、W005、W017(裕商(株))等が挙げられる。
シリコーン系界面活性剤としては、例えば、東レ・ダウコーニング(株)製「トーレシリコーンDC3PA」、「トーレシリコーンSH7PA」、「トーレシリコーンDC11PA」,「トーレシリコーンSH21PA」,「トーレシリコーンSH28PA」、「トーレシリコーンSH29PA」、「トーレシリコーンSH30PA」、「トーレシリコーンSH8400」、モメンティブ・パフォーマンス・マテリアルズ社製「TSF−4440」、「TSF−4300」、「TSF−4445」、「TSF−4460」、「TSF−4452」、信越シリコーン株式会社製「KP341」、「KF6001」、「KF6002」、ビックケミー社製「BYK307」、「BYK323」、「BYK330」等が挙げられる。
<シランカップリング剤>
シランカップリング剤とは、分子中に加水分解性基とそれ以外の官能基とを含有する化合物である。なお、アルコキシ基等の加水分解性基は、珪素原子に結合している。
加水分解性基とは、珪素原子に直結し、加水分解反応及び/又は縮合反応によってシロキサン結合を生じ得る置換基をいう。加水分解性基としては、例えば、ハロゲン原子、アルコキシ基、アシルオキシ基、及びアルケニルオキシ基が挙げられる。加水分解性基が炭素原子を含有する場合、その炭素数は6以下であることが好ましく、4以下であることがより好ましい。特に、炭素数4以下のアルコキシ基又は炭素数4以下のアルケニルオキシ基が好ましい。
基板上に硬化膜を形成する場合、シランカップリング剤は基板と硬化膜間の密着性を向上させるため、フッ素原子及び珪素原子(ただし、加水分解性基が結合した珪素原子は除く)を含まないことが好ましく、フッ素原子、珪素原子(ただし、加水分解性基が結合した珪素原子は除く)、珪素原子で置換されたアルキレン基、炭素数8以上の直鎖アルキル基、及び、炭素数3以上の分鎖アルキル基は含まないことが望ましい。
シランカップリング剤は、以下の式(Z)で表される基を含有することが好ましい。*は結合位置を表す。
式(Z) *−Si−(RZ1
式(Z)中、RZ1は加水分解性基を表し、その定義は上記のとおりである。
シランカップリング剤は、(メタ)アクリロイルオキシ基、エポキシ基、及び、オキセタニル基からなる群から選択される1種以上の硬化性官能基を含有することが好ましい。硬化性官能基は、直接、珪素原子に結合してもよく、連結基を介して珪素原子に結合していてもよい。
なお、上記シランカップリング剤に含まれる硬化性官能基の好適態様としては、ラジカル重合性基も挙げられる。
シランカップリング剤の分子量は特に制限されず、取り扱い性の点から、100〜1,000の場合が多く、270以上が好ましく、270〜1,000がより好ましい。
シランカップリング剤の好適態様の1つとしては、式(W)で表されるシランカップリング剤Xが挙げられる。
式(W) RZ2−Lz−Si−(RZ1
z1は、加水分解性基を表し、定義は上記のとおりである。
z2は、硬化性官能基を表し、定義は上記のとおりであり、好適範囲も上記のとおりである。
Lzは、単結合又は2価の連結基を表す。Lzが2価の連結基を表す場合、2価の連結基としては、ハロゲン原子が置換していてもよいアルキレン基、ハロゲン原子が置換していてもよいアリーレン基、−NR12−、−CONR12−、−CO−、−CO−、SONR12−、−O−、−S−、−SO−、又は、これらの組み合わせが挙げられる。なかでも、炭素数2〜10のハロゲン原子が置換していてもよいアルキレン基及び炭素数6〜12のハロゲン原子が置換していてもよいアリーレン基からなる群から選択される少なくとも1種、又は、これらの基と−NR12−、−CONR12−、−CO−、−CO−、SONR12−、−O−、−S−、及びSO−からなる群から選択される少なくとも1種の基との組み合わせからなる基が好ましく、炭素数2〜10のハロゲン原子が置換していてもよいアルキレン基、−CO−、−O−、−CO−、−CONR12−、又は、これらの基の組み合わせからなる基がより好ましい。ここで、上記R12は、水素原子又はメチル基を表す。
シランカップリング剤Xとしては、N−β−アミノエチル−γ−アミノプロピル−メチルジメトキシシラン(信越化学工業社製、商品名 KBM−602)、N−β−アミノエチル−γ−アミノプロピル−トリメトキシシラン(信越化学工業社製、商品名 KBM−603)、N−β−アミノエチル−γ−アミノプロピル−トリエトキシシラン(信越化学工業社製、商品名 KBE−602)、γ−アミノプロピル−トリメトキシシラン(信越化学工業社製、商品名 KBM−903)、γ−アミノプロピル−トリエトキシシラン(信越化学工業社製、商品名 KBE−903)、3−メタクリロキシプロピルトリメトキシシラン(信越化学工業社製、商品名 KBM−503)、及び、グリシドキシオクチルトリメトキシシラン(信越化学工業社製、商品名 KBM−4803)等が挙げられる。
シランカップリング剤の他の好適態様としては、分子内に少なくとも珪素原子と窒素原子と硬化性官能基とを有し、かつ、珪素原子に結合した加水分解性基を含有するシランカップリング剤Yが挙げられる。
このシランカップリング剤Yは、分子内に少なくとも1つの珪素原子を有すればよく、珪素原子は、以下の原子、置換基と結合できる。それらは同じ原子、置換基であっても異なっていてもよい。結合しうる原子、置換基は、水素原子、ハロゲン原子、水酸基、炭素数1から20のアルキル基、アルケニル基、アルキニル基、アリール基、アルキル基及び/又はアリール基で置換可能なアミノ基、シリル基、炭素数1から20のアルコキシ基、アリーロキシ基等が挙げられる。これらの置換基は更に、シリル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、アリーロキシ基、チオアルコキシ基、アルキル基及び/又はアリール基で置換可能なアミノ基、ハロゲン原子、スルホンアミド基、アルコキシカルボニル基、アミド基、ウレア基、アンモニウム基、アルキルアンモニウム基、カルボン酸基、又はその塩、スルホ基、又はその塩等で置換されていてもよい。
なお、珪素原子には少なくとも1つの加水分解性基が結合している。加水分解性基の定義は、上記のとおりである。
シランカップリング剤Yには、式(Z)で表される基が含まれていてもよい。
シランカップリング剤Yは、分子内に窒素原子を少なくとも1つ以上有し、窒素原子は、2級アミノ基又は3級アミノ基の形態で存在することが好ましく、即ち、窒素原子は置換基として少なくとも1つの有機基を含有することが好ましい。なお、アミノ基の構造としては、含窒素ヘテロ環の部分構造の形態で分子内に存在してもよく、アニリン等の置換アミノ基として存在していてもよい。
ここで、有機基としては、アルキル基、アルケニル基、アルキニル基、アリール基、又は、これらの組み合わせ等が挙げられる。これらは更に置換基を有してもよく、導入可能な置換基としては、シリル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、アリーロキシ基、チオアルコキシ基、アミノ基、ハロゲン原子、スルホンアミド基、アルコキシカルボニル基、カルボニルオキシ基、アミド基、ウレア基、アルキレンオキシ基アンモニウム基、アルキルアンモニウム基、カルボン酸基、又はその塩、スルホ基等が挙げられる。
窒素原子は、任意の有機連結基を介して硬化性官能基と結合していることが好ましい。好ましい有機連結基としては、上記の窒素原子及びそれに結合する有機基に導入可能な置換基を挙げることができる。
シランカップリング剤Yに含まれる硬化性官能基の定義は、上記のとおりであり、好適範囲も上記のとおりである。
シランカップリング剤Yは、硬化性官能基を1分子中に少なくとも1つ以上有していればよいが、硬化性官能基を2以上含有することも可能である。感度、安定性の観点からは、硬化性官能基を分子内に2〜20含有することが好ましく、4〜15含有することがより好ましく、6〜10含有することが更に好ましい。
シランカップリング剤X及びシランカップリング剤Yの分子量は特に制限されないが、上記の範囲(270以上が好ましい)が挙げられる。
硬化性組成物中におけるシランカップリング剤の含有量は、硬化性組成物中の全固形分に対して、0.1〜10質量%が好ましく、0.5〜8質量%がより好ましく、1.0〜6質量%が更に好ましい。
硬化性組成物は、シランカップリング剤を1種単独で含んでいてもよく、2種以上を含んでいてもよい。硬化性組成物がシランカップリング剤を2種以上含有する場合は、その合計が上記範囲内であればよい。
<紫外線吸収剤>
硬化性組成物は、紫外線吸収剤を含有してもよい。これにより、硬化膜のパターンの形状をより優れた(精細な)ものにすることができる。
紫外線吸収剤としては、サリシレート系、ベンゾフェノン系、ベンゾトリアゾール系、置換アクリロニトリル系、及びトリアジン系の紫外線吸収剤を使用することができる。これらの具体例としては、特開2012−068418号公報の段落0137〜0142(対応するUS2012/0068292の段落0251〜0254)の化合物が使用でき、これらの内容が援用でき、本明細書に組み込まれる。
他にジエチルアミノ−フェニルスルホニル系紫外線吸収剤(大東化学社製、商品名、UV−503)なども好適に用いられる。
紫外線吸収剤としては、特開2012−32556号公報の段落0134〜0148に例示される化合物が挙げられる。
紫外線吸収剤の含有量は、硬化性組成物の全固形分に対して、0.001〜15質量%が好ましく、0.01〜10質量%がより好ましく、0.1〜5質量%が更に好ましい。
[硬化性組成物の製造方法]
硬化性組成物の製造方法は以下の混合及び分散工程を含有する。静置工程及び/又はろ過工程を含有することが好ましい。以下では、各工程について好適態様を詳述する。
〔混合及び分散工程〕
混合及び分散工程は、上記成分を公知の混合方法(例えば、攪拌機、ホモジナイザー、高圧乳化装置、湿式粉砕機、及び湿式分散機)により混合し、硬化性組成物を得る工程である。混合及び分散工程においては、硬化性組成物を構成する各成分を一括配合してもよいし、各成分を有機溶剤に溶解又は分散した後に逐次配合してもよい。配合する際の投入順序及び作業条件は、特に制限されない。混合及び分散工程は、分散液を作製する工程を含有してもよい。
(分散液を作製する工程)
分散液を作製する工程は、着色剤と、分散剤と、溶剤とを混合し、着色剤を上記の方法により分散させて、分散液を作製する工程である。作製した分散液に、その他の成分を混合し、硬化性組成物を製造することができる。
分散液を作製する工程において、顔料の分散に用いる機械力としては、圧縮、圧搾、衝撃、剪断及びキャビテーションなどが挙げられる。これらプロセスの具体例としては、ビーズミル、サンドミル、ロールミル、高速インペラー、サンドグラインダー、フロージェットミキサー、高圧湿式微粒化及び超音波分散などが挙げられる。また、「分散技術大全、株式会社情報機構発行、2005年7月15日」及び「サスペンション(固/液分散系)を中心とした分散技術と工業的応用の実際 総合資料集、経営開発センター出版部発行、1978年10月10日」に記載のプロセス及び分散機を好適に使用することができる。
分散液を作製する工程においては、ソルトミリング工程による顔料の微細化処理を行ってもよい。ソルトミリング工程に用いられる素材、機器及び処理条件等は、例えば、特開2015−194521号及び特開2012−046629号に記載のものを使用することができる。
硬化性組成物の製造方法は、熱プラズマ法によって上記着色剤を得る工程を含有することが好ましい。着色剤を得る工程は、上記の各成分を混合する前に実施される。熱プラズマ法による着色剤の具体的な製造工程の態様は上記のとおりである。
<静置工程>
着色剤は、混合及び分散工程、又は分散液を作製する工程に供される前に、以下の静置工程を経てもよい。
静置工程とは、熱プラズマ法によって得られた着色剤を、その製造後に大気に曝露せず、酸素濃度が制御された密閉容器内において、所定時間(好ましくは12〜72時間、より好ましくは12〜48時間、更に好ましくは12〜24時間)静置する工程である。この際、密閉容器内における水分の含有量が制御されているとより好ましい。
この際、密閉容器内における酸素(O)濃度及び水分の含有量は、それぞれ100ppm以下であることが好ましく、10ppm以下であることがより好ましく、1ppm以下であることが更に好ましい。
密閉容器内における酸素(O)濃度及び水分の含有量は、密閉容器内に供給する不活性ガス中の酸素濃度及び水分量を調整することによって行うことができる。不活性ガスとしては、窒素ガス及びアルゴンガスが好ましく用いられ、この中でも窒素ガスを用いることがより好ましい。
上記静置工程を経ると、着色剤の表面及び結晶粒界が安定となる。これにより、硬化性組成物を硬化して得られる硬化膜のピンホールの発生を抑制できる。
なお、上記静置工程は、着色剤の製造方法において説明した工程Hで代えることが可能であり、硬化性組成物がより優れた本発明の効果を有する点で、工程Hで代えることが好ましい。
<ろ過工程>
ろ過工程は、上記混合及び分散工程により製造された硬化性組成物をフィルタでろ過する工程である。ろ過工程では、硬化性組成物から異物を除去及び/又は欠陥を低減することができる。
フィルタとしては、従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができる。例えば、PTFE(polytetrafluoroethylene:ポリテトラフルオロエチレン)等のフッ素樹脂、ナイロン等のポリアミド系樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量を含有する)等によるフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含有する)、ナイロンが好ましい。
フィルタの孔径は、0.1〜7.0μm程度が適しており、0.2〜2.5μm程度が好ましく、0.2〜1.5μm程度がより好ましく、0.3〜0.7μm程度が更に好ましい。この範囲とすることにより、顔料のろ過詰まりを抑えつつ、顔料に含まれる不純物及び凝集物など、微細な異物を確実に除去することが可能となる。
フィルタを使用する際、異なるフィルタを組み合わせてもよい。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。異なるフィルタを組み合わせて2回以上フィルタリングを行う場合は1回目のフィルタリングの孔径より2回目以降の孔径が同じ、又は、大きい方が好ましい。上記の範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照することができる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択することができる。
第2のフィルタは、上記の第1のフィルタと同様の材料等で形成されたものを使用することができる。第2のフィルタの孔径は、0.2〜10.0μm程度が適しており、0.2〜7.0μm程度が好ましく、0.3〜6.0μm程度がより好ましい。
[硬化膜(遮光膜)]
硬化膜は、上記硬化性組成物を硬化して得られる。硬化膜には、着色剤が含まれる。硬化膜は、遮光膜として好適に用いられ、具体的にはイメージセンサの受光部周辺部分の遮光に好適に用いられる。
以下、硬化膜がイメージセンサの受光部周辺部分の遮光膜として使用された場合を一例として説明する。
遮光膜の膜厚としては特に限定はないが、遮光膜がより優れた本発明の効果を有する点で、乾燥後の膜厚で、0.2μm以上50μm以下が好ましく、0.3μm以上10μm以下がより好ましく、0.3μm以上5μm以下が更に好ましい。上記硬化性組成物は単位体積あたりの光学濃度が高いため(遮光性が高いため)、従来の黒色顔料を使用した硬化性組成物より膜厚を減らすことも可能である。
遮光膜のサイズ(センサー受光部周辺に設けられた遮光膜の一辺の長さ)としては、遮光膜がより優れた本発明の効果を有する点で、0.001mm以上10mm以下が好ましく、0.05mm以上7mm以下がより好ましく、0.1mm以上3.5mm以下が更に好ましい。
〔硬化膜の製造方法〕
次に、硬化膜(遮光膜)の製造方法について説明する。
以下、製造方法を工程ごとに詳述する。
硬化膜の製造方法は、以下の硬化性組成物層形成工程及び露光工程を含有する。硬化膜の製造方法は、更に現像工程を含有することが好ましい。
硬化性組成物層形成工程:支持体上に、硬化性組成物層を形成する工程。
露光工程:上記硬化性組成物層を、露光する工程。
現像工程:露光後の硬化性組成物層を現像してパターン状の硬化膜(遮光膜)を形成する工程。
具体的には、上記硬化性組成物を、直接又は他の層を介して基板上に塗布して、硬化性組成物層を形成し(硬化性組成物層形成工程)、所定のマスクパターンを介して露光し、光照射された塗布膜部分だけを硬化させ(露光工程)、現像液で現像することによって(現像工程)、上記硬化膜を製造することができる。
以下、上記各工程について説明する。
<硬化性組成物層形成工程>
硬化性組成物層形成工程は、支持体(以下「基板」ともいう。)上に、硬化性組成物層を形成する工程である。なかでも、支持体上に、硬化性組成物を塗布して、硬化性組成物層を形成する塗布工程を含むことが好ましく、支持体上に硬化性組成物を直接塗布して、支持体上に硬化性組成物層を形成する塗布工程を含むことがより好ましい。
基板としては、例えば、液晶表示装置等に用いられる無アルカリガラス、ソーダガラス、パイレックス(登録商標)ガラス、石英ガラス、及びこれらに透明導電膜を付着させたもの、固体撮像素子等に用いられる光電変換素子基板(例えば、シリコン基板等)、CCD(Charge Coupled Device)基板、並びに、CMOS(Complementary Metal−Oxide Semiconductor)基板等が挙げられる。
これらの基板上には、必要により、上部の層との密着改良、物質の拡散防止又は基板表面の平坦化のために下塗り層を設けてもよい。
基板上への硬化性組成物の塗布方法としては、スリット塗布、インクジェット法、回転塗布、流延塗布、ロール塗布、及びスクリーン印刷法等の各種の塗布方法を適用することができる。
固体撮像素子用のブラックマトリクスを含有するカラーフィルタを製造する際には、硬化性組成物の塗布膜厚としては、解像性の観点から、0.35μm以上1.5μm以下が好ましく、0.40μm以上1.0μm以下がより好ましい。
基板上に塗布された硬化性組成物は、通常、70℃以上110℃以下で2分間以上4分間以下程度の条件下で乾燥する。これにより、硬化性組成物層を形成できる。
<露光工程>
露光工程は、硬化性組成物層形成工程において形成された硬化性組成物層(塗布膜)を、マスクを介して露光し、光照射された塗布膜部分だけを硬化させる工程である。
露光は、活性光線又は放射線の照射により行うことが好ましく、特に、g線、h線、及びi線等の紫外線が好ましく、高圧水銀灯がより好ましい。露光量は特に制限されないが、200mJ/cm以上が好ましく、200〜1,500mJ/cmがより好ましく、200〜1,000mJ/cmが更に好ましく、200〜500mJ/cmが特に好ましい。露光量が上記範囲内であると、硬化膜の製造方法は、より優れた安定性及び生産性を有する。
解像性向上の観点から固体撮像素子用の遮光膜形成では、i線ステッパーによる露光が好ましい。
<現像工程>
現像工程は、露光された硬化性組成物層を現像する工程である。現像工程によって、パターン状の硬化膜を得ることができる。
上記硬化膜の製造方法は、現像工程と、下記の洗浄工程と、を含有することが好ましい。現像工程においては、アルカリ現像処理(現像工程)を行い、露光工程における光未照射部分をアルカリ水溶液に溶出させる。これにより、光硬化した部分(光照射された塗布膜部分)だけが残る。
現像液としては、固体撮像素子用のブラックマトリクスを含有する遮光性カラーフィルタを作製する場合には、下地の回路などにダメージを起さない、有機アルカリ現像液が好ましい。現像温度は通常20〜30℃が好ましく、現像時間は20〜90秒が好ましい。
アルカリ性の水溶液としては、例えば、無機系現像液及び有機系現像液が挙げられる。無機系現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、硅酸ナトリウム、又はメタ硅酸ナトリウムを、濃度が0.001〜10質量%、好ましくは0.01〜1質量%となるように溶解したアルカリ性水溶液が挙げられる。有機系現像液としては、アンモニア水、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、コリン、ピロール、ピペリジン、又は1,8−ジアザビシクロ−[5.4.0]−7−ウンデセン等のアルカリ性化合物を、濃度が0.001〜10質量%、好ましくは0.01〜1質量%となるように溶解したアルカリ性水溶液が挙げられる。アルカリ性水溶液には、例えばメタノール、及びエタノール等の水溶性有機溶剤及び/又は界面活性剤等を適量添加することもできる。なお、現像方法としては、例えば、パドル現像方法及びシャワー現像方法などを用いることができる。
<洗浄工程>
洗浄工程は、現像された硬化性組成物層を純水等によって洗浄(リンス)する工程である。洗浄方法としては特に制限されず、公知の洗浄方法を用いることができる。
なお、上記硬化膜の製造方法は、上記現像工程の後に、硬化膜を加熱するポストベーク工程及び/又は硬化膜を全面露光する硬化工程を含有してもよい。
硬化膜(ブラックマトリクス)を含有するカラーフィルタは、CCDイメージセンサ及び/又はCMOSイメージセンサ等の固体撮像素子に好適である。特に100万画素を超えるような高解像度のCCDイメージセンサ及び/又はCMOSイメージセンサ等に好適である。すなわち、上記硬化膜を含有するカラーフィルタは、固体撮像素子に好適である。カラーフィルタは、隔壁により例えば格子状に仕切られた空間に、各色画素を形成する硬化膜が埋め込まれた構造を含有してもよい。
上記硬化膜(ブラックマトリクス)は、例えば、CCDイメージセンサ及び/又はCMOSイメージセンサ等を構成する各画素の受光部と、集光するためのマイクロレンズと、の間に配置される。
[固体撮像素子]
固体撮像素子は、上記硬化膜(ブラックマトリクス)を含有する。固体撮像素子は、ブラックマトリクスを含有し、更に、必要により、他の色(3色あるいは4色)の画素からなるパターン状皮膜とを含有する、カラーフィルタを含有することが好ましい。
固体撮像素子は、上記ブラックマトリクスを含有し、固体撮像素子として機能すれば特に制限されず、例えば、基板上に、固体撮像素子(CCDイメージセンサ、及びCMOSイメージセンサ等)の受光エリアを構成する複数のフォトダイオード及びポリシリコン等からなる受光素子を含有し、基板の受光素子形成面の反対側の面に上記ブラックマトリクスを含有する固体撮像素子が挙げられる。
カラーフィルタは、隔壁により例えば格子状に仕切られた空間に、各色画素を形成する硬化膜が埋め込まれた構造を有していてもよい。この場合の隔壁は各色画素に対して低屈折率であることが好ましい。このような構造を含有する固体撮像素子の例としては、特開2012−227478号公報及び特開2014−179577号公報に記載の固体撮像素子が挙げられる。
[画像表示装置]
上記硬化膜は、画像表示装置(例えば液晶表示装置及び有機エレクトロルミネッセンス表示装置等)に好適に用いることができる。
画像表示装置の定義及び各画像表示装置の詳細については、例えば「電子ディスプレイデバイス(佐々木 昭夫著、(株)工業調査会 1990年発行)」、及び「ディスプレイデバイス(伊吹 順章著、産業図書(株)平成元年発行)」などに記載される。液晶表示装置については、例えば「次世代液晶ディスプレイ技術(内田 龍男編集、(株)工業調査会 1994年発行)」に記載されている。上記硬化膜は、例えば、上記の「次世代液晶ディスプレイ技術」に記載されている方式の液晶表示装置に好適である。
上記硬化膜を含有する液晶表示装置の一態様としては、例えば、少なくとも1つが光透過性の1対の基板の間にカラーフィルタ、液晶層及び液晶駆動手段(単純マトリックス駆動方式、及びアクティブマトリックス駆動方式を含有する)を少なくとも含有する液晶表示装置が挙げられる。上記液晶表示装置は、複数の画素群を含有し、この画素群を構成する各画素が、互いに上記硬化膜(ブラックマトリクス)により離画されているカラーフィルタを含有する。
液晶表示装置の別の態様としては、少なくとも1つが光透過性の1対の基板の間に、カラーフィルタ、液晶層及び液晶駆動手段を少なくも含有し、液晶駆動手段がアクティブ素子(例えばTFT(Thin Film Transistor))を含有し、かつ各アクティブ素子の間に上記硬化膜(ブラックマトリクス)を含有するカラーフィルタを含有する。
上記硬化膜を含有するカラーフィルタは、カラーTFT(Thin Film Transistor)方式の液晶表示装置に好適である。カラーTFT方式の液晶表示装置については、例えば「カラーTFT液晶ディスプレイ(共立出版(株)1996年発行)」に記載されている。更に、上記カラーフィルタはIPS(In Plane Switching)などの横電界駆動方式;MVA(Multi−domain Vertical Alignment)などの画素分割方式;等の視野角が拡大された液晶表示装置、STN(Super−Twist Nematic)、TN(Twisted Nematic)、VA(Vertical Alignment)、OCS(on−chip spacer)、FFS(fringe field switching)、及び、R−OCB(Reflective Optically Compensated Bend)等にも好適である。
上記カラーフィルタは、明るく高精細なCOA(Color−filter On Array)方式の液晶表示装置に好適である。COA方式の液晶表示装置にあっては、カラーフィルタに対する要求特性は、通常の要求特性に加えて、層間絶縁膜に対する要求特性、すなわち低誘電率及び剥離液耐性が必要とされることがある。上記カラーフィルタを含有するCOA方式の液晶表示装置は、より優れた解像度を有し、又はより優れた耐久性を有する。なお、低誘電率の要求特性を満足するためには、カラーフィルタ層の上に樹脂被膜を更に含有してもよい。
これらの画像表示方式については、例えば、「EL、PDP、LCDディスプレイ−技術と市場の最新動向−(東レリサーチセンター調査研究部門 2001年発行)」の43ページなどに記載されている。なお、上記において、ELとはElectroluminescence、PDPとはPlasma Display Panel、LCDとはliquid crystal displayの略を表す。
上記液晶表示装置は、上記カラーフィルタ以外に、電極基板、偏光フィルム、位相差フィルム、バックライト、スペーサ、及び、視野角保障フィルムなど様々な部材から構成される。上記カラーフィルタは、これらの公知の部材で構成される液晶表示装置に適用することができる。これらの部材については、例えば、「’94液晶ディスプレイ周辺材料・ケミカルズの市場(島 健太郎 (株)シーエムシー 1994年発行)」、及び「2003液晶関連市場の現状と将来展望(下巻)(表良吉(株)富士キメラ総研、2003年発行)」に記載されている。
バックライトに関しては、SID meeting Digest 1380(2005)(A.Konno et.al)、及び/又は月刊ディスプレイ 2005年12月号の18〜24ページ(島 康裕)、同25〜30ページ(八木隆明)などに記載されている。
上記硬化膜は、パーソナルコンピュータ、タブレット、携帯電話、スマートフォン及びデジタルカメラなどのポータブル機器;プリンタ複合機及びスキャナなどのOA(Office Automation)機器;監視カメラ、バーコードリーダ、及び現金自動預け払い機(ATM:automated teller machine)、ハイスピードカメラ及び顔画像認証を使用した本人認証などの産業用機器;車載用カメラ機器;内視鏡、カプセル内視鏡及びカテーテルなどの医療用カメラ機器;生体センサー、バイオセンサー、軍事偵察用カメラ、立体地図用カメラ、気象及び海洋観測カメラ、陸地資源探査カメラ、並びに、宇宙の天文及び深宇宙ターゲット用の探査カメラなどの宇宙用機器などに使用される光学フィルター及びモジュールの遮光部材及び遮光層、更には反射防止部材及び反射防止層に好適である。
上記硬化膜は、マイクロLED(Light Emitting Diode)及びマイクロOLED(Organic Light Emitting Diode)などの用途にも用いることができる。上記硬化膜は、マイクロLED及びマイクロOLEDに使用される光学フィルタ及び光学フィルムのほか、遮光機能又は反射防止機能を付与する部材に対して好適である。
マイクロLED及びマイクロOLEDの例としては、特表2015−500562号及び特表2014−533890に記載されたものが挙げられる。
上記硬化膜は、量子ドットディスプレイに使用される光学及び光学フィルムとして好適である。また、上記硬化膜は、遮光機能及び反射防止機能を付与する部材として好適である。
量子ドットディスプレイの例としては、米国特許出願公開第2013/0335677号、米国特許出願公開第2014/0036536号、米国特許出願公開第2014/0036203号、及び、米国特許出願公開第2014/0035960号に記載されたものが挙げられる。
以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されない。
〔着色剤〕
以下の方法により各着色剤を作製した。
<チタン窒化物含有粒子(TiN−1)>
まず、Ti粒子(TC−200、トーホーテック社製)をArガス中においてプラズマ処理することにより、Tiナノ粒子化した。プラズマ処理後のTiナノ粒子を、Arガス雰囲気下でO濃度50ppm以下、30℃の条件で24時間静置した。その後、O濃度が100ppmとなるようにAr雰囲気にOガスを導入した状態において30℃、24時間静置した(Ti粒子の前処理)。
その後、得られたTiナノ粒子をホソカワミクロン製TTSPセパレータを用いて収率10%となる条件で分級を行い、Ti粒子の粉末を得た。得られた粉末の一次粒子径は、TEM観察によって100個の粒子の平均粒子径を算術平均により求めたところ、120nmであった。
チタン窒化物含有粒子TiN−1は、国際公開第2010/147098の図1に記載の黒色複合微粒子製造装置に準ずる装置を用いて製造した。
具体的には、黒色複合微粒子製造装置において、プラズマトーチの高周波発振用コイルに約4MHz及び約80kVAの高周波電圧を印加し、プラズマガス供給源からプラズマガスとしてアルゴンガス50L/min及び窒素50L/minの混合ガスを供給し、プラズマトーチ内にアルゴン−窒素熱プラズマ炎を発生させた。材料供給装置の噴霧ガス供給源から10L/minのキャリアガスを供給した。
上記のようにして得られたTi粒子に対して、Fe粉(JIP270M、JFEスチール社製)、及びSi粉(Silicon powder SI006031)を、それぞれの質量比がTi/Fe/Si=残分/0.05/0.05となるよう混合した。この混合物をキャリアガスであるアルゴンガスと共に、プラズマトーチ内の熱プラズマ炎中に供給し、熱プラズマ炎中で蒸発させ、気相状態で高度に分散させた。
また、気体供給装置によって、チャンバ内に供給する気体としては、窒素を使用した。このときのチャンバ内の流速は5m/secとして、供給量は1,000L/minとした。また、サイクロン内の圧力は50kPaとし、また、チャンバからサイクロンへの各原料の供給速度は、10m/s(平均値)とした。
このようにして、チタン窒化物含有粒子TiN−1を得た。
得られたチタン窒化物含有粒子TiN−1について、ICP発光分光分析法によって、チタン(Ti)原子、鉄(Fe)原子及びケイ素(Si)原子の含有量を測定した。なお、ICP発光分光分析法には、セイコーインスツルメンツ社製のICP発光分光分析装置「SPS3000」(商品名)を用いた。
窒素原子の含有量は、堀場製作所製の酸素・窒素分析装置「EMGA−620W/C」(商品名)を用いて測定し、不活性ガス融解−熱伝導度法により算出した。上記の結果、チタン窒化物含有粒子TiNに含まれる各原子の質量比は、Ti/N/Fe/Si=57/34/0.0030/0.0020であった。
チタン窒化物含有粒子TiN−1のX線回折は、粉末試料をアルミ製標準試料ホルダーに詰め、広角X線回折法(理学電機社製、商品名「RU−200R」)により測定した。測定条件としては、X線源はCuKα線とし、出力は50kV/200mA、スリット系は1°−1°−0.15mm−0.45mm、測定ステップ(2θ)は0.02°、スキャン速度は2°/分とした。
そして、回折角2θ(42.6°)付近に観察されるTiN(200)面に由来するピークの回折角を測定した。更に、この(200)面に由来するピークの半値幅より、シェラーの式を用いて、粒子を構成する結晶子サイズを求めた。その結果、ピークの回折角は42.62°、結晶子サイズは10nmだった。なお、TiOに起因するX線回折ピークは全く見られなかった。
<チタン窒化物含有粒子TiN−2>
Ti粒子として、トーホーテック社製「TC−200」に代えて、シグマアルドリッチ社製「578347」を使用し、Fe粉、及びSi粉を、それぞれの質量比がTi/Fe/Si=残分/0.5/1となるよう混合した以外はTiN−1と同様にして、チタン窒化物含有粒子TiN−2を得た。
なお、X線回折により測定したピークの回折角は42.81°、結晶子サイズは12nmだった。
<チタン窒化物含有粒子TiN−3>
Fe粉、及びSi粉を、それぞれの質量比がTi/Fe/Si=残分/1/2となるよう混合した以外はTiN−1と同様にして、チタン窒化物含有粒子TiN−3を得た。
なお、X線回折により測定したピークの回折角は43.1°、結晶子サイズは12nmだった。
<チタンブラックA−1の作製>
平均粒径15nmの酸化チタンMT−150A(商品名、テイカ(株)製)を100g、BET(Brunauer,Emmett,Teller)比表面積300m/gのシリカ粒子AEROSIL300(登録商標)300/30(エボニック社製)を25g、及び、Disperbyk190(商品名、ビックケミー社製)を100g秤量し、これらをイオン電気交換水71gに加えて、混合物を得た。その後、KURABO製MAZERSTAR KK−400Wを使用して、公転回転数1,360rpm、自転回転数1,047rpmにて混合物を30分間処理することにより均一な混合物水溶液を得た。この混合物水溶液を石英容器に充填し、小型ロータリーキルン(株式会社モトヤマ製)を用いて酸素雰囲気中で920℃に加熱した。その後、小型ロータリーキルン内を窒素で置換し、同温度でアンモニアガスを100mL/minで5時間流すことにより窒化還元処理を実施した。終了後回収した粉末を乳鉢で粉砕し、Si原子を含み、粉末状の比表面積73m2/gのチタンブラック〔チタンブラック粒子及びSi原子を含む被分散体〕を得た(以下では、「チタンブラックA−1」と表記する)。
<Fe原子を含有する窒化ニオブ含有粒子(NbN)の作製>
以下の方法によりFe原子を含有する窒化ニオブ含有粒子を作製した。
まず、三津和化学薬品製ニオブ(粉末)<100−325mesh>を原料(以下、「金属原料粉末」ともいう。)として準備した。
次に、上記金属原料粉末を、Arガス中においてプラズマ処理することにより、Nbナノ粒子化した。上記プラズマ処理の条件は、下記のプラズマ処理(1)に従った。
(プラズマ処理(1))
プラズマ処理(1)は以下の方法により行った。上記の黒色複合微粒子製造装置に準ずる装置を用い、以下の条件によりプラズマ処理(1)した。
・高周波発振用コイルに印加した高周波電圧:周波数 約4MHz、電圧 約80kVA
・プラズマガス:アルゴンガス(供給量 100L/min)
・キャリアガス:アルゴンガス(供給量 10L/min)
・チャンバ内雰囲気:アルゴンガス(供給量 1,000L/min、チャンバ内流速 5m/sec)
・サイクロン内雰囲気:アルゴンガス、内圧 50kPa
・チャンバからサイクロンへの材料供給速度:10m/s(平均値)
次に、Fe粉(JIP270M、JFEスチール社製)を準備し、プラズマ処理(1)の条件によりプラズマ処理を行い、Feナノ粒子化した。
次に、上記により得られたNbナノ粒子、及びFeナノ粒子を混合し、原料金属粉末を得た。この原料金属粉末について、窒素ガス中においてプラズマ処理することにより、窒化ニオブ含有粒子を得た。上記プラズマ処理の条件は、下記のプラズマ処理(2)に従った。
(プラズマ処理(2))
プラズマ処理(2)は以下の方法により行った。なお、装置はプラズマ処理(1)と同様のものを用いた。
・高周波発振用コイルに印加した高周波電圧:周波数 約4MHz、電圧 約80kVA
・プラズマガス:アルゴンガス及び窒素ガス(供給量 それぞれ50L/min)
・キャリアガス:窒素ガス(供給量 10L/min)
・チャンバ内雰囲気:窒素ガス(供給量 1,000L/min、チャンバ内流速 5m/sec)
・サイクロン内雰囲気:窒素ガス、内圧 50kPa
・チャンバからサイクロンへの材料供給速度:10m/s(平均値)
プラズマ処理(2)終了後の粒子を、Arガスを用いて日本シンテック社製分流型湿度供給装置SRHにより大気中であれば相対湿度95%となる条件で20℃の窒素ガスを導入し、24時間静置した。その後、得られた粒子をホソカワミクロン製TTSPセパレータを用いて収率10%となる条件で分級を行い、窒化ニオブ含有粒子(NbN)を得た。なお、セパレータへは窒素ガスを供給した。
得られた窒化ニオブ含有粒子について、ICP発光分光分析法によって、鉄(Fe)原子の含有量を測定したところ、50質量ppmだった。
<Fe原子を含有する窒化バナジウム含有粒子(VN)の作製>
Fe原子を含有する窒化ニオブ含有粒子の作製において、三津和化学薬品製ニオブ(粉末)<100−325mesh>に代えて太陽鉱工製金属バナジウム粉末VHOを用いたこと以外は同様にして、Fe原子を含有する窒化バナジウム含有粒子(VN)を作製した。得られた窒化バナジウム含有粒子について、ICP発光分光分析法によって、鉄(Fe)原子の含有量を測定したところ、50質量ppmだった。
〔多官能チオール化合物〕
多官能チオール化合物として、以下のSH−4、SH−3、SH−2を用いた。
・SH−4(ペンタエリトリトールテトラ(3−メルカプトプロピオネート)、4官能チオール化合物に該当する。)
Figure 0006896718
・SH−3(トリメチロールプロパントリス(3−メルカプトプロピオネート)、3官能チオール化合物に該当する。)
Figure 0006896718
・SH−2(1,4ブタンジオールビス(チオグリコラート)、2官能チオール化合物に該当する。)
Figure 0006896718
〔分散剤〕
分散剤として、以下の構造の分散剤Aを用いた。各構造単位に記載の数値は、全構造単位に対する、各構造単位の質量%を意図する。
・分散剤A
Figure 0006896718
〔バインダー樹脂〕
バインダー樹脂としては、以下の樹脂Aを用いた。各構造単位に記載の数値は、全構造単位に対する、各構造単位のモル%を意図する。なお、樹脂Aの式中、各略号は以下を表す。
BzMA:メタクリル酸ベンジル
MMA:メタクリル酸メチル
・樹脂A
Figure 0006896718
〔重合性化合物〕
・重合性化合物M1:ジペンタエリスリトールヘキサアクリレート(日本化薬社製、商品名「KAYARAD」、下記式参照)
Figure 0006896718
〔光重合開始剤〕
・OXE−01:Irgacure OXE01(商品名、BASFジャパン社製)
Figure 0006896718
・OXE−02:Irgacure OXE02(商品名、BASFジャパン社製)
Figure 0006896718
・PI−3:下記の構造を有する光重合開始剤
Figure 0006896718
・NCI−831(商品名、ADEKA社製)
Figure 0006896718
・IRG−379:IRGACURE 379(商品名、BASFジャパン社製)
Figure 0006896718
〔重合禁止剤〕
Ih−1:4−メトキシフェノール
Ih−2:2,6−ジ−tert−ブチル−4−メチルフェノール
Ih−3:4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン 1−オキシル フリーラジカル
〔界面活性剤〕
・F−1:下記式で表される化合物(重量平均分子量(Mw)=15,311)
ただし、下記式において、式(A)及び(B)で表される構造単位はそれぞれ62モル%、38モル%である。式(B)で表される構造単位中、a、b、cは、それぞれ、a+c=14、b=17の関係を満たす。
Figure 0006896718
〔有機溶剤〕
・PGMEA:プロピレングリコールモノメチルエーテルアセテート
・シクロペンタノン
・酢酸ブチル
[着色剤分散液の調製]
まず、着色剤、分散剤及び有機溶剤を、攪拌機(IKA社製EUROSTAR)によって15分間混合し、上記成分の混合液を得た。次に、得られた混合液に対して、シンマルエンタープライゼス製のNPM−Pilotを使用して下記条件にて分散処理を行い、着色剤分散液を得た。
<分散条件>
・ビーズ径:φ0.05mm、(ニッカトー製ジルコニアビーズ、YTZ)
・ビーズ充填率:65体積%
・ミル周速:10m/sec
・セパレータ周速:13m/s
・分散処理する混合液量:15kg
・循環流量(ポンプ供給量):90kg/hour
・処理液温度:19〜21℃
・冷却水:水
・処理時間:22時間程度
[硬化性組成物の調製]
次に、上記着色剤分散液、多官能チオール化合物、バインダー樹脂、重合性化合物、重合開始剤、重合禁止剤、及び界面活性剤を混合、攪拌して、下記表1−1、表1−2及び表2に示す実施例及び比較例の各硬化性組成物を得た。なお、表1−1、表1−2及び表2における各成分の含有量は、いずれも質量%である。
なお、各硬化性組成物の最終的な固形分は、表1−1、表1−2及び表2に記載された固形分濃度になるよう、有機溶剤で調整した。また、有機溶剤は、各硬化性組成物における質量比がPGMEA/酢酸ブチル/シクロヘキサノン=27/18/27になるよう、併用した。
[評価]
実施例及び比較例の各硬化性組成物について、以下の各評価試験を行った。結果は、表1−1及び表1−2にまとめて示した。
〔OD値〕
厚さ0.7mm、10cm角のガラス板(EagleXG、Corning社製)上に、各硬化性組成物を用いて、スピンコートにより塗膜を形成した。この際、膜厚1.5μmの硬化膜が得られるように回転数を調整した。形成した塗膜を、ホットプレート上で100℃、2分間の熱処理により乾燥させ、500mJ/cmの露光量で露光し、硬化膜を得た。得られた硬化膜を含有するガラス基板について、分光光度計U−4100(日立ハイテクノロジーズ製)によりOD値を測定した。OD値が大きいほど、硬化膜は優れた遮光性を有する。結果は表1−1、表1−2及び表2にまとめて示した。
なお、表1−1、表1−2、及び表2に示したOD値は、波長400〜800nmにおける最小値である。すなわち、各実施例の硬化膜(膜厚1.5μm)は、波長400〜800nmの全域において表1−1、表1−2、及び表2に示したOD値以上のOD値を有する。
〔パターン形状〕
Si基板上に各硬化性組成物を用いて、膜厚1.5μmの硬化膜が得られるように回転数を調整して、スピンコートにより塗膜を形成した。形成した塗膜を、ホットプレート上で100℃、2分間の熱処理により乾燥させ、硬化膜を得た。得られた硬化膜を含有するSi基板について、上記プリベーク後の塗膜付き基板に対してi線ステッパー(キヤノン製FPA3000i5+)を用い、長さ200μm×幅20μm ラインパターンが形成されたフォトマスクを通して、表に記載の露光量にて、上記塗膜を露光した。露光後の塗膜を、東京エレクトロン製コーターデベロッパーACT8により、現像液として水酸化テトラメチルアンモニウムを用いて、30秒間パドル現像をした。現像後は純水により20秒間シャワーリンス処理を行った。現像後の塗膜をポストベーク(温度:220℃、時間:300秒)した。ポストベーク後の塗膜のパターン形状を測長SEM(Scanning Electron Microscope)により測定した。具体的には、ラインパターン端部の膜厚と中央部の膜厚を測定し、比(パターン端部の膜厚/中央部の膜厚)を計算し、以下の基準により評価した。結果は表1−1、表1−2及び表2にまとめて示した。なお、評価「2」以上が実用範囲である。
・7:比が0.98超1.00以下であり、SEMによる観察でパターン中央部と端部の膜厚に差は見られない。
・6:比が、0.96超0.98以下であり、パターン中央部と端部の膜厚にわずかに差がみられる。
・5:比が、0.94超0.96以下であり、パターン中央部と端部の膜厚に差がみられる。
・4:比が0.92超0.94以下であり、端部の膜厚が薄く、わずかに歪んでいるが実用上問題ないレベル。
・3:比が0.90超0.92以下であり、端部の膜厚が薄く、歪んでいるが実用上問題ないレベル。
・2:比が0.80超0.90以下であり、端部の膜厚が薄いが、実用は可能なレベル。
・1:比が0.80以下であり、端部の膜厚が薄く、許容外。
〔経時安定性〕
調製後の各硬化性組成物を100ccのブルーム瓶に密封し、45℃の恒温槽で7日間保管した。その後、上記と同様の方法でパターン形状の評価を行った。結果を表2に示した。
Figure 0006896718
Figure 0006896718
Figure 0006896718
表1−1及び表1−2に示した結果から、着色剤と、光重合開始剤と、重合性化合物と、多官能チオール化合物と、を含有する硬化性組成物であって、硬化性組成物を硬化して得られる硬化膜の、可視光領域における膜厚1.5μmあたりの光学濃度が、4.0以上である、各実施例の硬化性組成物を硬化して得られた硬化膜は、優れたパターン形状を有していた。一方、比較例の硬化性組成物は所望の効果を有していなかった。
着色剤の含有量が硬化性組成物の全固形分に対して55質量%以上である、実施例48の硬化性組成物は、分散剤の含有量が同程度であり、かつ着色剤の含有量が53%である実施例49の硬化性組成物と比較して、得られる硬化物のパターン形状がより優れていた。
多官能チオール化合物の含有量が、着色剤の含有量に対して1〜5.5質量%である、実施例1、実施例2、及び実施例3の硬化性組成物は、実施例4の硬化性組成物と比較して、得られる硬化物のパターン形状がより優れていた。
重合禁止剤として2種以上のフェノール系化合物を含有する、実施例45の硬化性組成物は、実施例36の硬化性組成物と比較して、より低い露光量で硬化し、硬化物のパターン形状が優れていた。
重合禁止剤としてフェノール系化合物及びヒンダードアミン系化合物を含有する実施例46の硬化性組成物は、実施例36の硬化性組成物と比較して、より低い露光量で硬化し、硬化物のパターン形状が優れていた。
多官能チオール化合物が、3官能である実施例5の硬化性組成物は、実施例9の硬化性組成物と比較して、硬化物のパターン形状がより優れていた。
多官能チオール化合物が、4官能である、実施例1の硬化性組成物は、実施例9及び実施例5の硬化性組成物と比較して、硬化物のパターン形状がより優れていた。
光重合開始剤がオキシム化合物である実施例34の硬化性組成物は、実施例25の硬化性組成物と比較して、硬化物のパターン形状がより優れていた。
光重合開始剤の含有量が硬化性組成物の全固形分に対して1質量%超10質量%未満である、実施例13及び実施例48の硬化性組成物は、実施例50及び実施例51の硬化性組成物と比較して、硬化物のパターン形状がより優れていた。
重合性化合物の含有量が硬化性組成物の全固形分に対して3.5質量%超20質量%未満である、実施例13及び実施例48の硬化性組成物は、実施例50及び実施例51の硬化性組成物と比較して、硬化物のパターン形状がより優れていた。
分散剤の含有量が17質量%以上である、実施例2及び実施例48の硬化性組成物は、実施例13及び実施例54の硬化性組成物と比較して、硬化物のパターン形状がより優れていた。
実施例1において、界面活性剤F−1を用いなかった他は同様にして硬化性組成物を調製し、これを用いて評価を行った。評価の結果、実施例1と同様の結果が得られることが分かった。
[カーボンブラック分散物(CB分散液)の調製と硬化性組成物の評価]
上記の着色剤分散液の調製において、着色剤をカーボンブラック(商品名「カラーブラック S170」、デグサ社製、平均一次粒子径17nm、BET比表面積200m2/g、ガスブラック方式により製造されたカーボンブラック)とした以外は同様の方法により、カーボンブラック分散物(CB分散液)を得た。
実施例1の硬化性組成物の調製において、硬化性組成物中でチタン窒化物含有粒子TiN−1を58質量%含有するように添加した着色剤分散液に代えて、チタン窒化物含有粒子TiN−1を含有する着色剤分散液と、上記のCB分散液との混合物(硬化性組成物中のチタン窒化物含有粒子TiN−1:硬化性組成物中のカーボンブラック=45:13(質量比)、上記硬化性組成物中のチタン窒化物含有粒子TiN−1とカーボンブラックとの合計含有量は58質量%である。)を用いた他は同様にして硬化性組成物を調製し、これを用いて評価を行った。評価の結果、実施例1と同様の遮光性と、パターン形状が得られることが分かった。
[有彩色顔料分散物(PY分散液)の調製と硬化性組成物の評価]
上記の着色剤分散液の調製において、着色剤をピグメントイエロー150(Hangzhou Star-up Pigment Co., Ltd.製、商品名6150顔料黄5GN)とした以外は同様の方法により、有彩色顔料分散物(PY分散液)を得た。
実施例1の硬化性組成物の調製において、硬化性組成物中でチタン窒化物含有粒子TiN−1を58質量%含有するように添加した着色剤分散液に代えて、チタン窒化物含有粒子TiN−1を含有する着色剤分散液と、上記のPY分散液との混合物(硬化性組成物中のチタン窒化物含有粒子TiN−1:硬化性組成中のピグメントイエロー150=45:13(質量比)、硬化性組成物中のチタン窒化物含有粒子TiN−1とピグメントイエロー150との合計含有量は58質量%である。)を用いた他は同様にして硬化性組成物を調製し、これを用いて評価を行った。評価の結果、実施例1と同様の遮光性と、パターン形状が得られ、更に黒味の濃い膜が得られることが分かった。
[有彩色顔料分散物(PR分散液)の調製]
上記の着色剤分散液の調製において、着色剤をC.I.Pigment Red 254(チバ・スペシャリティー・ケミカルズ社製)とした以外は同様の方法により、有彩色顔料分散物(PR分散液)を得た。
[有彩色顔料分散物(PB分散液)の調製]
上記の着色剤分散液の調製において、着色剤をC.I.Pigment Blue 15:6(DIC株式会社製)とした以外は同様の方法により、有彩色顔料分散物(PB分散液)を得た。
[有彩色顔料分散物(PV分散液)の調製]
上記の着色剤分散液の調製において、着色剤をC.I.Pigment Violet 23(クラリアント社製)とした以外は同様の方法により、有彩色顔料分散物(PV分散液)を得た。
実施例1の硬化性組成物の調製において、硬化性組成物中でチタン窒化物含有粒子TiN−1を58質量%含有するように添加した着色剤分散液に代えて、上記のチタン窒化物含有粒子TiN−1、PY、PR、PB、及びPV分散液との混合物(硬化性組成物中のチタン窒化物含有粒子TiN−1、PY、PR、PB、及びPVの比;チタン窒化物含有粒子TiN−1:PY:PR:PB:PV=70:17:37:36:10(質量比)、硬化性組成物中のチタン窒化物含有粒子TiN−1、PY、PR、PB、及びPVの合計含有量は58質量%である。)を用いた他は同様にして硬化性組成物を調製し、これを用いて評価を行った。評価の結果、実施例1と同様の遮光性と、同様パターン形状が得られ、更に、赤外領域の遮光性が優れる膜が得られることが分かった。
実施例1の硬化性組成物の調製において、硬化性組成物中でチタン窒化物含有粒子TiN−1を58質量%含有するように添加した着色剤分散液に代えて、上記のチタン窒化物含有粒子TiN−1と以下に示す化合物SQ−23との混合物(硬化性組成物中のチタン窒化物含有粒子TiN−1、及び化合物SQ−23の比;チタン窒化物含有粒子TiN−1:化合物SQ−23=50:8(質量比)、硬化性組成物中のチタン窒化物含有粒子TiN−1、及び化合物SQ−23の合計含有量は58質量%である。)を用いた他は同様にして硬化性組成物を調製し、これを用いて評価を行った。評価の結果、実施例1と同様の遮光性と、同様パターン形状が得られ、更に、赤外領域の遮光性が優れる膜が得られることが分かった。
実施例1の硬化性組成物の調製において、硬化性組成物中でチタン窒化物含有粒子TiN−1を58質量%含有するように添加した着色剤分散液に代えて、上記のチタン窒化物含有粒子TiN−1と下記化合物A−52との混合物(硬化性組成物中のチタン窒化物含有粒子TiN−1、及び化合物A−52の比;チタン窒化物含有粒子TiN−1:化合物A−52=50:8(質量比)、硬化性組成物中のチタン窒化物含有粒子TiN−1、及び化合物A−52の合計含有量は58質量%である。)を用いた他は同様にして硬化性組成物を調製し、これを用いて評価を行った。評価の結果、実施例1と同様の遮光性と、同様パターン形状が得られ、更に、赤外領域の遮光性が優れる膜が得られることが分かった。
化合物SQ−23
Figure 0006896718
化合物A−52
Figure 0006896718
101 支持体
102 硬化性組成物層
103 フォトマスク
201 硬化膜
301 ポストベーク後の硬化膜
401 硬化性組成物層
402 マスク遮光部分
501 硬化膜
601 ポストベーク後の硬化膜

Claims (34)

  1. 着色剤と、光重合開始剤と、重合性化合物と、多官能チオール化合物と、を含有する硬化性組成物であって、
    前記硬化性組成物を硬化して得られる硬化膜の、可視光領域における膜厚1.5μmあたりの光学濃度が、4.0以上であり、
    前記着色剤が、チタン窒化物含有粒子を含有し、
    前記チタン窒化物含有粒子が、Fe原子及びSi原子からなる群より選択される少なくとも1種の原子を含有し、
    前記チタン窒化物含有粒子がFe原子を含有する場合、前記チタン窒化物含有粒子中の前記Fe原子の含有量が、前記チタン窒化物含有粒子の全質量に対して0.001質量%超0.4質量%未満であり、
    前記チタン窒化物含有粒子がSi原子を含有する場合、前記チタン窒化物含有粒子中の前記Si原子の含有量が、前記チタン窒化物含有粒子の全質量に対して0.002質量%超0.3質量%未満である、硬化性組成物。
  2. 着色剤と、光重合開始剤と、重合性化合物と、多官能チオール化合物と、重合禁止剤と、を含有する硬化性組成物であって、
    前記硬化性組成物を硬化して得られる硬化膜の、可視光領域における膜厚1.5μmあたりの光学濃度が、4.0以上であり、
    前記重合禁止剤が、2種以上のフェノール系化合物を含有するか、或いは、フェノール系化合物及びヒンダードアミン系化合物を含有し、
    前記重合禁止剤が2種以上のフェノール系化合物を含有する場合、前記重合禁止剤は、下記式(IH−1)で表される化合物であって、R 及びR はそれぞれ独立して水素原子又はtert−ブチル基を表し、R 及びR は水素原子を表し、R はメトキシ基又はエトキシ基を表す、第1のフェノール系化合物と、下記式(IH−1)で表される化合物であって、R 及びR はそれぞれ独立して水素原子又はtert−ブチル基を表し、R 及びR は水素原子を表し、R はメチル基又はエチル基を表す、第2のフェノール系化合物とを少なくとも含有し、
    Figure 0006896718

    前記重合禁止剤がフェノール系化合物及びヒンダードアミン系化合物を含有する場合、前記重合禁止剤は、前記第1のフェノール系化合物と、下記式(IH−2)で表される化合物であって、R は水素原子又はヒドロキシ基を表し、R 〜R 10 はそれぞれ独立してメチル基又はエチル基を表す、ヒンダードアミン系化合物とを少なくとも含有する、硬化性組成物。
    Figure 0006896718
  3. 前記重合禁止剤が、4−メトキシフェノール、及び、2,6−ジ−tert−ブチル−4−メチルフェノールを含有する、請求項2に記載の硬化性組成物。
  4. 前記重合禁止剤が、4−メトキシフェノール、及び、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン1−オキシルフリーラジカルを含有する、請求項2又は3に記載の硬化性組成物。
  5. 着色剤と、光重合開始剤と、重合性化合物と、多官能チオール化合物と、を含有する硬化性組成物であって、
    前記硬化性組成物を硬化して得られる硬化膜の、可視光領域における膜厚1.5μmあたりの光学濃度が、4.0以上であり、
    前記多官能チオール化合物が、ペンタエリトリトールテトラ(3−メルカプトプロピオネート)であり、
    前記着色剤が、窒化チタン、酸窒化チタン、窒化ニオブ、窒化バナジウム、銀、又は錫を含有する金属顔料、並びに、銀及び錫を含有する金属顔料からなる群から選択される少なくとも1種であり、
    前記ペンタエリトリトールテトラ(3−メルカプトプロピオネート)の含有量が、前記着色剤の含有量に対して1〜10質量%である、硬化性組成物。
  6. 前記着色剤が無機顔料である、請求項2〜4のいずれか1項に記載の硬化性組成物。
  7. 前記無機顔料が、窒化チタン、酸窒化チタン、窒化ニオブ、窒化バナジウム、銀、又は錫を含有する金属顔料、並びに、銀及び錫を含有する金属顔料からなる群から選択される少なくとも1種を含有する請求項に記載の硬化性組成物。
  8. 更に、重合禁止剤を含有する、請求項1又は5に記載の硬化性組成物。
  9. 前記重合禁止剤が、フェノール系化合物を含有する、請求項に記載の硬化性組成物。
  10. 前記重合禁止剤が、2種以上のフェノール系化合物を含有する、請求項8又は9に記載の硬化性組成物。
  11. 前記重合禁止剤が、ヒンダードアミン系化合物を含有する、請求項8〜10のいずれか一項に記載の硬化性組成物。
  12. 前記重合禁止剤の含有量が、前記多官能チオール化合物の含有量に対して0.1〜1.5質量%である、請求項2〜4及び8〜10のいずれか一項に記載の硬化性組成物。
  13. 前記多官能チオール化合物が式(1)で表される基を2個以上有する化合物である、請求項1、2〜4及びのいずれか一項に記載の硬化性組成物。
    Figure 0006896718

    式(1)中、Lは単結合又は−CO−を表し、Lは単結合又は2価の連結基を表す。
  14. 前記多官能チオール化合物が3官能以上である、請求項1、2〜4、6、7及び13のいずれか一項に記載の硬化性組成物。
  15. 前記多官能チオール化合物が、ペンタエリトリトールテトラ(3−メルカプトプロピオネート)、及び、トリメチロールプロパントリス(3−メルカプトプロピオネート)からなる群から選択される少なくとも1種である、請求項1、2〜4、6、7、13及び14のいずれか一項に記載の硬化性組成物。
  16. 前記光重合開始剤がオキシム化合物である、請求項1〜15のいずれか一項に記載の硬化性組成物。
  17. 前記オキシム化合物が、フッ素原子を含有するオキシム化合物である、請求項16に記載の硬化性組成物。
  18. 前記フッ素原子を含有するオキシム化合物が、下記の構造を有する化合物である、請求項17に記載の硬化性組成物。
    Figure 0006896718
  19. 前記着色剤が、赤外線吸収剤を更に含有する、請求項1〜18のいずれか一項に硬化性組成物。
  20. 前記赤外線吸収剤が、ピロロピロール化合物及びスクアリリウム化合物からなる群より選択される少なくとも1種を含有する、請求項19に記載の硬化性組成物。
  21. 前記着色剤の含有量が、前記硬化性組成物の全固形分に対して55質量%以上である、請求項1〜20のいずれか一項に記載の硬化性組成物。
  22. 前記多官能チオール化合物の含有量が、前記着色剤の含有量に対して1〜5.5質量%である、請求項1〜21のいずれか一項に記載の硬化性組成物。
  23. 前記光重合開始剤の含有量が、前記硬化性組成物の全固形分に対して、1質量%超10質量%未満である、請求項1〜22のいずれか一項に記載の硬化性組成物。
  24. 前記重合性化合物の含有量が、前記硬化性組成物の全固形分に対して、3.5質量%超20質量%未満である、請求項1〜23のいずれか一項に記載の硬化性組成物。
  25. 分散剤をさらに含有し、前記分散剤の含有量が、前記硬化性組成物の全固形分に対して、17質量%以上である、請求項1〜24のいずれか一項に記載の硬化性組成物。
  26. 請求項1〜25のいずれか一項に記載の硬化性組成物を硬化して得られる、硬化膜。
  27. 請求項26に記載の硬化膜を含有する、カラーフィルタ。
  28. 請求項26に記載の硬化膜を含有する、遮光膜。
  29. 請求項26に記載の硬化膜を含有する、固体撮像素子。
  30. 請求項26に記載の硬化膜を含有する、画像表示装置。
  31. 請求項1〜25のいずれか一項に記載の硬化性組成物を用いて支持体上に硬化性組成物層を形成する、硬化性組成物層形成工程と、
    前記硬化性組成物層を露光する、露光工程と、を含有する硬化膜の製造方法。
  32. 前記露光工程における、前記硬化性組成物層の露光量が200mJ/cm以上である、請求項31に記載の硬化膜の製造方法。
  33. 前記硬化性組成物層形成工程が、前記支持体上に前記硬化性組成物を直接塗布して、前記支持体上に前記硬化性組成物層を形成する塗布工程を含む、請求項31又は32に記載の硬化膜の製造方法。
  34. 更に、露光された前記硬化性組成物層を現像する、現像工程と、
    現像した前記硬化性組成物層を洗浄する、洗浄工程と、を含有する、請求項31〜33のいずれか一項に記載の硬化膜の製造方法。
JP2018519177A 2016-05-27 2017-05-10 硬化性組成物、硬化膜、カラーフィルタ、遮光膜、固体撮像素子、画像表示装置、及び硬化膜の製造方法 Active JP6896718B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016106325 2016-05-27
JP2016106325 2016-05-27
PCT/JP2017/017673 WO2017203979A1 (ja) 2016-05-27 2017-05-10 硬化性組成物、硬化膜、カラーフィルタ、遮光膜、固体撮像素子、画像表示装置、及び硬化膜の製造方法

Publications (2)

Publication Number Publication Date
JPWO2017203979A1 JPWO2017203979A1 (ja) 2019-04-11
JP6896718B2 true JP6896718B2 (ja) 2021-06-30

Family

ID=60411151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018519177A Active JP6896718B2 (ja) 2016-05-27 2017-05-10 硬化性組成物、硬化膜、カラーフィルタ、遮光膜、固体撮像素子、画像表示装置、及び硬化膜の製造方法

Country Status (4)

Country Link
JP (1) JP6896718B2 (ja)
KR (1) KR102208741B1 (ja)
TW (1) TWI740942B (ja)
WO (1) WO2017203979A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7090628B2 (ja) * 2017-09-20 2022-06-24 富士フイルム株式会社 着色組成物、硬化膜、パターン形成方法、カラーフィルタ、固体撮像素子及び画像表示装置
JPWO2019188652A1 (ja) * 2018-03-26 2021-02-18 富士フイルム株式会社 感光性組成物
EP3848627A4 (en) * 2018-09-07 2021-10-27 FUJIFILM Corporation VEHICLE HEADLIGHT UNIT, HEADLIGHT LIGHT PROTECTION FILM AND PROCESS FOR THE PRODUCTION OF HEADLIGHT LIGHT PROTECTION FILM
JP7113907B2 (ja) * 2018-09-18 2022-08-05 富士フイルム株式会社 組成物、膜、光学フィルタ、固体撮像素子、赤外線センサ、光学フィルタの製造方法、カメラモジュール、化合物、及び、分散組成物
KR102630401B1 (ko) * 2018-09-20 2024-01-30 후지필름 가부시키가이샤 차광성 조성물, 경화막, 컬러 필터, 차광막, 광학 소자, 고체 촬상 소자, 헤드라이트 유닛
CN112585535B (zh) * 2018-09-26 2024-07-30 Jsr株式会社 感光性树脂组合物、抗蚀剂图案的形成方法、以及镀覆造形物的制造方法
JP7236671B2 (ja) * 2018-12-25 2023-03-10 パナソニックIpマネジメント株式会社 発光素子封止用組成物、及び発光装置
WO2021215155A1 (ja) * 2020-04-20 2021-10-28 日産化学株式会社 光硬化性組成物
KR20220056740A (ko) * 2020-10-28 2022-05-06 덕산네오룩스 주식회사 무기 입자를 포함한 광경화 조성물 및 표시장치
KR20220094479A (ko) * 2020-12-29 2022-07-06 덕산네오룩스 주식회사 수지, 수지 조성물 및 이를 이용한 표시장치
JP7464184B1 (ja) 2023-02-01 2024-04-09 artience株式会社 感光性着色組成物、それを用いた膜、カラーフィルタ、固体撮像素子、及び画像表示装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275228A (ja) * 1986-02-18 1987-11-30 Toshiba Corp 表示装置およびその製造方法
JPH0387744A (ja) * 1989-08-31 1991-04-12 Asahi Chem Ind Co Ltd 耐光性に優れた感光性樹脂組成物
JP2004198542A (ja) * 2002-12-16 2004-07-15 Showa Denko Kk カラーフィルターブラックマトリックスレジスト組成物及びその組成物に用いる感光性組成物
JP2004198717A (ja) * 2002-12-18 2004-07-15 Showa Denko Kk カラーフィルターブラックマトリックスレジスト組成物及びその組成物に用いるカーボンブラック分散液組成物
JP2006154774A (ja) * 2004-10-26 2006-06-15 Showa Denko Kk チオール化合物を含有するブラックマトリックスレジスト組成物
CN101048372B (zh) * 2004-10-26 2010-05-12 昭和电工株式会社 硫醇化合物和使用该化合物的光敏组合物与黑色基质抗蚀剂组合物
JP2006156801A (ja) 2004-11-30 2006-06-15 Fujifilm Electronic Materials Co Ltd 遮光膜形成用組成物、それを用いた固体撮像素子用遮光膜及び固体撮像素子
JP2006227223A (ja) * 2005-02-16 2006-08-31 Fuji Photo Film Co Ltd パターン形成用組成物、パターン形成材料、及びパターン形成方法
JP4828196B2 (ja) * 2005-10-04 2011-11-30 富士フイルム株式会社 濃色隔画壁の形成方法、カラーフィルタ及びその製造方法、並びに表示装置
JP5151126B2 (ja) * 2005-11-30 2013-02-27 東洋インキScホールディングス株式会社 黒色組成物及びそれを用いたカラーフィルタ
JP5529370B2 (ja) * 2007-10-03 2014-06-25 新日鉄住金化学株式会社 多官能チオール化合物を含んだブラックレジスト用感光性樹脂組成物、それを用いたカラーフィルター用ブラックマトリクス、及びカラーフィルター
JP2009237294A (ja) * 2008-03-27 2009-10-15 The Inctec Inc ブラックマトリクス形成用感光性樹脂組成物
JP5241289B2 (ja) * 2008-03-31 2013-07-17 富士フイルム株式会社 重合性組成物、遮光性カラーフィルタ、および固体撮像素子
JP2010256891A (ja) * 2009-04-01 2010-11-11 Toyo Ink Mfg Co Ltd 感光性着色組成物およびカラーフィルタ
TWI483999B (zh) * 2009-06-15 2015-05-11 Toray Industries 黑色複合微粒子、黑色樹脂組成物、彩色濾光片基板及液晶顯示裝置
JP2014182253A (ja) * 2013-03-19 2014-09-29 Toppan Printing Co Ltd 黒色感光性樹脂組成物、カラーフィルタ及び液晶表示装置
JP2015045706A (ja) * 2013-08-27 2015-03-12 東洋インキScホールディングス株式会社 カラーフィルタ用着色組成物およびカラーフィルタ
TWI636083B (zh) * 2014-04-16 2018-09-21 三菱化學股份有限公司 附有遮光材之基板,彩色濾光片及液晶顯示裝置
KR20190021493A (ko) * 2014-05-01 2019-03-05 후지필름 가부시키가이샤 착색 조성물, 막, 컬러 필터, 패턴 형성 방법, 컬러 필터의 제조 방법, 고체 촬상 소자 및 적외선 센서
TWI671343B (zh) * 2014-06-27 2019-09-11 日商富士軟片股份有限公司 熱硬化性樹脂組成物、硬化膜、硬化膜的製造方法以及半導體裝置
KR20180034525A (ko) * 2015-08-31 2018-04-04 후지필름 가부시키가이샤 착색 감광성 조성물, 경화막, 컬러 필터, 차광막, 고체 촬상 소자, 화상 표시 장치, 및 경화막의 제조 방법

Also Published As

Publication number Publication date
KR20180135935A (ko) 2018-12-21
TWI740942B (zh) 2021-10-01
KR102208741B1 (ko) 2021-01-28
TW201809868A (zh) 2018-03-16
JPWO2017203979A1 (ja) 2019-04-11
WO2017203979A1 (ja) 2017-11-30

Similar Documents

Publication Publication Date Title
JP6896718B2 (ja) 硬化性組成物、硬化膜、カラーフィルタ、遮光膜、固体撮像素子、画像表示装置、及び硬化膜の製造方法
JP6907371B2 (ja) 分散組成物、硬化性組成物、遮光膜、カラーフィルタ、固体撮像装置、画像表示装置、樹脂、および、硬化膜の製造方法
JP6818751B2 (ja) 硬化性組成物、硬化膜、カラーフィルタ、遮光膜、固体撮像素子、画像表示装置、硬化膜の製造方法、及び、多官能チオール化合物
JP6745869B2 (ja) 組成物、組成物の製造方法、硬化膜、カラーフィルタ、遮光膜、固体撮像素子および画像表示装置
JP7109624B2 (ja) 組成物、硬化膜、カラーフィルタ、遮光膜、固体撮像装置及び画像表示装置
JP6698820B2 (ja) 組成物、硬化膜、カラーフィルタ、遮光膜、固体撮像素子および画像表示装置
JP6727344B2 (ja) 硬化性組成物、化合物、硬化膜、硬化膜の製造方法、カラーフィルタの製造方法、固体撮像素子、赤外線センサ
JPWO2019176409A1 (ja) 硬化膜の製造方法、固体撮像素子の製造方法
JP6571275B2 (ja) 組成物、組成物の製造方法、硬化膜、カラーフィルタ、遮光膜、固体撮像素子及び画像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210609

R150 Certificate of patent or registration of utility model

Ref document number: 6896718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250